JP2006080228A - Thermoelectric converter and its manufacturing process - Google Patents

Thermoelectric converter and its manufacturing process Download PDF

Info

Publication number
JP2006080228A
JP2006080228A JP2004261422A JP2004261422A JP2006080228A JP 2006080228 A JP2006080228 A JP 2006080228A JP 2004261422 A JP2004261422 A JP 2004261422A JP 2004261422 A JP2004261422 A JP 2004261422A JP 2006080228 A JP2006080228 A JP 2006080228A
Authority
JP
Japan
Prior art keywords
thermoelectric element
electrode
type thermoelectric
heat
electrode member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004261422A
Other languages
Japanese (ja)
Inventor
Isao Azeyanagi
功 畔柳
Akio Matsuoka
彰夫 松岡
Takashi Yamamoto
隆 山本
Makoto Uto
誠 宇藤
Yukinori Hatano
五規 羽田野
Yoichi Yoshino
洋一 芳野
Fumiaki Nakamura
文昭 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004261422A priority Critical patent/JP2006080228A/en
Priority to PCT/JP2005/009914 priority patent/WO2005117153A1/en
Priority to US11/597,972 priority patent/US20070220902A1/en
Priority to DE112005001273T priority patent/DE112005001273T5/en
Publication of JP2006080228A publication Critical patent/JP2006080228A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a thermoelectric converter whose assemblability is enhanced without lowering heat-exchange efficiency by arranging an electrode portion for connecting a thermoelectric element and an electrode member on the side intersecting the arranging direction of a thermoelectric element group perpendicularly, and to provide its manufacturing process. <P>SOLUTION: The thermoelectric converter comprises a thermoelectric element substrate 10 composed by arranging a thermoelectric element group consisting of a plurality of P-type thermoelectric elements 12 and N-type thermoelectric elements 13 arranged alternately on an insulating substrate 11, and an electrode member 20 having an electrode portion 21 formed planarly in order to electrically connecting the P-type thermoelectric elements 12 and N-type thermoelectric elements 13 arranged adjacently to each other, and a heat absorbing/dissipating portion 22 formed to transmit heat to the electrode portion 21 wherein the electrode member 20 joints the electrode portion 21, respectively, to the opposite ends of the P-type thermoelectric elements 12 and N-type thermoelectric elements 13 arranged adjacently to each other by soldering such that they are connected in series. Consequently, assembling performance can be enhanced without lowering heat-exchange efficiency. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、N型熱電素子、P型熱電素子からなる直列回路に直流電流を流通させることで吸熱、放熱が得られる熱電変換装置およびその熱電変換装置の製造方法に関するものであり、特に、隣接する熱電素子とそれに接続される電極部材の構成およびその電極部材の製造方法に関する。   The present invention relates to a thermoelectric conversion device that can absorb heat and dissipate heat by flowing a direct current through a series circuit composed of an N-type thermoelectric element and a P-type thermoelectric element, and a method for manufacturing the thermoelectric conversion device. The present invention relates to a structure of a thermoelectric element to be connected, a configuration of an electrode member connected to the thermoelectric element, and a method of manufacturing the electrode member.

従来、この種の熱電変換装置として、例えば、特許文献1に示すように、N型熱電素子およびP型熱電素子をこの順序で複数組直列に接続して熱電素子群を構成し、この熱電素子群を吸熱電極部材および放熱電極部材で順次直列接続するとともに、上記熱電素子群の一方に突設して吸熱電極部材それぞれに吸熱熱交換部材を結合し、さらに熱電素子群の他方に突設して放熱電極部材それぞれに放熱熱交換部材を結合し、それぞれ吸熱熱交換部分および放熱熱交換部分を構成している。   Conventionally, as this type of thermoelectric conversion device, for example, as shown in Patent Document 1, a plurality of sets of N-type thermoelectric elements and P-type thermoelectric elements are connected in series in this order to form a thermoelectric element group. The heat absorbing electrode member and the heat radiating electrode member are sequentially connected in series, and one end of the thermoelectric element group is protruded to connect the endothermic heat exchange member to each of the endothermic electrode members, and the other end of the thermoelectric element group is protruded. The radiating heat exchange member is coupled to each of the radiating electrode members to constitute an endothermic heat exchange portion and a radiant heat exchange portion, respectively.

そして、この熱交換部分をそれぞれ構成する各熱交換部材は、熱電素子群の並ぶ方向に沿って折曲される第1の折曲片および熱電素子の並ぶ方向とほぼ直角曲げられる第2の折曲片を備え、隣接する第2の折曲片の相互は電気的に絶縁して固定することにより、吸熱熱交換部分と放熱熱交換部分とを区画する壁を有するように構成している。これにより、吸熱電極部材および放熱電極部材からの熱を効率的に取り出して熱交換効率が良好となるとともに、区画壁が形成されることで吸熱部と放熱部との分離が容易にできる構造を備えている(例えば、特許文献1参照)。
特許第3166228号公報
Each heat exchange member constituting each of the heat exchange portions includes a first bent piece that is bent along the direction in which the thermoelectric element groups are arranged and a second fold that is bent substantially at right angles to the direction in which the thermoelectric elements are arranged. A bent piece is provided, and the adjacent second bent pieces are electrically insulated and fixed to each other so as to have a wall that partitions the endothermic heat exchange portion and the radiant heat exchange portion. As a result, the heat from the heat absorbing electrode member and the heat radiating electrode member can be efficiently taken out to improve the heat exchange efficiency, and the partition wall is formed so that the heat absorbing portion and the heat radiating portion can be easily separated. (For example, refer to Patent Document 1).
Japanese Patent No. 3166228

しかしながら、上記特許文献1によれば、この種の熱電素子は極小部品であるとともに、熱電素子、電極部材、熱電素子の順に交互に積層しその積層させた状態で熱電素子と電極部材とを接合させて構成しているので、特に各部品を積層するための組付作業がやり難いため組付性が劣る問題がある。しかも、これら構成部品をより小型にしようとすると、さらに組付作業がやり難く小型化に限界が生ずる。   However, according to the above-mentioned Patent Document 1, this type of thermoelectric element is an extremely small component, and the thermoelectric element, the electrode member, and the thermoelectric element are alternately stacked in this order, and the thermoelectric element and the electrode member are joined in the stacked state. In particular, since the assembly work for laminating the components is difficult to perform, there is a problem that the assemblability is inferior. Moreover, if these component parts are to be made smaller, the assembling work becomes more difficult and there is a limit to downsizing.

そこで、本発明の目的は、上記点を鑑みたものであり、熱電素子群の並ぶ方向に対して直交する側に熱電素子と電極部材とが接続する電極部を配設させることで、熱交換効率を低下させることなく、かつ組付性の向上が図れる熱電変換装置およびその熱電変換装置の製造方法を提供することにある。   In view of the above, the object of the present invention is to provide heat exchange by arranging an electrode portion where the thermoelectric element and the electrode member are connected on the side orthogonal to the direction in which the thermoelectric element groups are arranged. An object of the present invention is to provide a thermoelectric conversion device and a method for manufacturing the thermoelectric conversion device that can improve the assembly without reducing efficiency.

上記、目的を達成するために、請求項1ないし請求項8に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、絶縁材料からなる絶縁基板(11)に、P型熱電素子(12)およびN型熱電素子(13)を交互に複数個配列してなる熱電素子群を列設して構成された熱電素子基板(10)と、この熱電素子基板(10)に隣接して配列されたP型熱電素子(12)とN型熱電素子(13)とを電気的に接続するために平面状に形成された電極部(21)、およびその電極部(21)に伝熱可能に形成された吸熱/放熱部(22)を有する電極部材(20)とを備え、
電極部材(20)は、隣接して配列されたP型熱電素子(12)とN型熱電素子(13)との両端にそれぞれ電極部(21)を直列的に接続するように半田付けで接合したことを特徴としている。
In order to achieve the above object, the technical means described in claims 1 to 8 are employed. That is, in the invention described in claim 1, a thermoelectric element group in which a plurality of P-type thermoelectric elements (12) and N-type thermoelectric elements (13) are alternately arranged on an insulating substrate (11) made of an insulating material is provided. The thermoelectric element substrate (10) arranged in a row and the P-type thermoelectric element (12) and the N-type thermoelectric element (13) arranged adjacent to the thermoelectric element substrate (10) are electrically connected. An electrode member (20) having a flat electrode portion (21) and an endothermic / heat dissipating portion (22) formed to be capable of transferring heat to the electrode portion (21),
The electrode member (20) is joined by soldering so that the electrode portions (21) are connected in series to both ends of the P-type thermoelectric element (12) and the N-type thermoelectric element (13) arranged adjacent to each other. It is characterized by that.

請求項1に記載の発明によれば、極小部品である熱電素子(12、13)と、隣接する熱電素子(12、13)に接続する電極部材(20)を重ね合わせるように配列させたことにより、従来の熱電素子(12、13)と電極部材(20)とを直列的に積層させる方式よりも組付作業が容易にできる。   According to the invention described in claim 1, the thermoelectric elements (12, 13) that are minimal parts and the electrode members (20) connected to the adjacent thermoelectric elements (12, 13) are arranged so as to overlap each other. As a result, the assembly work can be made easier than the conventional method of laminating the thermoelectric elements (12, 13) and the electrode member (20) in series.

また、隣接する熱電素子(12、13)と電極部材(20)とを平面状に形成された電極部(21)において半田付けで接合したことにより、接続部で発生する熱を効率的に取り出すことが可能となる。これにより、接続部における熱抵抗を小さくすることができるので装置の熱交換効率を低下させることはない。   Moreover, the heat which generate | occur | produces in a connection part is efficiently taken out by joining the thermoelectric element (12, 13) and electrode member (20) which adjoined by soldering in the electrode part (21) formed planarly. It becomes possible. Thereby, since the thermal resistance in a connection part can be made small, the heat exchange efficiency of an apparatus is not reduced.

請求項2に記載の発明では、電極部材(20)は、P型熱電素子(12)およびN型熱電素子(13)の両端に接合される電極部(21)の背面側に垂直方向に向けて空間を有するように吸熱/放熱部(22)を形成したことを特徴としている。   In the invention according to claim 2, the electrode member (20) is directed vertically to the back side of the electrode portion (21) joined to both ends of the P-type thermoelectric element (12) and the N-type thermoelectric element (13). The heat absorption / heat radiation part (22) is formed so as to have a space.

請求項2に記載の発明によれば、電極部(21)の背面側が垂直方向に向けて空間を有することで、半導体、制御基板などの電子部品を組み付けるための装置であるマウンター装置を用いることが可能となる。これにより、極小部品でかつ数量の多い熱電素子(12、13)、電極部材(20)の組み付けが容易にできることで組付性の向上が図れる。   According to the second aspect of the present invention, the mounter device, which is a device for assembling electronic components such as a semiconductor and a control board, is used because the back side of the electrode portion (21) has a space in the vertical direction. Is possible. Thereby, the assembly property can be improved by easily assembling the thermoelectric elements (12, 13) and the electrode members (20) which are extremely small parts and large in quantity.

請求項3に記載の発明では、吸熱/放熱部(22)は、電極部(21)から外方に延出された平面に、ルーバ状、スリット状、オフセット状、フラット状、ピン状のいずれかの形状を成形加工で形成したことを特徴としている。   In the invention according to claim 3, the endothermic / heat dissipating part (22) has any one of a louver shape, a slit shape, an offset shape, a flat shape, and a pin shape on the plane extending outward from the electrode portion (21). The shape is formed by molding.

請求項3に記載の発明によれば、これらの吸熱/放熱部(22)の形状は、上述した電極部(21)の背面側の垂直方向に向けて形成される空間を縮小することがないのでマウンター装置の活用に支障をきたすことはない。また、吸熱/放熱部(22)をこれらの形状で形成することにより、吸熱/放熱部(22)の熱交換効率が向上することで装置の熱交換効率を低下させることはない。   According to invention of Claim 3, the shape of these heat absorption / radiation part (22) does not reduce the space formed toward the perpendicular direction of the back side of the electrode part (21) mentioned above. Therefore, it will not interfere with the use of the mounter device. Further, by forming the heat absorption / heat radiation part (22) in these shapes, the heat exchange efficiency of the heat absorption / heat radiation part (22) is improved, and the heat exchange efficiency of the apparatus is not lowered.

請求項4に記載の発明では、平板状の導電性材料に、隣接して配列されたP型熱電素子(12)とN型熱電素子(13)とを電気的に接続する平面状の電極部(21)、およびその電極部(21)により伝熱される熱を吸熱もしくは放熱する吸熱/放熱部(22)を有する電極部材(20)を一体形成する成形加工工程と、
P型熱電素子(12)およびN型熱電素子(13)を摘んで、予め設置された絶縁材料からなる絶縁基板(11)に略碁盤目状に形成された基板穴に、P型熱電素子(12)とN型熱電素子(13)とを交互に複数個配列して熱電素子群を列設する熱電素子基板(10)の組み付け工程と、
成形加工工程で形成された電極部材(20)の電極部(21)の背面側を摘んで、熱電素子基板(10)に隣接して配列されたP型熱電素子(12)とN型熱電素子(13)との両端にそれぞれの電極部(21)を設置し、その後、N型熱電素子(13)との両端と電極部(21)とを半田付けで接合する接合工程とを備えることを特徴としている。
In the invention according to claim 4, the planar electrode portion that electrically connects the P-type thermoelectric element (12) and the N-type thermoelectric element (13) arranged adjacent to each other in a flat conductive material. (21), and a molding process for integrally forming an electrode member (20) having an endothermic / heat dissipating part (22) that absorbs or dissipates heat transferred by the electrode part (21);
A P-type thermoelectric element (12) and an N-type thermoelectric element (13) are picked up, and the P-type thermoelectric element ( 12) an assembly process of a thermoelectric element substrate (10) in which a plurality of N-type thermoelectric elements (13) are alternately arranged and a thermoelectric element group is arranged;
A P-type thermoelectric element (12) and an N-type thermoelectric element arranged adjacent to the thermoelectric element substrate (10) by pinching the back side of the electrode part (21) of the electrode member (20) formed in the molding process. And (13) having respective electrode portions (21) installed at both ends, and thereafter joining both ends of the N-type thermoelectric element (13) and the electrode portion (21) by soldering. It is a feature.

請求項4に記載の発明によれば、上記製造工程によって極小部品でかつ数量の多い熱電素子(12、13)、電極部材(20)の組み付けが容易にできることで組付性の向上が図れ、かつ精度良く製造することができる。   According to the invention described in claim 4, the assembly process can be improved by facilitating the assembly of the thermoelectric elements (12, 13) and electrode members (20) which are extremely small parts and large quantities by the manufacturing process. And it can manufacture with sufficient precision.

請求項5に記載の発明では、熱電素子基板(10)の組み付け工程および接合工程は、マウンター装置を用いて製造することを特徴としている。請求項5に記載の発明によれば、具体的には、電子部品を組み付けるためのマウンター装置を用いることで組み付け性の向上が図れる。   The invention according to claim 5 is characterized in that the assembly step and the joining step of the thermoelectric element substrate (10) are manufactured using a mounter device. According to the invention described in claim 5, specifically, the mountability can be improved by using a mounter device for assembling the electronic component.

請求項6に記載の発明では、成形加工工程は、コイル状の導電性材料からせん断、折り曲げ、外形抜きにより電極部材(20)を形成することを特徴としている。請求項6に記載の発明によれば、電極部材(20)の製造が、例えば、プレス加工などで連続して形成できるので製造コストを安くすることが可能である。   The invention according to claim 6 is characterized in that the forming step forms the electrode member (20) from a coil-shaped conductive material by shearing, bending, and outline drawing. According to invention of Claim 6, since manufacture of an electrode member (20) can be continuously formed, for example by press work etc., it can reduce manufacturing cost.

請求項7に記載の発明では、成形加工工程は、平板状の導電性材料に吸熱/放熱部(22)をエッチング処理で形成し、次にそれを折り曲げおよび外形抜きにより電極部材(20)を形成することを特徴としている。請求項7に記載の発明によれば、上述したプレス加工の他にエッチング処理で形成することで製造コストを安くすることが可能である。   In the invention according to claim 7, in the molding process, the heat absorption / heat radiation portion (22) is formed by etching in the flat conductive material, and then the electrode member (20) is formed by bending and removing the outer shape. It is characterized by forming. According to the seventh aspect of the present invention, it is possible to reduce the manufacturing cost by forming by an etching process in addition to the press process described above.

請求項8に記載の発明では、成形加工工程は、平板状の導電性材料を押し出し加工で断面部を形成し、次にそれを外形抜きにより電極部材(20)を形成することを特徴としている。請求項8に記載の発明によれば、上述したプレス加工の他に押し出し加工で形成することで製造コストを安くすることが可能である。   In the invention described in claim 8, the forming step is characterized in that a cross-sectional portion is formed by extruding a flat conductive material, and then the electrode member (20) is formed by extracting the outer shape. . According to the invention described in claim 8, it is possible to reduce the manufacturing cost by forming by extrusion processing in addition to the press processing described above.

なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment mentioned later.

(第1実施形態)
以下、本発明の第1実施形態における熱電変換装置を図1ないし図3に基づいて説明する。図1(a)は本実施形態における熱電変換装置の全体構成を示す模式図であり、(b)は(a)に示すA−A断面図、(c)は(a)に示すB−B断面図である。図2は熱電変換装置の主要部の構成を示す分解模式図である。また、図3は熱電変換装置の製造方法における製造工程の流れを示す工程説明図である。
(First embodiment)
Hereinafter, a thermoelectric conversion device according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3. Fig.1 (a) is a schematic diagram which shows the whole structure of the thermoelectric conversion apparatus in this embodiment, (b) is AA sectional drawing shown to (a), (c) is BB shown to (a). It is sectional drawing. FIG. 2 is an exploded schematic view showing the configuration of the main part of the thermoelectric converter. Moreover, FIG. 3 is process explanatory drawing which shows the flow of the manufacturing process in the manufacturing method of a thermoelectric conversion apparatus.

本実施形態の熱電変換装置は、図1(a)ないし図3(c)および図2に示すように、絶縁基板11にP型熱電素子12およびN型熱電素子13を交互に複数個配列してなる熱電素子群を列設して構成された熱電素子基板10と、隣接して配列されたP型熱電素子12とN型熱電素子13とを電気的に接続する電極部材20とから構成している。   In the thermoelectric conversion device of this embodiment, as shown in FIGS. 1A to 3C and FIG. 2, a plurality of P-type thermoelectric elements 12 and N-type thermoelectric elements 13 are alternately arranged on an insulating substrate 11. A thermoelectric element substrate 10 configured by arranging the thermoelectric element groups arranged in parallel, and an electrode member 20 that electrically connects the P-type thermoelectric element 12 and the N-type thermoelectric element 13 arranged adjacent to each other. ing.

熱電素子基板10は、平板状の絶縁材料(例えば、PPS樹脂やLCP樹脂など)からなる絶縁基板11に、P型熱電素子12およびN型熱電素子13を交互に複数個配列してなる熱電素子群を列設して一体構成にしたものである。P型熱電素子12はBi−Te系化合物からなるP型半導体により構成され、N型熱電素子13はBi−Te系化合物からなるN型半導体により構成された極少部品である。   The thermoelectric element substrate 10 is a thermoelectric element in which a plurality of P-type thermoelectric elements 12 and N-type thermoelectric elements 13 are alternately arranged on an insulating substrate 11 made of a flat insulating material (for example, PPS resin or LCP resin). Groups are arranged in a row to form an integrated structure. The P-type thermoelectric element 12 is composed of a P-type semiconductor made of a Bi—Te based compound, and the N-type thermoelectric element 13 is an extremely small part composed of an N-type semiconductor composed of a Bi—Te based compound.

なお、熱電素子基板10は、P型熱電素子12およびN型熱電素子13を絶縁基板11に略碁盤目状に配列するように基板穴を一体成形で形成している。このときに、P型熱電素子12およびN型熱電素子13は、絶縁基板11よりも上端面、下端面が外方に突き出すように形成している。   The thermoelectric element substrate 10 is formed by integrally molding substrate holes so that the P-type thermoelectric elements 12 and the N-type thermoelectric elements 13 are arranged on the insulating substrate 11 in a substantially grid pattern. At this time, the P-type thermoelectric element 12 and the N-type thermoelectric element 13 are formed such that the upper end surface and the lower end surface protrude outward from the insulating substrate 11.

電極部材20は、熱電素子基板10に隣接して配列されたP型熱電素子12とN型熱電素子13とを電気的に接続する電極であって、銅材などの導電性材料からなり平面状に形成した電極部21が熱電素子12、13の上方側ではP型からN型に電流が流れるように接続し、熱電素子12、13の下方側ではN型からP型に電流が流れるように接続している。   The electrode member 20 is an electrode for electrically connecting the P-type thermoelectric element 12 and the N-type thermoelectric element 13 arranged adjacent to the thermoelectric element substrate 10, and is made of a conductive material such as a copper material and has a planar shape. The electrode part 21 formed on the upper side of the thermoelectric elements 12 and 13 is connected so that a current flows from the P type to the N type, and on the lower side of the thermoelectric elements 12 and 13, the current flows from the N type to the P type. Connected.

これにより、P型熱電素子12とN型熱電素子13とが直列的に接続されている。なお、熱電素子12、13と電極部材20との接合は、熱電素子12、13の端面と電極部20との接合面を半田付けで接合している。   Thereby, the P-type thermoelectric element 12 and the N-type thermoelectric element 13 are connected in series. The thermoelectric elements 12 and 13 and the electrode member 20 are joined by joining the end faces of the thermoelectric elements 12 and 13 and the electrode portion 20 by soldering.

また、本実施形態の電極部材20は、図1(a)および図1(b)に示すように、平面状に形成された電極部21から外方に延出された平面に電極部21より伝熱する熱を吸熱もしくは放熱するための吸熱/放熱部22が一体で形成している。さらに、この形状として、ピン状になるように形成するとともに、電極部20の背面側に垂直方向に向けて空間を有するように形成している。   Further, as shown in FIG. 1A and FIG. 1B, the electrode member 20 of the present embodiment is formed from the electrode portion 21 on a plane extending outward from the electrode portion 21 formed in a planar shape. An endothermic / heat dissipating part 22 for absorbing or dissipating heat to be transferred is integrally formed. Furthermore, as this shape, while forming so that it may become a pin shape, it forms so that it may have a space toward the orthogonal | vertical direction at the back side of the electrode part 20. As shown in FIG.

言い換えれば、電極部20の背面側に空間を形成することにより、電極部材20を熱電素子12、13の端面に組み付けるときに、電極部20の背面側をマウンター装置(後述する)でつまみ易いように形成している。なお、ピン状に形成した吸熱/放熱部22には、図示していないが電極部21より伝熱する熱を熱交換するように構成している。   In other words, by forming a space on the back side of the electrode unit 20, when the electrode member 20 is assembled to the end surfaces of the thermoelectric elements 12 and 13, the back side of the electrode unit 20 can be easily pinched with a mounter device (described later). Is formed. In addition, although it is not illustrated in the heat absorption / radiation part 22 formed in the pin shape, it is comprised so that the heat transmitted from the electrode part 21 may be heat-exchanged.

ところで、熱電素子12、13間を接続する電極部21には、PN接合部を構成する上方側の電極部材20がペルチェ効果により高温の状態となることで、この高温の熱が吸熱/放熱部22に伝達して冷却流体(例えば、空気)と熱交換されて温風が得られる。一方、NP接合部を構成する下方側の電極部材20がペルチェ効果により低温の状態となることで、この低温の熱が吸熱/放熱部22に伝達して被冷却流体(例えば、空気)と熱交換されて冷風が得られる。   By the way, in the electrode part 21 connecting the thermoelectric elements 12 and 13, the upper electrode member 20 constituting the PN junction part becomes a high temperature state due to the Peltier effect, so that this high temperature heat is absorbed / heat radiation part. 22 to exchange heat with a cooling fluid (for example, air) to obtain hot air. On the other hand, when the lower electrode member 20 constituting the NP junction is in a low temperature state due to the Peltier effect, this low temperature heat is transmitted to the heat absorption / radiation unit 22 to be cooled fluid (for example, air) and heat. It is exchanged and cold air is obtained.

つまり、熱電素子12、13間を流れる電流量に応じて、一端の電極部材20の温度が上昇して他端の電極部材20の温度が低下し、さらに、電流方向を逆にするとこれらの熱現象が逆転するというものである。因みに、この種の熱電変換装置として、半導体や電気部品などの発熱部品の冷却用や暖房装置などの加熱用に用いられる。   That is, the temperature of the electrode member 20 at one end increases and the temperature of the electrode member 20 at the other end decreases according to the amount of current flowing between the thermoelectric elements 12 and 13, and when the current direction is reversed, these heats are generated. The phenomenon is reversed. Incidentally, this type of thermoelectric conversion device is used for cooling heat-generating components such as semiconductors and electrical components and for heating such as a heating device.

次に、以上の構成による熱電変換装置の製造方法について説明する。図3に示すように、まず、電極部材20の製造は、Aに示すプレス工程において、コイル状の導電性材料をアンコイルしてせん断により電極部21、吸熱/放熱部22を一体成形する。そして、Bに示す折り曲げ工程において、所望する断面形状となるように折り曲げる。そして、Cに示す切断工程において、所定の寸法に外形抜きにより切断する。つまり、AないしCに至る成形加工工程により形成される。   Next, the manufacturing method of the thermoelectric conversion apparatus by the above structure is demonstrated. As shown in FIG. 3, the electrode member 20 is manufactured by first uncoiling the coiled conductive material and integrally forming the electrode portion 21 and the heat absorption / heat dissipation portion 22 by shearing in the pressing step shown in A. And in the bending process shown to B, it is bent so that it may become a desired cross-sectional shape. Then, in the cutting step shown in C, cutting is performed to a predetermined dimension by removing the outer shape. That is, it is formed by a molding process ranging from A to C.

一方、熱電素子基板10とその熱電素子基板10に電極部材20を組み付ける製造工程がDからFに至る熱電素子基板10の組み付け工程と接合工程によって熱電変換装置を製造する。なお、DからFに至る工程では、半導体、制御基板などの電子部品を組み付けるための装置であるマウンター装置を用いて行なうようにしている。   On the other hand, the thermoelectric conversion device is manufactured by the assembly process and the joining process of the thermoelectric element substrate 10 in which the manufacturing process of assembling the thermoelectric element substrate 10 and the electrode member 20 to the thermoelectric element substrate 10 extends from D to F. The process from D to F is performed using a mounter device that is a device for assembling electronic components such as semiconductors and control boards.

これは、極小部品でかつ数量の多い熱電素子12、13および電極部材20の組み付け性の向上を図ったものであって、熱電素子12、13および電極部材20をつまみ易いような形状に形成することで、これらの組み付けが容易となる。具体的には、Dに示す組立工程1において、装置に設けられた治具を熱電素子12、13の一端に吸引により摘んで、予め装置に設置された絶縁基板11の略碁盤目状に形成された基板穴に、P型熱電素子12とN型熱電素子13とを交互に複数個配列して熱電素子群を列設させて一体構成する。これを請求項で言う熱電素子基板10の組み付け工程である。   This is an improvement in assembly of the thermoelectric elements 12 and 13 and the electrode member 20 that are extremely small parts and a large quantity, and is formed in a shape that allows the thermoelectric elements 12 and 13 and the electrode member 20 to be easily picked up. This makes it easy to assemble them. Specifically, in the assembly step 1 shown in D, a jig provided in the apparatus is picked up by suction at one end of the thermoelectric elements 12 and 13 and formed in a substantially grid pattern of the insulating substrate 11 previously installed in the apparatus. A plurality of P-type thermoelectric elements 12 and N-type thermoelectric elements 13 are alternately arranged in the formed substrate hole, and thermoelectric element groups are arranged in a row to form an integrated structure. This is an assembling process of the thermoelectric element substrate 10 in the claims.

そして、Eに示す組立工程2において、装置に設けられた治具を成形加工工程で形成された電極部材20の一端に吸引により摘んで、電極部21を隣接されたP型熱電素子12とN型熱電素子13の端面に設置する。そして、Fに示す接合工程において、熱電素子12、13の端面と電極部20との接合面を半田付けで接合している。   Then, in the assembly process 2 shown in E, the jig provided in the apparatus is picked up by suction at one end of the electrode member 20 formed in the molding process, and the electrode part 21 is adjacent to the adjacent P-type thermoelectric elements 12 and N. It is installed on the end face of the mold thermoelectric element 13. And in the joining process shown to F, the joining surface of the end surface of the thermoelectric elements 12 and 13 and the electrode part 20 is joined by soldering.

なお、以上の工程のうち、EおよびF工程は片面ごとに行ない、他方の片面は熱電素子基板10を反転した後に、EおよびF工程を行なうようにしている。また、熱電素子12、13の端面の接合面には、予めペーストハンダなどをスクリーン印刷で薄く均一に塗っておいてから接合工程を行なうと半田付けが容易にできる。   Of the above steps, the E and F steps are performed on each side, and the other side is subjected to the E and F steps after the thermoelectric element substrate 10 is inverted. Soldering can be facilitated by carrying out a joining process after applying paste solder or the like thinly and uniformly to the joining surfaces of the end faces of the thermoelectric elements 12 and 13 in advance by screen printing.

以上の第1実施形態による熱電変換装置によれば、極小部品である熱電素子12、13と、隣接する熱電素子12、13に接続する電極部材20を重ね合わせるように接合させたことにより、従来の熱電素子12、13と電極部材20とを直列的に積層させる方式よりも組付作業が容易にできる。   According to the thermoelectric conversion device according to the first embodiment described above, the thermoelectric elements 12 and 13 which are extremely small parts and the electrode members 20 connected to the adjacent thermoelectric elements 12 and 13 are joined so as to overlap each other. The assembly work can be made easier than the method of laminating the thermoelectric elements 12, 13 and the electrode member 20 in series.

また、隣接する熱電素子12、13と電極部材20とを平面状に形成された電極部21において半田付けで接合したことにより、接続部で発生する熱を効率的に取り出すことが可能となる。これにより、接続部における熱抵抗を小さくすることができるので装置の熱交換効率を低下させることはない。   Moreover, it becomes possible to take out efficiently the heat which generate | occur | produces in a connection part by joining the thermoelectric elements 12 and 13 and the electrode member 20 which adjoin by soldering in the electrode part 21 formed in planar shape. Thereby, since the thermal resistance in a connection part can be made small, the heat exchange efficiency of an apparatus is not reduced.

また、電極部21の背面側に垂直方向に向けて空間を有するようにピン状の吸熱/放熱部22を形成したことにより、半導体、制御基板などの電子部品を組み付けるための装置であるマウンター装置を用いることが可能となる。これにより、極小部品でかつ数量の多い熱電素子12、13、電極部材20の組み付けが容易にできることで組付性の向上が図れる。   Further, a mounter device that is a device for assembling electronic components such as a semiconductor and a control board by forming a pin-like heat absorption / heat dissipation portion 22 so as to have a space in the vertical direction on the back side of the electrode portion 21 Can be used. As a result, it is possible to easily assemble the thermoelectric elements 12 and 13 and the electrode member 20 that are extremely small parts and large in quantity, thereby improving the assemblability.

また、成形加工工程は、コイル状の導電性材料からせん断、折り曲げ、外形抜きにより電極部材20を形成することにより、電極部材20の製造が、例えば、プレス加工などで連続して形成できるので製造コストを安くすることが可能である。   In addition, the forming process is manufactured because the electrode member 20 can be continuously formed by, for example, pressing, by forming the electrode member 20 by shearing, bending, and extracting the outer shape from the coiled conductive material. Cost can be reduced.

(第2実施形態)
以上の第1実施形態では、吸熱/放熱部22の形状をピン状に形成したが、これに限らず、図4(a)および図4(b)に示すように、吸熱/放熱部22の形状をフラット状に形成してもよい。また、その他、図5(a)ないし(c)のように、電極部21から外方に延出された平面を切り起こして吸熱/放熱部22の形状をルーバー状に形成しても良い。
(Second Embodiment)
In the first embodiment described above, the shape of the endothermic / heat radiating portion 22 is formed in a pin shape. However, the shape is not limited to this, and as shown in FIGS. The shape may be formed in a flat shape. In addition, as shown in FIGS. 5A to 5C, a plane extending outward from the electrode portion 21 may be cut up to form the heat absorption / heat radiation portion 22 in a louver shape.

さらに、図6(a)ないし(c)のように、電極部21から外方に延出された平面にスリット孔23を形成して吸熱/放熱部22の形状をスリット状に形成しても良い。また、図7(a)ないし(c)のように、電極部21から外方に延出された平面に対して交互に突き出して吸熱/放熱部22の形状をオフセット状に形成してもよい。   Further, as shown in FIGS. 6A to 6C, a slit hole 23 may be formed in a plane extending outward from the electrode portion 21 so that the heat absorbing / dissipating portion 22 has a slit shape. good. Further, as shown in FIGS. 7A to 7C, the shape of the heat absorption / heat radiation portion 22 may be formed in an offset shape by alternately projecting from a plane extending outward from the electrode portion 21. .

これらの形状によれば、いずれの吸熱/放熱部22の形状も電極部21の背面側の垂直方向に向けて形成される空間を縮小することがないのでマウンター装置の活用に支障をきたすことはない。また、吸熱/放熱部22をこれらの形状で形成することにより、吸熱/放熱部22の熱交換効率が向上することで装置の熱交換効率を低下させることはない。   According to these shapes, the shape of any of the heat absorption / radiation portions 22 does not reduce the space formed in the vertical direction on the back side of the electrode portion 21, so that the use of the mounter device is hindered. Absent. Further, by forming the endothermic / heat dissipating part 22 in these shapes, the heat exchanging efficiency of the endothermic / heat dissipating part 22 is improved and the heat exchanging efficiency of the apparatus is not lowered.

(第3実施形態)
以上の実施形態では、電極部材20の成形加工において、Aに示すプレス成形(図3参照)で電極部21と吸熱/放熱部22とを一体形成したが、これに限らず、図8(a)に示すように、平板状の導電性材料に吸熱/放熱部22をエッチング処理で形成し、次にそれを折り曲げおよび外形抜きにより電極部材20を形成するようにしても良い。
(Third embodiment)
In the above embodiment, in the molding process of the electrode member 20, the electrode portion 21 and the heat absorption / heat radiation portion 22 are integrally formed by press molding (see FIG. 3) shown in A. However, the present invention is not limited to this, and FIG. ), The heat absorbing / dissipating part 22 may be formed in a flat conductive material by etching, and then the electrode member 20 may be formed by bending and removing the outer shape.

また、図8(b)に示すように、平板状の導電性材料を押し出し加工で断面部を形成し、次にそれを外形抜きにより電極部材20を形成するようにしても良い。これによれば、上述したプレス加工よりも製造コストを安くすることが可能である。   Further, as shown in FIG. 8B, a cross-sectional portion may be formed by extruding a flat conductive material, and then the electrode member 20 may be formed by removing the outer shape. According to this, it is possible to make a manufacturing cost cheaper than the press work mentioned above.

(他の実施形態)
以上の実施形態では、電極部材20をプレス成形と折り曲げとで別々の工程により形成していたが、ローラ成形により電極部材20の断面形状を形成しても良い。
(Other embodiments)
In the above embodiment, the electrode member 20 is formed by separate processes for press molding and bending, but the cross-sectional shape of the electrode member 20 may be formed by roller molding.

また、以上の実施形態では、吸熱/放熱部22を電極部21から外方に延出された平面に形成したが、図9(a)および図9(b)に示すように、電極部21の一部を切り起こして吸熱/放熱部22を形成してもよい。ただし、このときには、図9(a)に示すように、電極部21の背面側に垂直方向に対して必要分だけの空間をゆうするとともに、電極部21の電流通過断面積が必要量確保されていることが望ましい。   Further, in the above embodiment, the heat absorption / heat radiation portion 22 is formed on a plane extending outward from the electrode portion 21, but as shown in FIGS. 9A and 9B, the electrode portion 21 is formed. May be cut and raised to form the endothermic / heat dissipating part 22. However, at this time, as shown in FIG. 9A, a necessary amount of space in the vertical direction is provided on the back surface side of the electrode portion 21, and a necessary amount of current passing cross-sectional area of the electrode portion 21 is ensured. It is desirable that

(a)は本発明の第1実施形態における熱電変換装置の全体構成を示す模式図、(b)は(a)に示すA−A断面図、(c)は(a)に示すB−B断面図である。(A) is a schematic diagram which shows the whole structure of the thermoelectric conversion apparatus in 1st Embodiment of this invention, (b) is AA sectional drawing shown to (a), (c) is BB shown to (a). It is sectional drawing. 本発明の第1実施形態における熱電変換装置の主要部の構成を示す分解模式図である。It is an exploded schematic diagram which shows the structure of the principal part of the thermoelectric conversion apparatus in 1st Embodiment of this invention. 本発明の第1実施形態における熱電変換装置の製造工程の流れを示す説明図である。It is explanatory drawing which shows the flow of the manufacturing process of the thermoelectric conversion apparatus in 1st Embodiment of this invention. (a)は本発明の第2実施形態における熱電変換装置の全体構成を示す模式図、(b)は(a)に示すA−A断面図(A) is a schematic diagram which shows the whole structure of the thermoelectric conversion apparatus in 2nd Embodiment of this invention, (b) is AA sectional drawing shown to (a). (a)は本発明の第2実施形態の変形例における熱電変換装置の全体構成を示す模式図、(b)は側面図、(c)は(a)に示すA−A断面図である。(A) is a schematic diagram which shows the whole structure of the thermoelectric conversion apparatus in the modification of 2nd Embodiment of this invention, (b) is a side view, (c) is AA sectional drawing shown to (a). (a)は本発明の第2実施形態の変形例における熱電変換装置の全体構成を示す模式図、(b)は側面図、(c)は(a)に示すA−A断面図である。(A) is a schematic diagram which shows the whole structure of the thermoelectric conversion apparatus in the modification of 2nd Embodiment of this invention, (b) is a side view, (c) is AA sectional drawing shown to (a). (a)は本発明の第2実施形態の変形例における熱電変換装置の全体構成を示す模式図、(b)は側面図、(c)は(a)に示すA−A断面図である。(A) is a schematic diagram which shows the whole structure of the thermoelectric conversion apparatus in the modification of 2nd Embodiment of this invention, (b) is a side view, (c) is AA sectional drawing shown to (a). (a)および(b)は本発明の第3実施形態における電極部材20の一加工工程を示す矢視図である。(A) And (b) is an arrow line view which shows one process of the electrode member 20 in 3rd Embodiment of this invention. (a)は他の実施形態における熱電変換装置の全体構成を示す模式図、(b)は(a)に示すA−A断面図である。(A) is a schematic diagram which shows the whole structure of the thermoelectric conversion apparatus in other embodiment, (b) is AA sectional drawing shown to (a).

符号の説明Explanation of symbols

10…熱電素子基板
11…絶縁基板
12…P型熱電素子
13…N型熱電素子
20…電極部材
21…電極部
22…吸熱/放熱部
DESCRIPTION OF SYMBOLS 10 ... Thermoelectric element substrate 11 ... Insulating substrate 12 ... P-type thermoelectric element 13 ... N-type thermoelectric element 20 ... Electrode member 21 ... Electrode part 22 ... Heat absorption / radiation part

Claims (8)

絶縁材料からなる絶縁基板(11)に、P型熱電素子(12)およびN型熱電素子(13)を交互に複数個配列してなる熱電素子群を列設して構成された熱電素子基板(10)と、
前記熱電素子基板(10)に隣接して配列された前記P型熱電素子(12)と前記N型熱電素子(13)とを電気的に接続するために平面状に形成された電極部(21)、およびその電極部(21)に伝熱可能に形成された吸熱/放熱部(22)を有する電極部材(20)とを備え、
前記電極部材(20)は、隣接して配列された前記P型熱電素子(12)と前記N型熱電素子(13)との両端にそれぞれ前記電極部(21)を直列的に接続するように半田付けで接合したことを特徴とする熱電変換装置。
A thermoelectric element substrate (11) configured by arranging a plurality of thermoelectric element groups in which a plurality of P-type thermoelectric elements (12) and N-type thermoelectric elements (13) are alternately arranged on an insulating substrate (11) made of an insulating material. 10) and
An electrode portion (21) formed in a planar shape for electrically connecting the P-type thermoelectric element (12) and the N-type thermoelectric element (13) arranged adjacent to the thermoelectric element substrate (10). ), And an electrode member (20) having an endothermic / heat radiating portion (22) formed so as to be capable of transferring heat to the electrode portion (21),
The electrode member (20) connects the electrode portions (21) in series to both ends of the P-type thermoelectric element (12) and the N-type thermoelectric element (13) arranged adjacent to each other. A thermoelectric conversion device characterized by being joined by soldering.
前記電極部材(20)は、前記P型熱電素子(12)および前記N型熱電素子(13)の両端に接合される前記電極部(21)の背面側に垂直方向に向けて空間を有するように前記吸熱/放熱部(22)を形成したことを特徴とする請求項1に記載の熱電変換装置。   The electrode member (20) has a space in the vertical direction on the back side of the electrode part (21) joined to both ends of the P-type thermoelectric element (12) and the N-type thermoelectric element (13). The thermoelectric conversion device according to claim 1, wherein the endothermic / heat dissipating part (22) is formed on the thermoelectric converter. 前記吸熱/放熱部(22)は、前記電極部(21)から外方に延出された平面に、ルーバ状、スリット状、オフセット状、フラット状、ピン状のいずれかの形状を成形加工で形成したことを特徴とする請求項2に記載の熱電変換装置。   The endothermic / heat dissipating part (22) may be formed into a louver shape, slit shape, offset shape, flat shape, or pin shape on a plane extending outward from the electrode portion (21). The thermoelectric conversion device according to claim 2, wherein the thermoelectric conversion device is formed. 平板状の導電性材料に、隣接して配列されたP型熱電素子(12)とN型熱電素子(13)とを電気的に接続する平面状の電極部(21)、およびその電極部(21)により伝熱される熱を吸熱もしくは放熱する吸熱/放熱部(22)を有する電極部材(20)を一体形成する成形加工工程と、
前記P型熱電素子(12)および前記N型熱電素子(13)を摘んで、予め設置された絶縁材料からなる絶縁基板(11)に略碁盤目状に形成された基板穴に、前記P型熱電素子(12)と前記N型熱電素子(13)とを交互に複数個配列して熱電素子群を列設する熱電素子基板(10)の組み付け工程と、
前記成形加工工程で形成された前記電極部材(20)の前記電極部(21)の背面側を摘んで、前記熱電素子基板(10)に隣接して配列された前記P型熱電素子(12)と前記N型熱電素子(13)との両端にそれぞれの前記電極部(21)を設置し、その後、前記N型熱電素子(13)との両端と前記電極部(21)とを半田付けで接合する接合工程とを備えることを特徴とする熱電変換装置の製造方法。
A planar electrode part (21) for electrically connecting a P-type thermoelectric element (12) and an N-type thermoelectric element (13) arranged adjacent to each other in a flat conductive material, and its electrode part ( 21) a molding process for integrally forming an electrode member (20) having a heat absorbing / dissipating part (22) that absorbs or dissipates heat transferred by heat;
The P-type thermoelectric element (12) and the N-type thermoelectric element (13) are picked up, and the P-type is inserted into a substrate hole formed in a substantially grid pattern in an insulating substrate (11) made of an insulating material that has been installed in advance. An assembly step of a thermoelectric element substrate (10) in which a plurality of thermoelectric elements (12) and N-type thermoelectric elements (13) are alternately arranged to arrange a thermoelectric element group;
The P-type thermoelectric element (12) arranged adjacent to the thermoelectric element substrate (10) by pinching the back side of the electrode part (21) of the electrode member (20) formed in the molding process. And the N-type thermoelectric element (13), the electrode portions (21) are installed at both ends, and then both ends of the N-type thermoelectric element (13) and the electrode portion (21) are soldered. The manufacturing method of the thermoelectric conversion apparatus characterized by including the joining process to join.
前記熱電素子基板(10)の組み付け工程および前記接合工程は、マウンター装置を用いて製造することを特徴とする請求項4に記載の熱電変換装置の製造方法。   The method of manufacturing a thermoelectric conversion device according to claim 4, wherein the assembly step and the joining step of the thermoelectric element substrate (10) are manufactured using a mounter device. 前記成形加工工程は、コイル状の導電性材料からせん断、折り曲げ、外形抜きにより前記電極部材(20)を形成することを特徴とする請求項4に記載の熱電変換装置の製造方法。   5. The method of manufacturing a thermoelectric conversion device according to claim 4, wherein in the forming step, the electrode member (20) is formed from a coil-shaped conductive material by shearing, bending, or extracting an outer shape. 前記成形加工工程は、平板状の導電性材料に前記吸熱/放熱部(22)をエッチング処理で形成し、次にそれを折り曲げおよび外形抜きにより前記電極部材(20)を形成することを特徴とする請求項4に記載の熱電変換装置の製造方法。   The molding step is characterized in that the heat absorbing / dissipating part (22) is formed by etching on a flat conductive material, and then the electrode member (20) is formed by bending and removing the outer shape. The manufacturing method of the thermoelectric conversion apparatus of Claim 4. 前記成形加工工程は、平板状の導電性材料を押し出し加工で断面部を形成し、次にそれを外形抜きにより前記電極部材(20)を形成することを特徴とする請求項4に記載の熱電変換装置の製造方法。   5. The thermoelectric device according to claim 4, wherein in the forming step, a cross-sectional portion is formed by extruding a flat conductive material, and then the electrode member (20) is formed by removing an outer shape thereof. 6. A method for manufacturing a conversion device.
JP2004261422A 2004-05-31 2004-09-08 Thermoelectric converter and its manufacturing process Pending JP2006080228A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004261422A JP2006080228A (en) 2004-09-08 2004-09-08 Thermoelectric converter and its manufacturing process
PCT/JP2005/009914 WO2005117153A1 (en) 2004-05-31 2005-05-31 Thermoelectric converter and its manufacturing method
US11/597,972 US20070220902A1 (en) 2004-05-31 2005-05-31 Thermoelectric Converter
DE112005001273T DE112005001273T5 (en) 2004-05-31 2005-05-31 Thermoelectric converter and method for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261422A JP2006080228A (en) 2004-09-08 2004-09-08 Thermoelectric converter and its manufacturing process

Publications (1)

Publication Number Publication Date
JP2006080228A true JP2006080228A (en) 2006-03-23

Family

ID=36159451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261422A Pending JP2006080228A (en) 2004-05-31 2004-09-08 Thermoelectric converter and its manufacturing process

Country Status (1)

Country Link
JP (1) JP2006080228A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351683B1 (en) 2012-02-09 2014-01-16 부산대학교 산학협력단 flexible thermoelectric element assembly united with heatsink and the manufacturing method of it
JP2016119450A (en) * 2014-12-23 2016-06-30 財團法人工業技術研究院Industrial Technology Research Institute Thermoelectric conversion device and application system thereof
CN110416400A (en) * 2019-07-03 2019-11-05 合肥圣达电子科技实业有限公司 A kind of assembling equipment and assemble method for semiconductor cooler
CN110649148A (en) * 2018-06-26 2020-01-03 现代自动车株式会社 Thermoelectric conversion module and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351683B1 (en) 2012-02-09 2014-01-16 부산대학교 산학협력단 flexible thermoelectric element assembly united with heatsink and the manufacturing method of it
JP2016119450A (en) * 2014-12-23 2016-06-30 財團法人工業技術研究院Industrial Technology Research Institute Thermoelectric conversion device and application system thereof
CN110649148A (en) * 2018-06-26 2020-01-03 现代自动车株式会社 Thermoelectric conversion module and method for manufacturing the same
CN110416400A (en) * 2019-07-03 2019-11-05 合肥圣达电子科技实业有限公司 A kind of assembling equipment and assemble method for semiconductor cooler
CN110416400B (en) * 2019-07-03 2023-11-07 合肥圣达电子科技实业有限公司 Assembling equipment and assembling method for semiconductor refrigerator

Similar Documents

Publication Publication Date Title
JP4581802B2 (en) Thermoelectric converter
JP4297060B2 (en) Thermoelectric converter
JP3166228B2 (en) Thermoelectric converter
WO2005117153A1 (en) Thermoelectric converter and its manufacturing method
KR950004846B1 (en) Heat sink and the producing method thereof
KR100771076B1 (en) Thermoelectric device and method for manufacturing thermoelectric device
JP4858306B2 (en) Method for manufacturing thermoelectric conversion device
JP2006237146A (en) Cascade module for thermoelectric conversion
JPH03263382A (en) Thermoelectric conversion device
JP2008078587A (en) Fin for heat exchange
US20060112982A1 (en) Method of manufacturing thermoelectric transducer, thermoelectric transducer, and method for forming corrugated fin used for the same
JP2006080228A (en) Thermoelectric converter and its manufacturing process
JP2006156818A (en) Thermoelectric conversion device and its manufacturing method
JP4626263B2 (en) Thermoelectric conversion device and method for manufacturing the thermoelectric conversion device
JP2008078222A (en) Thermoelectric transducer
JP2006287066A (en) Thermoelectric conversion apparatus and method of manufacturing the apparatus
JP2007329349A (en) Thermoelectric conversion device and manufacturing method thereof
JP2007294548A (en) Thermoelectric conversion device
JP4788225B2 (en) Thermoelectric conversion device and method of manufacturing the same
WO2016136856A1 (en) Thermoelectric module
JP2006287067A (en) Thermoelectric conversion device and method of manufacturing the device
JP2006114840A (en) Thermoelectric convertor and manufacturing method thereof
JP2003294381A (en) Heat sink
JP4682756B2 (en) Thermoelectric conversion device and method of manufacturing the same
JP2006108253A (en) Thermoelectric conversion apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624