JP2007294548A - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device Download PDF

Info

Publication number
JP2007294548A
JP2007294548A JP2006118534A JP2006118534A JP2007294548A JP 2007294548 A JP2007294548 A JP 2007294548A JP 2006118534 A JP2006118534 A JP 2006118534A JP 2006118534 A JP2006118534 A JP 2006118534A JP 2007294548 A JP2007294548 A JP 2007294548A
Authority
JP
Japan
Prior art keywords
heat
thermoelectric
thermoelectric element
conversion device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006118534A
Other languages
Japanese (ja)
Inventor
Akio Matsuoka
彰夫 松岡
Keizo Futamura
啓三 二村
Isao Azeyanagi
功 畔柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006118534A priority Critical patent/JP2007294548A/en
Publication of JP2007294548A publication Critical patent/JP2007294548A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion device which can prevent damages to a thermoelectric element and can improve the productivity. <P>SOLUTION: The thermoelectric conversion device comprises a group of thermoelectric elements 10 which is made by stacking an n-type thermoelectric element 13, a heat absorbing electrode member 20, a p-type thermoelectric element 12, and a heat dissipation electrode member 30 in order as one set and stacking a plurality of sets electrically in series. The thermoelectric conversion device is equipped with a holding member 11 for holding the group of thermoelectric elements 10. The thermoelectric elements 12 and 13 and the heat absorbing and heat dissipation electrode members 20 and 30 are formed with through-holes 12a, 13a, 20a, and 30a, respectively, which pass through the holding member 11. With the holding member 11 so arranged as to pass through the thermoelectric elements 12 and 13 and the heat absorbing and heat dissipation electrode members 20 and 30, the plurality of sets are stacked. Due to this structure, damages to the thermoelectric elements can be prevented and at the same time the productivity can be improved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、N型熱電素子、P型熱電素子からなる直列回路に直流電流を流通させることで吸熱、放熱が得られる熱電変換装置に関するものであり、特に、複数個積層されたP型、N型熱電素子および吸熱、放熱電極部材の保持に関する。   The present invention relates to a thermoelectric conversion device capable of obtaining heat absorption and heat dissipation by passing a direct current through a series circuit composed of an N-type thermoelectric element and a P-type thermoelectric element. The present invention relates to holding a thermoelectric element, heat absorption, and heat dissipation electrode member.

従来、この種の熱電変換装置として、例えば、特許文献1に示すように、P型熱電素子、放熱電極部材、N型熱電素子、吸熱電極部材の順に、複数組電気的に直列に積層して配列された熱電素子群と、この熱電素子群に配列された放熱電極部材および吸熱電極部材の少なくとも一方に、各電極部材から伝熱される熱を吸熱、放熱するための吸熱、放熱熱交換部とを備えている熱電変換装置が知られている。
特開平5−63244号公報
Conventionally, as this type of thermoelectric conversion device, for example, as shown in Patent Document 1, a plurality of sets are stacked in series in the order of a P-type thermoelectric element, a heat dissipation electrode member, an N-type thermoelectric element, and a heat absorption electrode member. An array of thermoelectric elements, and at least one of a heat dissipation electrode member and an endothermic electrode member arrayed in the thermoelectric element group, absorb heat to dissipate and dissipate heat transferred from each electrode member, and a heat dissipation heat exchange unit. There is known a thermoelectric conversion device comprising:
JP-A-5-63244

しかしながら、上記特許文献1では、熱電素子と電極部材とを交互に複数積層させて半田によって接合して熱電素子群を形成しているが、熱電素子と電極部材とを組み付けるときに、それぞれが互いに面合わせとなることで位置決めが困難であって、生産性が低い問題がある。   However, in Patent Document 1, a plurality of thermoelectric elements and electrode members are alternately stacked and joined by solder to form a thermoelectric element group. When the thermoelectric elements and the electrode members are assembled, There is a problem that positioning is difficult due to surface matching and productivity is low.

そこで、組付け性を向上するためには精度の高い組付治具を用いれば良いが製造コストが上昇する問題もある。また、このような直列積層構造では、吸熱、放熱の温度差による膨張収縮などのため、熱電素子と電極部材との接続構造が破壊し易く、その構造的な強度が弱くなるとともに、特に、熱電素子は機械的に脆いため、複数積層された熱電素子群に外圧が掛かると破損し易い問題がある。   Thus, in order to improve the assembling property, a highly accurate assembling jig may be used, but there is a problem that the manufacturing cost increases. In addition, in such a series laminated structure, the connection structure between the thermoelectric element and the electrode member easily breaks due to expansion and contraction due to temperature difference between heat absorption and heat dissipation, and the structural strength is weakened. Since the elements are mechanically fragile, there is a problem that they are easily damaged when an external pressure is applied to a plurality of laminated thermoelectric elements.

また、この種の熱電変換装置では、小型の冷却装置や加熱装置に用いられるため、熱電素子、電極部材および熱交換部などの構成部品が極小部品であって、かつ複数個組み合わされている。従って、これらの部品を組み付けるときの製造工程における生産性が極めて低い問題がある。   In addition, since this type of thermoelectric conversion device is used in a small cooling device or heating device, the component parts such as a thermoelectric element, an electrode member, and a heat exchanging portion are extremely small components and a plurality of components are combined. Therefore, there is a problem that productivity in the manufacturing process when assembling these parts is extremely low.

そこで、本発明の目的は、上記点を鑑みたものであり、熱電素子の破損を防止できるとともに、生産性の向上が図れる熱電変換装置を提供することにある。   In view of the above, an object of the present invention is to provide a thermoelectric conversion device that can prevent damage to thermoelectric elements and improve productivity.

上記目的を達成するために、請求項1ないし請求項10に記載の技術的手段を採用する。すなわち、請求項1に記載の発明では、N型熱電素子(13)、吸熱電極部材(20)、P型熱電素子(12)、放熱電極部材(30)の順に、複数組電気的に直列に積層してなる熱電素子群(10)を備える熱電変換装置において、
熱電素子群(10)を保持する保持部材(11)が設けられ、この保持部材(11)は、熱電素子(12、13)および吸熱、放熱電極部材(20、30)のそれぞれを貫通するように配設させて複数組積層するように構成したことを特徴としている。
In order to achieve the above object, the technical means described in claims 1 to 10 are employed. That is, in the invention described in claim 1, a plurality of sets are electrically connected in series in the order of the N-type thermoelectric element (13), the heat-absorbing electrode member (20), the P-type thermoelectric element (12), and the heat-dissipating electrode member (30). In the thermoelectric conversion device including the thermoelectric element group (10) formed by lamination,
A holding member (11) for holding the thermoelectric element group (10) is provided, and this holding member (11) passes through each of the thermoelectric elements (12, 13) and the heat absorbing and radiating electrode members (20, 30). It is characterized in that it is configured so that a plurality of sets are laminated.

この発明によれば、複数組積層された熱電素子(12、13)および吸熱、放熱電極部材(20、30)が保持部材(11)によって保持されるので、組付けのときに、各構成部品の位置決めが容易にできるとともに、複数積層したときに崩れもなく簡単に組付けができる。これにより生産性の向上が図れる。   According to the present invention, the thermoelectric elements (12, 13) and the heat absorption / radiation electrode members (20, 30) stacked in plural sets are held by the holding member (11). Can be easily positioned, and can be easily assembled without collapsing when a plurality of layers are stacked. As a result, productivity can be improved.

また、複数組積層された熱電素子群(10)に外力が掛かったときに、保持部材(11)によって熱電素子群(10)の機械的強度が向上することで熱電素子(12、13)の破損を防止できる。   Further, when an external force is applied to the thermoelectric element group (10) laminated in a plurality of sets, the mechanical strength of the thermoelectric element group (10) is improved by the holding member (11), whereby the thermoelectric element (12, 13). Damage can be prevented.

請求項2に記載の発明では、熱電素子(12、13)および吸熱、放熱電極部材(20、30)のそれぞれには、保持部材(11)を貫通する貫通孔(12a、13a、20a、30a)が形成されていることを特徴としている。   In the invention according to claim 2, the thermoelectric elements (12, 13) and the heat absorbing / dissipating electrode members (20, 30) each have through holes (12 a, 13 a, 20 a, 30 a) that penetrate the holding member (11). ) Is formed.

この発明によれば、貫通孔(12a、13a、20a、30a)に保持部材(11)を配設させることで、組付けのときに、各構成部品の位置決めが容易にできるとともに、複数積層したときに崩れもなく簡単に組付けができる。これにより、生産性の向上が図れる。また、保持部材(11)によって熱電素子群(10)の機械的強度が向上することで熱電素子(12、13)の破損を防止できる。   According to the present invention, by disposing the holding member (11) in the through holes (12a, 13a, 20a, 30a), it is possible to easily position each component during assembly, and a plurality of layers are stacked. Sometimes it can be easily assembled without collapsing. Thereby, productivity can be improved. Moreover, damage to the thermoelectric elements (12, 13) can be prevented by improving the mechanical strength of the thermoelectric element group (10) by the holding member (11).

請求項3に記載の発明では、貫通孔(12a、13a、20a、30a)は、略円形状に形成されていることを特徴としている。この発明によれば、略円形状とすることで加工性が容易である。これにより、生産性の向上が図れる。   The invention described in claim 3 is characterized in that the through holes (12a, 13a, 20a, 30a) are formed in a substantially circular shape. According to this invention, workability is easy by making it a substantially circular shape. Thereby, productivity can be improved.

請求項4に記載の発明では、保持部材(11)は、外表面に絶縁層もしくは絶縁材のいずれか一方で形成されていることを特徴としている。この発明によれば、絶縁材料だけでなく金属材料の表面に絶縁層を設けても良いため、保持部材(11)の材料選定の範囲が広がるとともに、隣接する相互間の電気的絶縁性がより確実に図れる。   The invention according to claim 4 is characterized in that the holding member (11) is formed on the outer surface with either an insulating layer or an insulating material. According to the present invention, since an insulating layer may be provided on the surface of the metal material as well as the insulating material, the range of material selection for the holding member (11) is widened, and the electrical insulation between the adjacent members is further improved. You can be sure.

請求項5に記載の発明では、熱電素子群(10)の両端側には、電極(15)および接続端子(24)が配設され、熱電素子群(10)は、その両端側に配設される熱電素子(12、13)と電極(15)とが導通するように配設されていることを特徴としている。この発明によれば、電源との接続を容易に行えるとともに、接触抵抗を上昇させることなく導電性の向上が図れる。   In the invention according to claim 5, the electrode (15) and the connection terminal (24) are disposed on both ends of the thermoelectric element group (10), and the thermoelectric element group (10) is disposed on both ends thereof. The thermoelectric elements (12, 13) and the electrodes (15) are arranged so as to be conductive. According to the present invention, the connection with the power source can be easily performed, and the conductivity can be improved without increasing the contact resistance.

請求項6に記載の発明では、熱電素子(12、13)には、吸熱、放熱電極部材(20、30)との接合面にNiメッキが形成されていることを特徴としている。この発明によれば、熱電素子(12、13)と吸熱、放熱電極部材(20、30)とは相互間を半田で接合するため、例えば、半田や吸熱、放熱電極部材(20、30)の材料である銅材が熱電素子(12、13)に拡散されることで熱電素子(12、13)の特性の劣化するのを防止できる。   The invention according to claim 6 is characterized in that the thermoelectric elements (12, 13) are formed with Ni plating on the joint surfaces with the heat absorption and heat radiation electrode members (20, 30). According to this invention, since the thermoelectric elements (12, 13) and the heat absorption / radiation electrode members (20, 30) are joined to each other with solder, for example, solder, heat absorption, heat radiation electrode members (20, 30) It is possible to prevent deterioration of the characteristics of the thermoelectric elements (12, 13) by diffusing the copper material as the material into the thermoelectric elements (12, 13).

請求項7に記載の発明では、熱電素子群(10)の一方の特定される方向に突設され、吸熱電極部材(20)のそれぞれに伝熱可能に結合されている複数の吸熱熱交換部(22)と、熱電素子群(10)の吸熱熱交換部(22)とは異なる方向に突設され、放熱電極部材(30)のそれぞれに伝熱可能に結合されている複数の放熱熱交換部(32)を有し、吸熱熱交換部(22)は、吸熱電極部材(20)に一体的に形成され、放熱熱交換部(32)は、放熱電極部材(30)に一体的に形成されていることを特徴としている。この発明によれば、高効率の熱電素子群(10)を形成できる。   In the invention according to claim 7, a plurality of endothermic heat exchanging portions projecting in one specified direction of the thermoelectric element group (10) and coupled to each of the endothermic electrode members (20) so as to be capable of transferring heat. (22) and the endothermic heat exchange part (22) of the thermoelectric element group (10) project in a different direction, and are connected to each of the heat dissipation electrode members (30) so as to be capable of heat transfer. Part (32), the endothermic heat exchange part (22) is formed integrally with the endothermic electrode member (20), and the radiant heat exchange part (32) is formed integrally with the radiant electrode member (30). It is characterized by being. According to this invention, a highly efficient thermoelectric element group (10) can be formed.

請求項8に記載の発明では、熱電素子群(10)を区画壁として、熱電素子群(10)の両側に送風通路を形成するケース部材(28、38)が設けられ、このケース部材(28、38)は、吸熱熱交換部(22)もしくは放熱熱交換部(32)の外方端のいずれか一方を保持するように形成されていることを特徴としている。この発明によれば、吸熱、放熱熱交換部(22、32)の変形による隣接する吸熱、放熱熱交換部(22、32)相互間の短絡を防止できる。   In the invention according to claim 8, case members (28, 38) that form the air passages on both sides of the thermoelectric element group (10) using the thermoelectric element group (10) as partition walls are provided. , 38) is characterized by being formed so as to hold either the endothermic heat exchanging portion (22) or the outer end of the radiating heat exchanging portion (32). According to this invention, it is possible to prevent short circuit between adjacent heat absorption and heat dissipation heat exchange parts (22, 32) due to heat absorption and deformation of the heat dissipation heat exchange parts (22, 32).

請求項9に記載の発明では、熱電素子群(10)は、複数組積層された熱電素子(12、13)および吸熱、放熱電極部材(20、30)の外表面に絶縁性樹脂による絶縁コーティング処理が施されていることを特徴としている。この発明によれば、導電性部位が絶縁コーティングで覆うことができるので、特に、吸熱側に発生する凝縮水によるマイグレーションを防止することができる。   In the invention according to claim 9, the thermoelectric element group (10) includes a plurality of laminated thermoelectric elements (12, 13) and heat-absorbing and heat-dissipating electrode members (20, 30) on the outer surface with an insulating resin coating. It is characterized by being treated. According to the present invention, since the conductive portion can be covered with the insulating coating, migration due to condensed water generated on the heat absorption side can be particularly prevented.

請求項10に記載の発明では、絶縁コーティング処理は、絶縁性樹脂による電着塗装であることを特徴としている。この発明によれば、電着塗装によればピーンホールのない絶縁コーティングすることができる。   The invention according to claim 10 is characterized in that the insulating coating treatment is electrodeposition coating with an insulating resin. According to this invention, according to the electrodeposition coating, it is possible to perform an insulating coating without a peen hole.

なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment mentioned later.

(第1実施形態)
以下、本発明の第1実施形態における熱電変換装置を図1ないし図4に基づいて説明する。図1は本実施形態における熱電変換装置の全体構成を示す模式図であり、図2は図1に示すA−A断面図である。また、図3(a)は熱電素子12、13の外観形状を示す斜視図であり、図3(b)は吸熱、放熱電極部材20、30の外観形状を示す斜視図である。図4は熱電変換装置の電気配線形態を示す横断面図である。
(First embodiment)
Hereinafter, the thermoelectric conversion apparatus in 1st Embodiment of this invention is demonstrated based on FIG. FIG. 1 is a schematic diagram showing the overall configuration of the thermoelectric conversion device in the present embodiment, and FIG. 2 is a cross-sectional view taken along line AA shown in FIG. 3A is a perspective view showing the external shape of the thermoelectric elements 12 and 13, and FIG. 3B is a perspective view showing the external shape of the heat absorbing and heat radiating electrode members 20 and 30. FIG. 4 is a cross-sectional view showing an electric wiring configuration of the thermoelectric conversion device.

本実施形態の熱電変換装置は、車両に搭載される冷却装置もしくは加熱装置に適用させた熱電変換装置であり、例えば、車両用のシートの着座部内と背当部内とにそれぞれ熱電変換装置を配設し、その熱電変換装置により冷却された冷風をシート表面から吹き出すシート空調装置に適用させている。   The thermoelectric conversion device of the present embodiment is a thermoelectric conversion device applied to a cooling device or a heating device mounted on a vehicle.For example, a thermoelectric conversion device is arranged in each of a seating portion and a backrest portion of a vehicle seat. And is applied to a sheet air conditioner that blows out the cold air cooled by the thermoelectric converter from the sheet surface.

従って、本実施形態の熱電変換装置は、設置空間の狭い車両用のシート内に搭載できるように熱電変換装置の小型化を図るとともに、直列積層構造の熱電素子群10の機械的な強度の向上を図ったものである。   Therefore, the thermoelectric conversion device according to the present embodiment reduces the size of the thermoelectric conversion device so that the thermoelectric conversion device can be mounted in a vehicle seat having a small installation space, and also improves the mechanical strength of the thermoelectric element group 10 having a series stacked structure. Is intended.

熱電変換装置は、図1および図2に示すように、複数列(本例では3列)の熱電素子群10と、その熱電素子群10を覆うための一対のケース部材28、38から構成される。熱電素子群10は、熱電素子群10を保持する保持部材11、P型、N型からなる熱電素子12、13、電極である電極部材15、吸熱電極部材20、放熱電極部材30、および接続端子24から一体に構成されている。   As shown in FIGS. 1 and 2, the thermoelectric conversion device includes a plurality of rows (three rows in this example) of thermoelectric element groups 10 and a pair of case members 28 and 38 for covering the thermoelectric element groups 10. The The thermoelectric element group 10 includes a holding member 11 that holds the thermoelectric element group 10, thermoelectric elements 12 and 13 made of P type and N type, an electrode member 15 that is an electrode, a heat absorbing electrode member 20, a heat radiating electrode member 30, and a connection terminal. 24 is integrally formed.

本実施形態の熱電素子群10は、N型熱電素子13、放熱電極部材30、P型熱電素子12、吸熱電極部材20の順に交互に複数組電気的に直列に積層させた直列積層構造であって、熱電素子群10の両端に電極部材15を配設している。   The thermoelectric element group 10 of this embodiment has a serial stacked structure in which a plurality of sets of N-type thermoelectric elements 13, heat radiation electrode members 30, P-type thermoelectric elements 12, and heat absorption electrode members 20 are alternately stacked in series. Thus, electrode members 15 are disposed at both ends of the thermoelectric element group 10.

つまり、複数のN型熱電素子13と複数のP型熱電素子12とが交互に積層されるとともに、各熱電素子12、13との間に各電極部材20、30を介して電気的に直列接続するように複数積層されている。   That is, a plurality of N-type thermoelectric elements 13 and a plurality of P-type thermoelectric elements 12 are alternately stacked, and are electrically connected in series between the thermoelectric elements 12 and 13 via the electrode members 20 and 30. A plurality of layers are stacked.

そして、各熱電素子12、13および各電極部材15、20、30には、内部を貫通する貫通孔12a、13a、15a、20a、30aが形成され、その貫通孔12a、13a、15a、20a、30aに保持部材11を挿入して複数積層するように構成されている。   And each thermoelectric element 12 and 13 and each electrode member 15, 20, and 30 are formed with through-holes 12a, 13a, 15a, 20a, and 30a penetrating inside, and the through-holes 12a, 13a, 15a, 20a, A plurality of the holding members 11 are inserted into 30a and stacked.

保持部材11は、セラミックスなどの絶縁性物質で形成され、かつ略円筒状に形成された保持棒であり、複数積層された熱電素子12、13、および電極部材15、20、30を保持している。   The holding member 11 is a holding rod formed of an insulating material such as ceramics and formed in a substantially cylindrical shape. The holding member 11 holds a plurality of laminated thermoelectric elements 12 and 13 and electrode members 15, 20 and 30. Yes.

また、保持部材11の両端に銅材などの導電性金属からなる接続端子24が配設されている。この接続端子24は、外部の電源もしくは隣り合う熱電素子群10を電気的に接続する端子であって、中空の円筒状に形成され、熱電素子12、13の末端に配設される電極部材15に半田により接合される。   In addition, connection terminals 24 made of a conductive metal such as a copper material are disposed at both ends of the holding member 11. The connection terminal 24 is a terminal for electrically connecting an external power source or the adjacent thermoelectric element group 10, is formed in a hollow cylindrical shape, and is disposed at the end of the thermoelectric elements 12 and 13. Are joined by solder.

なお、ここでは、保持部材11をセラミックスなどの絶縁性物質で形成したが、これに限らず、アルミニウム材を用いて、その外表面をアルマイト処理してアルミナの絶縁層を形成したものでも良い。また、その他の金属材料を用いてその外表面に絶縁層を形成したものでも良い。   Here, the holding member 11 is formed of an insulating material such as ceramics. However, the present invention is not limited thereto, and an aluminum material may be used to anodize the outer surface to form an alumina insulating layer. Moreover, what formed the insulating layer in the outer surface using the other metal material may be used.

P型熱電素子12はBi−Te系化合物からなるP型半導体により構成され、N型熱電素子12はBi−Te系化合物からなるN型半導体により構成された極小部品である。その形状は、図3(a)に示すように、直方体もしくは立方体に形成し、その一箇所に保持部材11が貫通する貫通孔12a、13aが形成されている。   The P-type thermoelectric element 12 is composed of a P-type semiconductor made of a Bi—Te-based compound, and the N-type thermoelectric element 12 is a minimal component composed of an N-type semiconductor made of a Bi—Te-based compound. As shown in FIG. 3A, the shape is a rectangular parallelepiped or a cube, and through holes 12a and 13a through which the holding member 11 penetrates are formed at one location.

そして、熱電素子12、13の外表面、および貫通孔12a、13aの内周面には、メッキ処理によるNiメッキを形成するようにしている。つまり、熱電素子12、13は、少なくとも後述する電極部材15、20、30に半田によって接合される接合部を接合する前にNiメッキで保護するように形成している。   Ni plating by plating is formed on the outer surfaces of the thermoelectric elements 12 and 13 and the inner peripheral surfaces of the through holes 12a and 13a. That is, the thermoelectric elements 12 and 13 are formed so as to be protected by Ni plating before joining at least joint portions to be joined to the electrode members 15, 20, and 30 described later by solder.

次に、各電極部材15、20、30は、平板状の銅材などの導電性金属から形成された電極である。各電極部材15、20、30のうち、電極部材15は、保持部材11の両端に配設され、接続端子24と熱電素子12、13とを電気的に導通させる電極であり、熱電素子12、13の接合部とほぼ同形状の長方形もしくは正方形の形に形成されるとともに、保持部材11が貫通する貫通孔15aが形成されている。   Next, each electrode member 15, 20, 30 is an electrode formed from a conductive metal such as a flat copper material. Of the electrode members 15, 20, 30, the electrode members 15 are electrodes that are disposed at both ends of the holding member 11 and electrically connect the connection terminal 24 and the thermoelectric elements 12, 13. 13 is formed in a rectangular or square shape substantially the same shape as the joint portion, and a through hole 15a through which the holding member 11 passes is formed.

一方、各電極部材15、20、30のうち、吸熱、放熱電極部材20、30は、隣接する熱電素子12、13の間に配設される電極であって、図3(b)に示すように、熱電素子12、13の接合部の一方が外方に延びる長方形の形で形成されるとともに、保持部材11が貫通する貫通孔15aが形成されている。   On the other hand, among the electrode members 15, 20, 30, the heat absorbing and heat radiating electrode members 20, 30 are electrodes disposed between the adjacent thermoelectric elements 12, 13, as shown in FIG. In addition, one of the joint portions of the thermoelectric elements 12 and 13 is formed in a rectangular shape extending outward, and a through hole 15a through which the holding member 11 passes is formed.

なお、吸熱、放熱電極部材20、30は、図3(b)中に示す2点鎖線の下方側が電極部21、31であり、2点鎖線の上方側が熱交換部22、32である。その電極部21、31が隣接する熱電素子12、13の間に配設され、熱交換部22、32が電極部21、31から伝熱される熱を吸熱、放熱するためのフィンであって、本実施形態では平板状に形成され、かつ電極部21、31と一体的に形成されている。   The heat absorption and heat radiation electrode members 20 and 30 have electrode portions 21 and 31 below the two-dot chain line shown in FIG. 3B and heat exchange portions 22 and 32 above the two-dot chain line. The electrode portions 21 and 31 are disposed between adjacent thermoelectric elements 12 and 13, and the heat exchange portions 22 and 32 are fins for absorbing and radiating heat transferred from the electrode portions 21 and 31, In this embodiment, it is formed in a flat plate shape and is formed integrally with the electrode portions 21 and 31.

そして、吸熱電極部材20は、N型熱電素子13とP型熱電素子12との間に電極部21が配設され、熱交換部22の先端が上方(図1参照)に延びて後述するケース部材28に保持されている。一方、放熱電極部材30は、P型熱電素子12とN型熱電素子13との間に電極部31が配設され、熱交換部32が下方(図1参照)に延びて後述するケース部材38に保持されている。   The endothermic electrode member 20 has a case where an electrode portion 21 is disposed between the N-type thermoelectric element 13 and the P-type thermoelectric element 12, and the tip of the heat exchanging portion 22 extends upward (see FIG. 1) to be described later. It is held by the member 28. On the other hand, in the heat radiation electrode member 30, an electrode part 31 is disposed between the P-type thermoelectric element 12 and the N-type thermoelectric element 13, and a heat exchanging part 32 extends downward (see FIG. 1) so as to be described later. Is held in.

つまり、吸熱電極部材20は、N型熱電素子13からP型熱電素子12に向けて電流を流すための電極であり、放熱電極部材30は、P型熱電素子12からN型熱電素子13に向けて電流を流すための電極である。   That is, the endothermic electrode member 20 is an electrode for flowing a current from the N-type thermoelectric element 13 toward the P-type thermoelectric element 12, and the radiating electrode member 30 is directed toward the N-type thermoelectric element 13 from the P-type thermoelectric element 12. Electrode for flowing current.

また、吸熱電極部材20および放熱電極部材30に形成された熱交換部22、32は、電極部21、31と同じように、電位が印加されているため、互いに隣り合う熱交換部22、32同士は、互いに電気的に絶縁するように、所定の空間を設けてケース部材28、38に配設されている。   Moreover, since the electric potential is applied to the heat exchange parts 22 and 32 formed in the endothermic electrode member 20 and the heat dissipation electrode member 30 in the same manner as the electrode parts 21 and 31, the heat exchange parts 22 and 32 adjacent to each other. The case members 28 and 38 are provided with a predetermined space so as to be electrically insulated from each other.

次に、ケース部材28、38は、熱電素子群10を区画壁として、熱電素子群10の両側に送風通路を形成する耐熱樹脂製からなる筐体であって、上下方向に分割可能に形成されている。上方側のケース部材28によって吸熱側の送風通路が形成され、下方側のケース部材38によって放熱側の送風通路が形成される。   Next, the case members 28 and 38 are casings made of a heat-resistant resin that form the air passages on both sides of the thermoelectric element group 10 with the thermoelectric element group 10 as a partition wall, and are formed so as to be splittable in the vertical direction. ing. The upper case member 28 forms a heat absorption side air passage, and the lower case member 38 forms a heat radiation side air passage.

つまり、図2に示すように、上方側の送風通路に熱交換媒体である空気を流通することで、熱交換部22と空気とが熱交換されて空気を冷却することができる。一方、下方側の送風通路に熱交換媒体である空気を流通することで、熱交換部32と空気とが熱交換されて空気を加熱することができる。   That is, as shown in FIG. 2, the heat exchange medium 22 and the air are heat-exchanged by cooling the air as the heat exchange medium through the upper air passage so that the air can be cooled. On the other hand, by circulating air as a heat exchange medium in the lower air passage, the heat exchange section 32 and the air are heat-exchanged to heat the air.

ところで、本実施形態のケース部材28、38は、複数列(本例では3列)の熱電素子群10を収容できるように形成されており、隣接する熱電素子群10の間、および熱電素子群10の外方にパッキン部材14を配設させて、吸熱送風通路側と放熱送風通路側とを区画するように構成している。   By the way, the case members 28 and 38 of the present embodiment are formed so as to accommodate the thermoelectric element groups 10 in a plurality of rows (three rows in this example), and between the adjacent thermoelectric element groups 10 and the thermoelectric element groups. The packing member 14 is disposed on the outer side of 10 so as to partition the endothermic air passage side and the heat dissipating air passage side.

なお、ケース部材28、38には、それぞれの内側に熱交換部22、32の先端を保持するように図示しない嵌合部が形成されている。これにより、熱交換部22、32の変形を防止できる。   The case members 28 and 38 are formed with fitting portions (not shown) so as to hold the tips of the heat exchanging portions 22 and 32 inside the case members 28 and 38, respectively. Thereby, the deformation | transformation of the heat exchange parts 22 and 32 can be prevented.

ここで、ケース部材28、38に配列された複数列(本例では3列)の熱電素子群10は、図4に示すように、一方の末端に端子24a、他方の末端に端子24bが設けられ、その端子24a、24bには、図示しない直流電源の正側端子を端子24aに接続し、負側端子を端子24bに接続するようにしている。   Here, in a plurality of rows (three rows in this example) of thermoelectric element groups 10 arranged in the case members 28 and 38, as shown in FIG. 4, a terminal 24a is provided at one end and a terminal 24b is provided at the other end. The terminals 24a and 24b are configured such that a positive terminal of a DC power source (not shown) is connected to the terminal 24a and a negative terminal is connected to the terminal 24b.

そして、隣り合う熱電素子群10が電気的に直列となるように連結端子24cで接続するようにしている。従って、端子24aから入力された直流電源は、図4中に示す上方左端のN型熱電素子13から上方右端のP型熱電素子12に直列的に流れ、次に、中間の右端のN型熱電素子13から中間の左端のP型熱電素子12に直列的に流れ、次に、下方左端のN型熱電素子13から下方右端のP型熱電素子12に直列的に流れる。   And the adjacent thermoelectric element group 10 is connected with the connection terminal 24c so that it may become electrically in series. Accordingly, the DC power input from the terminal 24a flows in series from the upper leftmost N-type thermoelectric element 13 shown in FIG. 4 to the upper rightmost P-type thermoelectric element 12, and then the middle rightmost N-type thermoelectric element. It flows in series from the element 13 to the P-type thermoelectric element 12 at the middle left end, and then flows in series from the N-type thermoelectric element 13 at the lower left end to the P-type thermoelectric element 12 at the lower right end.

このときに、PN接合部となる放熱電極部材30は、ペルチェ効果によって高温の状態となり、NP接合部となる吸熱電極部材20は低温の状態となる。つまり、上方側(図1参照)に配置された熱交換部22は吸熱熱交換部を形成して低温状態の熱が伝熱されて被冷却流体に接触され、下方側(図1参照)に配置された熱交換部32は放熱熱交換部を形成して高温状態の熱が伝熱されて冷却流体に接触される。   At this time, the heat dissipation electrode member 30 that becomes the PN junction is in a high temperature state due to the Peltier effect, and the heat absorption electrode member 20 that becomes the NP junction is in a low temperature state. That is, the heat exchanging portion 22 arranged on the upper side (see FIG. 1) forms an endothermic heat exchanging portion, and heat in a low temperature state is transferred to contact with the fluid to be cooled and on the lower side (see FIG. 1). The arranged heat exchanging section 32 forms a heat radiating heat exchanging section so that heat in a high temperature state is transferred to contact with the cooling fluid.

なお、本実施形態では、直流電源の正側端子を端子24a側に接続し、負側端子を端子24b側に接続して端子24aに直流電源を入力させたが、これに限らず、直流電源の正側端子を端子24b側に接続し、負側端子を端子24a側に接続して端子24bに直流電源を入力させても良い。ただし、このときには、吸熱熱交換部が放熱熱交換部を形成し、放熱熱交換部が吸熱熱交換部を形成する。   In the present embodiment, the positive terminal of the DC power source is connected to the terminal 24a side, the negative terminal is connected to the terminal 24b side, and the DC power source is input to the terminal 24a. The positive terminal may be connected to the terminal 24b side, the negative terminal may be connected to the terminal 24a side, and a DC power supply may be input to the terminal 24b. However, at this time, the endothermic heat exchange part forms a radiant heat exchange part, and the radiant heat exchange part forms an endothermic heat exchange part.

ここで、以上の構成による熱電素子群10の組付け方法について説明する。まず、保持部材11に組み付ける前に、熱電素子12、13の接合部にペーストハンダなどをスクリーン印刷で薄く均一に塗布する。より具体的には、Niメッキを施した接合部にペーストハンダを塗布する。なお、このときに、保持部材11の両端の接続端子24、電極部材15が配設する部位、および接続端子24、電極部材15のそれぞれの接合部にもペーストハンダを塗布しておく。   Here, the assembly method of the thermoelectric element group 10 by the above structure is demonstrated. First, before assembling to the holding member 11, paste solder or the like is thinly and uniformly applied to the joint portion of the thermoelectric elements 12 and 13 by screen printing. More specifically, paste solder is applied to the joint portion subjected to Ni plating. At this time, paste solder is also applied to the connection terminals 24 at both ends of the holding member 11, the portions where the electrode members 15 are disposed, and the joint portions of the connection terminals 24 and the electrode members 15.

そして、N型熱電素子13、吸熱電極部材20、P型熱電素子12、放熱電極部材30の順に、保持部材11を貫通孔13a、20a、12a、30aを貫通させて複数積層させる。そして、複数積層された保持部材11の両端に電極部材15および接続端子24を配設する。そして、複数積層させた状態で、半田リフロー炉を通過させて半田接合を行う。これにより、熱電素子群10が一体的に形成される。   A plurality of holding members 11 are stacked through the through holes 13a, 20a, 12a, and 30a in the order of the N-type thermoelectric element 13, the endothermic electrode member 20, the P-type thermoelectric element 12, and the heat dissipation electrode member 30. And the electrode member 15 and the connection terminal 24 are arrange | positioned at the both ends of the holding member 11 laminated | stacked two or more. Then, in a state where a plurality of layers are stacked, the solder reflow furnace is passed and solder bonding is performed. Thereby, the thermoelectric element group 10 is integrally formed.

さらに、半田接合を行った後に、熱電素子群10の外表面を絶縁性樹脂による絶縁コーティング処理を行う。これにより、複数積層された各電極部材15、20、30の外表面が電気的に絶縁されることになる。つまり、隣り合う熱交換部22、32同士が電気的に絶縁される。なお、例えば、絶縁性樹脂による電着塗装を行うことでピンホールの生じないコーティング処理ができる。   Further, after soldering, the outer surface of the thermoelectric element group 10 is subjected to an insulating coating process using an insulating resin. Thereby, the outer surface of each of the electrode members 15, 20, 30 stacked in a plurality is electrically insulated. That is, the adjacent heat exchange parts 22 and 32 are electrically insulated. In addition, for example, the coating process which does not produce a pinhole can be performed by performing electrodeposition coating with an insulating resin.

そして、一方のケース部材38に熱電素子群10を組み付けるとともに、隣接する熱電素子群10の間、および熱電素子群10の外方にパッキン部材14を組み付ける。そして、もう一方のケース部材28を組み付けることで熱電変換装置が形成される。   Then, the thermoelectric element group 10 is assembled to one case member 38, and the packing member 14 is assembled between the adjacent thermoelectric element groups 10 and outside the thermoelectric element group 10. A thermoelectric conversion device is formed by assembling the other case member 28.

なお、熱電素子12、13および各電極部材15、20、30は、極小部品であるため、半導体、電子部品などを制御基板に組み付けるための製造装置であるマウンター装置を用いて組み付けても良い。これによれば、手組みよりも容易に摘むことができるので生産性が低下することなく組付けができる。   Since the thermoelectric elements 12 and 13 and the electrode members 15, 20, and 30 are extremely small components, they may be assembled using a mounter device that is a manufacturing device for assembling semiconductors, electronic components, and the like to the control board. According to this, since it can be picked more easily than manual assembly, it can be assembled without lowering productivity.

以上の第1実施形態による熱電変換装置によれば、熱電素子群10を保持する保持部材11が設けられ、この保持部材11は、P型、N型熱電素子12、13および吸熱、放熱電極部材20、30のそれぞれを貫通するように配設させて複数組積層するように構成した。   According to the thermoelectric conversion device according to the first embodiment described above, the holding member 11 that holds the thermoelectric element group 10 is provided. The holding member 11 includes the P-type and N-type thermoelectric elements 12 and 13 and the heat absorption and heat radiation electrode members. A plurality of sets of layers 20 and 30 are disposed so as to penetrate each other.

これによれば、複数組積層された熱電素子12、13および吸熱、放熱電極部材20、30が保持部材11によって保持されるので、組付けのときに、各構成部品の位置決めが容易にできるとともに、複数積層したときに崩れもなく簡単に組付けができる。これにより生産性の向上が図れる。   According to this, since the thermoelectric elements 12 and 13 and the heat absorption and heat radiation electrode members 20 and 30 stacked in a plurality of sets are held by the holding member 11, each component can be easily positioned at the time of assembly. Can be assembled easily without collapsing when stacked. As a result, productivity can be improved.

また、複数組積層された熱電素子群10に外力が掛かったときに、保持部材11によって熱電素子群10の機械的強度が向上することで熱電素子12、13の破損を防止できる。   In addition, when an external force is applied to the thermoelectric element group 10 that is laminated in a plurality of sets, the mechanical strength of the thermoelectric element group 10 is improved by the holding member 11, thereby preventing the thermoelectric elements 12 and 13 from being damaged.

また、熱電素子12、13および吸熱、放熱電極部材20、30のそれぞれには、保持部材11を貫通する貫通孔12a、13a、20a、30aが形成されていることにより、貫通孔12a、13a、20a、30aに保持部材11を配設させることで、組付けのときに、各構成部品の位置決めが容易にできるとともに、複数積層したときに崩れもなく簡単に組付けができる。これにより、生産性の向上が図れる。   Further, through holes 12a, 13a, 20a, 30a penetrating the holding member 11 are formed in the thermoelectric elements 12, 13, and the heat absorbing and radiating electrode members 20, 30, respectively, so that the through holes 12a, 13a, By disposing the holding member 11 on 20a and 30a, positioning of each component can be facilitated during assembly, and can be easily assembled without collapsing when a plurality of components are stacked. Thereby, productivity can be improved.

また、保持部材11によって熱電素子群10の機械的強度が向上することで熱電素子12、13の破損を防止できる。さらに、貫通孔12a、13a、20a、30aは、略円形状に形成されていることにより、略円形状とすることで加工性が容易である。これにより、生産性の向上が図れる。   In addition, since the mechanical strength of the thermoelectric element group 10 is improved by the holding member 11, the thermoelectric elements 12 and 13 can be prevented from being damaged. Furthermore, since the through holes 12a, 13a, 20a, and 30a are formed in a substantially circular shape, the workability is easy by forming the substantially circular shape. Thereby, productivity can be improved.

また、保持部材11は、外表面に絶縁層もしくは絶縁材のいずれか一方で形成され、かつ貫通孔12a、13a、20a、30aに接合によって結合されていることにより、隣接する相互間の電気的絶縁性がより確実に図れる。   In addition, the holding member 11 is formed on either the insulating layer or the insulating material on the outer surface, and is joined to the through holes 12a, 13a, 20a, and 30a by bonding, so that the adjacent electrical members are electrically connected. Insulation can be achieved more reliably.

また、熱電素子群10の両端側には、電極部材15と接続端子24とが配設され、熱電素子群10は、その両端に配設される熱電素子12、13と電極部材15とが導通するように配設されていることにより、電源との接続を容易に行えるとともに、接触抵抗を上昇させることなく導電性の向上が図れる。   Moreover, the electrode member 15 and the connection terminal 24 are arrange | positioned at the both ends of the thermoelectric element group 10, and the thermoelectric elements 12 and 13 and the electrode member 15 which are arrange | positioned at the both ends are connected to the thermoelectric element group 10. By being arranged in such a manner, the connection with the power source can be easily performed, and the conductivity can be improved without increasing the contact resistance.

また、熱電素子12、13には、吸熱、放熱電極部材20、30との接合面にNiメッキが形成されていることにより、熱電素子12、13と吸熱、放熱電極部材20、30とは相互間を半田で接合するため、半田の成分や、吸熱、放熱電極部材20、30の材料である銅材が熱電素子12、13に拡散されることで熱電素子12、13の特性の劣化するのを防止できる。   Further, since the thermoelectric elements 12 and 13 are formed with Ni plating on the joint surface between the heat absorbing and radiating electrode members 20 and 30, the thermoelectric elements 12 and 13 and the heat absorbing and radiating electrode members 20 and 30 are mutually connected. Since the components are joined by solder, the characteristics of the thermoelectric elements 12 and 13 are deteriorated by the diffusion of the solder components, the heat absorption, and the copper material that is the material of the heat radiation electrode members 20 and 30 to the thermoelectric elements 12 and 13. Can be prevented.

また、熱電素子群10の一方の特定される方向に突設され、吸熱電極部材20のそれぞれに伝熱可能に結合されている複数の吸熱熱交換部22と、熱電素子群10の吸熱熱交換部22とは異なる方向に突設され、放熱電極部材30のそれぞれに伝熱可能に結合されている複数の放熱熱交換部32を有し、吸熱熱交換部22は、吸熱電極部材20に一体的に形成され、放熱熱交換部32は、放熱電極部材30に一体的に形成されている。これにより、高効率の熱電素子群10を形成できる。   Further, a plurality of endothermic heat exchanging portions 22 projecting in one specified direction of the thermoelectric element group 10 and coupled to each of the endothermic electrode members 20 so as to conduct heat, and the endothermic heat exchange of the thermoelectric element group 10. The plurality of heat radiation heat exchanging portions 32 are provided so as to project in a direction different from the portion 22 and are coupled to each of the heat radiation electrode members 30 so as to be able to conduct heat, and the heat absorption heat exchange portions 22 are integrated with the heat absorption electrode member 20. The heat radiation heat exchanging part 32 is formed integrally with the heat radiation electrode member 30. Thereby, the highly efficient thermoelectric element group 10 can be formed.

また、熱電素子群10を区画壁として、熱電素子群10の両側に送風通路を形成するケース部材28、38が設けられ、このケース部材28、38は、吸熱熱交換部22もしくは放熱熱交換部32の外方端のいずれか一方を保持するように形成されている。これにより、吸熱、放熱熱交換部22、32の変形による隣接する吸熱、放熱熱交換部22、32相互間の短絡を防止できる。   Moreover, the case members 28 and 38 which form the ventilation path are provided on both sides of the thermoelectric element group 10 with the thermoelectric element group 10 as a partition wall, and the case members 28 and 38 are provided with the endothermic heat exchanging portion 22 or the radiating heat exchanging portion. It is formed to hold either one of the outer ends of 32. Thereby, the short circuit between adjacent heat absorption by the deformation | transformation of heat absorption and the thermal radiation heat exchange part 22 and 32, and the thermal radiation heat exchange part 22 and 32 can be prevented.

また、熱電素子群10は、複数組積層された熱電素子12、13および吸熱、放熱電極部材20、30の外表面に絶縁性樹脂による絶縁コーティング処理が施されている。これにより、導電性部位が絶縁コーティングで覆うことができるので、特に、吸熱側に発生する凝縮水によるマイグレーションを防止することができる。また、絶縁コーティング処理は、絶縁性樹脂による電着塗装である。これによれば、電着塗装によればピーンホールのない絶縁コーティングすることができる。   In the thermoelectric element group 10, the thermoelectric elements 12 and 13 and the outer surfaces of the heat absorption and heat radiation electrode members 20 and 30 stacked in a plurality of sets are subjected to an insulating coating treatment with an insulating resin. Thereby, since an electroconductive site | part can be covered with an insulation coating, the migration by the condensed water which generate | occur | produces especially on the heat absorption side can be prevented. The insulating coating treatment is electrodeposition coating with an insulating resin. According to this, according to electrodeposition coating, insulating coating without a peen hole can be performed.

(第2実施形態)
以上の第1実施形態では、熱電素子12、13を直方体もしくは立方体に形成し、その一箇所に保持部材11が貫通する貫通孔12a、13aを略円形状に形成させたが、これに限らず、具体的には、図5(a)に示すように、熱電素子12、13を略円筒状に形成しても良い。そして、その熱電素子12、13に形成する貫通孔12a、13aの一方にスリット12b、13bを有する貫通孔を形成しても良い。
(Second Embodiment)
In the first embodiment described above, the thermoelectric elements 12 and 13 are formed in a rectangular parallelepiped or a cube, and the through holes 12a and 13a through which the holding member 11 passes are formed in a substantially circular shape in one place. Specifically, as shown in FIG. 5A, the thermoelectric elements 12 and 13 may be formed in a substantially cylindrical shape. And you may form the through-hole which has the slits 12b and 13b in one of the through-holes 12a and 13a formed in the thermoelectric elements 12 and 13. FIG.

そして、各電極部材15、20、30は、その形状および貫通孔15a、20a、30aを、図5(a)に示すように、熱電素子12、13とほぼ同形状に形成すれば良い。これによれば、略円形状の貫通孔12a、13a、15a、20a、30aと同じような効果を有する。   And each electrode member 15,20,30 should just form the shape and through-hole 15a, 20a, 30a in the substantially same shape as the thermoelectric elements 12 and 13, as shown to Fig.5 (a). This has the same effect as the substantially circular through holes 12a, 13a, 15a, 20a, 30a.

また、上記のほかに、熱電素子12、13および各電極部材15、20、30に形成する貫通孔12a、13a、15a、20a、30aを、図6(a)および図6(b)に示すように、角穴状に形成しても良い。ただし、この場合では、保持部材11を角棒状に形成している。これによれば、保持部材11を軸として熱電素子12、13および各電極部材15、20、30が回転することを防止できる。つまり、回り止め機能を有することができる。   In addition to the above, the through holes 12a, 13a, 15a, 20a, and 30a formed in the thermoelectric elements 12 and 13 and the electrode members 15, 20, and 30 are shown in FIGS. 6 (a) and 6 (b). Thus, it may be formed in a square hole shape. However, in this case, the holding member 11 is formed in a square bar shape. According to this, it is possible to prevent the thermoelectric elements 12 and 13 and the electrode members 15, 20 and 30 from rotating around the holding member 11. That is, it can have a detent function.

(第3実施形態)
以上の実施形態では、複数列(例えば、3列)に配設される熱電素子群10が電気的に直列となるように保持部材11の両端の接続端子24に連結端子24cで接続するように形成したが、これに限らず、具体的には、図7に示すように、図示しない直流電源の正側端子を端子24aに接続し、負側端子を端子24bに接続し、それぞれの熱電素子群10に並列に電流が流れるように連結端子24cで接続しても良い。
(Third embodiment)
In the above embodiment, the thermoelectric element groups 10 arranged in a plurality of rows (for example, 3 rows) are connected to the connection terminals 24 at both ends of the holding member 11 by the connection terminals 24c so as to be electrically in series. Although not limited to this, specifically, as shown in FIG. 7, the positive terminal of a DC power source (not shown) is connected to the terminal 24a and the negative terminal is connected to the terminal 24b. You may connect with the connection terminal 24c so that an electric current may flow through the group 10 in parallel.

つまり、いずれの熱電素子群10には、図7中に示す左方から右方向に向けて電流が流れるように連結端子24cを接続している。   That is, to each thermoelectric element group 10, the connection terminal 24c is connected so that a current flows from the left to the right as shown in FIG.

(第4実施形態)
以上の実施形態では、熱交換部22、32を平板状に形成したが、これに限らず、具体的には、図8に示すように、熱交換部22、32の平面に切り起こしなどの成形加工によって、ルーバー状に形成しても良い。これによれば、熱交換部22、32の熱交換面積の増加が図れる。従って、熱交換部22、32の小型化が図れる。
(Fourth embodiment)
In the above embodiment, the heat exchanging portions 22 and 32 are formed in a flat plate shape. However, the present invention is not limited to this, and specifically, as shown in FIG. It may be formed into a louver shape by molding. According to this, the heat exchange area of the heat exchange parts 22 and 32 can be increased. Therefore, the heat exchange units 22 and 32 can be downsized.

(他の実施形態)
以上の実施形態では、保持部材11を外表面に絶縁層もしくは絶縁材のいずれか一方で形成させたが、これに限らず、保持部材11を導電性材料で形成し、各電極部材15、20、30に形成される貫通孔12a、13a、15a、20a、30aの内面に絶縁層を形成するようにしても良い。
(Other embodiments)
In the above embodiment, the holding member 11 is formed on the outer surface with either the insulating layer or the insulating material. However, the present invention is not limited to this, and the holding member 11 is formed of a conductive material, and each of the electrode members 15 and 20 is formed. , 30, an insulating layer may be formed on the inner surfaces of the through holes 12a, 13a, 15a, 20a, 30a.

また、以上の実施形態では、熱交換部22、32を吸熱、放熱電極部材20、30の電極部21、31に一体的に形成したが、これに限らず、電極部21、31と熱交換部22、32とを別体で形成し、電極部21、31と熱交換部22、32とを結合させても良い。   In the above embodiment, the heat exchanging parts 22 and 32 are formed integrally with the electrode parts 21 and 31 of the heat absorbing and radiating electrode members 20 and 30, but not limited thereto, heat exchange with the electrode parts 21 and 31 is performed. The parts 22 and 32 may be formed separately and the electrode parts 21 and 31 and the heat exchange parts 22 and 32 may be combined.

また、以上の実施形態では、各熱電素子12、13と各電極部材15、20、30とを半田によって接合するように構成したが、これに限らず、各熱電素子12、13と各電極部材15、20、30との接触面に押圧が掛かるようにスプリングなどのバネ部材(図示せず)を熱電素子群10の一端に配設するように構成しても良い。   In the above embodiment, each thermoelectric element 12, 13 and each electrode member 15, 20, 30 are configured to be joined by soldering. However, the present invention is not limited thereto, and each thermoelectric element 12, 13 and each electrode member is joined. A spring member (not shown) such as a spring may be arranged at one end of the thermoelectric element group 10 so that the contact surface with the 15, 20, 30 is pressed.

これによれば、各熱電素子12、13と各電極部材15、20、30との接触面に所定の接触圧が確保できることで半田接合を省くことができる。これにより、生産性の向上が図れる。   According to this, since a predetermined contact pressure can be secured on the contact surface between each thermoelectric element 12, 13 and each electrode member 15, 20, 30, solder bonding can be omitted. Thereby, productivity can be improved.

本発明の第1実施形態における熱電変換装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the thermoelectric conversion apparatus in 1st Embodiment of this invention. 図1に示すA−A断面図である。It is AA sectional drawing shown in FIG. 本発明の第1実施形態における(a)は熱電素子12、13の外観形状を示す斜視図、(b)は吸熱、放熱電極部材20、30の外観形状を示す斜視図である。(A) in 1st Embodiment of this invention is a perspective view which shows the external shape of the thermoelectric elements 12 and 13, (b) is a perspective view which shows the external shape of a heat absorption and the thermal radiation electrode member 20 and 30. FIG. 本発明の第1実施形態における熱電変換装置の電気配線形態を示す横断面図である。It is a cross-sectional view which shows the electrical wiring form of the thermoelectric conversion apparatus in 1st Embodiment of this invention. 本発明の第2実施形態における(a)は熱電素子12、13の外観形状を示す斜視図、(b)は吸熱、放熱電極部材20、30の外観形状を示す斜視図である。(A) in 2nd Embodiment of this invention is a perspective view which shows the external shape of the thermoelectric elements 12 and 13, (b) is a perspective view which shows the external shape of a heat absorption and the thermal radiation electrode member 20 and 30. FIG. 本発明の第2実施形態の変形例における(a)は熱電素子12、13の外観形状を示す斜視図、(b)は吸熱、放熱電極部材20、30の外観形状を示す斜視図である。(A) in the modification of 2nd Embodiment of this invention is a perspective view which shows the external shape of the thermoelectric elements 12 and 13, (b) is a perspective view which shows the external shape of a heat absorption and the thermal radiation electrode member 20 and 30. FIG. 本発明の第3実施形態における熱電変換装置の電気配線形態を示す横断面図である。It is a cross-sectional view which shows the electrical wiring form of the thermoelectric conversion apparatus in 3rd Embodiment of this invention. 本発明の第4実施形態における熱電変換装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of the thermoelectric conversion apparatus in 4th Embodiment of this invention.

符号の説明Explanation of symbols

10…熱電素子群
11…保持部材
12…P型熱電素子、熱電素子
12a…貫通孔
13…N型熱電素子、熱電素子
13a…貫通孔
15…電極部材(電極)
20…吸熱電極部材、電極部材
20a…貫通孔
22…吸熱熱交換部、熱交換部
24…接続端子
28…ケース部材
30…放熱電極部材、電極部材
30a…貫通孔
32…放熱熱交換部、熱交換部
38…ケース部材
DESCRIPTION OF SYMBOLS 10 ... Thermoelectric element group 11 ... Holding member 12 ... P-type thermoelectric element, thermoelectric element 12a ... Through-hole 13 ... N-type thermoelectric element, thermoelectric element 13a ... Through-hole 15 ... Electrode member (electrode)
DESCRIPTION OF SYMBOLS 20 ... Endothermic electrode member, electrode member 20a ... Through-hole 22 ... Endothermic heat exchange part, heat exchange part 24 ... Connection terminal 28 ... Case member 30 ... Radiation electrode member, electrode member 30a ... Through-hole 32 ... Radiation heat exchange part, heat Replacement part 38 ... Case member

Claims (10)

N型熱電素子(13)、吸熱電極部材(20)、P型熱電素子(12)、放熱電極部材(30)の順に、複数組電気的に直列に積層してなる熱電素子群(10)を備える熱電変換装置において、
前記熱電素子群(10)を保持する保持部材(11)が設けられ、
前記保持部材(11)は、前記熱電素子(12、13)および前記吸熱、放熱電極部材(20、30)のそれぞれを貫通するように配設させて複数組積層するように構成したことを特徴とする熱電変換装置。
A thermoelectric element group (10) formed by stacking a plurality of sets electrically in series in the order of an N-type thermoelectric element (13), a heat-absorbing electrode member (20), a P-type thermoelectric element (12), and a heat-dissipating electrode member (30). In the thermoelectric conversion device provided,
A holding member (11) for holding the thermoelectric element group (10) is provided,
The holding member (11) is configured so as to be laminated so as to penetrate each of the thermoelectric elements (12, 13) and the heat absorbing and radiating electrode members (20, 30). Thermoelectric conversion device.
前記熱電素子(12、13)および前記吸熱、放熱電極部材(20、30)のそれぞれには、前記保持部材(11)を貫通する貫通孔(12a、13a、20a、30a)が形成されていることを特徴とする請求項1に記載の熱電変換装置。   Each of the thermoelectric elements (12, 13) and the heat absorption / radiation electrode members (20, 30) is formed with through holes (12a, 13a, 20a, 30a) that penetrate the holding member (11). The thermoelectric conversion device according to claim 1. 前記貫通孔(12a、13a、20a、30a)は、略円形状に形成されていることを特徴とする請求項2に記載の熱電変換装置。   The thermoelectric conversion device according to claim 2, wherein the through holes (12a, 13a, 20a, 30a) are formed in a substantially circular shape. 前記保持部材(11)は、外表面に絶縁層もしくは絶縁材のいずれか一方で形成されていることを特徴とする請求項1ないし請求項3のいずれか一項に記載の熱電変換装置。   The thermoelectric conversion device according to any one of claims 1 to 3, wherein the holding member (11) is formed on an outer surface with either an insulating layer or an insulating material. 前記熱電素子群(10)の両端側には、電極(15)および接続端子(24)が配設され、
前記熱電素子群(10)は、その両端側に配設される前記熱電素子(12、13)と前記電極(15)とが導通するように配設されていることを特徴とする請求項1ないし請求項4のいずれか一項に記載の熱電変換装置。
On both end sides of the thermoelectric element group (10), an electrode (15) and a connection terminal (24) are disposed,
The said thermoelectric element group (10) is arrange | positioned so that the said thermoelectric elements (12, 13) arrange | positioned at the both ends and the said electrode (15) may conduct | electrically_connect. The thermoelectric conversion apparatus as described in any one of Claim 4 thru | or 4.
前記熱電素子(12、13)には、前記吸熱、放熱電極部材(20、30)との接合面にNiメッキが形成されていることを特徴とする請求項1ないし請求項5のいずれか一項に記載の熱電変換装置。   6. The thermoelectric element (12, 13) according to any one of claims 1 to 5, wherein Ni plating is formed on a joint surface between the heat absorbing and heat radiating electrode members (20, 30). The thermoelectric conversion device according to item. 前記熱電素子群(10)の一方の特定される方向に突設され、前記吸熱電極部材(20)のそれぞれに伝熱可能に結合されている複数の吸熱熱交換部(22)と、
前記熱電素子群(10)の前記吸熱熱交換部(22)とは異なる方向に突設され、前記放熱電極部材(30)のそれぞれに伝熱可能に結合されている複数の放熱熱交換部(32)とを有し、
前記吸熱熱交換部(22)は、前記吸熱電極部材(20)に一体的に形成され、前記放熱熱交換部(32)は、前記放熱電極部材(30)に一体的に形成されていることを特徴とする請求項1ないし請求項6のいずれか一項に記載の熱電変換装置。
A plurality of endothermic heat exchanging portions (22) protruding in one specified direction of the thermoelectric element group (10) and coupled to each of the endothermic electrode members (20) so as to be capable of transferring heat;
A plurality of heat dissipation heat exchange portions (projecting in a direction different from the endothermic heat exchange portion (22) of the thermoelectric element group (10) and coupled to each of the heat dissipation electrode members (30) so as to be capable of transferring heat ( 32)
The endothermic heat exchanging part (22) is formed integrally with the endothermic electrode member (20), and the radiating heat exchanging part (32) is formed integrally with the radiating electrode member (30). The thermoelectric conversion device according to any one of claims 1 to 6, wherein
前記熱電素子群(10)を区画壁として、前記熱電素子群(10)の両側に送風通路を形成するケース部材(28、38)が設けられ、
前記ケース部材(28、38)は、前記吸熱熱交換部(22)もしくは前記放熱熱交換部(32)の外方端のいずれか一方を保持するように形成されていることを特徴とする請求項7に記載の熱電変換装置。
Case members (28, 38) that form air passages on both sides of the thermoelectric element group (10) using the thermoelectric element group (10) as partition walls are provided,
The case member (28, 38) is formed so as to hold either the endothermic heat exchanging portion (22) or the outer end of the radiating heat exchanging portion (32). Item 8. The thermoelectric conversion device according to Item 7.
前記熱電素子群(10)は、複数組積層された前記熱電素子(12、13)および前記吸熱、放熱電極部材(20、30)の外表面に絶縁性樹脂による絶縁コーティング処理が施されていることを特徴とする請求項1ないし請求項8のいずれか一項に記載の熱電変換装置。   In the thermoelectric element group (10), the outer surface of the thermoelectric elements (12, 13) and the heat absorbing and radiating electrode members (20, 30) stacked in a plurality of sets are subjected to an insulating coating treatment with an insulating resin. The thermoelectric conversion device according to any one of claims 1 to 8, wherein the thermoelectric conversion device is provided. 前記絶縁コーティング処理は、絶縁性樹脂による電着塗装であることを特徴とする請求項9に記載の熱電変換装置。   The thermoelectric conversion device according to claim 9, wherein the insulating coating treatment is electrodeposition coating with an insulating resin.
JP2006118534A 2006-04-21 2006-04-21 Thermoelectric conversion device Withdrawn JP2007294548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006118534A JP2007294548A (en) 2006-04-21 2006-04-21 Thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006118534A JP2007294548A (en) 2006-04-21 2006-04-21 Thermoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2007294548A true JP2007294548A (en) 2007-11-08

Family

ID=38764890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006118534A Withdrawn JP2007294548A (en) 2006-04-21 2006-04-21 Thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2007294548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149063A1 (en) * 2010-05-27 2011-12-01 京セラ株式会社 Thermoelectric element and thermoelectric module
JP2013542701A (en) * 2010-09-09 2013-11-21 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric module for automotive thermoelectric generator with sealing element
US9368708B2 (en) 2013-03-12 2016-06-14 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric generation unit and thermoelectric generation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149063A1 (en) * 2010-05-27 2011-12-01 京セラ株式会社 Thermoelectric element and thermoelectric module
JPWO2011149063A1 (en) * 2010-05-27 2013-07-25 京セラ株式会社 Thermoelectric element and thermoelectric module
JP5606528B2 (en) * 2010-05-27 2014-10-15 京セラ株式会社 Thermoelectric element and thermoelectric module
JP2013542701A (en) * 2010-09-09 2013-11-21 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Thermoelectric module for automotive thermoelectric generator with sealing element
US9368708B2 (en) 2013-03-12 2016-06-14 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric generation unit and thermoelectric generation system

Similar Documents

Publication Publication Date Title
CN101513150B (en) Motor control device
JP4581802B2 (en) Thermoelectric converter
WO2014084363A1 (en) Thermoelectric module
JP4297060B2 (en) Thermoelectric converter
JP2007103904A (en) Thermoelectric conversion device
JP2007036178A (en) Thermoelectric converter and heating and cooling apparatus
JP2008034792A (en) Thermoelectric converter and its manufacturing process
JP2008028163A (en) Power module device
JP2007294548A (en) Thermoelectric conversion device
JP2017208478A (en) Thermoelectric conversion module and thermoelectric conversion device
JP2007123530A (en) Thermoelectric conversion device and manufacturing method thereof
US7319590B1 (en) Conductive heat transfer system and method for integrated circuits
JP2011091152A (en) Power module
JP2006156818A (en) Thermoelectric conversion device and its manufacturing method
JP4682756B2 (en) Thermoelectric conversion device and method of manufacturing the same
JP4968150B2 (en) Semiconductor element cooling device
JP6738193B2 (en) Heat transfer structure, insulating laminated material, insulating circuit board and power module base
JP4626263B2 (en) Thermoelectric conversion device and method for manufacturing the thermoelectric conversion device
JP2006287066A (en) Thermoelectric conversion apparatus and method of manufacturing the apparatus
JP2007329349A (en) Thermoelectric conversion device and manufacturing method thereof
JP2008066663A (en) Thermoelectric converter
JP2006080228A (en) Thermoelectric converter and its manufacturing process
JP2006108253A (en) Thermoelectric conversion apparatus
JP2008021931A (en) Thermoelectric conversion device
JP2006114840A (en) Thermoelectric convertor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090714