JP2012028720A - Cooling apparatus - Google Patents

Cooling apparatus Download PDF

Info

Publication number
JP2012028720A
JP2012028720A JP2010168987A JP2010168987A JP2012028720A JP 2012028720 A JP2012028720 A JP 2012028720A JP 2010168987 A JP2010168987 A JP 2010168987A JP 2010168987 A JP2010168987 A JP 2010168987A JP 2012028720 A JP2012028720 A JP 2012028720A
Authority
JP
Japan
Prior art keywords
convex
cooling
heat
refrigerant
heat generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010168987A
Other languages
Japanese (ja)
Other versions
JP5589647B2 (en
Inventor
Yusuke Nakayama
裕介 中山
Original Assignee
Nissan Motor Co Ltd
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, 日産自動車株式会社 filed Critical Nissan Motor Co Ltd
Priority to JP2010168987A priority Critical patent/JP5589647B2/en
Publication of JP2012028720A publication Critical patent/JP2012028720A/en
Application granted granted Critical
Publication of JP5589647B2 publication Critical patent/JP5589647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Abstract

PROBLEM TO BE SOLVED: To improve the cooling efficiency of a cooling apparatus.SOLUTION: A cooling apparatus comprises a first radiator (1a) and a second radiator (1b) combined with the first radiator. A first heater element (7) and a second heater element (8) that generates the heating value less than the first heater element are disposed on one side of the first radiator. The first radiator includes a heat radiating part (36) having multiple first protruding parts (35) and a first join part (37) disposed around the heat radiating part on the other side. The second radiator includes a second join part (43) joined to the first join part (37) and a second protruding part (42) receiving the heat radiating part and forming a coolant passage. The length of the first protruding part (35) decreases from the center position of the first heater element to the center position of the second heater element. The length of the second protruding part (42) increases from the center position of the first heater element to the center position of the second heater element.

Description

本発明は、発熱する素子等を冷却する冷却装置に関する。   The present invention relates to a cooling device that cools elements that generate heat.

特許文献1の従来技術では、共通の冷却装置(冷却器)の両面に発熱量の高い発熱素子(IGBT)と発熱量の低い発熱素子(ダイオード)が実装され、発熱量に合わせた冷却性能となるように冷却部材(冷却フィン)の長さが調整される。   In the prior art of Patent Document 1, a heating element (IGBT) having a high heat generation amount and a heating element (diode) having a low heat generation amount are mounted on both surfaces of a common cooling device (cooler), and the cooling performance according to the heat generation amount Thus, the length of the cooling member (cooling fin) is adjusted.

特許文献2の従来技術では、全ての発熱素子の実装される近傍で、冷却装置の冷却部材(冷却フィン)の長さが増加する。   In the prior art of Patent Document 2, the length of the cooling member (cooling fin) of the cooling device increases in the vicinity where all the heating elements are mounted.

特許第4015634号明細書Japanese Patent No. 4015634 特開2003−324173号公報JP 2003-324173 A

しかし、特許文献1の従来技術では、冷却部材(冷却フィン)の長さが全て同じであるため、例えば、全ての冷却フィンが短い場合には、発熱量の高い発熱素子側の冷却効率が低い可能性がある。また、特許文献2の従来技術では、流路断面の密度が均一でないため、冷媒の流量に分布が生じて、冷却装置の冷却効率が低い可能性がある。   However, in the prior art of Patent Document 1, since the lengths of the cooling members (cooling fins) are all the same, for example, when all the cooling fins are short, the cooling efficiency on the side of the heat generating element having a high heat generation amount is low. there is a possibility. Moreover, in the prior art of patent document 2, since the density of a flow-path cross section is not uniform, distribution may arise in the flow volume of a refrigerant | coolant and cooling efficiency of a cooling device may be low.

本発明は、このような従来の問題点に着目してなされたものであり、冷却装置の冷却効率を向上することを目的とする。   The present invention has been made paying attention to such conventional problems, and an object thereof is to improve the cooling efficiency of the cooling device.

本発明のある態様に係る冷却装置は、第一放熱体と、前記第一放熱体と組み合わされる第二放熱体とを備える。第一放熱体の一方の側で、第一の発熱素子及び前記第一の発熱素子より発熱量の小さい第二の発熱素子が配置される。第一放熱体は、他方の側で、複数の第一凸部を有する放熱部及び前記放熱部の周囲に配置される第一接合部を具備する。第二放熱体は、前記第一接合部に接合される第二接合部と、前記放熱部を受容して冷媒流路を形成する第二凸部とを具備する。前記第一凸部の長さは、前記第一の発熱素子の中心位置から前記第二の発熱素子の中心位置に向かうに従って減少する。前記第二凸部の長さは、前記第一の発熱素子の中心位置から前記第二の発熱素子の中心位置に向かうに従って増加する。   A cooling device according to an aspect of the present invention includes a first radiator and a second radiator combined with the first radiator. On one side of the first heat radiating body, a first heat generating element and a second heat generating element having a smaller heat generation amount than the first heat generating element are arranged. On the other side, the first heat dissipating body includes a heat dissipating part having a plurality of first protrusions and a first joining part disposed around the heat dissipating part. The second heat radiating body includes a second joint portion joined to the first joint portion, and a second convex portion that receives the heat radiating portion and forms a refrigerant flow path. The length of the first convex portion decreases from the center position of the first heating element toward the center position of the second heating element. The length of the second convex portion increases from the center position of the first heating element toward the center position of the second heating element.

本発明によれば、冷媒流路の各部の流路断面積が略均一化され、冷却装置の冷却効率を向上できる。   According to the present invention, the cross-sectional area of each part of the refrigerant flow path is substantially uniform, and the cooling efficiency of the cooling device can be improved.

第一実施形態に係る冷却装置(冷却器)の概略斜視図である。It is a schematic perspective view of the cooling device (cooler) which concerns on 1st embodiment. 第一実施形態に係る冷却装置の冷媒の流れに直交した方向に沿った概略断面図である。It is a schematic sectional drawing along the direction orthogonal to the flow of the refrigerant | coolant of the cooling device which concerns on 1st embodiment. (a)第一実施形態において、第一の発熱素子の直下において冷媒の流れ方向に沿った冷却装置の概略断面図である。(b)第一実施形態において、第二の発熱素子の直下において冷媒の流れ方向に沿った冷却装置の概略断面図である。(A) In 1st embodiment, it is a schematic sectional drawing of the cooling device along the flow direction of a refrigerant | coolant just under the 1st heat generating element. (B) In 1st embodiment, it is a schematic sectional drawing of the cooling device along the flow direction of a refrigerant | coolant just under the 2nd heat generating element. 第一凸部の長さを決定する方法の一例を説明する図である。It is a figure explaining an example of the method of determining the length of a 1st convex part. 熱伝導シミュレーションに使用するセルを示す図である。It is a figure which shows the cell used for heat conduction simulation. 第一凸部の寸法等を示す図である。It is a figure which shows the dimension etc. of a 1st convex part. 第二実施形態に係る冷却装置の冷媒の流れに直交した方向に沿った概略断面図である。It is a schematic sectional drawing along the direction orthogonal to the flow of the refrigerant | coolant of the cooling device which concerns on 2nd embodiment. (a)第二実施形態において、第一の発熱素子の直下において冷媒の流れ方向に沿った冷却装置の概略断面図である。(b)第二実施形態において、第二の発熱素子の直下において冷媒の流れ方向に沿った冷却装置の概略断面図である。(A) In 2nd embodiment, it is a schematic sectional drawing of the cooling device along the flow direction of a refrigerant | coolant just under the 1st heat generating element. (B) In 2nd embodiment, it is a schematic sectional drawing of the cooling device along the flow direction of a refrigerant | coolant just under the 2nd heat generating element. (a)第三実施形態において、第一の発熱素子の直下において冷媒の流れ方向に沿った冷却装置の概略断面図である。(b)第三実施形態において、第二の発熱素子の直下において冷媒の流れ方向に沿った冷却装置の概略断面図である。(A) In 3rd embodiment, it is a schematic sectional drawing of the cooling device along the flow direction of a refrigerant | coolant just under the 1st heat generating element. (B) In 3rd embodiment, it is a schematic sectional drawing of the cooling device along the flow direction of a refrigerant | coolant just under the 2nd heat generating element. (a)第四実施形態において、第一の発熱素子の直下において冷媒の流れ方向に沿った冷却装置の概略断面図である。(b)第四実施形態において、第二の発熱素子の直下において冷媒の流れ方向に沿った冷却装置の概略断面図である。(A) In 4th embodiment, it is a schematic sectional drawing of the cooling device along the flow direction of a refrigerant | coolant just under the 1st heat generating element. (B) In 4th embodiment, it is a schematic sectional drawing of the cooling device along the flow direction of a refrigerant | coolant just under the 2nd heat generating element. 第五実施形態に係る冷却装置の冷媒の流れに直交した方向に沿った概略断面図の一例である。It is an example of the schematic sectional drawing along the direction orthogonal to the flow of the refrigerant | coolant of the cooling device which concerns on 5th embodiment. 第五実施形態に係る冷却装置の冷媒の流れに直交した方向に沿った概略断面図の他の例である。It is another example of the schematic sectional drawing along the direction orthogonal to the flow of the refrigerant | coolant of the cooling device which concerns on 5th embodiment.

以下では図面を参照して本発明を実施するための形態について、さらに詳しく説明する。   Hereinafter, embodiments for carrying out the present invention will be described in more detail with reference to the drawings.

<第一実施形態>
図1は、第一実施形態に係る冷却装置(冷却器)の概略斜視図を示す。図2は、第一実施形態に係る冷却装置の概略断面図を示す。図2は、冷媒の流れ方向に直交した方向に沿った断面図である。
<First embodiment>
FIG. 1 is a schematic perspective view of a cooling device (cooler) according to the first embodiment. FIG. 2 is a schematic cross-sectional view of the cooling device according to the first embodiment. FIG. 2 is a cross-sectional view taken along a direction orthogonal to the refrigerant flow direction.

冷却装置の冷媒ジャケット1は、その内部に冷媒が流通する冷媒流路10を有する。第一の発熱素子7と、第一の発熱素子7よりも発熱量(ワット:W)の少ない第二の発熱素子8が、冷却ジャケット1の上面に直接的に又は中間部材20を介して実装されている。第一と第二の発熱素子7、8は、同一面に間隔をあけて隣り合うように、冷媒の流れ方向に垂直な方向に沿って配置されている。例えば、第一の発熱素子7は、トランジスタなどの半導体素子であり、第二の発熱素子8はダイオードなどの半導体素子である。   The refrigerant jacket 1 of the cooling device has a refrigerant flow path 10 through which the refrigerant flows. The first heat generating element 7 and the second heat generating element 8 having a smaller amount of heat generation (watt: W) than the first heat generating element 7 are mounted directly on the upper surface of the cooling jacket 1 or via the intermediate member 20. Has been. The first and second heat generating elements 7 and 8 are arranged along a direction perpendicular to the flow direction of the refrigerant so as to be adjacent to each other with an interval on the same surface. For example, the first heating element 7 is a semiconductor element such as a transistor, and the second heating element 8 is a semiconductor element such as a diode.

中間部材20は、積層された結合部材3と、基板4と、絶縁部材5と、熱拡散部材6とからなる。結合部材3は、一例として半田、銀ペーストである。絶縁部材5は一例として接着剤、接着シート、グリースである。熱拡散部材6は、一例としてアルミや銅などの金属部材である。   The intermediate member 20 includes the laminated coupling member 3, the substrate 4, the insulating member 5, and the heat diffusion member 6. The coupling member 3 is, for example, solder or silver paste. The insulating member 5 is, for example, an adhesive, an adhesive sheet, and grease. The heat diffusion member 6 is a metal member such as aluminum or copper as an example.

冷却装置は、第一の放熱体1aと第二の放熱体1bから構成される冷媒ジャケット1を備える。第一の放熱体1aは、第一主面31(発熱素子の設置面)と、第一主面31に略平行に設けられて対向する第二主面32(流路側の面)を有する。第一主面31は、冷却ジャケット1の上面に相当し、第一主面31上に第一と第二の発熱素子7、8が配置される。   The cooling device includes a refrigerant jacket 1 composed of a first radiator 1a and a second radiator 1b. The first heat dissipating body 1a has a first main surface 31 (heating element installation surface) and a second main surface 32 (channel side surface) that is provided substantially parallel to the first main surface 31 and faces the first main surface 31. The first main surface 31 corresponds to the upper surface of the cooling jacket 1, and the first and second heating elements 7 and 8 are disposed on the first main surface 31.

第二主面32には、第一の放熱体1aの放熱部として、複数の第一凸部35を備える放熱部(冷却部材)36が形成される。また、第二主面32には、放熱部36の周囲で配置される第一接合部37が形成される。複数の第一凸部35は、第二主面32において、冷媒の流れ方向に垂直な方向に所定間隔で設けられ、放熱用突出体として機能する。第一実施形態において、第一凸部35の立体形状は、全体として、冷媒流路に沿って延在する直方体のフィン形状であるため、図2において、第一凸部35の断面形状は長方形である。   On the second main surface 32, a heat radiating portion (cooling member) 36 including a plurality of first convex portions 35 is formed as a heat radiating portion of the first heat radiating body 1a. The second main surface 32 is formed with a first joint portion 37 disposed around the heat radiating portion 36. The plurality of first convex portions 35 are provided at predetermined intervals in the second main surface 32 in a direction perpendicular to the flow direction of the refrigerant, and function as heat dissipation protrusions. In the first embodiment, since the three-dimensional shape of the first convex portion 35 is a rectangular parallelepiped fin shape extending along the coolant channel as a whole, the cross-sectional shape of the first convex portion 35 is rectangular in FIG. It is.

第二の放熱体1bは、第三主面40(流路側の面)と、第三主面40に対向する第四主面41(流路と反対側の面)を有する。第四主面41は、冷却ジャケット1の下面に相当する。第三主面40には、複数の第二凸部42と、複数の第二凸部42の周囲で配置される第二接合部43が形成される。複数の第二凸部42は、第三主面40において、冷媒の流れ方向に垂直な方向に所定間隔で設けられる。複数の第二凸部42の所定間隔は、複数の第一凸部35の所定間隔と同じであることが好ましい。第一実施形態において、第二凸部42の立体形状は全体として直方体のフィン形状であるため、図2において、第二凸部42の断面形状は長方形である。   The second heat radiating body 1 b has a third main surface 40 (surface on the flow path side) and a fourth main surface 41 (surface opposite to the flow path) facing the third main surface 40. The fourth main surface 41 corresponds to the lower surface of the cooling jacket 1. The third main surface 40 is formed with a plurality of second protrusions 42 and a second joint 43 disposed around the plurality of second protrusions 42. The plurality of second convex portions 42 are provided at predetermined intervals in the third main surface 40 in a direction perpendicular to the refrigerant flow direction. The predetermined interval between the plurality of second convex portions 42 is preferably the same as the predetermined interval between the plurality of first convex portions 35. In the first embodiment, since the solid shape of the second convex portion 42 is a rectangular parallelepiped fin shape as a whole, the cross-sectional shape of the second convex portion 42 is a rectangle in FIG.

第二の放熱体1bの第二接合部43は、第一の放熱体1aの第一接合部37に接合される接合面45を有する。第二の放熱体1bの第二接合部43が第一の放熱体1aの第一接合部37に接合されることにより、第二の放熱体1bと第一の放熱体1aが組み合わされ、冷却ジャケット1となる。また、複数の第二凸部42は第一の放熱体1aの放熱部36を受容して冷媒流路10を形成する。   The 2nd junction part 43 of the 2nd heat radiator 1b has the joint surface 45 joined to the 1st junction part 37 of the 1st heat radiator 1a. By joining the second joint 43 of the second radiator 1b to the first joint 37 of the first radiator 1a, the second radiator 1b and the first radiator 1a are combined and cooled. It becomes jacket 1. The plurality of second convex portions 42 receive the heat radiating portion 36 of the first heat radiating body 1 a and form the refrigerant flow path 10.

なお、図2では、第一接合部37は、第二主面32上の部分であり、接合面45が第二主面32上で位置“A”にある。しかし、接合面45は、第二主面32と第三主面40の間でどの位置にあってもよい。例えば、接合面45は、第二の放熱体1bの第三主面40により近い位置“B”にあってよく、この場合、第一接合部37は凸状の部分になる。   In FIG. 2, the first joint portion 37 is a portion on the second main surface 32, and the joint surface 45 is at the position “A” on the second main surface 32. However, the joint surface 45 may be located at any position between the second main surface 32 and the third main surface 40. For example, the joint surface 45 may be at a position “B” closer to the third main surface 40 of the second radiator 1b, and in this case, the first joint portion 37 is a convex portion.

図2を参照すると、第一凸部35の先端を結んだ輪郭線(点線)のように、第一凸部35の突出する方向への長さは、第一の発熱素子7の中心位置から第二の発熱素子8の中心位置に向かうに従って短くなる。第二凸部42の先端を結んだ輪郭線(点線)のように、第二凸部42の突出する方向への長さは、第一の発熱素子7の中心位置から第二の発熱素子8の中心位置に向かうに従って長くなる。   Referring to FIG. 2, the length in the protruding direction of the first convex portion 35 from the center position of the first heating element 7, as indicated by a contour line (dotted line) connecting the tips of the first convex portions 35, It becomes shorter as it goes to the center position of the second heating element 8. Like the outline (dotted line) connecting the tips of the second convex portions 42, the length of the second convex portion 42 in the protruding direction is from the center position of the first heat generating element 7 to the second heat generating element 8. It becomes longer as it goes to the center position.

第一凸部35の長さは、第二主面32上において、第一の発熱素子7の中心部に対応する位置で最大となり、第一の発熱素子7の外周部に向かうにつれて減少し、第二の発熱素子8の中心部に対応する位置で最小となる。第二凸部42の長さは、第三主面40上において、第一の発熱素子7の中心部に対応する位置で最小となり、第一の発熱素子7の外周部に向かうにつれて増加し、第二の発熱素子8の中心部に対応する位置で最大となる。このように、複数の第二凸部42の集まりは、全体的に、第一の放熱体1aの放熱部36(複数の第一凸部35の集まり)に形状的に適合してこれを受容する。   The length of the first convex portion 35 is maximized at a position corresponding to the central portion of the first heat generating element 7 on the second main surface 32 and decreases toward the outer peripheral portion of the first heat generating element 7. It becomes the minimum at a position corresponding to the central portion of the second heating element 8. The length of the second convex portion 42 is minimized on the third main surface 40 at a position corresponding to the central portion of the first heat generating element 7 and increases toward the outer peripheral portion of the first heat generating element 7. It becomes the maximum at a position corresponding to the central portion of the second heating element 8. As described above, the group of the plurality of second convex portions 42 generally conforms to and accepts the shape of the heat radiating portion 36 (group of the plurality of first convex portions 35) of the first radiator 1a. To do.

第一の放熱体1aの第一凸部35と第二の放熱体1bの第二凸部42は、ある空隙を介して隣接し対向する。第一凸部35の先端とこれに対向する第二凸部42の先端との間隔は、一定値dである。つまり、第一凸部35の先端とこれに対面する第二の放熱体1bの部分との距離、及び、第二凸部42の先端とこれに対面する第一の放熱体1aの部分との距離が、一定値dとなる。従って、冷媒流路10は、一定の断面積を有する各部分48から構成され、冷媒流路の各部の断面積が略一定に保たれる。なお、各部分48は、各第一凸部35とその脇の凹部50からなる凹凸、及び、これらに対向する第二凸部42とその脇の凹部51からなる凹凸によって画定される。   The 1st convex part 35 of the 1st heat radiator 1a and the 2nd convex part 42 of the 2nd heat radiator 1b adjoin and oppose through a certain space | gap. The distance between the tip of the first convex portion 35 and the tip of the second convex portion 42 facing the first convex portion 35 is a constant value d. That is, the distance between the tip of the first convex portion 35 and the portion of the second heat radiating body 1b facing this, and the tip of the second convex portion 42 and the portion of the first heat radiating body 1a facing this. The distance is a constant value d. Therefore, the refrigerant flow path 10 is composed of each portion 48 having a constant cross-sectional area, and the cross-sectional area of each part of the refrigerant flow path is kept substantially constant. In addition, each part 48 is demarcated by the unevenness | corrugation which consists of each 1st convex part 35 and the recessed part 50 of the side, and the unevenness | corrugation which consists of the 2nd convex part 42 and its side recessed part 51 which oppose these.

図3(a)は、第一の発熱素子7の直下において冷媒の流れ方向に沿った冷却装置の概略断面図を示す。第一凸部35は、全体として、直方体の立体形状を有するため、第一凸部35の長さXは、冷媒の流れ方向において一定(不変)である。図3(b)は、第二の発熱素子8の直下において冷媒の流れ方向に沿った冷却装置の概略断面図を示す。第二凸部42は、全体として直方体の立体形状を有するため、第二凸部42の長さYは、冷媒の流れ方向において一定(不変)である。   FIG. 3A is a schematic cross-sectional view of the cooling device along the flow direction of the refrigerant immediately below the first heating element 7. Since the 1st convex part 35 has the solid solid shape of a rectangular parallelepiped as a whole, the length X of the 1st convex part 35 is constant (invariable) in the flow direction of a refrigerant | coolant. FIG. 3B is a schematic cross-sectional view of the cooling device along the flow direction of the refrigerant immediately below the second heating element 8. Since the 2nd convex part 42 has a rectangular parallelepiped solid shape as a whole, the length Y of the 2nd convex part 42 is constant (invariable) in the flow direction of a refrigerant | coolant.

次に、図4を参照して、各第一凸部35の長さXnを決定する方法の一例を説明する。   Next, an example of a method for determining the length Xn of each first convex portion 35 will be described with reference to FIG.

まず、第一段階として、発熱素子7、8の発熱量W(ワット)から、各第一凸部35の根元60での温度Tnと各第一凸部35への伝熱発熱量Wnが算出される。第二段階として、各第一凸部35の根元60から先端までの熱抵抗Rnが算出される。第三段階として、全ての第一凸部35の先端での温度TWnが等しい所定の温度なるように第一凸部35の長さXnが算出される。   First, as a first stage, the temperature Tn at the root 60 of each first protrusion 35 and the heat transfer heat generation Wn to each first protrusion 35 are calculated from the heat generation W (watts) of the heating elements 7 and 8. The As a second step, the thermal resistance Rn from the root 60 to the tip of each first convex portion 35 is calculated. As a third step, the length Xn of the first convex portion 35 is calculated so that the temperatures TWn at the tips of all the first convex portions 35 are equal to a predetermined temperature.

第一段階において、温度Tnと伝熱発熱量(伝熱量)Wnは、通常の熱伝導シミュレーション(数値計算)により求めることができる。第二主面32から上の部分を図5のようなセルに分割して、差分法などによる熱伝導シミュレーションを適応できる。例えば、寸法δi、δj、Sのセル(i,j)の温度Ti,jは以下の数式1のように表わされ、逐次的に計算される。   In the first stage, the temperature Tn and the heat transfer heat generation amount (heat transfer amount) Wn can be obtained by a normal heat conduction simulation (numerical calculation). A portion above the second main surface 32 is divided into cells as shown in FIG. 5, and a heat conduction simulation by a difference method or the like can be applied. For example, the temperature Ti, j of the cell (i, j) of the dimensions δi, δj, and S is expressed as the following Equation 1, and is calculated sequentially.

ここで、KL、KR、KU、KBは、あるセル(i,j)とその隣のセルとの間の熱抵抗の逆数である。また、発熱部(発熱素子7又は8)のセルにおける発熱量Wi,jは、均一に発熱している場合、発熱部の容積Vとして、Wi,j=W・(δi・δj・S)/V となる。 Here, K L , K R , K U , and K B are reciprocals of the thermal resistance between a certain cell (i, j) and its neighboring cells. Further, when the heat generation amount Wi, j in the cell of the heat generating portion (heat generating element 7 or 8) is uniformly generated, the volume V of the heat generating portion is expressed as Wi, j = W · (δi · δj · S) / V.

第二段階において、図6のような寸法の第一凸部35について、熱抵抗Rnは、熱伝導率λとして、Rn=Xn/(λ・t・L)で算出される。   In the second stage, the thermal resistance Rn is calculated as Rn = Xn / (λ · t · L) as the thermal conductivity λ for the first convex portion 35 having the dimensions as shown in FIG.

第三段階において、(Tn−TWn)=Rn・Wnの関係から、第一凸部35の長さXnは、数式2のように算出できる。   In the third stage, the length Xn of the first convex portion 35 can be calculated as Equation 2 from the relationship of (Tn−TWn) = Rn · Wn.

他の例として、熱伝導シミュレーションにより、第一凸部35の先端での温度TWnを求めて、全ての第一凸部35の先端での温度TWnが等しい所定温度なるように各第一凸部35の長さXnを調整することも考えられる。   As another example, the temperature TWn at the tips of the first projections 35 is obtained by heat conduction simulation, and the first projections are set so that the temperatures TWn at the tips of all the first projections 35 are equal to each other. It is also conceivable to adjust the length Xn of 35.

−作用・効果−
本実施形態によると、第二放熱体1bの第二凸部42が、第一放熱体1aにおいて複数の第一凸部35を有する放熱部36を受容して冷媒流路を形成する。第一凸部35の長さは、発熱量の大きい第一の発熱素子7の中心位置から発熱量の小さい第二の発熱素子8の中心位置に向かうに従って減少し、第二凸部42の長さは、第一の発熱素子7の中心位置から第二の発熱素子8の中心位置に向かうに従って増加する。このため、冷媒流路全体を略一定の断面積を有する各部分から構成でき、流路断面の密度が略均一となり、冷却装置の冷却効率を向上できる。また、流路断面積を冷媒流路の各部で略一定にできるため、冷媒流路で流量にむらができることが抑止でき、冷却装置全体の圧力損失を低く抑えることができる。
-Action and effect-
According to this embodiment, the 2nd convex part 42 of the 2nd heat radiating body 1b receives the heat radiating part 36 which has the some 1st convex part 35 in the 1st heat radiating body 1a, and forms a refrigerant | coolant flow path. The length of the first convex portion 35 decreases from the center position of the first heat generating element 7 having a large calorific value toward the center position of the second heat generating element 8 having a small calorific value, and the length of the second convex portion 42. The height increases from the center position of the first heating element 7 toward the center position of the second heating element 8. For this reason, the whole refrigerant flow path can be constituted by each part having a substantially constant cross-sectional area, the density of the flow path cross-section becomes substantially uniform, and the cooling efficiency of the cooling device can be improved. In addition, since the cross-sectional area of the flow path can be made substantially constant at each part of the refrigerant flow path, it is possible to suppress unevenness in the flow rate in the refrigerant flow path, and to suppress the pressure loss of the entire cooling device.

各発熱素子の発熱量の大小に応じて第一凸部の長さが設定されるため、必要十分な放熱面積を確保できる。このため、冷却装置を大型化することなく各発熱素子の発熱量に応じた冷却性能を確保することができる。放熱部(第一凸部)の先端部に関して、温度を略一定にして温度分布を軽減できるので、冷媒の耐久性も向上できる。   Since the length of the first convex portion is set according to the amount of heat generated by each heating element, a necessary and sufficient heat radiation area can be secured. For this reason, the cooling performance according to the emitted-heat amount of each heat generating element is securable, without enlarging a cooling device. With respect to the tip of the heat radiating part (first convex part), the temperature can be made substantially constant and the temperature distribution can be reduced, so that the durability of the refrigerant can also be improved.

第一凸部と第二凸部は対向して配置され、対向する第一凸部と第二凸部との間隔は一定であるため、さらに、流路断面積を冷媒流路の各部で略一定にできる。   Since the first convex portion and the second convex portion are arranged to face each other and the distance between the first convex portion and the second convex portion facing each other is constant, the flow path cross-sectional area is substantially reduced in each part of the refrigerant flow path. Can be constant.

放熱部の第一凸部は、冷媒流路の冷媒の流れ方向に沿って延在するフィン形状である。従って、放熱部の熱伝達面積が広く取れ、その結果冷却効率が向上する。   The 1st convex part of a thermal radiation part is a fin shape extended along the flow direction of the refrigerant | coolant of a refrigerant flow path. Therefore, the heat transfer area of the heat radiating portion can be widened, and as a result, the cooling efficiency is improved.

また、第一凸部の長さが、冷媒の流れ方向において一定であるため、冷却装置の製造コストが低くなる。放熱部の断面形状が冷媒の流れ方向に不変なため、押し出し工法などの簡便かつ安価な工法によって冷却装置を作れる。   Moreover, since the length of the first convex portion is constant in the refrigerant flow direction, the manufacturing cost of the cooling device is reduced. Since the cross-sectional shape of the heat dissipating part does not change in the flow direction of the refrigerant, the cooling device can be made by a simple and inexpensive method such as an extrusion method.

<第二実施形態>
図7は、第二実施形態に係る冷却装置の概略断面図を示す。図7は、冷媒の流れ方向に直交した方向に沿った断面図である。第二実施形態において、第一凸部35と第二凸部42は、全体として、ピン型の立体形状を有する。他の構成は、第一実施形態と同様である。
<Second embodiment>
FIG. 7 is a schematic cross-sectional view of the cooling device according to the second embodiment. FIG. 7 is a cross-sectional view taken along a direction orthogonal to the refrigerant flow direction. In 2nd embodiment, the 1st convex part 35 and the 2nd convex part 42 have a pin-shaped solid shape as a whole. Other configurations are the same as those in the first embodiment.

図7を参照すると、第一凸部35の先端を結んだ輪郭線(点線)のように、第一凸部35の長さは、第一の発熱素子7の中心位置から第二の発熱素子8の中心位置に向かうに従って短くなる。第二凸部42の先端を結んだ輪郭線(点線)のように、第二凸部42の長さは、第一の発熱素子7の中心位置から第二の発熱素子8の中心位置に向かうに従って長くなる。   Referring to FIG. 7, the length of the first convex portion 35 is from the center position of the first heat generating element 7 to the second heat generating element as indicated by a contour line (dotted line) connecting the tips of the first convex portions 35. It becomes short toward the center position of 8. Like the contour line (dotted line) connecting the tips of the second protrusions 42, the length of the second protrusions 42 is from the center position of the first heating element 7 to the center position of the second heating element 8. As it gets longer.

第一凸部35の長さは、第一の発熱素子7の中心部に対応する位置で最大となり、第一の発熱素子7の外周部に向かうにつれて減少し、第二の発熱素子8の中心部に対応する位置で最小となる。第二凸部42の長さは、第一の発熱素子7の中心部に対応する位置で最小となり、第一の発熱素子7の外周部に向かうにつれて増加し、第二の発熱素子8の中心部に対応する位置で最大となる。このように、複数の第二凸部42の集まりは、全体的に、第一の放熱体1aの放熱部36(複数の第一凸部35の集まり)に形状的に適合してこれを受容する。   The length of the first convex portion 35 becomes maximum at a position corresponding to the center portion of the first heat generating element 7, and decreases as it goes toward the outer peripheral portion of the first heat generating element 7. Minimum at the position corresponding to the part. The length of the second convex portion 42 is minimized at a position corresponding to the central portion of the first heat generating element 7, and increases as it goes toward the outer peripheral portion of the first heat generating element 7. It becomes the maximum at the position corresponding to the part. As described above, the group of the plurality of second convex portions 42 generally conforms to and accepts the shape of the heat radiating portion 36 (group of the plurality of first convex portions 35) of the first radiator 1a. To do.

第一の放熱体1aの第一凸部35と第二の放熱体1bの第二凸部42が、ある空隙を介して隣接し対向する。第一凸部35の先端とこれに対向する第二凸部42の先端との間隔は、一定値dである。つまり、第一凸部35の先端とこれに対向する第二の放熱体1bの部分との距離、及び、第二凸部42の先端とこれに対向する第一の放熱体1aの部分との距離は、一定値dとなる。   The 1st convex part 35 of the 1st heat radiator 1a and the 2nd convex part 42 of the 2nd heat radiator 1b adjoin and oppose through a certain space | gap. The distance between the tip of the first convex portion 35 and the tip of the second convex portion 42 facing the first convex portion 35 is a constant value d. That is, the distance between the tip of the first convex portion 35 and the portion of the second heat dissipating body 1b facing this, and the tip of the second convex portion 42 and the portion of the first heat dissipating body 1a facing this. The distance is a constant value d.

図8(a)は、第一の発熱素子7の直下において冷媒の流れ方向に沿った冷却装置の概略断面図を示す。第一実施形態と異なり、ピン型の各第一凸部35は、冷媒の流れ方向において分離している。しかし、各第一凸部35の長さは、冷媒の流れ方向に関して同一である(冷媒の流れに垂直方向では異なる)。図8(b)は、第二の発熱素子8の直下において冷媒の流れ方向に沿った冷却装置の概略断面図を示す。第一実施形態と異なり、ピン型の各第二凸部42は、冷媒の流れ方向において分離している。しかし、各第二凸部42の長さは、冷媒の流れ方向に関して同一である(冷媒の流れに垂直方向では異なる)。   FIG. 8A is a schematic cross-sectional view of the cooling device along the flow direction of the refrigerant immediately below the first heating element 7. Unlike the first embodiment, each pin-shaped first convex portion 35 is separated in the flow direction of the refrigerant. However, the length of each first convex portion 35 is the same with respect to the flow direction of the refrigerant (different in the direction perpendicular to the flow of the refrigerant). FIG. 8B is a schematic cross-sectional view of the cooling device along the flow direction of the refrigerant immediately below the second heating element 8. Unlike the first embodiment, each pin-shaped second convex portion 42 is separated in the flow direction of the refrigerant. However, the length of each second convex portion 42 is the same with respect to the flow direction of the refrigerant (different in the direction perpendicular to the flow of the refrigerant).

本実施形態によると、放熱部の第一凸部35がピン型の形状を有し、ピン型の第一凸部35が冷媒流路の冷媒の流れ方向に沿って複数個設けられている。このため、冷却装置の単位体積あたりの熱伝達面積がより一層広く取れるので、さらなる冷却装置の小型化ができる。第一凸部35の長さが、冷媒の流れ方向において一定であるため、冷却装置の製造コストが低くなる。   According to this embodiment, the 1st convex part 35 of a thermal radiation part has a pin-shaped shape, and the multiple pin-shaped 1st convex part 35 is provided along the flow direction of the refrigerant | coolant of a refrigerant flow path. For this reason, since the heat transfer area per unit volume of the cooling device can be further increased, the cooling device can be further reduced in size. Since the length of the 1st convex part 35 is constant in the flow direction of a refrigerant | coolant, the manufacturing cost of a cooling device becomes low.

<第三実施形態>
第三実施形態において、第一実施形態と異なり、第一凸部35と第二凸部42の長さは、冷媒の流れ方向において変化する。他の構成は、第一実施形態と同様である。
<Third embodiment>
In 3rd embodiment, unlike 1st embodiment, the length of the 1st convex part 35 and the 2nd convex part 42 changes in the flow direction of a refrigerant | coolant. Other configurations are the same as those in the first embodiment.

図9(a)は、第一の発熱素子7の直下において冷媒の流れ方向に沿った冷却装置の概略断面図を示す。冷媒の流れ方向において、第一凸部35の長さは、第一の発熱素子7の中心部に対応する位置で最大となり、第一の発熱素子7の外周部に向かうにつれて減少する。   FIG. 9A is a schematic cross-sectional view of the cooling device along the flow direction of the refrigerant immediately below the first heating element 7. In the flow direction of the refrigerant, the length of the first convex portion 35 is maximized at a position corresponding to the center portion of the first heat generating element 7 and decreases toward the outer peripheral portion of the first heat generating element 7.

図9(b)は、第二の発熱素子8の直下において冷媒の流れ方向に沿った冷却装置の概略断面図を示す。冷媒の流れ方向において、第二凸部42の長さは、第二の発熱素子8の中心部に対応する位置で最大となり、第二の発熱素子8の外周部に向かうにつれて減少する。   FIG. 9B is a schematic cross-sectional view of the cooling device along the flow direction of the refrigerant immediately below the second heating element 8. In the refrigerant flow direction, the length of the second convex portion 42 is maximized at a position corresponding to the central portion of the second heat generating element 8 and decreases toward the outer peripheral portion of the second heat generating element 8.

本実施形態によると、第一凸部35の長さが、冷媒の流れ方向において、第一の発熱素子の中心位置で最も長く、第二凸部35の長さが、第二の発熱素子の中心位置で最も長くなる。このように、冷却部材(放熱部)の形状を冷媒の流れ方向にも最適化することによって、冷却部材の先端に関して温度分布の低減ができるので、更なる冷却装置の小型化ができる。   According to this embodiment, the length of the first convex portion 35 is the longest at the center position of the first heating element in the refrigerant flow direction, and the length of the second convex portion 35 is the length of the second heating element. The longest at the center position. Thus, by optimizing the shape of the cooling member (heat radiation part) also in the flow direction of the refrigerant, the temperature distribution can be reduced with respect to the tip of the cooling member, so that the cooling device can be further downsized.

<第四実施形態>
第四実施形態において、第二実施形態と異なり、ピン型の第一凸部35と第二凸部42の長さは、冷媒の流れ方向において変化する。他の構成は、第二実施形態と同様である。
<Fourth embodiment>
In the fourth embodiment, unlike the second embodiment, the lengths of the pin-shaped first convex portion 35 and the second convex portion 42 change in the refrigerant flow direction. Other configurations are the same as those of the second embodiment.

図10(a)は、第一の発熱素子7の直下において冷媒の流れ方向に沿った冷却装置の概略断面図を示す。冷媒の流れ方向において、第一凸部35の長さは、第一の発熱素子7の中心部に対応する位置で最大となり、第一の発熱素子7の外周部に向かうにつれて減少する。第二凸部42の長さは、第一の発熱素子7の中心部に対応する位置で最小となる。   FIG. 10A shows a schematic cross-sectional view of the cooling device along the flow direction of the refrigerant immediately below the first heating element 7. In the flow direction of the refrigerant, the length of the first convex portion 35 is maximized at a position corresponding to the center portion of the first heat generating element 7 and decreases toward the outer peripheral portion of the first heat generating element 7. The length of the second convex portion 42 is minimum at a position corresponding to the central portion of the first heating element 7.

図10(b)は、第二の発熱素子8の直下において冷媒の流れ方向に沿った冷却装置の概略断面図を示す。冷媒の流れ方向において、第二凸部42の長さは、第二の発熱素子8の中心部に対応する位置で最大となり、第二の発熱素子8の外周部に向かうにつれて突出長さが減少する。第一凸部35の長さは、第二の発熱素子8の中心部に対応する位置で最小となる。   FIG. 10B is a schematic cross-sectional view of the cooling device along the flow direction of the refrigerant immediately below the second heating element 8. In the refrigerant flow direction, the length of the second convex portion 42 is maximized at a position corresponding to the central portion of the second heat generating element 8, and the protrusion length decreases toward the outer peripheral portion of the second heat generating element 8. To do. The length of the first convex portion 35 is minimum at a position corresponding to the central portion of the second heating element 8.

本実施形態は、第三実施形態と同様の作用効果を有する。   This embodiment has the same operational effects as the third embodiment.

<第五実施形態>
第五実施形態では、第一と第二の実施形態の冷却ジャケットの発熱素子の実装されていない側(第二の放熱体1bの第四主面41)に、発熱素子が実装されている。即ち、冷却ジャケットの両側に発熱素子が実装される。他の構成は、第一実施形態と同様である。
<Fifth embodiment>
In the fifth embodiment, the heating element is mounted on the side of the cooling jacket of the first and second embodiments where the heating element is not mounted (the fourth main surface 41 of the second radiator 1b). That is, the heating elements are mounted on both sides of the cooling jacket. Other configurations are the same as those in the first embodiment.

図11と図12を参照すると、第二の放熱体1bの第四主面41上に、第一の発熱素子7と同等又は同じ発熱量(ワット)の第三の発熱素子9と、第二の発熱素子8と同等又は同じ発熱量(ワット)の第四の発熱素子10が実装される。冷却ジャケット1を挟むように、発熱の異なる第一の発熱素子7と第四の発熱素子10が対向する。冷却ジャケット1を挟むように、発熱の異なる第二の発熱素子8と第三の発熱素子9が対向する。   11 and 12, on the fourth main surface 41 of the second radiator 1b, a third heating element 9 having the same or the same heating value (watt) as that of the first heating element 7, and a second The fourth heat generating element 10 having the same heat generation amount (watt) as that of the heat generating element 8 is mounted. The first heat generating element 7 and the fourth heat generating element 10 having different heat generation face each other so as to sandwich the cooling jacket 1. The second heat generating element 8 and the third heat generating element 9 having different heat generation face each other so as to sandwich the cooling jacket 1.

第三の発熱素子9は、第二凸部42の長さが最大となる位置に設けられ、第四の発熱素子10は、第二凸部42の長さが最小となる位置に設けられる。   The third heat generating element 9 is provided at a position where the length of the second convex portion 42 is maximum, and the fourth heat generating element 10 is provided at a position where the length of the second convex portion 42 is minimum.

本実施形態によると、第二放熱体1bにおいて、冷却流路10と反対側の面上で、第二凸部42の長さが最小となる位置に、第二の発熱素子8と同じ発熱量となる第四の発熱素子10が実装される。第二凸部42の長さが最大となる位置に第一の発熱素子7と同じ発熱量となる第三の発熱素子9が実装される。このように、冷却ジャケット1を共有して発熱量の異なる発熱素子を対向配置することで、発熱素子の冷却効率を満足しながら、冷却ジャケットのサイズを大型化することなく両面実装構造が実現できる。   According to the present embodiment, in the second radiator 1b, the same amount of heat generation as that of the second heating element 8 is provided on the surface opposite to the cooling flow path 10 at the position where the length of the second convex portion 42 is minimized. The fourth heating element 10 is mounted. The third heat generating element 9 having the same heat generation amount as that of the first heat generating element 7 is mounted at a position where the length of the second convex portion 42 is maximized. In this manner, by sharing the cooling jacket 1 and disposing the heating elements having different heat generation amounts, the double-sided mounting structure can be realized without increasing the size of the cooling jacket while satisfying the cooling efficiency of the heating elements. .

本発明は、以上説明した実施形態に限定されることなく、その技術的思想の範囲内において種々の変形や変更が可能であり、それらも本発明の技術的範囲に含まれることが明白である。   The present invention is not limited to the embodiments described above, and various modifications and changes can be made within the scope of the technical idea, and it is obvious that these are also included in the technical scope of the present invention. .

1 冷媒ジャケット
1a 第一放熱体
1b 第二放熱体
3 結合部材
4 基板
5 絶縁部材
6 熱拡散部材
7 第一の発熱素子
8 第二の発熱素子
10 冷媒流路
31 第一主面
32 第二主面
35 第一凸部
36 放熱部
37 第一接合部
40 第三主面
41 第四主面
42 第二凸部
43 第二接合部
45 接合面
50 凹部
51 凹部
DESCRIPTION OF SYMBOLS 1 Refrigerant jacket 1a 1st heat radiator 1b 2nd heat radiator 3 Coupling member 4 Board | substrate 5 Insulating member 6 Heat diffusion member 7 1st heat generating element 8 2nd heat generating element 10 Refrigerant flow path 31 1st main surface 32 2nd main Surface 35 First convex portion 36 Heat radiating portion 37 First joint portion 40 Third main surface 41 Fourth main surface 42 Second convex portion 43 Second joint portion 45 Joint surface 50 Concave portion 51 Concave portion

Claims (7)

一方の側で、第一の発熱素子及び前記第一の発熱素子より発熱量の小さい第二の発熱素子が配置され、且つ、他方の側で、複数の第一凸部を有する放熱部及び前記放熱部の周囲に配置される第一接合部を具備する第一放熱体と、
前記第一接合部に接合される第二接合部と、前記放熱部を受容して冷媒流路を形成する第二凸部とを具備し、前記第一放熱体と組み合わされる第二放熱体と、を備え、
前記第一凸部の長さは、前記第一の発熱素子の中心位置から前記第二の発熱素子の中心位置に向かうに従って減少し、
前記第二凸部の長さは、前記第一の発熱素子の中心位置から前記第二の発熱素子の中心位置に向かうに従って増加することを特徴とする冷却装置。
On one side, the first heat generating element and the second heat generating element having a smaller amount of heat generation than the first heat generating element are disposed, and on the other side, the heat dissipating part having a plurality of first protrusions and A first heat dissipating body having a first joint disposed around the heat dissipating part;
A second heat radiating body combined with the first heat radiating body, the second heat radiating member including the second heat radiating portion that receives the heat radiating portion and forming a refrigerant flow path; With
The length of the first convex portion decreases from the center position of the first heating element toward the center position of the second heating element,
The length of said 2nd convex part increases as it goes to the center position of said 2nd heat generating element from the center position of said 1st heat generating element.
前記第一凸部と前記第二凸部は対向して配置され、対向する前記第一凸部と前記第二凸部との間隔は一定であることを特徴とする請求項1に記載の冷却装置。   2. The cooling according to claim 1, wherein the first convex portion and the second convex portion are arranged to face each other, and a distance between the opposing first convex portion and the second convex portion is constant. apparatus. 前記第一凸部が、前記冷媒流路の冷媒の流れ方向に沿って延在するフィン形状を有することを特徴とする請求項1に記載の冷却装置。   The cooling device according to claim 1, wherein the first convex portion has a fin shape extending along a flow direction of the refrigerant in the refrigerant flow path. 前記第一凸部がピン型の形状を有し、前記ピン型の第一凸部が前記冷媒流路の冷媒の流れ方向に沿って複数個設けられていることを特徴とする請求項1に記載の冷却装置。   The said 1st convex part has a pin-shaped shape, The said 1st convex part of the said pin type is provided with two or more along the flow direction of the refrigerant | coolant of the said refrigerant | coolant flow path. The cooling device as described. 前記第一凸部の長さが、前記冷媒の流れ方向において一定であることを特徴とする請求項3又は4に記載の冷却装置。   The cooling device according to claim 3 or 4, wherein a length of the first convex portion is constant in a flow direction of the refrigerant. 前記第一凸部の長さが、前記冷媒の流れ方向において、前記第一の発熱素子の中心位置で最も長く、
前記第二凸部の長さが、前記冷媒の流れ方向において、前記第二の発熱素子の中心位置で最も長くなることを特徴とする請求項3又は4に記載の冷却装置。
The length of the first convex portion is the longest at the center position of the first heating element in the flow direction of the refrigerant,
5. The cooling device according to claim 3, wherein a length of the second convex portion is longest at a center position of the second heat generating element in the refrigerant flow direction.
前記第二放熱体において、前記冷却流路と反対側の面上で、
前記第二凸部の長さが最小となる位置に、第二の発熱素子と同じ発熱量となる第四の発熱素子が実装され、前記第二凸部の長さが最大となる位置に第一の発熱素子と同じ発熱量となる第三の発熱素子が実装されることを特徴とする請求項1から5のいずれか一つに記載の冷却装置。
In the second radiator, on the surface opposite to the cooling channel,
A fourth heat generating element having the same heat generation amount as the second heat generating element is mounted at a position where the length of the second convex portion is minimum, and the second convex portion is positioned at a position where the length of the second convex portion is maximum. The cooling device according to any one of claims 1 to 5, wherein a third heat generating element having the same heat generation amount as the one heat generating element is mounted.
JP2010168987A 2010-07-28 2010-07-28 Cooling system Active JP5589647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010168987A JP5589647B2 (en) 2010-07-28 2010-07-28 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010168987A JP5589647B2 (en) 2010-07-28 2010-07-28 Cooling system

Publications (2)

Publication Number Publication Date
JP2012028720A true JP2012028720A (en) 2012-02-09
JP5589647B2 JP5589647B2 (en) 2014-09-17

Family

ID=45781260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010168987A Active JP5589647B2 (en) 2010-07-28 2010-07-28 Cooling system

Country Status (1)

Country Link
JP (1) JP5589647B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735074A (en) * 2012-06-29 2012-10-17 中国华能集团清洁能源技术研究院有限公司 Water-cooling radiator of temperature difference generating module
US9545031B2 (en) 2012-08-09 2017-01-10 Fujitsu Limited Heat receiving apparatus, cooling apparatus, and electronic apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124608A (en) * 2000-10-16 2002-04-26 Toshiba Corp Semiconductor cooling system for rolling stock

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124608A (en) * 2000-10-16 2002-04-26 Toshiba Corp Semiconductor cooling system for rolling stock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735074A (en) * 2012-06-29 2012-10-17 中国华能集团清洁能源技术研究院有限公司 Water-cooling radiator of temperature difference generating module
US9545031B2 (en) 2012-08-09 2017-01-10 Fujitsu Limited Heat receiving apparatus, cooling apparatus, and electronic apparatus

Also Published As

Publication number Publication date
JP5589647B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
US8472193B2 (en) Semiconductor device
US20160290728A1 (en) Flexible cold plate with enhanced flexibility
JP4432892B2 (en) Semiconductor cooling structure
WO2017010536A1 (en) Cooling device
JP2015126050A (en) Radiator for liquid cooling type cooling device and manufacturing method thereof
JP2008171840A (en) Liquid-cooling heat sink and design method thereof
JP6738226B2 (en) Cooling system
JP2010123881A (en) Cold plate
JP6735664B2 (en) Radiator for liquid cooling type cooling device and manufacturing method thereof
JP6462737B2 (en) heatsink
JP2013254787A (en) Heat exchanger and manufacturing method of the same
JP5589647B2 (en) Cooling system
JP6554406B2 (en) Liquid-cooled cooler
CN208173581U (en) Radiator and heat sink assembly
JP5667739B2 (en) Heat sink assembly, semiconductor module, and semiconductor device with cooling device
CN212991086U (en) Heat radiator
JP4228680B2 (en) Cooling member
JP4305253B2 (en) Radiator
JP6003109B2 (en) Power module
JP2010165712A (en) Heat sink for power device
JP2005166789A (en) Heat dissipator
KR20140054734A (en) Heat sink and cooling system with the same
TWI722736B (en) Heat sink
JP5227681B2 (en) Semiconductor device
JP4151265B2 (en) Radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R151 Written notification of patent or utility model registration

Ref document number: 5589647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151