JP4151265B2 - Radiator - Google Patents

Radiator Download PDF

Info

Publication number
JP4151265B2
JP4151265B2 JP2001376799A JP2001376799A JP4151265B2 JP 4151265 B2 JP4151265 B2 JP 4151265B2 JP 2001376799 A JP2001376799 A JP 2001376799A JP 2001376799 A JP2001376799 A JP 2001376799A JP 4151265 B2 JP4151265 B2 JP 4151265B2
Authority
JP
Japan
Prior art keywords
heat
radiator
row
portions
protruding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001376799A
Other languages
Japanese (ja)
Other versions
JP2003176990A (en
Inventor
喜東 安部
浩二 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001376799A priority Critical patent/JP4151265B2/en
Publication of JP2003176990A publication Critical patent/JP2003176990A/en
Application granted granted Critical
Publication of JP4151265B2 publication Critical patent/JP4151265B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パソコン、その他の電子機器におけるMPU等の発熱部品の放熱に使用する放熱器に関する。
【0002】
【従来の技術】
一般に電子機器、たとえば多機能、高性能のノート型パソコンのような小型の電子機器には機能部品としてMPUを用いているが、このMPU等は画像処理等のために使用周波数が高かく、発熱により高い温度となるものであり、たとえば発熱により約90℃以上の温度となって熱破壊することがある。したがって、MPUに冷却装置を付設し、MPUで発生する熱を放熱して機器の安全を図っている。
【0003】
前記冷却装置としては小型なものが要望されており、通常は冷却ファンと放熱器によって構成されたものが多い。また、MPU部よりヒートパイプにより熱を放熱器に伝導するものもある。
【0004】
図6は従来の冷却装置の斜視図で、図7は従来の冷却装置における放熱部の構成図を示し、図示のようにMPU1をアルミニウムなどの熱伝導性のよい金属よりなる偏平な冷却モジュールケーシング2の一部に接合し、冷却モジュールケーシング2内にはファン3を装置するとともに放熱器4を設けている。
【0005】
前記放熱器4は多数枚のフィン5を有しており、このフィン5は冷却モジュールケーシング2と一体に成型、あるいは各フィン5を冷却モジュールケーシング2に接着その他溶接などで取付けて構成され、そして各フィン5にファン3の風を強制的に吹き付けるようにしている。さらに、MPU1よりヒートパイプ6により熱を放熱器4のフィン5に伝導するようにしている。
【0006】
なお、ヒートパイプ6は周知のことであるが、銅などの熱伝導性の良い金属よりなるパイプ内に毛管部を設けるとともに液体を封入して構成され、一端部で受熱して内部の液体を気化してこれを他端部に送り、前記他端部で熱を逃がすことにより気体を液体に戻し、液体が毛管部を介して受熱する一端部に送られるという動作をするもので、この一連の動作で熱交換作用が得られるようになっているものである。
【0007】
この構成において、MPU1の熱は冷却モジュールケーシング2およびヒートパイプ6を介して放熱器4に伝えられ、放熱器4はファン3により強制的に吹きつける風により放熱し、所期のMPU1の温度上昇を抑えるものである。
【0008】
【発明が解決しようとする課題】
ところで、前記のように複数のフィン5をもつ放熱器4は、特に小型化した場合、放熱面積が十分ではないことから放熱効率が悪く、MPU等の発熱素子の温度を大きく下げることができない。また、フィン5の組み立て、製造が容易ではなく、さらにヒートシパイプ6を併用した場合には、ヒートパイプ6との接続が容易でないとともに、前記接続点からフィン5の先端縁各部までの距離が異なり、フイン5から効果的に放熱できないという問題があった。
【0009】
本発明は前記従来の問題に留意し、放熱効率がよく、製作も容易であり、しかも小型であっても十分な放熱ができる放熱器を提供することを目的とする。
【0010】
【課題を解決するための手段】
前記目的を達成するため本発明の放熱器は、第1及び第2の金属板が交互に表裏反転して積層され発熱部からの熱を放熱できるハネカム構造をなす複数の金属板と、金属板に風を吹き付ける冷却ファンとを有し、金属板それぞれ複数列の断線切り込み線が形成され、断線切り込み線間の切り込み間部が表側と裏側に交互に押し出されて表側突出部列と裏側突出部列とが交互に設けられると共に、表側突出部列と裏側突出部列にはそれぞれ梯形状の突出部とフラット部とが交互に列をなして設けられ第1の金属板に設けられた表側突出部列と第2の金属板に設けられた裏側突出部列の各突出部の平坦部同士接触されることによりハネカム構造に構成されたことを特徴とする。
【0011】
本発明によれば、熱交換効率がよく、製作も容易であり、しかも小型であっても十分な放熱ができる放熱器を実現する。
【0012】
以下、本発明の実施の形態について、図面を参照して説明する。
【0013】
【発明の実施の形態】
本発明の請求項1に記載の発明は、第1及び第2の金属板が交互に表裏反転して積層され発熱部からの熱を放熱できるハネカム構造をなす複数の金属板と、金属板に風を吹き付ける冷却ファンとを有し、金属板それぞれ複数列の断線切り込み線が形成され、断線切り込み線間の切り込み間部が表側と裏側に交互に押し出されて表側突出部列と裏側突出部列とが交互に設けられると共に、表側突出部列と裏側突出部列にはそれぞれ梯形状の突出部とフラット部とが交互に列をなして設けられ第1の金属板に設けられた表側突出部列と第2の金属板に設けられた裏側突出部列の各突出部の平坦部同士接触されることによりハネカム構造に構成されたことを特徴とする放熱器であり、金属板は、その全体の表面積が押し出された梯形状の突出部の表裏面および側面により大きくなり、すなわち、空気との接触面積を大きくして熱交換効率を上げることができ、また、金属板は押し出された梯形状の突出部によって立体的になり、冷却ファンの風を通り易くして熱交換効率を上げることができるとともに、機械的な強度を大きくすることができるという作用を有する。また、複数の金属板で構成されていることから、熱交換量が増加するとともに、機械的強度も大きくなり、さらに突出部の平坦部同士を接触させているので金属板間の熱伝導がよく、同じ型のプレスで製造できるので廉価に製造できるという作用を有する。
【0016】
本発明の請求項に記載の発明は、請求項1記載の放熱器において、金属板は、銅板であることを特徴とするものであり、熱伝導性がよいことから熱交換効率がよく、また、プレスで突起部の成型が容易にできるという作用を有する。
【0017】
本発明の請求項に記載の発明は、請求項1または2記載の放熱器において、フラット部に、ヒートパイプを接合したものであり、ヒートパイプを安定に、かつ、熱伝導が確実にできるように接合できるという作用を有する。
【0018】
前提の形態1)
図1は、本発明の前提の形態の放熱器の斜視図、図2は、同放熱器における銅板の加工を説明するための平面図、図3は、ヒートパイプを接続した同放熱器の斜視図である。
【0019】
図1および図2に示すように、この前提の形態の放熱器は、熱伝導性のよい金属基板14からなり、ここでは銅板7を主部材とし、この銅板7に複数列の断続切り込み線8を付しておき、第1列と第2列の断続切り込み線8aと8b間の帯域部9aで、かつ、切り込み間部10a-1、10a-2、10a-3・・・・を表側に押し出して各々間隔をもって複数の突出片11a-1、11a-2、11a-3・・・を突出させている。この各突出片11a-1、11a-2、11a-3・・・は、突出片方向を軸とした断面が半ハネカム状、すなわち梯形状となっている。なお、前記の突出片11a-1、11a-2、11a-3・・・は、プレスによって形成する。前記第2列の断続切り込み線8bと第3列の断続切り込み線8c間の帯域部9bで、かつ、切り込み間部10b-1、10b-2、10b-3・・・を前記とは逆に裏側に押し出して、梯形状の突出片11b-1、11b-2、11b-3・・・を、等間隔で列をなすように銅板7の裏側に形成している。また、第3列の断続切り込み線8cと第4列の断続切り込み線8d間の帯域部9cには、前記第1列の帯域9aとおなじように梯形状の突出片11c-1、11c-2、11c-3・・・を、等間隔で列をなすように銅板7の表側に形成し、第4列の帯域部9dには、前記第2列の帯域9bと同じように梯形状の突出片11d-1、11d-2、11d-3・・・を、等間隔で列をなすように銅板7の裏側に形成している。そして、これらの梯形状の突出片は、第5列、第6列・・・と順次に同様に形成される。
【0020】
このように前提の形態の放熱器は、銅板7のプレス加工により形成された基板14からなり、基板14には複数の梯形状突出片11の列を設け、この複数の梯形状突出片11の列における突出片11は、その側方に隣接するもの同士が交互に基板14の表側と裏側に突出する関係をもつ構成となっている。
【0021】
この構成において、銅板7のプレス加工により形成された基板14は、その全体の表面積が押し出された梯形状の突出片の表裏面および側面により大きくなり、すなわち、空気との接触面積を大きくして熱交換効率を上げることができる。
【0022】
また、前記基板14は、押し出された梯形状の突出片11によって立体的になり、冷却ファンの風を通り易くして熱交換効率を上げることができるとともに、機械的な強度を大きくすることができる。
【0023】
さらに、図3に示すようにMPU12より導出したヒートパイプ13を放熱器に接合するとき、基板14における各梯形状の突出片列のフラットな部分に当接して接合できることから安定な接合が得られる。そして、ヒートパイプ13から基板14の端部までの距離がほぼ等しくなるので、この点からも熱交換効率がよくなる。
【0024】
さらに、銅板7などの金属基板をプレス加工により各突出片を形成できることから、放熱器の製造を容易に、かつ、廉価にすることができる。
【0025】
(実施の形態
図4は、本発明の実施の形態の放熱器の斜視図である。
【0026】
この実施の形態の放熱器は、図4に示すように前提の形態の放熱器を単位放熱器とし、同じ型をした2個の単位放熱器を重ね合わせて構成したものである。なお、重ね合わせる際、上のものに対して下のものは表裏を逆にしている。もちろん、前記の2個の単位放熱器の各基板14には実施の形態1と同様に複数の突出片列を設け、突出片11は断面が梯形状に形成され、複数の突出片列における側方に隣接する突出片11同士は交互に基板14の表側と裏側に突出する関係をもつようにしている。そして、2個の単位放熱器における突出片11の平坦部同士を接触させている。すなわち、重ね合わせる表裏反転した2つの基板14において、一方の基板14の突出片列(表側突出部列)と他方の突出片列(裏側突出部列)の各突出部の平坦部同士が接触されている。
【0027】
この実施の形態の放熱器は、重ねられた2個の単位放熱器における各突出片の平坦部が緊密に接触して熱を伝導することができるものであり、全体として熱交換作用をする。そして前記実施の形態1の放熱器2個を重ねて構成することから、熱交換量が倍増するとともに、機械的強度も大きくなる。さらに複数の突出片11をもつ同じ型をした2個の基板14は、同じ型のプレスで製造できるので、その製造は容易で、かつ、廉価にできる。
【0028】
(実施の形態
図5は、本発明の実施の形態の放熱器の斜視図である。
【0029】
この実施の形態2の放熱器は、図5に示すように、前記実施の形態1の放熱器を単位放熱器とし、これを複数個重ね合わせて構成したものである。
【0030】
もちろん、基板14には複数の突出片列を設け、突出片11は断面が梯形状に形成され、複数の突出片列における側方に隣接する突出片11同士は交互に基板の表側と裏側に突出する関係をもち、かつ、上下の突出片とで六角形状を形成するようにしている。そして、重ね合わせる各基板14は、1層目と3層目のものに対し、2層目と4層目のものは表裏を逆にし、重ねられた各基板14の突出片列における各突出片の平坦部同士を接触させた構成としている。
【0031】
この実施の形態の放熱器は、実施の形態1の単位放熱器を複数個を重ねて構成することから、熱交換量が増加するとともに機械的強度も大きくなり、さらに突出片の平坦部同士を接触させているので、各単位放熱器間の熱伝導がよくなる。さらにヒートパイプ13を層間に挿入することによって、ヒートパイプ13を安定に接合できる。また、複数の突出片11をもつ各基板14を同じ型にすると、同じ型のプレスで製造できることとなり、その製造を容易にする。
【0032】
なお、本発明の放熱器はヒートパイプを用いないものであってもよい。
【0033】
【発明の効果】
以上の説明より明らかなように、本発明によれば、放熱器の基板は、押し出された突出片の表裏面および側面により表面積が大きくなり、すなわち、空気との接触面積を大きくなり、したがって熱交換効率のよい放熱器とすることができる。また、基板は、押し出された突出片によって立体的になり、冷却ファンの風を通り易くして熱交換効率を上げることができるとともに、機械的は強度を大きくすることができる。
【0034】
さらに、各突出部は梯形状に形成され、突出部には平坦部が形成されていることから、複数の基板を重ねたとき、相互の基板における突部の平坦部が密接に接合し、熱伝導が得られる。
【0035】
また、発熱部より導出したヒートパイプを放熱器に接合するとき、基板における各梯形状の突出片列のフラットな部分に当接して接合できることから安定、かつ、熱伝導良好に接合ができる。
【0036】
このように本発明は放熱器の熱交換効率を向上させ、機械的強度を大きくし、しかも放熱器を作り易くするものであり、その効果は大きい。
【図面の簡単な説明】
【図1】 本発明の前提の形態の放熱器の斜視図
【図2】 同放熱器における銅板の加工を説明するための平面図
【図3】 ヒートパイプを接続した同放熱器の斜視図
【図4】 本発明の実施の形態の放熱器の斜視図
【図5】 本発明の実施の形態の放熱器の斜視図
【図6】 従来の冷却装置の斜視図
【図7】 従来の冷却装置における放熱部の構成図
【符号の説明】
7 銅板
8 断続切り込み線
9 帯域部
10 切り込み間部
11 突出片
12 MPU
13 ヒートパイプ
14 基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiator used to radiate heat generating components such as MPUs in personal computers and other electronic devices.
[0002]
[Prior art]
In general, an MPU is used as a functional component in an electronic device, for example, a small electronic device such as a multifunctional and high-performance notebook computer. However, the MPU has a high frequency for image processing and generates heat. For example, heat generation may cause a temperature of about 90 ° C. or higher to cause thermal destruction. Therefore, a cooling device is attached to the MPU, and the heat generated by the MPU is dissipated to make the equipment safe.
[0003]
There is a demand for a small cooling device, and usually there are many cooling devices and radiators. In addition, there is one that conducts heat from the MPU unit to the heat radiator by a heat pipe.
[0004]
FIG. 6 is a perspective view of a conventional cooling device, and FIG. 7 is a configuration diagram of a heat radiating portion in the conventional cooling device. As shown in the drawing, MPU 1 is a flat cooling module casing made of a metal having good thermal conductivity such as aluminum. The cooling module casing 2 is provided with a fan 3 and a radiator 4.
[0005]
The radiator 4 has a large number of fins 5. The fins 5 are formed integrally with the cooling module casing 2, or each fin 5 is attached to the cooling module casing 2 by welding or other welding. The wind of the fan 3 is forcibly blown to each fin 5. Furthermore, heat is conducted from the MPU 1 to the fins 5 of the radiator 4 by the heat pipe 6.
[0006]
As is well known, the heat pipe 6 is configured by providing a capillary portion and enclosing a liquid in a pipe made of a metal having good thermal conductivity such as copper, and receiving heat at one end to receive the internal liquid. The gas is sent to the other end, and the heat is released at the other end to return the gas to the liquid, and the liquid is sent to the one end that receives heat through the capillary part. In this way, a heat exchange effect can be obtained.
[0007]
In this configuration, the heat of the MPU 1 is transmitted to the radiator 4 through the cooling module casing 2 and the heat pipe 6, and the radiator 4 radiates heat by the wind blown by the fan 3, and the expected temperature rise of the MPU 1. It is what suppresses.
[0008]
[Problems to be solved by the invention]
By the way, the radiator 4 having the plurality of fins 5 as described above has a poor heat dissipation efficiency because the heat dissipation area is not sufficient particularly when the size is reduced, and the temperature of the heating element such as the MPU cannot be greatly reduced. In addition, when the fin 5 is not easily assembled and manufactured, and the heat pipe 6 is used in combination, the connection with the heat pipe 6 is not easy, and the distance from the connection point to each end edge of the fin 5 is different. There was a problem that heat could not be effectively radiated from the fin 5.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to provide a radiator that has good heat dissipation efficiency, is easy to manufacture, and can sufficiently radiate heat even if it is small.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a radiator of the present invention includes a plurality of metal plates having a honeycomb structure in which first and second metal plates are alternately stacked and reversed to dissipate heat from a heat generating portion, and the metal plates And a cooling fan that blows air on the metal plate , each of which has a plurality of lines of cut lines formed on the metal plate , and the portions between the cut lines are alternately pushed out to the front side and the back side, and the front side protruding part row and the back side The protruding portion rows are alternately provided, and the front-side protruding portion row and the back-side protruding portion row are provided with the trapezoidal protruding portions and the flat portions alternately in rows, and are provided on the first metal plate. characterized in that the flat portions of the protrusions of the front protrusion columns and backside projecting portion array provided on the second metal plate is configured to honeycomb structure by being contacted.
[0011]
According to the present invention, it is possible to realize a radiator that has high heat exchange efficiency, is easy to manufacture, and can sufficiently radiate heat even if it is small.
[0012]
Embodiments of the present invention will be described below with reference to the drawings.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
According to a first aspect of the present invention, a plurality of metal plates having a honeycomb structure in which the first and second metal plates are alternately reversed and laminated to dissipate heat from the heat generating portion, and the metal plates A cooling fan that blows air, each of which has a plurality of lines of cut lines formed on the metal plate , and the portions between the cut lines are alternately pushed out to the front side and the back side, and the front side protruding part row and the back side protruding The sub-rows are alternately provided, and the front-side protruding portion row and the back-side protruding portion row are alternately provided with trapezoidal protruding portions and flat portions, respectively, and provided on the first metal plate. a radiator, characterized in that the flat portions of the protrusions of the front protrusion columns and backside projecting portion array provided on the second metal plate is configured to honeycomb structure by being contacted, metal plate Is a ladder-shaped protrusion whose entire surface area is extruded The heat exchange efficiency can be increased by increasing the contact area with air, that is, the metal plate becomes three-dimensional due to the extruded ladder-shaped protrusion, and the cooling is increased. It has the effect that the wind of the fan can be easily passed to increase the heat exchange efficiency and the mechanical strength can be increased. Moreover, since it is composed of a plurality of metal plates, the amount of heat exchange is increased, the mechanical strength is also increased, and the flat portions of the protruding portions are in contact with each other, so the heat conduction between the metal plates is good. Since it can be manufactured with the same type of press, it can be manufactured at low cost.
[0016]
The invention according to claim 2 of the present invention, in one SL mounting of the radiator claims, the metal plate is characterized in that a copper plate, good heat exchange efficiency since the thermal conductivity is good Moreover, it has the effect | action that a projection part can be easily shape | molded with a press.
[0017]
Invention of Claim 3 of this invention WHEREIN: The heat radiator of Claim 1 or 2 joins a heat pipe to a flat part , and can heat-heat stably and reliably heat conduction. So that they can be joined together.
[0018]
( Premise form 1)
1 is a perspective view of a radiator according to the premise of the present invention, FIG. 2 is a plan view for explaining processing of a copper plate in the radiator, and FIG. 3 is a perspective view of the radiator to which a heat pipe is connected. FIG.
[0019]
As shown in FIG. 1 and FIG. 2, the heat radiator of this premise form is composed of a metal substrate 14 with good thermal conductivity. Here, a copper plate 7 is a main member, and a plurality of rows of intermittent cut lines 8 are formed on the copper plate 7. Is attached to the band portion 9a between the first and second row intermittent cut lines 8a and 8b, and the cut portions 10a- 1 , 10a- 2 , 10a- 3 ,. A plurality of protruding pieces 11a −1 , 11a −2 , 11a −3 . Each of the protruding pieces 11a- 1 , 11a- 2 , 11a- 3, ... Has a semi-honeycomb shape, that is, a trapezoidal shape, with the protruding piece direction as an axis. The projecting pieces 11a- 1 , 11a- 2 , 11a- 3, ... are formed by pressing. The band portion 9b between the second row of intermittent cut lines 8b and the third row of intermittent cut lines 8c, and the cut portions 10b- 1 , 10b- 2 , 10b- 3, ... Extruding to the back side, ladder-shaped protruding pieces 11b- 1 , 11b- 2 , 11b- 3, ... are formed on the back side of the copper plate 7 so as to form a line at equal intervals. Further, in the band portion 9c between the third row of intermittent cut lines 8c and the fourth row of intermittent cut lines 8d, trapezoidal protruding pieces 11c -1 and 11c -2 similar to the band 9a of the first row are provided. , 11c -3 ... Are formed on the front side of the copper plate 7 so as to form a line at equal intervals, and the band portion 9d in the fourth row has a trapezoidal protrusion in the same manner as the band 9b in the second row. The pieces 11d −1 , 11d −2 , 11d −3 ... Are formed on the back side of the copper plate 7 so as to form rows at equal intervals. These ladder-shaped projecting pieces are formed in the same manner in the fifth row, the sixth row,.
[0020]
Thus, the heatsink of the premise form consists of the board | substrate 14 formed by the press work of the copper plate 7, The board | substrate 14 is provided with the row | line | column of several ladder-shaped protrusion pieces 11, The protruding pieces 11 in the row have a configuration in which those adjacent to the side thereof protrude alternately to the front side and the back side of the substrate 14.
[0021]
In this configuration, the substrate 14 formed by pressing the copper plate 7 has a larger overall surface area due to the front and back surfaces and side surfaces of the extruded protruding piece, that is, the contact area with air is increased. Heat exchange efficiency can be increased.
[0022]
Further, the substrate 14 is three-dimensionalized by the extruded ladder-shaped projecting piece 11 and can easily pass the air of the cooling fan to increase the heat exchange efficiency and increase the mechanical strength. it can.
[0023]
Furthermore, as shown in FIG. 3, when the heat pipe 13 led out from the MPU 12 is joined to the radiator, a stable joining can be obtained because it can be brought into contact with the flat portion of each ladder-shaped protruding piece row on the substrate 14. . And since the distance from the heat pipe 13 to the edge part of the board | substrate 14 becomes substantially equal, also from this point, heat exchange efficiency improves.
[0024]
Furthermore, since each protruding piece can be formed by pressing a metal substrate such as the copper plate 7, the radiator can be easily and inexpensively manufactured.
[0025]
(Embodiment 1 )
FIG. 4 is a perspective view of the radiator according to Embodiment 1 of the present invention.
[0026]
Radiator of the first embodiment, in which the unit radiator radiator assumptions embodiment as shown in FIG. 4, constituted by superposing two unit heat radiator in which the same type. In addition, when superposing, the lower one is reversed with respect to the upper one. Of course, each substrate 14 of the two unit radiators is provided with a plurality of protruding piece rows in the same manner as in the first embodiment, and the protruding piece 11 is formed in a trapezoidal cross section. The protruding pieces 11 adjacent to each other have a relationship protruding alternately on the front side and the back side of the substrate 14. And the flat part of the protrusion piece 11 in two unit radiators is made to contact. That is, in the two substrates 14 that are reversed, the flat portions of the protruding portions of the one substrate 14 (front side protruding portion row) and the protruding portions of the other protruding piece row (back side protruding portion row) are brought into contact with each other. ing.
[0027]
In the radiator of the first embodiment, the flat portions of the protruding pieces in the two unit radiators stacked can be in close contact with each other to conduct heat, and as a whole, they perform a heat exchange action. . Since the two radiators of the first embodiment are configured to overlap, the heat exchange amount is doubled and the mechanical strength is also increased. Further, the two substrates 14 having the same type and having a plurality of protruding pieces 11 can be manufactured by the same type of press, and therefore, the manufacture is easy and inexpensive.
[0028]
(Embodiment 2 )
FIG. 5 is a perspective view of a radiator according to the second embodiment of the present invention.
[0029]
As shown in FIG. 5, the radiator of the second embodiment is configured by superposing the plurality of the radiators of the first embodiment as unit radiators.
[0030]
Of course, the substrate 14 is provided with a plurality of protruding piece rows, the protruding pieces 11 are formed in a trapezoidal cross section, and the protruding pieces 11 adjacent to the side in the plurality of protruding piece rows are alternately arranged on the front side and the back side of the substrate. It has a projecting relationship, and a hexagonal shape is formed by the upper and lower projecting pieces. And each board | substrate 14 to superimpose with respect to the 1st layer and the 3rd layer, the 2nd layer and the 4th layer turn the front and back, and each protrusion piece in the protrusion piece row | line | column of each overlap | superposed board | substrate 14 flat portion of has a configuration in contact with the Judges.
[0031]
Since the heat radiator of the second embodiment is configured by stacking a plurality of unit heat radiators of the first embodiment, the heat exchange amount is increased and the mechanical strength is increased. Since these are in contact with each other, the heat conduction between the unit radiators is improved. Furthermore, the heat pipe 13 can be stably joined by inserting the heat pipe 13 between the layers. Moreover, if each board | substrate 14 with the some protrusion piece 11 is made into the same type | mold, it will be able to manufacture with the press of the same type | mold, and the manufacture becomes easy.
[0032]
In addition, the heat radiator of this invention may not use a heat pipe.
[0033]
【The invention's effect】
As is clear from the above explanation, according to the present invention, the substrate of the radiator has a large surface area due to the front and back surfaces and side surfaces of the extruded protruding piece, that is, the contact area with air is increased, and therefore the heat is increased. It can be set as a radiator with good exchange efficiency. Further, the substrate becomes three-dimensional by the extruded protruding pieces, and can easily pass the cooling fan to increase the heat exchange efficiency, and the mechanical strength can be increased.
[0034]
Further, each protrusion is formed in ladder shape, since it is formed with a flat portion to the projecting portion, when a plurality of stacked substrates, the flat portion is tightly joined butt out portion that put on each other of the substrate And heat conduction is obtained.
[0035]
Further, when the heat pipe led out from the heat generating part is joined to the radiator, the heat pipe can be brought into contact with the flat portion of each ladder-shaped protruding piece row on the substrate, so that the joining can be performed stably and with good heat conduction.
[0036]
Thus, the present invention improves the heat exchange efficiency of the radiator, increases the mechanical strength, and makes it easier to make a radiator, and the effect is great.
[Brief description of the drawings]
FIG. 1 is a perspective view of a radiator according to the premise of the present invention. FIG. 2 is a plan view for explaining processing of a copper plate in the radiator. FIG. 3 is a perspective view of the radiator to which a heat pipe is connected. 4 is a perspective view of a radiator according to Embodiment 1 of the present invention. FIG. 5 is a perspective view of a radiator according to Embodiment 2 of the present invention. FIG. 6 is a perspective view of a conventional cooling device. Configuration diagram of heat radiation part in cooling device [Explanation of symbols]
7 Copper plate 8 Intermittent cut line 9 Band part 10 Cut part 11 Projection piece 12 MPU
13 Heat pipe 14 Substrate

Claims (3)

第1及び第2の金属板が交互に表裏反転して積層され発熱部からの熱を放熱できるハネカム構造をなす複数の金属板と、前記金属板に風を吹き付ける冷却ファンとを有し、前記金属板それぞれ複数列の断線切り込み線が形成され、前記断線切り込み線間の切り込み間部が表側と裏側に交互に押し出されて表側突出部列と裏側突出部列とが交互に設けられると共に、前記表側突出部列と前記裏側突出部列にはそれぞれ梯形状の突出部とフラット部とが交互に列をなして設けられ、前記第1の金属板に設けられた表側突出部列と前記第2の金属板に設けられた裏側突出部列の各突出部の平坦部同士接触されることによりハネカム構造に構成されたことを特徴とする放熱器。 A plurality of metal plates having a honeycomb structure in which the first and second metal plates are alternately reversed and laminated to dissipate heat from the heat generating portion ; and a cooling fan that blows air on the metal plates, A plurality of rows of cut lines are formed on each metal plate , and the portions between the cuts of the cut lines are alternately pushed out to the front side and the back side, and the front side protruding portion rows and the back side protruding portion rows are alternately provided. The front-side protruding portion row and the back-side protruding portion row are provided with alternately arranged ladder-like protruding portions and flat portions, respectively, and the front-side protruding portion row provided on the first metal plate and the A radiator having a honeycomb structure in which the flat portions of the protruding portions of the back side protruding portion row provided on the second metal plate are brought into contact with each other. 前記金属板は、銅板であることを特徴とする請求項1記載の放熱器。The heat radiator according to claim 1, wherein the metal plate is a copper plate. 前記フラット部に、ヒートパイプを接合したことを特徴とする請求項1または2記載の放熱器。The heat radiator according to claim 1, wherein a heat pipe is joined to the flat portion.
JP2001376799A 2001-12-11 2001-12-11 Radiator Expired - Fee Related JP4151265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001376799A JP4151265B2 (en) 2001-12-11 2001-12-11 Radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001376799A JP4151265B2 (en) 2001-12-11 2001-12-11 Radiator

Publications (2)

Publication Number Publication Date
JP2003176990A JP2003176990A (en) 2003-06-27
JP4151265B2 true JP4151265B2 (en) 2008-09-17

Family

ID=19184920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001376799A Expired - Fee Related JP4151265B2 (en) 2001-12-11 2001-12-11 Radiator

Country Status (1)

Country Link
JP (1) JP4151265B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100423891C (en) * 2006-04-03 2008-10-08 麻水福 Assembling equipment of ladder type radiator
TWI576559B (en) 2013-09-06 2017-04-01 台達電子工業股份有限公司 Flat heat sink

Also Published As

Publication number Publication date
JP2003176990A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
CN212991086U (en) Heat radiator
US7600558B2 (en) Cooler
JP5684228B2 (en) heatsink
JP2009026784A (en) Heat dissipating component
JP2001358482A (en) Heat radiative module
JPWO2011087117A1 (en) heatsink
TWI498519B (en) Heat dissipating module
JP2011091088A (en) Heat radiation structure of heating element and semiconductor device using the heat radiation structure
JP5057838B2 (en) Power semiconductor element cooling device
JP4438526B2 (en) Power component cooling system
JP4151265B2 (en) Radiator
JP5589647B2 (en) Cooling system
JP2000332175A (en) Heat sink with fin
CN216650328U (en) Optical module and electronic equipment
JPH10107192A (en) Heat sink
CN210516704U (en) Heat radiation module
JP3146030U (en) Heat dissipation fin structure and heat dissipation module using the heat dissipation fin
TWI620497B (en) Folding-type heat dissipation device and method thereof
JP4626263B2 (en) Thermoelectric conversion device and method for manufacturing the thermoelectric conversion device
TWM578064U (en) Circuit board heat dissipation assembly
KR102427626B1 (en) Heat radiating apparatus and method with pyrolytic graphite sheet
JP3928099B2 (en) Heat sink and manufacturing method thereof
JP2004293830A (en) Heat pipe type radiator unit
JP6044157B2 (en) Cooling parts
JP2012169529A (en) Radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees