JP2013161973A - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP2013161973A
JP2013161973A JP2012023325A JP2012023325A JP2013161973A JP 2013161973 A JP2013161973 A JP 2013161973A JP 2012023325 A JP2012023325 A JP 2012023325A JP 2012023325 A JP2012023325 A JP 2012023325A JP 2013161973 A JP2013161973 A JP 2013161973A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric element
element group
connection path
conversion module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012023325A
Other languages
Japanese (ja)
Inventor
Shinpei So
真平 宗
Yasunari Akiyama
泰有 秋山
Hideto Kubo
秀人 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012023325A priority Critical patent/JP2013161973A/en
Publication of JP2013161973A publication Critical patent/JP2013161973A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module which can be operated even if a part of a connection path is disconnected.SOLUTION: The thermoelectric conversion module is configured by disposing a plurality of thermoelectric elements 30 between first substrate 10 and a second substrate. A first connection path 41 connecting the thermoelectric elements 30 in a first thermoelectric element group 31 has a U-shaped plan view. A second connection path 42 connecting second thermoelectric element group 32 consisting of the thermoelectric elements 30 surrounded by the first thermoelectric element group 31 has a meandering plan view. The first thermoelectric element group 31 and the second thermoelectric element group 32 are connected in parallel.

Description

本発明は、複数の熱電素子を直列接続してなる第1熱電素子群及び第2熱電素子群を備え、第1熱電素子群の接続経路が第2熱電素子群を囲むように構成された熱電変換モジュールに関する。   The present invention includes a first thermoelectric element group and a second thermoelectric element group formed by connecting a plurality of thermoelectric elements in series, and a connection path of the first thermoelectric element group is configured to surround the second thermoelectric element group. Concerning the conversion module.

熱エネルギーと電気エネルギーとの相互変換が可能な熱電素子を用いた熱電変換モジュールは、一般に、対向する一対の基板と、各基板に接合された熱電素子と、からなる(例えば、特許文献1参照)。   A thermoelectric conversion module using a thermoelectric element capable of mutual conversion between thermal energy and electric energy generally includes a pair of opposing substrates and a thermoelectric element bonded to each substrate (see, for example, Patent Document 1). ).

特許文献1に記載の熱電変換モジュールは、対向するように配置された一対の基板と、各基板の対向する面それぞれに形成された電極と、一方の電極に一端が接続されるとともに他方の電極に他端が接続される熱電素子と、から構成されている。そして、両電極によって各熱電素子は直列接続されている。このように構成された熱電変換モジュールは、通電の極性に応じて一方の電極が吸熱を行い、他方の電極が放熱を行う。   The thermoelectric conversion module described in Patent Document 1 includes a pair of substrates disposed so as to face each other, electrodes formed on the opposing surfaces of each substrate, one end connected to one electrode, and the other electrode And a thermoelectric element to which the other end is connected. The thermoelectric elements are connected in series by both electrodes. In the thus configured thermoelectric conversion module, one electrode absorbs heat and the other electrode dissipates heat according to the polarity of energization.

特開2004−22574号公報JP 2004-22574 A

ところで、各熱電素子は直列接続されている時、電極の一部が破損した場合など、各熱電素子を接続する接続経路の一部が断線した場合には、各熱電素子に電流が流れず、熱電変換モジュールが停止してしまう。   By the way, when each thermoelectric element is connected in series, when a part of the connection path connecting each thermoelectric element is broken, such as when a part of the electrode is broken, current does not flow to each thermoelectric element, The thermoelectric conversion module stops.

本発明は、このような従来技術の問題点に鑑みてなされたものであり、その目的は、接続経路の一部が断線した場合にも、作動させることができる熱電変換モジュールを提供することにある。   This invention is made | formed in view of the problem of such a prior art, The objective is to provide the thermoelectric conversion module which can be operated even when a part of connection path | route is disconnected. is there.

上記課題を解決するため、請求項1に記載の発明は、複数の熱電素子を直列接続してなる第1熱電素子群及び第2熱電素子群を備え、前記第1熱電素子群の接続経路が前記第2熱電素子群を囲むように構成された熱電変換モジュールであって、前記第1熱電素子群と前記第2熱電素子群は並列接続され、かつ、前記第2熱電素子群の接続経路は平面視蛇行状をなすことを要旨とする。   In order to solve the above problems, the invention described in claim 1 includes a first thermoelectric element group and a second thermoelectric element group formed by connecting a plurality of thermoelectric elements in series, and a connection path of the first thermoelectric element group is provided. A thermoelectric conversion module configured to surround the second thermoelectric element group, wherein the first thermoelectric element group and the second thermoelectric element group are connected in parallel, and a connection path of the second thermoelectric element group is The gist is to meander in a plan view.

これによれば、第1熱電素子群及び第2熱電素子群のいずれか一方の接続経路が断線したとしても、他方には電流が流れる。したがって、接続経路の一部が断線した場合にも、熱電変換モジュールを作動させることができる。   According to this, even if one of the connection paths of the first thermoelectric element group and the second thermoelectric element group is disconnected, a current flows through the other. Therefore, even when a part of the connection path is disconnected, the thermoelectric conversion module can be operated.

本発明によれば、接続経路の一部が断線した場合にも、熱電変換モジュールを作動させることができる。   According to the present invention, the thermoelectric conversion module can be operated even when a part of the connection path is disconnected.

(a)は実施形態における熱電変換モジュールの分解斜視図、(b)は(a)のA−A線断面図。(A) is a disassembled perspective view of the thermoelectric conversion module in embodiment, (b) is the sectional view on the AA line of (a). (a)は実施形態における第1絶縁基板の平面図、(b)は実施形態における第1接続経路及び第2接続経路を模式的に示す第1絶縁基板の平面図。(A) is a top view of the 1st insulated substrate in an embodiment, (b) is a top view of the 1st insulated substrate which shows typically the 1st connection course and the 2nd connection course in an embodiment. (a)〜(d)は第1接続経路及び第2接続経路の別例を模式的に示す第1絶縁基板の平面図。(A)-(d) is a top view of the 1st insulated substrate which shows typically the other example of a 1st connection path | route and a 2nd connection path | route. 第1接続経路及び第2接続経路の別例を模式的に示す第1絶縁基板の平面図。The top view of the 1st insulated substrate which shows typically another example of a 1st connection path and a 2nd connection path.

以下、本発明を具体化した実施形態を図1及び図2にしたがって説明する。
図1(a)及び(b)に示すように、熱電変換モジュール1の第1基板10は、セラミックス等の絶縁材料製の第1絶縁基板11と、第1絶縁基板11の一面に形成されたアルミニウム製の第1電極層12とからなる。第1電極層12には、熱電素子30の一端が半田よりなる接合層Hを介して接合されている。熱電素子30は、N型熱電素子及びP型熱電素子から構成されている。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
As shown in FIGS. 1A and 1B, the first substrate 10 of the thermoelectric conversion module 1 is formed on a first insulating substrate 11 made of an insulating material such as ceramics and one surface of the first insulating substrate 11. The first electrode layer 12 is made of aluminum. One end of the thermoelectric element 30 is bonded to the first electrode layer 12 via a bonding layer H made of solder. The thermoelectric element 30 is composed of an N-type thermoelectric element and a P-type thermoelectric element.

熱電素子30の他端には、半田よりなる接合層Hを介して第2基板20の第2電極層22が接合されている。これにより、熱電素子30の他端と第2電極層22は、接合層Hを介して電気的に接続されている。第2基板20は、セラミックス等の絶縁材料製の第2絶縁基板21と、この第2絶縁基板21の一面に形成されたアルミニウム製の第2電極層22とからなる。第1基板10と第2基板20は、対向するように配置されており、第1基板10と第2基板20により各熱電素子30が挟持されるように接合されている。また、複数の熱電素子30は、第1電極層12及び第2電極層22によって直列接続されるとともに、N型熱電素子及びP型熱電素子が交互に接続されるように配設されている。   The second electrode layer 22 of the second substrate 20 is bonded to the other end of the thermoelectric element 30 via a bonding layer H made of solder. Thereby, the other end of the thermoelectric element 30 and the second electrode layer 22 are electrically connected via the bonding layer H. The second substrate 20 includes a second insulating substrate 21 made of an insulating material such as ceramics, and an aluminum second electrode layer 22 formed on one surface of the second insulating substrate 21. The first substrate 10 and the second substrate 20 are arranged so as to face each other, and are joined so that each thermoelectric element 30 is sandwiched between the first substrate 10 and the second substrate 20. Further, the plurality of thermoelectric elements 30 are connected in series by the first electrode layer 12 and the second electrode layer 22 and are arranged so that the N-type thermoelectric elements and the P-type thermoelectric elements are alternately connected.

図2(a)に示すように、第1絶縁基板11を平面視したときの四辺のうち、一辺を第1辺11a(図中下辺)、第1辺11aと対向する辺を第2辺11b(図中上辺)、第1辺11a及び第2辺11bと交わる辺のうち一辺を第3辺11c(図中左辺)、第3辺11cと対向する辺を第4辺11d(図中右辺)とする。   As shown in FIG. 2A, of the four sides when the first insulating substrate 11 is viewed in plan, one side is the first side 11a (lower side in the figure), and the side facing the first side 11a is the second side 11b. (Upper side in the figure), among the sides intersecting with the first side 11a and the second side 11b, one side is the third side 11c (left side in the figure), and the side opposite to the third side 11c is the fourth side 11d (right side in the figure) And

第1辺11a及び第2辺11bの延びる方向に沿って、6個の熱電素子30が一定間隔おきに配設されている。また、第3辺11c及び第4辺11dに延びる方向に沿って、6個の熱電素子30が一定間隔おきに配設されている。したがって、第1基板10と第2基板20の間には、合計36個の熱電素子30が配設されている。   Six thermoelectric elements 30 are arranged at regular intervals along the direction in which the first side 11a and the second side 11b extend. In addition, six thermoelectric elements 30 are arranged at regular intervals along the direction extending to the third side 11c and the fourth side 11d. Therefore, a total of 36 thermoelectric elements 30 are disposed between the first substrate 10 and the second substrate 20.

複数の熱電素子30のうち、第2辺11b、第3辺11c及び第4辺11dの延びる方向に沿って配設されている複数の熱電素子30は、一繋ぎで直列接続され、それらの熱電素子30によって第1熱電素子群31が形成されている。本実施形態では、第1熱電素子群31は、16個の熱電素子30によって形成されている。また、複数の熱電素子30のうち、第1熱電素子群31に囲まれる複数の熱電素子30は、一繋ぎで直列接続され、それらの熱電素子30によって第2熱電素子群32が形成されている。本実施形態では、第2熱電素子群32は、20個の熱電素子30によって形成されている。したがって、第1熱電素子群31と第2熱電素子群32とでは、第2熱電素子群32の方が熱電素子30の数が多くなっている。   Among the plurality of thermoelectric elements 30, the plurality of thermoelectric elements 30 disposed along the extending direction of the second side 11b, the third side 11c, and the fourth side 11d are connected in series and connected to each other. The element 30 forms a first thermoelectric element group 31. In the present embodiment, the first thermoelectric element group 31 is formed by 16 thermoelectric elements 30. In addition, among the plurality of thermoelectric elements 30, the plurality of thermoelectric elements 30 surrounded by the first thermoelectric element group 31 are connected in series with each other, and the second thermoelectric element group 32 is formed by these thermoelectric elements 30. . In the present embodiment, the second thermoelectric element group 32 is formed by 20 thermoelectric elements 30. Therefore, in the first thermoelectric element group 31 and the second thermoelectric element group 32, the second thermoelectric element group 32 has a larger number of thermoelectric elements 30.

図2(b)に示すように、第1熱電素子群31の熱電素子30を直列接続する複数の電極層12,22により、一繋ぎの第1接続経路41が形成され、第1接続経路41は、平面視コ字状に延びている。また、第2熱電素子群32の熱電素子30を直列接続する複数の電極層12,22により、一繋ぎの第2接続経路42が形成され、第2接続経路42は、M字状をなすように折り返され平面視蛇行状に延びている。そして、第1接続経路41と第2接続経路42は、電源43に並列接続されている。すなわち、第1熱電素子群31と第2熱電素子群32は並列接続されている。各熱電素子群31,32の複数の熱電素子30のうち、電源43の正極及び負極に接続される熱電素子30は第1辺11aの延びる方向に沿って配設され、同一線上に位置している。   As shown in FIG. 2 (b), a plurality of electrode layers 12, 22 connecting the thermoelectric elements 30 of the first thermoelectric element group 31 in series form a continuous first connection path 41, and the first connection path 41 Extends in a U shape in plan view. A plurality of electrode layers 12 and 22 that connect the thermoelectric elements 30 of the second thermoelectric element group 32 in series form a second connection path 42 that is connected, and the second connection path 42 has an M shape. And is extended in a serpentine shape in plan view. The first connection path 41 and the second connection path 42 are connected in parallel to the power source 43. That is, the first thermoelectric element group 31 and the second thermoelectric element group 32 are connected in parallel. Among the plurality of thermoelectric elements 30 in each thermoelectric element group 31, 32, the thermoelectric elements 30 connected to the positive electrode and the negative electrode of the power source 43 are arranged along the direction in which the first side 11a extends and are located on the same line. Yes.

上記のように構成された熱電変換モジュール1は、通電の極性に応じて第1電極層12と第2電極層22が吸熱及び放熱の反する作用を行う。そして、第1絶縁基板11及び第2絶縁基板21を介して冷却対象や加熱対象(例えば、熱交換媒体)を冷却したり加熱したりすることができ、例えば、車両に搭載される電池の温度調節を行う熱交換媒体を冷却したり加熱したりすることで、電池の温度調節を行うことができる。   In the thermoelectric conversion module 1 configured as described above, the first electrode layer 12 and the second electrode layer 22 perform an action in which heat absorption and heat dissipation are opposite in accordance with the polarity of energization. Then, the object to be cooled or the object to be heated (for example, the heat exchange medium) can be cooled or heated via the first insulating substrate 11 and the second insulating substrate 21, for example, the temperature of the battery mounted on the vehicle The temperature of the battery can be adjusted by cooling or heating the heat exchange medium to be adjusted.

次に、本実施形態における熱電変換モジュール1の作用について説明する。
熱電変換モジュール1に通電を行うと、第1電極層12及び第2電極層22のうち、一方が吸熱を行い、他方が放熱を行う。万一、熱電変換モジュール1の第1接続経路41及び第2接続経路42のうち一方が断線した場合であっても、他方には電流が流れ、熱電変換モジュール1の作動状態が維持される。
Next, the effect | action of the thermoelectric conversion module 1 in this embodiment is demonstrated.
When the thermoelectric conversion module 1 is energized, one of the first electrode layer 12 and the second electrode layer 22 absorbs heat and the other dissipates heat. Even if one of the first connection path 41 and the second connection path 42 of the thermoelectric conversion module 1 is disconnected, a current flows through the other, and the operation state of the thermoelectric conversion module 1 is maintained.

したがって、上記実施形態によれば以下のような効果を得ることができる。
(1)熱電変換モジュール1において、第1接続経路41により直列接続された第1熱電素子群31と第2接続経路42により直列接続された第2熱電素子群32は電源43に並列接続されている。このため、第1接続経路41及び第2接続経路42のうちいずれか一方が断線したとしても、熱電変換モジュール1では、他方には電流を流すことができるため、熱電変換モジュール1を作動させることができる。
Therefore, according to the above embodiment, the following effects can be obtained.
(1) In the thermoelectric conversion module 1, the first thermoelectric element group 31 connected in series by the first connection path 41 and the second thermoelectric element group 32 connected in series by the second connection path 42 are connected in parallel to the power supply 43. Yes. For this reason, even if either one of the first connection path 41 and the second connection path 42 is disconnected, in the thermoelectric conversion module 1, current can flow through the other, so the thermoelectric conversion module 1 is operated. Can do.

(2)各熱電素子群31,32の複数の熱電素子30のうち、電源43に接続される熱電素子30は、第1辺11aに沿って同一線上に位置している。例えば、第1熱電素子群31及び第2熱電素子群32の接続経路が円形状をなし、第1熱電素子群31が第2熱電素子群32を取り囲むように同心円上に配設される場合、第2熱電素子群32の複数の熱電素子30のうち、電源43に接続される熱電素子30は、第1熱電素子群31の複数の熱電素子30のうち、電源43に接続される熱電素子30よりも電源43から離れた位置に配設されてしまう。しかし、本実施形態では、各熱電素子群31,32の複数の熱電素子30のうち、電源43に接続される熱電素子30を第1辺11aに沿って同一線上に配設することで、第2熱電素子群32の複数の熱電素子30のうち、電源43に接続される熱電素子30から電源43までの距離を短くすることができる。このため、配線が長くなることによる抵抗(配線の内部抵抗)の増加を抑制することができる。   (2) Among the plurality of thermoelectric elements 30 of each thermoelectric element group 31, 32, the thermoelectric element 30 connected to the power source 43 is located on the same line along the first side 11a. For example, when the connection path of the first thermoelectric element group 31 and the second thermoelectric element group 32 has a circular shape, and the first thermoelectric element group 31 is disposed on a concentric circle so as to surround the second thermoelectric element group 32, Among the plurality of thermoelectric elements 30 in the second thermoelectric element group 32, the thermoelectric element 30 connected to the power source 43 is the thermoelectric element 30 connected to the power source 43 among the plurality of thermoelectric elements 30 in the first thermoelectric element group 31. Rather than the power supply 43. However, in the present embodiment, among the plurality of thermoelectric elements 30 of the thermoelectric element groups 31 and 32, the thermoelectric elements 30 connected to the power source 43 are arranged on the same line along the first side 11a. Among the plurality of thermoelectric elements 30 in the two thermoelectric element group 32, the distance from the thermoelectric element 30 connected to the power source 43 to the power source 43 can be shortened. For this reason, it is possible to suppress an increase in resistance (internal resistance of the wiring) due to the length of the wiring.

(3)第2熱電素子群32の複数の熱電素子30は、平面視蛇行状に延びる第2接続経路42によって直列接続されている。第2接続経路42を蛇行状に形成することで、接続経路を第1接続経路41のようにコ字状に形成する場合に比べて、第2接続経路42の長さを長くすることができる。この結果として、一定間隔おきに配設された熱電素子30を直列接続する場合、第1熱電素子群31の熱電素子30の数に比べて第2熱電素子群32の熱電素子30の数を多くすることができる。熱電変換モジュール1の作動時には、絶縁基板11,21の反りにより、絶縁基板11,21の外周側に応力が発生しやすいことから、第1接続経路41は、第2接続経路42に比べて断線しやすい。このため、断線しにくい第2接続経路42によって接続される第2熱電素子群32の熱電素子30の数を多くすることで、第1接続経路41の断線時に、電流が流れなくなる熱電素子30の数を減らすことができる。   (3) The plurality of thermoelectric elements 30 in the second thermoelectric element group 32 are connected in series by a second connection path 42 extending in a meandering manner in plan view. By forming the second connection path 42 in a meandering manner, the length of the second connection path 42 can be made longer than when the connection path is formed in a U-shape like the first connection path 41. . As a result, when the thermoelectric elements 30 arranged at regular intervals are connected in series, the number of thermoelectric elements 30 in the second thermoelectric element group 32 is larger than the number of thermoelectric elements 30 in the first thermoelectric element group 31. can do. During the operation of the thermoelectric conversion module 1, stress is likely to be generated on the outer peripheral side of the insulating substrates 11, 21 due to warpage of the insulating substrates 11, 21. Therefore, the first connection path 41 is disconnected compared to the second connection path 42. It's easy to do. For this reason, by increasing the number of thermoelectric elements 30 of the second thermoelectric element group 32 connected by the second connection path 42 that is difficult to be disconnected, the current of the thermoelectric element 30 that does not flow current when the first connection path 41 is disconnected. The number can be reduced.

(4)熱電変換モジュール1は、例えば、車両に搭載され、車両の動力源となる電池の温度調節を行う熱交換媒体を冷却したり加熱したりするために車両に搭載される。そして、第1接続経路41及び第2接続経路42のうち一方が断線しても、他方に電流を流すことができるため、熱電変換モジュール1を作動させ続けることができる。このため、電池の温度調節を維持させ、電池を適正な温度にすることができ、電池からの電力により車両は適切な走行を行うことができる。   (4) The thermoelectric conversion module 1 is mounted on a vehicle, for example, to cool or heat a heat exchange medium that adjusts the temperature of a battery that is a power source of the vehicle. Then, even if one of the first connection path 41 and the second connection path 42 is disconnected, a current can be passed to the other, so that the thermoelectric conversion module 1 can be continuously operated. For this reason, the temperature control of the battery can be maintained, the battery can be brought to an appropriate temperature, and the vehicle can appropriately travel with the electric power from the battery.

なお、実施形態は以下のように変更してもよい。
○ 実施形態において、平面視M字状をなすように第2接続経路42を形成したが、第2接続経路42の蛇行形状は実施形態に限られず、例えば、図3(a)〜(d)に示すように任意の形状に変更してもよい。
In addition, you may change embodiment as follows.
In the embodiment, the second connection path 42 is formed so as to be M-shaped in plan view, but the meandering shape of the second connection path 42 is not limited to the embodiment, and for example, FIGS. 3 (a) to 3 (d). It may be changed to an arbitrary shape as shown in FIG.

○ 実施形態において、第1熱電素子群31の内側に1つの第2熱電素子群32を設けたが、図4に示すように、複数の第2熱電素子群32を設けてもよい。
○ 実施形態において、熱電素子30を36個配設したが、熱電素子30の数は増減させてもよい。
In the embodiment, one second thermoelectric element group 32 is provided inside the first thermoelectric element group 31, but a plurality of second thermoelectric element groups 32 may be provided as shown in FIG.
In the embodiment, 36 thermoelectric elements 30 are arranged, but the number of thermoelectric elements 30 may be increased or decreased.

○ 実施形態において、熱電素子30を一定間隔おきに配設したが、熱電素子30を異なる間隔で配設してもよい。この場合であっても、第2接続経路42が蛇行状をなすように第2熱電素子群32を接続する。   In the embodiment, the thermoelectric elements 30 are arranged at regular intervals, but the thermoelectric elements 30 may be arranged at different intervals. Even in this case, the second thermoelectric element group 32 is connected so that the second connection path 42 has a meandering shape.

○ 実施形態において、各電極層12,22は、アルミニウム製としたが、熱伝導率の高い他の材料製であってもよい。例えば、銅製であってもよい。
○ 実施形態において、第1基板10及び第2基板20は、単一の基板を用いたが、複数に分割されている基板を用いてもよい。この場合であっても、複数の基板に跨って第1接続経路41及び第2接続経路42が延びて、第1熱電素子群31の内側に第2熱電素子群32が配設される。また、各基板毎に第1熱電素子群31及び第2熱電素子群32を設けてもよい。
In the embodiment, the electrode layers 12 and 22 are made of aluminum, but may be made of other materials having high thermal conductivity. For example, it may be made of copper.
In the embodiment, a single substrate is used as the first substrate 10 and the second substrate 20, but a substrate divided into a plurality of substrates may be used. Even in this case, the first connection path 41 and the second connection path 42 extend over the plurality of substrates, and the second thermoelectric element group 32 is disposed inside the first thermoelectric element group 31. Further, the first thermoelectric element group 31 and the second thermoelectric element group 32 may be provided for each substrate.

○ 実施形態において、第1接続経路41は、平面視コ字状をなすようにしたが、平面視蛇行状をなすようにしてもよい。
○ 実施形態において、第1熱電素子群31の熱電素子30の数を第2熱電素子群32の熱電素子30の数よりも多くしてもよい。また、第1熱電素子群31の熱電素子30の数と第2熱電素子群32の熱電素子30の数を同じ数にしてもよい。
In the embodiment, the first connection path 41 has a U shape in plan view, but may have a serpentine shape in plan view.
In the embodiment, the number of thermoelectric elements 30 in the first thermoelectric element group 31 may be larger than the number of thermoelectric elements 30 in the second thermoelectric element group 32. The number of thermoelectric elements 30 in the first thermoelectric element group 31 may be the same as the number of thermoelectric elements 30 in the second thermoelectric element group 32.

○ 実施形態において、第1熱電素子群31の外側に更に熱電素子群を配設してもよい。
次に、上記実施形態及び別例から把握できる技術的思想について、以下に追記する。
In the embodiment, a thermoelectric element group may be further disposed outside the first thermoelectric element group 31.
Next, the technical idea that can be grasped from the above embodiment and other examples will be described below.

(イ)前記第2熱電素子群の前記熱電素子の数は、前記第1熱電素子群の前記熱電素子の数に比べて多いことを特徴とする請求項1に記載の熱電変換モジュール。
(ロ)前記第1熱電素子群の複数の熱電素子30のうち、電源に接続される熱電素子と前記第2熱電素子群の複数の熱電素子30のうち、電源に接続される熱電素子とは、前記熱電素子が接合される基板の一辺に沿って同一線上に配設されることを特徴とする請求項1又は技術的思想(イ)に記載の熱電変換モジュール。
(B) The thermoelectric conversion module according to claim 1, wherein the number of the thermoelectric elements in the second thermoelectric element group is larger than the number of the thermoelectric elements in the first thermoelectric element group.
(B) Among the plurality of thermoelectric elements 30 in the first thermoelectric element group, what is the thermoelectric element connected to the power source out of the plurality of thermoelectric elements 30 in the second thermoelectric element group? 2. The thermoelectric conversion module according to claim 1, wherein the thermoelectric conversion module is disposed on the same line along one side of the substrate to which the thermoelectric element is bonded.

(ハ)電池を動力源とする車両であって、請求項1、技術的思想(イ)及び(ロ)のいずれかに記載の熱電変換モジュールが搭載されるとともに、前記熱電変換モジュールによって前記電池の温度調節が行われることを特徴とする車両。   (C) A vehicle using a battery as a power source, wherein the thermoelectric conversion module according to any one of claims 1 and 1 (1) and (b) is mounted, and the battery is used by the thermoelectric conversion module. The vehicle is characterized in that the temperature is adjusted.

1…熱電変換モジュール、10…第1基板、20…第2基板、30…熱電素子、31…第1熱電素子群、32…第2熱電素子群、41…第1接続経路、42…第2接続経路。   DESCRIPTION OF SYMBOLS 1 ... Thermoelectric conversion module, 10 ... 1st board | substrate, 20 ... 2nd board | substrate, 30 ... Thermoelectric element, 31 ... 1st thermoelectric element group, 32 ... 2nd thermoelectric element group, 41 ... 1st connection path, 42 ... 2nd Connection path.

Claims (1)

複数の熱電素子を直列接続してなる第1熱電素子群及び第2熱電素子群を備え、前記第1熱電素子群の接続経路が前記第2熱電素子群を囲むように構成された熱電変換モジュールであって、
前記第1熱電素子群と前記第2熱電素子群は並列接続され、かつ、前記第2熱電素子群の接続経路は平面視蛇行状をなすことを特徴とする熱電変換モジュール。
A thermoelectric conversion module comprising a first thermoelectric element group and a second thermoelectric element group formed by connecting a plurality of thermoelectric elements in series, and wherein a connection path of the first thermoelectric element group surrounds the second thermoelectric element group Because
The thermoelectric conversion module, wherein the first thermoelectric element group and the second thermoelectric element group are connected in parallel, and a connection path of the second thermoelectric element group has a meandering shape in plan view.
JP2012023325A 2012-02-06 2012-02-06 Thermoelectric conversion module Pending JP2013161973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023325A JP2013161973A (en) 2012-02-06 2012-02-06 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012023325A JP2013161973A (en) 2012-02-06 2012-02-06 Thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2013161973A true JP2013161973A (en) 2013-08-19

Family

ID=49173981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012023325A Pending JP2013161973A (en) 2012-02-06 2012-02-06 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2013161973A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092915A1 (en) * 2014-12-10 2016-06-16 日本サーモスタット株式会社 Thermoelectric conversion module
JP2017045970A (en) * 2015-08-29 2017-03-02 京セラ株式会社 Thermoelectric module
JP2017204505A (en) * 2016-05-09 2017-11-16 昭和電工株式会社 Thermoelectric conversion device
CN109314172A (en) * 2016-03-22 2019-02-05 金瑟姆股份有限公司 Distributed heat electric material with non-homogeneous heat transfer characteristic
KR20190038097A (en) * 2017-09-29 2019-04-08 엘지이노텍 주식회사 Thermoelectric element
WO2019132124A1 (en) * 2017-12-29 2019-07-04 주식회사 엠아이서진 Parallel-type thermoelectric module
KR20190082032A (en) * 2017-12-29 2019-07-09 주식회사 테스비 Parallel thermoelectric module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016092915A1 (en) * 2014-12-10 2016-06-16 日本サーモスタット株式会社 Thermoelectric conversion module
JP2016111309A (en) * 2014-12-10 2016-06-20 日本サーモスタット株式会社 Thermoelectric conversion module
US10003003B2 (en) 2014-12-10 2018-06-19 Nippon Thermostat Co., Ltd. Thermoelectric conversion module
JP2017045970A (en) * 2015-08-29 2017-03-02 京セラ株式会社 Thermoelectric module
CN109314172A (en) * 2016-03-22 2019-02-05 金瑟姆股份有限公司 Distributed heat electric material with non-homogeneous heat transfer characteristic
JP2017204505A (en) * 2016-05-09 2017-11-16 昭和電工株式会社 Thermoelectric conversion device
KR20190038097A (en) * 2017-09-29 2019-04-08 엘지이노텍 주식회사 Thermoelectric element
KR102367202B1 (en) * 2017-09-29 2022-02-24 엘지이노텍 주식회사 Thermoelectric element
WO2019132124A1 (en) * 2017-12-29 2019-07-04 주식회사 엠아이서진 Parallel-type thermoelectric module
KR20190082032A (en) * 2017-12-29 2019-07-09 주식회사 테스비 Parallel thermoelectric module
KR102112816B1 (en) * 2017-12-29 2020-05-19 주식회사 테스비 Parallel thermoelectric module

Similar Documents

Publication Publication Date Title
JP2013161973A (en) Thermoelectric conversion module
US5254178A (en) Thermoelectric transducer apparatus comprising N- and P-type semiconductors and having electronic control capabilities
JP2013229266A (en) Battery pack
JP2006294935A (en) High efficiency and low loss thermoelectric module
CN102738378A (en) Thermoelectric cluster, method for operating same, device for connecting an active element in said cluster to a thermoelectric drive, generator (variants) and heat pump (variants) based thereon
US20150333246A1 (en) Heat conversion device
JP4622577B2 (en) Cascade module for thermoelectric conversion
JP2011035305A (en) Heat exchanger
KR101237235B1 (en) Manufacturing Method of Thermoelectric Film
JP4770973B2 (en) Heat exchanger
JP5742613B2 (en) Flat type thin film thermoelectric module
KR102510123B1 (en) Thermoelectric element
JP5906921B2 (en) Battery module and vehicle
KR20200021842A (en) Thermoelectric module
WO2018158979A1 (en) Thermoelectric conversion device
KR101177266B1 (en) Heat Exchanger using Thermoelectric Modules
JP6278879B2 (en) Thermoelectric module
WO2013002423A1 (en) Thermoelectric conversion modules
KR102109927B1 (en) Thermoelectric module
JP2013161823A (en) Thermoelectric conversion module
JP6871139B2 (en) Battery module
KR20100024028A (en) Thermoelectric module using non-symmetric thermoelectric elements
WO2018158980A1 (en) Thermoelectric conversion device
JP2016042525A (en) Thermoelectric conversion module
JP2018125498A (en) Thermoelectric conversion device