JP2006108480A - Self-power-generation type panel - Google Patents

Self-power-generation type panel Download PDF

Info

Publication number
JP2006108480A
JP2006108480A JP2004294818A JP2004294818A JP2006108480A JP 2006108480 A JP2006108480 A JP 2006108480A JP 2004294818 A JP2004294818 A JP 2004294818A JP 2004294818 A JP2004294818 A JP 2004294818A JP 2006108480 A JP2006108480 A JP 2006108480A
Authority
JP
Japan
Prior art keywords
skin layer
self
temperature side
panel
side skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004294818A
Other languages
Japanese (ja)
Inventor
Takahiro Yabe
高宏 矢部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2004294818A priority Critical patent/JP2006108480A/en
Publication of JP2006108480A publication Critical patent/JP2006108480A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-power-generation type panel which has high strength and is lightweight and capable of supplying usable electric power as a panel usable as a structure member of an artificial satellite or a support member for a solar battery mounted on the artificial satellite. <P>SOLUTION: The self-power-generation type panel is disclosed which has a high-temperature skin layer, a low-temperature skin layer, a foamed material layer sandwiched between the high-temperature skin layer and low-temperature skin layer, and a thermocouple circuit arranged in the foamed material layer. In the self-power-generation type panel, the thermocouple circuit is constituted by alternately and successively joining dissimilar metals constituting a thermocouple, and join points of the dissimilar metals are arranged alternately nearby the high-temperature skin layer and low-temperature skin layer to take an electromotive force out of both terminals of the thermocouple circuit. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自己発電型パネル、特に、人工衛星の構造部材あるいは人工衛星に搭載される太陽電池の支持部材として使用可能な自己発電型パネルに関する。   The present invention relates to a self-generating panel, and more particularly to a self-generating panel that can be used as a structural member of an artificial satellite or a support member of a solar cell mounted on an artificial satellite.

人工衛星の構造部材あるいは人工衛星に搭載される太陽電池の支持部材として使用するパネルとしては、従来、図1に示すような、一般にハニカムパネルと呼ばれる構造体パネルが使用されてきた。このハニカムパネルは、通常アルミニウム製のハニカム構造体11を、主としてCFRPからなる表側スキン12と裏側スキン12’とで挟み、これらのスキンを接着剤13でハニカム構造体11に接着して固定することにより形成される。人工衛星の構造部材は、特に人工衛星の打ち上げ時に、著しい振動、衝撃及び音響などに起因する過酷な条件にさらされることが知られており、このような条件に耐えうる構造強度を有していることが要求されるものである。一方、人工衛星に使用される材料については、例外なく軽量化の要請がある。ハニカムパネルの場合、十分な構造強度を担保するためには部材要素を削減することが困難であり、軽量化を図ることが難しい。
近年、ハニカムパネルに代わる構造体パネルとして、図2に示すような発泡パネルが開発されている。この発泡パネルは、ポリウレタン等からなる発泡材の層21を、主としてCFRPからなる表側スキン層22及び裏側スキン層22’で挟んだ構造を有している。発泡パネルは、上記ハニカムパネルと比較して軽量化を図ることが容易であり、また人工衛星の打ち上げ時にパネルがさらされる過酷な条件に耐えうる構造強度を付与することが可能である。
このように、人工衛星において使用される構造体パネルについては、軽量化と構造強度とのバランスをとることを中心に開発が進められているのが現状であり、構造体パネルに何らかの機能を持たせて付加価値を得ようとする試みは皆無である。
一方、宇宙空間にある人工衛星にとって、宇宙環境から受け取るエネルギーを電気に変換して人工衛星の利用に供する技術は、極めて重要なものである。このような技術として現在実現されているものは、人工衛星に搭載した太陽電池を利用して太陽光を電気に変換する太陽光発電システムのみである。今後は人工衛星に搭載される機器が高性能化するのに伴ってその電力使用量が増大することが予想されるため、この太陽光発電システムを補助することのできる電力供給源に対する要請があるが、人工衛星の軽量化を犠牲にすることなく設けることのできる補助電力源は得られていないのが現状である。
As a panel used as a structural member of an artificial satellite or a support member of a solar cell mounted on an artificial satellite, a structural panel generally called a honeycomb panel as shown in FIG. 1 has been conventionally used. In this honeycomb panel, usually an aluminum honeycomb structure 11 is sandwiched between a front side skin 12 and a back side skin 12 'mainly made of CFRP, and these skins are bonded and fixed to the honeycomb structure 11 with an adhesive 13. It is formed by. The structural members of satellites are known to be exposed to harsh conditions caused by significant vibrations, shocks, and acoustics, particularly when launching satellites, and have structural strength that can withstand such conditions. It is required to be. On the other hand, there is a request for weight reduction of materials used for satellites without exception. In the case of a honeycomb panel, it is difficult to reduce member elements in order to ensure sufficient structural strength, and it is difficult to reduce the weight.
In recent years, a foam panel as shown in FIG. 2 has been developed as a structural body panel to replace the honeycomb panel. This foam panel has a structure in which a foam material layer 21 made of polyurethane or the like is sandwiched between a front skin layer 22 and a back skin layer 22 'mainly made of CFRP. The foam panel can be easily reduced in weight as compared with the honeycomb panel, and can be provided with a structural strength that can withstand severe conditions to which the panel is exposed when the satellite is launched.
As described above, the structure panels used in satellites are currently being developed with a focus on balancing light weight and structural strength, and the structure panels have some function. There is no attempt to gain added value.
On the other hand, for satellites in outer space, technology for converting the energy received from the space environment into electricity and using the satellites is extremely important. What is currently realized as such a technology is only a photovoltaic power generation system that converts sunlight into electricity using a solar cell mounted on an artificial satellite. In the future, it is expected that the amount of power used will increase as equipment mounted on satellites increases in performance, so there is a demand for a power supply source that can assist this solar power generation system. However, at present, an auxiliary power source that can be provided without sacrificing the weight reduction of the artificial satellite has not been obtained.

本発明は、人工衛星の構造部材あるいは人工衛星に搭載される太陽電池の支持部材として使用可能なパネルであって、高い強度を有するとともに軽量であり、さらに利用可能な電力を供給することのできる、自己発電型パネルを提供することを目的とする。   The present invention is a panel that can be used as a structural member of an artificial satellite or a support member of a solar cell mounted on an artificial satellite, has a high strength and is lightweight, and can supply usable electric power. The purpose is to provide a self-generating panel.

本発明者は、人工衛星の構造部材には、人工衛星が宇宙環境から受ける外部熱入力によって、構造部材の高温側と低温側で著しい温度差が発生し、特に、太陽電池パネル面が太陽光線のベクトルと直交する場合には、熱流束が最大となるため、太陽電池パネルの表面と裏面との温度差は最大で100℃にまでなると考えられることに着目し、この温度差を起電力に変換して利用可能な電力を取り出す手段を得ることについて鋭意研究した結果、発泡体パネルを基本構造として、パネルの発泡体部分に熱電対からなる回路を設けることにより、上記課題を解決し得ることを見いだした。
すなわち、本発明は、
高温側スキン層、
低温側スキン層、
前記高温側スキン層と前記低温側スキン層とに挟まれた発泡材層、及び、
前記発泡材層の内部に配置された熱電対回路、
を備える自己発電型パネルであって、
前記熱電対回路は、熱電対を構成する異種金属を交互に連続的に接合してなり、該異種金属の接合点が、前記高温側スキン層近傍及び前記低温側スキン層近傍に交互に配置されており、該熱電対回路の両末端から起電力を取り出すことができるよう構成されていることを特徴とする、自己発電型パネルを提供する。
前記熱電対回路は、前記接合点を頂点とするジグザグ形状を有するのが好ましい。
また、前記異種金属によって構成される熱電対は、クロメル−アルメル、クロメル−コンスタンタン、鉄−コンスタンタン、銅−コンスタンタン、白金・10%ロジウム−白金、白金・13%ロジウム−白金、及び白金・30%ロジウム−白金からなる群から選択することができる。
さらに、前記発泡材層は、ポリスチレン、ポリオレフィン、ポリ塩化ビニル、ポリウレタン及びポリイミドからなる群から選ばれる発泡材からなるものとすることができる。
また、前記自己発電型パネルは、太陽電池の支持部材とすることができる。
The present inventor has found that a significant temperature difference occurs between the high temperature side and the low temperature side of the structural member due to the external heat input received by the artificial satellite from the space environment. Note that the temperature difference between the front surface and the back surface of the solar cell panel is considered to be up to 100 ° C because the heat flux is maximum when the vector is orthogonal to the above vector. As a result of earnest research on obtaining means for taking out usable electric power after conversion, the above-mentioned problem can be solved by providing a circuit composed of a thermocouple in the foam part of the panel with the foam panel as a basic structure. I found.
That is, the present invention
High temperature side skin layer,
Low temperature side skin layer,
A foam layer sandwiched between the high temperature side skin layer and the low temperature side skin layer; and
A thermocouple circuit disposed inside the foam layer;
A self-generating panel comprising:
The thermocouple circuit is formed by alternately joining dissimilar metals constituting the thermocouple, and the dissimilar metal junctions are alternately arranged in the vicinity of the high temperature side skin layer and in the vicinity of the low temperature side skin layer. And a self-generating panel characterized in that an electromotive force can be taken out from both ends of the thermocouple circuit.
It is preferable that the thermocouple circuit has a zigzag shape with the junction point as a vertex.
The thermocouples made of the different metals include chromel-alumel, chromel-constantan, iron-constantan, copper-constantan, platinum.10% rhodium-platinum, platinum.13% rhodium-platinum, and platinum.30%. It can be selected from the group consisting of rhodium-platinum.
Furthermore, the foam material layer may be made of a foam material selected from the group consisting of polystyrene, polyolefin, polyvinyl chloride, polyurethane and polyimide.
The self-power generation panel can be used as a support member for a solar cell.

本発明によれば、人工衛星の打ち上げ時にさらされる過酷な条件に耐えうる高い強度を有するとともに、軽量であって、さらに宇宙環境から受ける外部熱入力を効率よく熱伝変換して、人工衛星及びその搭載機器等が利用することのできる電力を供給し得る、自己発電型パネルが得られる。   According to the present invention, it has a high strength that can withstand the severe conditions exposed during the launch of an artificial satellite, is lightweight, and further efficiently converts heat from external heat input received from the space environment, thereby converting the artificial satellite and A self-generating panel that can supply power that can be used by the mounted device or the like can be obtained.

以下、図面を参照して、本発明の実施の形態について説明する。
図3aは、本発明による自己発電型パネルの一実施例の断面図である。自己発電型パネル31は、外部からの熱入力を受ける高温側スキン層32、外部からの熱入力を直接受けない低温側スキン層32’、高温側スキン層32と低温側スキン層32’とに挟まれた発泡材層33、及び発泡材層33の内部に配置された熱電対回路34を備えている。熱電対回路34は、熱電対を構成する異種金属の線35及び36を交互に連続的に接合してなり、異種金属の線35及び36の接合点37が、高温側スキン層32近傍及び低温側スキン層32’近傍に交互に配置されており、熱電対回路34の両末端から起電力を取り出すことができるよう構成されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 3a is a cross-sectional view of one embodiment of a self-generating panel according to the present invention. The self-generating panel 31 includes a high temperature side skin layer 32 that receives heat input from the outside, a low temperature side skin layer 32 ′ that does not directly receive external heat input, a high temperature side skin layer 32, and a low temperature side skin layer 32 ′. A sandwiched foam material layer 33 and a thermocouple circuit 34 disposed inside the foam material layer 33 are provided. The thermocouple circuit 34 is formed by alternately joining the dissimilar metal wires 35 and 36 constituting the thermocouple, and the junction points 37 of the dissimilar metal wires 35 and 36 are located near the high temperature side skin layer 32 and at a low temperature. Alternatingly arranged in the vicinity of the side skin layer 32 ′, the electromotive force can be taken out from both ends of the thermocouple circuit 34.

高温側スキン層32及び低温側スキン層32’は、従来の発泡パネルにおけるスキン層と同様の材料及び寸法のものであってよい。これらのスキン層32及び32’は、CFRPなどの繊維強化プラスチック材料からなるのが一般的である。
本発明で使用するスキン層の材料としては、本発明のパネルから取り出すことのできる起電力を最大にするという観点から、熱伝導率、熱容量及び熱膨張率が、いずれも小さいものが望ましい。また、同様の理由から、スキン層の厚さは薄いほうが望ましい。
The high temperature side skin layer 32 and the low temperature side skin layer 32 ′ may be of the same material and dimensions as the skin layer in a conventional foam panel. These skin layers 32 and 32 'are generally made of a fiber reinforced plastic material such as CFRP.
As the material for the skin layer used in the present invention, it is desirable that the thermal conductivity, the heat capacity, and the thermal expansion coefficient are all small from the viewpoint of maximizing the electromotive force that can be extracted from the panel of the present invention. For the same reason, it is desirable that the skin layer is thin.

発泡材層33は、従来の発泡パネルにおける発泡材の層と同様の材料及び寸法のものを使用することができるが、高温側スキン層32と低温側スキン層32’との間の温度差を保持することにより、より高い起電力を熱電対回路34から取り出すという観点から、断熱性の高い材料からなるものを使用するのが望ましい。そのような材料の例には、ポリスチレン、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン等のポリオレフィン、ポリ塩化ビニル、ポリウレタン、及びポリメタクリルイミド(PMI)及びポリエーテルイミド(PEI)等のポリイミドなどの発泡材が含まれる。
スキン層の場合と同様の理由から、発泡材層の材料としては、熱伝導率、熱容量及び熱膨張率が、いずれも小さいものが望ましく、また発泡材層の厚さは薄いほうが望ましい。
The foam material layer 33 can be made of the same material and dimensions as the foam material layer in the conventional foam panel, but the temperature difference between the high temperature side skin layer 32 and the low temperature side skin layer 32 'is reduced. From the viewpoint of taking out a higher electromotive force from the thermocouple circuit 34 by holding, it is desirable to use a material made of a material having high heat insulation. Examples of such materials include foams such as polystyrene, low density polyethylene, high density polyethylene, polyolefins such as polypropylene, polyvinyl chloride, polyurethane, and polyimides such as polymethacrylamide (PMI) and polyetherimide (PEI). Material is included.
For the same reason as in the case of the skin layer, it is desirable that the foam material layer has a small thermal conductivity, thermal capacity, and thermal expansion coefficient, and the foam material layer preferably has a small thickness.

発泡材層33の内部に配置された熱電対回路34は、熱電対を構成する異種金属の線35及び36を交互に連続的に接合することにより形成される。異種金属によって構成される熱電対としては、軽量であってかつ高い起電力を取り出すことのできるものを使用するのが望ましい。そのような熱電対の例には、クロメル−アルメル、クロメル−コンスタンタン、鉄−コンスタンタン、銅−コンスタンタン、白金・10%ロジウム−白金、白金・13%ロジウム−白金、及び白金・30%ロジウム−白金が含まれる。
本発明における熱電対回路に使用する熱電対としては、パドル全体の製造コストを上げないような低価格なものが望ましく、また、高い起電力を発生させるためには、金属の素線が均一なほど良好であることから、均質に加工できるものであるのが望ましい。これらの観点から、本発明に使用する熱電対としては、銅−コンスタンタンが特に望ましい。
The thermocouple circuit 34 disposed inside the foam material layer 33 is formed by alternately and continuously joining different metal wires 35 and 36 constituting the thermocouple. It is desirable to use a thermocouple made of a dissimilar metal that is lightweight and can extract a high electromotive force. Examples of such thermocouples include chromel-alumel, chromel-constantan, iron-constantan, copper-constantan, platinum 10% rhodium-platinum, platinum 13% rhodium-platinum, and platinum 30% rhodium-platinum. Is included.
As the thermocouple used in the thermocouple circuit in the present invention, a low-cost one that does not increase the manufacturing cost of the entire paddle is desirable, and in order to generate a high electromotive force, a metal wire is uniform. Since it is so good, it is desirable that it can be processed uniformly. From these viewpoints, copper-constantan is particularly desirable as the thermocouple used in the present invention.

熱電対回路34における異種金属の線35及び36の接合点37は、高温側スキン層32近傍及び低温側スキン層32’近傍に、交互に配置される。接合点37をこのように配置するのは、高温側スキン層32と低温側スキン層32’との間の温度差を利用した熱伝変換を効率的に行なうためである。接合点37をこのように配置する結果、熱電対回路34は、前記接合点を頂点とするジグザグ形状、正弦波形状などを有するものとなる。本発明による自己発電型パネルの一実施例の平面図である図3bに示すように、本発明において、熱電対回路34を、自己発電型パネル31の平面内に互いに平行に設けた複数の熱電対回路を直列に接続したものとして、さらに高い起電力を取り出すことができるようにすることができる。
なお、本発明のパネルから可能な限り高い起電力を取り出すことができるようにするためには、熱電対を配置して熱電対回路34を形成するにあたり、次のような事項に留意する必要があると考えられる。
(1) 異種金属を交互に連続的に接続した熱電対回路を、直列に配線すること。
(2) 熱電対回路の長さは、可能な限り長くすること。
(3) 異種金属の線の接合点は、スキン層の近傍に極力近づけること。
The junction points 37 of the dissimilar metal wires 35 and 36 in the thermocouple circuit 34 are alternately arranged in the vicinity of the high temperature side skin layer 32 and in the vicinity of the low temperature side skin layer 32 '. The reason why the junction point 37 is arranged in this way is to efficiently perform heat transfer conversion using a temperature difference between the high temperature side skin layer 32 and the low temperature side skin layer 32 ′. As a result of arranging the junction points 37 in this way, the thermocouple circuit 34 has a zigzag shape, a sine wave shape, or the like having the junction point as a vertex. As shown in FIG. 3 b, which is a plan view of an embodiment of a self-generating panel according to the present invention, in the present invention, a plurality of thermoelectric circuits 34 are provided in parallel with each other in the plane of the self-generating panel 31. As a pair of circuits connected in series, a higher electromotive force can be taken out.
In order to obtain as high an electromotive force as possible from the panel of the present invention, it is necessary to pay attention to the following matters when the thermocouple is arranged and the thermocouple circuit 34 is formed. It is believed that there is.
(1) Wire thermocouple circuits in which different metals are alternately and continuously connected in series.
(2) The length of the thermocouple circuit should be as long as possible.
(3) The junction of dissimilar metal wires should be as close as possible to the vicinity of the skin layer.

本発明の自己発電型パネルは、次のような方法により製造することができる。
本発明による自己発電型パネル41の製造方法を示す工程図である図4を参照して、まず第1の工程において、熱電対を構成する異種金属の線45及び46を交互に連続的に溶接等により接合点47において接合して、熱電対回路44を形成する。このように形成した熱電対回路44を、次いで発泡材層43のブロックの表面に溶着するか、あるいは内部に挿入して固定する。このように熱電対回路44を備える発泡材層43のブロックを、複数個準備しておく。第2の工程において、このようにして準備した複数個の発泡材層のブロックを、一方のスキン層、例えば低温側スキン層42’の上に配置し、各ブロックの熱電対回路を相互に直列に接続する。最後に、第3の工程において、もう一方のスキン層(この例では高温側スキン層42)を発泡材層のブロックの上に配置し、高温側スキン層42と低温側スキン層42’との間に発泡材層43のブロックを挟むようにして、これらを相互に溶着する。
また、本発明の自己発電型パネルを製造するための他の方法としては、薄いフィルムの上に、異種金属を交互に連続的に極細線の状態に蒸着させ、フィルム上に熱電対回路を形成させ、このようにフィルム上に形成された熱電対回路を、発泡剤の内部に挿入する方法が考えられえる。
The self-generating panel of the present invention can be manufactured by the following method.
Referring to FIG. 4, which is a process diagram showing a method for manufacturing a self-generating panel 41 according to the present invention, first, in a first process, dissimilar metal wires 45 and 46 constituting a thermocouple are alternately and continuously welded. The thermocouple circuit 44 is formed by bonding at the bonding point 47 by, for example. The thermocouple circuit 44 formed in this way is then welded to the surface of the block of the foam material layer 43, or inserted and fixed inside. Thus, a plurality of blocks of the foam material layer 43 including the thermocouple circuit 44 are prepared. In the second step, the plurality of foam layer blocks prepared in this manner are arranged on one skin layer, for example, the low temperature side skin layer 42 ', and the thermocouple circuits of each block are connected in series with each other. Connect to. Finally, in the third step, the other skin layer (in this example, the high temperature side skin layer 42) is disposed on the block of the foam material layer, and the high temperature side skin layer 42 and the low temperature side skin layer 42 ' These are welded to each other so that the block of the foam material layer 43 is sandwiched therebetween.
Another method for producing the self-generating panel of the present invention is to form a thermocouple circuit on the film by depositing different metals on the thin film alternately and continuously in the form of fine wires. Thus, a method of inserting the thermocouple circuit thus formed on the film into the foaming agent can be considered.

このようにして製造した本発明の自己発電型パネルを、例えば太陽電池の支持部材として利用することができる。本発明による自己発電型パネルを利用した太陽電池システムの模式図である図5を参照して、自己発電型パネル51は、その上に太陽電池50が載置される太陽電池用の支持部材である。自己発電型パネル51は、パネルの外部にある負荷59を介して、熱電対回路54の両末端から起電力を取り出すことができるよう構成されている。本発明の自己発電型パネルを太陽電池の支持部材として使用することにより、太陽電池の軽量化及び高強度化を図ることが可能である。   The self-generating panel of the present invention thus manufactured can be used as a support member for solar cells, for example. Referring to FIG. 5, which is a schematic diagram of a solar cell system using a self-power generation panel according to the present invention, a self-power generation panel 51 is a support member for a solar cell on which a solar cell 50 is placed. is there. The self-generating panel 51 is configured such that an electromotive force can be taken out from both ends of the thermocouple circuit 54 via a load 59 outside the panel. By using the self-generating panel of the present invention as a solar cell support member, the solar cell can be reduced in weight and strength.

A.パネルの作製
次の手順により、自己発電型パネルを作製した。
まず、熱電対を構成する直径0.2mmの銅線及びコンスタンタンの線を、交互に連続的に溶接によって接合点において接合して、熱電対回路を形成した。このとき、連続する接合点の間隔は31.6mmとし、高温側または低温側スキン層の近傍で隣り合う接合点の間隔は10mmとした。
次いで、幅10mm、長さ50mm、厚さ30mmの、表面(幅方向及び長さ方向からなる面)を平滑に成形したポリメタクリルイミド(PMI)からなる発泡材層のブロックの表面に、上記のように形成した熱電対回路を溶着して固定した。このような熱電対回路を備える発泡材層のブロックを、50個準備した。
次に、これら50個の発泡材層のブロックを、幅500mm、長さ500mm、厚さ3mmのCFRPからなる低温側スキン層の上に配置し、各ブロックの熱電対回路を相互に直列に接続した。さらに、低温側スキン層に使用したものと同一の材料からなる高温側スキン層を、発泡材層のブロックの上に配置し、高温側スキン層と低温側スキン層との間に発泡材層のブロックを挟むようにして、これらを相互に溶着した。
このようにして作製した自己発電型パネルを、その起電力について性能評価するための性能評価用サンプルパネルとした。なお、このサンプルパネルの寸法決定は、人工衛星打上げ時の振動・衝撃・音響環境に耐えうる強度をパネルが持つように構造解析を実施することにより行なった。
A. Panel preparation A self-power generation panel was prepared by the following procedure.
First, a 0.2 mm diameter copper wire and a constantan wire constituting a thermocouple were joined alternately and continuously at a joining point by welding to form a thermocouple circuit. At this time, the interval between continuous junction points was 31.6 mm, and the interval between adjacent junction points in the vicinity of the high temperature side or low temperature side skin layer was 10 mm.
Next, on the surface of the block of the foam material layer made of polymethacrylimide (PMI) having a smooth surface (surface consisting of the width direction and the length direction) having a width of 10 mm, a length of 50 mm, and a thickness of 30 mm, The thermocouple circuit thus formed was welded and fixed. Fifty blocks of the foam material layer provided with such a thermocouple circuit were prepared.
Next, these 50 foam material layer blocks are placed on a low temperature skin layer made of CFRP having a width of 500 mm, a length of 500 mm, and a thickness of 3 mm, and the thermocouple circuits of each block are connected to each other in series. did. Furthermore, a high temperature side skin layer made of the same material as that used for the low temperature side skin layer is disposed on the block of the foam material layer, and the foam material layer is interposed between the high temperature side skin layer and the low temperature side skin layer. These were welded together so as to sandwich the block.
The self-generating panel produced in this way was used as a performance evaluation sample panel for performance evaluation of its electromotive force. The dimensions of this sample panel were determined by conducting structural analysis so that the panel had sufficient strength to withstand vibration, impact, and acoustic environment when the satellite was launched.

B.パネルの性能評価
上記のようにして準備したサンプルパネルを、極低温、高真空環境を模擬可能な人工衛星の熱真空試験用スペースチャンバに設置した。
チャンバ内で、パネルの高温側スキン層に、太陽光による加熱を模擬するヒータを貼付して、50℃に温度制御した。一方、低温側スキン層は、極低温温度(約−173℃)に晒した。この状態において、熱電対列に発生する起電力を測定したところ、0.49Vの起電力が得られた。このサンプルパネルの重量は1.56kgであったことから、起電力/重量は0.314V/kgと評価され、軽量であってかつ利用可能な電力を供給することのできる自己発電型パネルが得られていることが確認された。
なお、上記サンプルパネルについては、さらに熱疲労試験を実施して、日陰、日照が交互に訪れる衛星軌道上の熱サイクルにも耐え得ることを確認した。
B. Panel Performance Evaluation The sample panel prepared as described above was placed in a space chamber for a thermal vacuum test of an artificial satellite that can simulate a cryogenic and high vacuum environment.
In the chamber, a heater simulating heating by sunlight was attached to the high temperature side skin layer of the panel, and the temperature was controlled to 50 ° C. On the other hand, the low temperature side skin layer was exposed to a cryogenic temperature (about −173 ° C.). In this state, when the electromotive force generated in the thermocouple array was measured, an electromotive force of 0.49 V was obtained. Since the weight of this sample panel was 1.56 kg, the electromotive force / weight was evaluated to be 0.314 V / kg, and a self-generating panel that is light and capable of supplying available power was obtained. It was confirmed that
The sample panel was further subjected to a thermal fatigue test to confirm that it could withstand the thermal cycle on the satellite orbit where the shade and sunshine alternate.

本発明の活用例として、本発明による自己発電型パネルを、人工衛星の構造部材に利用することが考えられる。
また、本発明の他の活用例として、本発明による自己発電型パネルを、人工衛星に搭載される太陽電池の支持部材に利用することが考えられる。
As an application example of the present invention, it is conceivable to use the self-generating panel according to the present invention as a structural member of an artificial satellite.
Further, as another application example of the present invention, it is conceivable to use the self-power generation panel according to the present invention as a support member for a solar cell mounted on an artificial satellite.

従来技術におけるハニカムパネルの断面図(a)及びハニカム部分の平面図(b)である。It is sectional drawing (a) of the honeycomb panel in a prior art, and the top view (b) of a honeycomb part. 従来技術における発泡パネルの断面図である。It is sectional drawing of the foam panel in a prior art. 本発明による自己発電型パネルの一実施例の断面図である。It is sectional drawing of one Example of the self electric power generation type panel by this invention. 本発明による自己発電型パネルの一実施例の平面図である。1 is a plan view of an embodiment of a self-generating panel according to the present invention. 本発明による自己発電型パネルの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the self electric power generation type panel by this invention. 本発明による自己発電型パネルを利用した太陽電池システムの模式図である。1 is a schematic diagram of a solar cell system using a self-generating panel according to the present invention.

符号の説明Explanation of symbols

31 自己発電型パネル
32 高温側スキン層
32’ 低温側スキン層
33 発泡材層
34 熱電対回路
35、36 異種金属の線
37 接合点
31 Self-power generation panel 32 High temperature side skin layer 32 'Low temperature side skin layer 33 Foam material layer 34 Thermocouple circuit 35, 36 Wire 37 of dissimilar metal

Claims (5)

高温側スキン層、
低温側スキン層、
前記高温側スキン層と前記低温側スキン層とに挟まれた発泡材層、及び、
前記発泡材層の内部に配置された熱電対回路、
を備える自己発電型パネルであって、
前記熱電対回路は、熱電対を構成する異種金属を交互に連続的に接合してなり、該異種金属の接合点が、前記高温側スキン層近傍及び前記低温側スキン層近傍に交互に配置されており、該熱電対回路の両末端から起電力を取り出すことができるよう構成されていることを特徴とする、自己発電型パネル。
High temperature side skin layer,
Low temperature side skin layer,
A foam layer sandwiched between the high temperature side skin layer and the low temperature side skin layer; and
A thermocouple circuit disposed inside the foam layer;
A self-generating panel comprising:
The thermocouple circuit is formed by alternately joining dissimilar metals constituting the thermocouple, and the dissimilar metal junctions are alternately arranged in the vicinity of the high temperature side skin layer and in the vicinity of the low temperature side skin layer. A self-generating panel characterized in that an electromotive force can be taken out from both ends of the thermocouple circuit.
前記熱電対回路は、前記接合点を頂点とするジグザグ形状を有する、請求項1に記載の自己発電型パネル。   The self-generating panel according to claim 1, wherein the thermocouple circuit has a zigzag shape with the junction point as a vertex. 前記異種金属によって構成される熱電対は、クロメル−アルメル、クロメル−コンスタンタン、鉄−コンスタンタン、銅−コンスタンタン、白金・10%ロジウム−白金、白金・13%ロジウム−白金、及び白金・30%ロジウム−白金からなる群から選ばれる、請求項1または2に記載の自己発電型パネル。   The thermocouples composed of the different metals are chromel-alumel, chromel-constantan, iron-constantan, copper-constantan, platinum 10% rhodium-platinum, platinum 13% rhodium-platinum, and platinum 30% rhodium- The self-generating panel according to claim 1 or 2, which is selected from the group consisting of platinum. 前記発泡材層は、ポリスチレン、ポリオレフィン、ポリ塩化ビニル、ポリウレタン及びポリイミドからなる群から選ばれる発泡材からなる、請求項1〜3のいずれか1項に記載の自己発電型パネル。   The self-power generation panel according to any one of claims 1 to 3, wherein the foam material layer is made of a foam material selected from the group consisting of polystyrene, polyolefin, polyvinyl chloride, polyurethane, and polyimide. 太陽電池の支持部材である、請求項1〜4のいずれか1項に記載の自己発電型パネル。   The self-generating panel according to any one of claims 1 to 4, which is a support member for a solar cell.
JP2004294818A 2004-10-07 2004-10-07 Self-power-generation type panel Pending JP2006108480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004294818A JP2006108480A (en) 2004-10-07 2004-10-07 Self-power-generation type panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004294818A JP2006108480A (en) 2004-10-07 2004-10-07 Self-power-generation type panel

Publications (1)

Publication Number Publication Date
JP2006108480A true JP2006108480A (en) 2006-04-20

Family

ID=36377827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004294818A Pending JP2006108480A (en) 2004-10-07 2004-10-07 Self-power-generation type panel

Country Status (1)

Country Link
JP (1) JP2006108480A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008073668A2 (en) * 2006-12-08 2008-06-19 General Electric Company Thermal insulation materials and applications of the same
EP1980491A1 (en) * 2007-04-13 2008-10-15 Honeywell International Inc. System and methods for power generation for spacecraft electronics
JP2009208766A (en) * 2008-02-29 2009-09-17 Lockheed Martin Corp Thermocouple array for generating electrical power for lighter-than-air vehicle
JP2010135620A (en) * 2008-12-05 2010-06-17 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module, and generator using the same
JP2011523221A (en) * 2008-06-12 2011-08-04 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Lightweight and rigid self-supporting solar module and manufacturing method thereof
ITVA20100075A1 (en) * 2010-10-12 2012-04-13 Soleana Anstalt STRUCTURE OF CAPTURE AND RELATIVE PHOTO-THERMOELECTRIC GENERATOR FROM SOLAR SOURCE TO THERMOPHYLOP OF METALLIC THERMOCOUPLES
JP2014514904A (en) * 2011-03-29 2014-06-19 ユーリ・フェリコヴィッチ・ヴェルニコフスキー Thermoelectric cluster, method for operating it, thermoelectric drive based thereon, generator (deformation) and device for connecting active elements in said cluster to heat pump (deformation)
CN103915459A (en) * 2014-03-17 2014-07-09 东南大学 Gallium-arsenide-based thermoelectric-photoelectric micro sensor in self-powered radio frequency transceiver module
CN103915458A (en) * 2014-03-17 2014-07-09 东南大学 Silicon-based thermoelectric-photoelectric integrated micro sensor in self-powered radio frequency transceiver module
EP3188265A4 (en) * 2014-08-29 2018-04-11 Mitsubishi Electric Corporation Honeycomb sandwich structure, and production method therefor
JP2018125386A (en) * 2017-01-31 2018-08-09 公立大学法人首都大学東京 Thermoelectric element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128681A (en) * 1986-11-18 1988-06-01 Nippon Inter Electronics Corp Thermoelectric conversion device
JPH0430586A (en) * 1990-05-28 1992-02-03 Matsushita Electric Ind Co Ltd Thermoelectric device
JP2001053322A (en) * 1999-05-31 2001-02-23 Sony Corp Power generator and information processing equipment
JP2002100815A (en) * 2000-09-25 2002-04-05 Chemiprokasei Kaisha Ltd Film-shaped material composed of polyaniline group, thermoelectric material using the same and its manufacturing method
JP2003008087A (en) * 2001-04-18 2003-01-10 Suzuki Sogyo Co Ltd Thermoelectric element module and its manufacturing method
JP2003086850A (en) * 2001-06-25 2003-03-20 Suzuki Sogyo Co Ltd Thermoelectric element module and its manufacturing method
JP2003258323A (en) * 2002-03-07 2003-09-12 Citizen Watch Co Ltd Thermoelectric device
JP2003258322A (en) * 2002-03-01 2003-09-12 Japan Science & Technology Corp Lanthanum sulfide sintered compact for thermoelectric conversion material and method of manufacturing the same
JP2004281666A (en) * 2003-03-14 2004-10-07 Ritsumeikan Thermoelectric converter device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128681A (en) * 1986-11-18 1988-06-01 Nippon Inter Electronics Corp Thermoelectric conversion device
JPH0430586A (en) * 1990-05-28 1992-02-03 Matsushita Electric Ind Co Ltd Thermoelectric device
JP2001053322A (en) * 1999-05-31 2001-02-23 Sony Corp Power generator and information processing equipment
JP2002100815A (en) * 2000-09-25 2002-04-05 Chemiprokasei Kaisha Ltd Film-shaped material composed of polyaniline group, thermoelectric material using the same and its manufacturing method
JP2003008087A (en) * 2001-04-18 2003-01-10 Suzuki Sogyo Co Ltd Thermoelectric element module and its manufacturing method
JP2003086850A (en) * 2001-06-25 2003-03-20 Suzuki Sogyo Co Ltd Thermoelectric element module and its manufacturing method
JP2003258322A (en) * 2002-03-01 2003-09-12 Japan Science & Technology Corp Lanthanum sulfide sintered compact for thermoelectric conversion material and method of manufacturing the same
JP2003258323A (en) * 2002-03-07 2003-09-12 Citizen Watch Co Ltd Thermoelectric device
JP2004281666A (en) * 2003-03-14 2004-10-07 Ritsumeikan Thermoelectric converter device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008073668A2 (en) * 2006-12-08 2008-06-19 General Electric Company Thermal insulation materials and applications of the same
WO2008073668A3 (en) * 2006-12-08 2009-03-05 Gen Electric Thermal insulation materials and applications of the same
EP1980491A1 (en) * 2007-04-13 2008-10-15 Honeywell International Inc. System and methods for power generation for spacecraft electronics
JP2009208766A (en) * 2008-02-29 2009-09-17 Lockheed Martin Corp Thermocouple array for generating electrical power for lighter-than-air vehicle
JP2011523221A (en) * 2008-06-12 2011-08-04 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト Lightweight and rigid self-supporting solar module and manufacturing method thereof
JP2010135620A (en) * 2008-12-05 2010-06-17 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module, and generator using the same
ITVA20100075A1 (en) * 2010-10-12 2012-04-13 Soleana Anstalt STRUCTURE OF CAPTURE AND RELATIVE PHOTO-THERMOELECTRIC GENERATOR FROM SOLAR SOURCE TO THERMOPHYLOP OF METALLIC THERMOCOUPLES
JP2014514904A (en) * 2011-03-29 2014-06-19 ユーリ・フェリコヴィッチ・ヴェルニコフスキー Thermoelectric cluster, method for operating it, thermoelectric drive based thereon, generator (deformation) and device for connecting active elements in said cluster to heat pump (deformation)
CN103915459A (en) * 2014-03-17 2014-07-09 东南大学 Gallium-arsenide-based thermoelectric-photoelectric micro sensor in self-powered radio frequency transceiver module
CN103915458A (en) * 2014-03-17 2014-07-09 东南大学 Silicon-based thermoelectric-photoelectric integrated micro sensor in self-powered radio frequency transceiver module
CN103915458B (en) * 2014-03-17 2016-06-29 东南大学 Silica-based thermoelectricity-photoelectricity integrated microsensor in self-powered radio-frequency receiving-transmitting assembly
CN103915459B (en) * 2014-03-17 2016-06-29 东南大学 GaAs based thermoelectricity-photoelectricity microsensor in self-powered radio-frequency receiving-transmitting assembly
EP3188265A4 (en) * 2014-08-29 2018-04-11 Mitsubishi Electric Corporation Honeycomb sandwich structure, and production method therefor
JP2018125386A (en) * 2017-01-31 2018-08-09 公立大学法人首都大学東京 Thermoelectric element

Similar Documents

Publication Publication Date Title
US8835743B2 (en) Integrated thermoelectric honeycomb core
Sairajan et al. A review of multifunctional structure technology for aerospace applications
JP2006108480A (en) Self-power-generation type panel
US4394529A (en) Solar cell array with lightweight support structure
JP5087757B2 (en) Thermoelectric conversion module and power generator using the same
US5876831A (en) High thermal conductivity plugs for structural panels
Elsarrag et al. Spectrum splitting for efficient utilization of solar radiation: a novel photovoltaic–thermoelectric power generation system
Martins et al. Light and durable: C omposite structures for building‐integrated photovoltaic modules
Wang et al. Thermal analysis of multifunctional structural battery for satellite applications
KR101660570B1 (en) Method for bonding solar cells directly to polyimide
JP5067352B2 (en) Thermoelectric conversion module and power generator using the same
US20200185957A1 (en) Integrated power module devices, systems, and methods
JP2021182851A (en) Stacked solar cell array
JP2003209297A (en) Woven thermoelectric conversion panel
JP2006520083A5 (en)
JP3366293B2 (en) Power generator
JPWO2012070395A1 (en) Thermoelectric conversion module
US6008448A (en) Solar panel array with stepped taper
JP2010135620A (en) Thermoelectric conversion module, and generator using the same
JP2003234491A (en) Heat collecting apparatus built-in type solar battery module and its manufacturing method
Sato et al. Thermal characterization of hybrid photovoltaic module for the conversion of sunlight into microwave in solar power satellite
Rakow et al. Development of high specific power solar arrays with shape memory polymer hinge lines
Kim et al. Analysis of heat dissipation in Li-ion cells & modules for modeling of thermal runaway (presentation)
Mahattanavuttakorn et al. A Comprehensive Review of Thermal Control of Moveable and Non-Moveable Spacecraft in Mars Sample Collecting Mission
White et al. Development of an ultraflex-based thin film solar array for space applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101025