JP2003258323A - Thermoelectric device - Google Patents

Thermoelectric device

Info

Publication number
JP2003258323A
JP2003258323A JP2002061334A JP2002061334A JP2003258323A JP 2003258323 A JP2003258323 A JP 2003258323A JP 2002061334 A JP2002061334 A JP 2002061334A JP 2002061334 A JP2002061334 A JP 2002061334A JP 2003258323 A JP2003258323 A JP 2003258323A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric element
semiconductor
insulator
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002061334A
Other languages
Japanese (ja)
Inventor
Atsushi Murakami
村上  淳
Shigeru Watanabe
渡辺  滋
Yorinobu Yamada
▲頼▼信 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2002061334A priority Critical patent/JP2003258323A/en
Publication of JP2003258323A publication Critical patent/JP2003258323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To overcome a problem that an epoxy resin having big thermal conductivity of 0.3 W/m°C, which is filled into an thermoelectric device comprising a p-type thermoelectric semiconductor and an n-type thermoelectric semiconductor so as to enhance mechanical strength thereof, reduces thermoelectric performance of the thermoelectric device. <P>SOLUTION: An insulator comprising a porous polyurethane resin, styrene resin or the like containing micro bubbles is filled between a p-type thermoelectric semiconductor and an n-type thermoelectric semiconductor that constitute a thermoelectric device, thus a thermoelectric device being provided that maintains mechanical strength equal to that of a thermoelectric device having an epoxy resin filled therein and also has thermoelectric performance equal to that of a thermoelectric device not having an epoxy resin filled therein. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ゼーベック効果を
利用した熱電発電装置に用いる熱電素子、あるいはペル
チェ効果を利用した熱電冷却装置に用いる熱電素子の構
造に関し、特に所定の間隔を持って配置された少なくと
も一対のp型熱電半導体とn型熱電半導体を配線電極に
て電気的に直列に接続し、その各熱電半導体の隙間に絶
縁体が充填された熱電素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a thermoelectric element used in a thermoelectric power generator utilizing the Seebeck effect or a thermoelectric element used in a thermoelectric cooling device utilizing the Peltier effect, and particularly, the elements are arranged with a predetermined interval. Further, the present invention relates to a thermoelectric element in which at least a pair of p-type thermoelectric semiconductor and n-type thermoelectric semiconductor are electrically connected in series by a wiring electrode, and an insulator is filled in a gap between the thermoelectric semiconductors.

【0002】[0002]

【従来の技術】熱電素子は、主に複数のp型熱電半導体
およびn型熱電半導体から構成されており、熱エネルギ
ーを電気エネルギーに、また電気エネルギーを熱エネル
ギーに直接変換する機能を持つ。その熱電素子の両端に
温度差を与えると、ゼーベック効果により電圧を発生す
る。この電圧を電気エネルギーとして取り出すようにし
たものが熱電発電装置である。この様な熱電発電装置に
よって、熱エネルギーから電気エネルギーへの直接エネ
ルギー変換が可能となり、廃熱利用に代表されるような
熱エネルギーの有効な利用方法の一つとして注目を浴び
ている。
2. Description of the Related Art Thermoelectric elements are mainly composed of a plurality of p-type thermoelectric semiconductors and n-type thermoelectric semiconductors, and have a function of directly converting thermal energy into electric energy and electric energy into thermal energy. When a temperature difference is applied across the thermoelectric element, a voltage is generated by the Seebeck effect. A thermoelectric generator is one that takes out this voltage as electric energy. Such a thermoelectric power generator makes it possible to directly convert energy from heat energy into electric energy, and has attracted attention as one of effective ways of utilizing heat energy as represented by waste heat utilization.

【0003】一方、この熱電素子に直流電流を流すと、
ペルチェ効果により一端で吸熱、他端で放熱(発熱)を
発生する現象が生じる。このため、熱電素子の吸熱する
側に適当な熱源を熱伝導良好な状態で接触させれば、そ
の熱源を冷やす熱電冷却装置として利用することができ
る。また、熱電素子に流す電流を調節することにより、
単に冷却するだけでなく、一定の温度に保つような温度
調節装置としても利用することができる。
On the other hand, when a direct current is passed through this thermoelectric element,
Due to the Peltier effect, a phenomenon occurs in which one end absorbs heat and the other end dissipates heat (heat). Therefore, if an appropriate heat source is brought into contact with the heat absorbing side of the thermoelectric element in a good heat conduction state, it can be used as a thermoelectric cooling device for cooling the heat source. Also, by adjusting the current flowing through the thermoelectric element,
It can be used not only as a cooling device but also as a temperature control device for maintaining a constant temperature.

【0004】熱電素子を利用した熱電冷却装置は他の方
式の冷却装置と異なり、コンプレッサーなどの機械部品
を含まず、かつ小型化も可能なことからポータブル冷蔵
庫や、集積回路やレーザー光源等の熱源に対する局所的
な熱電冷却装置または温度調節装置として利用されてい
る。
Unlike other types of cooling devices, thermoelectric cooling devices using thermoelectric elements do not include mechanical parts such as compressors and can be miniaturized, so that they are heat sources such as portable refrigerators, integrated circuits and laser light sources. It is used as a local thermoelectric cooling device or temperature control device.

【0005】特に熱電冷却装置として使用する熱電素子
のことを、その効果の名前からペルチェ素子と呼ぶこと
もあるが、熱電発電装置と熱電冷却装置とで使用する熱
電素子には構造的な違いは無いので、本発明の説明にお
いては、両方併せて「熱電素子」と表記することにす
る。また、このゼーベック効果およびペルチェ効果は熱
電素子そのものの性能(熱電素子の優劣)を表す効果で
あり、これらの効果の性能を以下では「熱電性能」と呼
ぶことにする。
In particular, a thermoelectric element used as a thermoelectric cooling device is sometimes called a Peltier device because of its effect, but there is no structural difference between thermoelectric elements used in a thermoelectric power generator and a thermoelectric cooling device. Therefore, both will be collectively referred to as "thermoelectric elements" in the description of the present invention. The Seebeck effect and the Peltier effect are effects that represent the performance of the thermoelectric element itself (superior or inferior of the thermoelectric element), and the performance of these effects will be referred to as "thermoelectric performance" below.

【0006】一般的な熱電素子は、ほぼ同じ長さで柱状
のp型熱電半導体とn型熱電半導体の両端部で対にして
熱電対を作り、その熱電対を複数個平面的に並べて、p
型熱電半導体とn型熱電半導体が交互に規則的になるよ
うに配置し、その熱電対を電気的に直列に接続する構造
を有する。
In a general thermoelectric element, a column-shaped p-type thermoelectric semiconductor and an n-type thermoelectric semiconductor having substantially the same length are paired at both ends to form a thermocouple.
Type thermoelectric semiconductors and n-type thermoelectric semiconductors are arranged alternately and regularly, and the thermocouples are electrically connected in series.

【0007】しかしながら、この一般的な熱電素子は、
p型熱電半導体とn型熱電半導体との間には何もなく空
気であり、また熱電半導体は脆い材質のために、機械的
強度が低く、外力の影響などで熱電素子が壊れ易いとい
う欠点があった。
However, this general thermoelectric element is
There is nothing between the p-type thermoelectric semiconductor and the n-type thermoelectric semiconductor, and it is air, and since the thermoelectric semiconductor is a brittle material, it has low mechanical strength and the thermoelectric element is easily broken due to the influence of external force. there were.

【0008】この問題を解決するために、例えば特開昭
63−20880号公報(セイコー電子工業株式会社)
に開示された構造がある。
To solve this problem, for example, Japanese Patent Laid-Open No. 63-20880 (Seiko Denshi Kogyo Co., Ltd.)
There is a structure disclosed in.

【0009】上記公報の特徴的な構造としては、p型熱
電半導体とn型熱電半導体との間に、電気的に絶縁性材
料として、例えばエポキシ樹脂が充填されていることで
ある。この構造によって、絶縁体であるエポキシ樹脂の
充填により機械的強度が高くなり、外力の影響などで熱
電素子が壊れ易いという欠点を改善している。
The characteristic structure of the above publication is that an electrically insulating material such as an epoxy resin is filled between the p-type thermoelectric semiconductor and the n-type thermoelectric semiconductor. With this structure, the mechanical strength is increased by filling the epoxy resin which is the insulator, and the disadvantage that the thermoelectric element is easily broken due to the influence of external force is improved.

【0010】[0010]

【発明が解決しようとする課題】ところが、上記公報の
従来技術の熱電素子は、絶縁体としてエポキシ樹脂を充
填しているために、一般的な熱電素子と比べて機械的強
度は高くなるが、その反面、絶縁体であるエポキシ樹脂
を熱が伝わってしまう。そのため、熱電半導体を伝わる
熱がその分少なくなって熱エネルギーのロスが発生し、
熱電性能が低下するという致命的な問題があった。
However, since the thermoelectric element of the prior art of the above publication is filled with epoxy resin as an insulator, its mechanical strength is higher than that of a general thermoelectric element. On the other hand, heat is transmitted through the epoxy resin, which is an insulator. Therefore, the amount of heat transmitted through the thermoelectric semiconductor is reduced by that amount, and heat energy loss occurs,
There was a fatal problem that the thermoelectric performance deteriorated.

【0011】〔発明の目的〕そこで、本発明の目的は上
記の問題を解決し、従来技術の熱電素子と同等の機械的
強度に維持し、かつ一般的な熱電素子と同等の熱電性能
を持った熱電素子を得ることにある。
[0011] Therefore, an object of the present invention is to solve the above problems, to maintain the mechanical strength equivalent to the thermoelectric element of the prior art, and to have the thermoelectric performance equivalent to the general thermoelectric element. To obtain a thermoelectric element.

【0012】[0012]

【課題を解決するための手段】本発明は上記の目的を達
成するために、基本的には下記に記載されたような技術
構成を採用するものである。
In order to achieve the above object, the present invention basically adopts the technical constitution as described below.

【0013】すなはち、本発明において上記課題を解決
するための第1の手段は、所定の間隔を持って配置され
た少なくとも一対のp型熱電半導体とn型熱電半導体を
配線電極にて電気的に直列に接続し、その各熱電半導体
の隙間に絶縁体が充填された熱電素子において、前記絶
縁体が、気泡を含有する絶縁性樹脂である構成としたこ
とである。また、第2の手段は、前記絶縁性樹脂が、ウ
レタン系樹脂とスチレン系樹脂等の高分子材料のいずれ
かとなるように構成したことである。さらに、第3の手
段は、前記熱電素子の側面が前記絶縁性樹脂により覆わ
れた構成としたことである。
That is, the first means for solving the above problems in the present invention is to electrically connect at least a pair of p-type thermoelectric semiconductors and n-type thermoelectric semiconductors, which are arranged at a predetermined interval, with wiring electrodes. In the thermoelectric element in which the gaps between the thermoelectric semiconductors are connected in series and the gap is filled with the insulator, the insulator is an insulating resin containing bubbles. A second means is that the insulating resin is made of a polymer material such as urethane resin and styrene resin. Further, a third means is that the side surface of the thermoelectric element is covered with the insulating resin.

【0014】〔作用〕本発明の熱電素子では、絶縁体を
熱電半導体間に充填しているために従来技術の熱電素子
と同等な機械的強度を維持し、絶縁体に気泡を含有する
ウレタン系樹脂又はスチレン系樹脂等の高分子材料を用
いているために、絶縁体の熱伝導率が空気と同等レベル
に小さくなることに起因して、熱エネルギーのロスが小
さくなるため、一般的な熱電素子と同等の熱電性能を持
つことができる。
[Operation] In the thermoelectric element of the present invention, since the insulator is filled between the thermoelectric semiconductors, it maintains the same mechanical strength as the thermoelectric element of the prior art, and the urethane-based material contains bubbles in the insulator. Due to the use of a polymer material such as resin or styrene resin, the thermal conductivity of the insulator is reduced to the same level as air, and the loss of thermal energy is reduced. It can have the same thermoelectric performance as the device.

【0015】[0015]

【発明の実施の形態】以下、本発明の熱電素子の構成に
おける最適な実施形態について図面を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An optimum embodiment of the structure of a thermoelectric element of the present invention will be described below with reference to the drawings.

【0016】図1〜図4を用いて本発明の実施の形態に
おける熱電素子の構造及び性能について説明する。ただ
し、図3と図4においては熱電素子内部構造の説明を判
りやすくするために熱電素子ブロック10の熱伝導板1
8、絶縁層19そして熱電素子ブロック側面20を省略
した図面とした。
The structure and performance of the thermoelectric element according to the embodiment of the present invention will be described with reference to FIGS. However, in FIG. 3 and FIG. 4, in order to make the explanation of the internal structure of the thermoelectric element easier to understand, the heat conduction plate 1 of the thermoelectric element block 10 is shown.
8, the insulating layer 19 and the thermoelectric element block side surface 20 are omitted.

【0017】図1は本発明の熱電素子の全体的な構成を
示す断面図である。熱電素子は大きく分けて、熱電素子
ブロック10と、この熱電素子ブロック10の上面15
と下面16に配置する熱伝導板18と、熱伝導板18と
熱電素子ブロック10との間に設ける絶縁層19とから
なっている。
FIG. 1 is a sectional view showing the overall structure of the thermoelectric element of the present invention. Thermoelectric elements are roughly classified into a thermoelectric element block 10 and an upper surface 15 of the thermoelectric element block 10.
And a heat conducting plate 18 disposed on the lower surface 16 and an insulating layer 19 provided between the heat conducting plate 18 and the thermoelectric element block 10.

【0018】図2は、熱電半導体と絶縁体の構成を説明
するための要部拡大断面図であり、図3は、熱電半導体
と絶縁の構成を示す平面図である。図3における熱電素
子ブロック10は、柱状の形状をした複数のp型熱電半
導体11とn型熱電半導体12が一対を成して一定の間
隔を置いて規則的に配列し、図2に示す様に、ミクロな
気泡21を含有する多孔質なウレタン系樹脂やスチレン
系樹脂等の絶縁体14でp型熱電半導体11とn型熱電
半導体12の隙間を埋めるように充填する。更に絶縁体
14は熱電素子ブロック10の外周部を覆って熱電素子
ブロック側面20を形成している。
FIG. 2 is an enlarged sectional view of an essential part for explaining the constitution of the thermoelectric semiconductor and the insulator, and FIG. 3 is a plan view showing the constitution of the thermoelectric semiconductor and the insulator. In the thermoelectric element block 10 shown in FIG. 3, a plurality of columnar p-type thermoelectric semiconductors 11 and n-type thermoelectric semiconductors 12 form a pair and are regularly arranged at regular intervals, as shown in FIG. Then, a porous urethane resin or styrene resin containing microscopic bubbles 21 is filled so as to fill the gap between the p-type thermoelectric semiconductor 11 and the n-type thermoelectric semiconductor 12. Further, the insulator 14 covers the outer peripheral portion of the thermoelectric element block 10 to form the thermoelectric element block side surface 20.

【0019】p型熱電半導体11とn型熱電半導体12
の間に、絶縁体14を存在させることにより、従来技術
の特開昭63−20880号公報(セイコー電子工業株
式会社)に開示されているエポキシ樹脂の構造と同様
に、熱電半導体同士の絶縁性を確保しつつ、脆い性質の
熱電半導体を固定して補強し、機械的強度を維持する構
造を持たせることができる。
A p-type thermoelectric semiconductor 11 and an n-type thermoelectric semiconductor 12
The presence of the insulator 14 between the two allows the thermoelectric semiconductors to be insulated from each other similarly to the structure of the epoxy resin disclosed in Japanese Patent Laid-Open No. Sho 63-20880 (Seiko Denshi Kogyo Co., Ltd.). It is possible to provide a structure in which a thermoelectric semiconductor having a brittle property is fixed and reinforced and mechanical strength is maintained while ensuring the above.

【0020】熱電材料としては、p型熱電半導体11に
はBiTeSbから成る合金を用い、またn型熱電半導
体12にはBiTeから成る合金を用いている。しか
し、熱電材料としてはこれに限定するわけではない。
As the thermoelectric material, an alloy made of BiTeSb is used for the p-type thermoelectric semiconductor 11, and an alloy made of BiTe is used for the n-type thermoelectric semiconductor 12. However, the thermoelectric material is not limited to this.

【0021】ここで、熱電素子ブロック10の上面15
から見た斜視図を図4に、下面16方向から見た斜視図
を図5に示す。これら図3と図4の斜視図に示すよう
に、熱電素子ブロック10の上面15と下面16にはそ
れぞれ配線電極13を、一対のp型熱電半導体11とn
型熱電半導体12とを直列に接続するように設ける。そ
の配線電極13は、膜厚が1〜10μm程度の銅(C
u)膜を用いる。この銅膜は真空蒸着や電解めっき等で
熱電素子ブロック10に形成する。
Here, the upper surface 15 of the thermoelectric element block 10
FIG. 4 shows a perspective view seen from above, and FIG. 5 shows a perspective view seen from the direction of the lower surface 16. As shown in the perspective views of FIGS. 3 and 4, wiring electrodes 13 are provided on the upper surface 15 and the lower surface 16 of the thermoelectric element block 10, respectively, and a pair of p-type thermoelectric semiconductors 11 and n.
The mold thermoelectric semiconductor 12 is provided so as to be connected in series. The wiring electrode 13 is made of copper (C
u) Use a membrane. This copper film is formed on the thermoelectric element block 10 by vacuum vapor deposition, electrolytic plating, or the like.

【0022】また、熱電素子の引き出し電極17は、外
部から電流を導入するためのリード線を接続するための
もので、薄い銅板等を導電ペーストまたは半田で熱電素
子ブロック10の両端に位置するp型熱電半導体11と
n型熱電半導体12に接続する。
The lead electrode 17 of the thermoelectric element is for connecting a lead wire for introducing a current from the outside, and a thin copper plate or the like is placed at both ends of the thermoelectric element block 10 with a conductive paste or solder. The thermoelectric semiconductor 11 and the n-type thermoelectric semiconductor 12 are connected.

【0023】熱電素子ブロック10の上面15では配線
電極13は、図4に示す様に隣り合ったp型熱電半導体
11とn型熱電半導体12を交互に接続し、熱電素子ブ
ロック10の下面16では、図5に示す様に斜め方向と
隣り合ったp型熱電半導体11とn型熱電半導体12と
を接続して複数の熱電半導体を電気的に直列化する構成
となっている。
On the upper surface 15 of the thermoelectric element block 10, the wiring electrodes 13 alternately connect adjacent p-type thermoelectric semiconductors 11 and n-type thermoelectric semiconductors 12 as shown in FIG. As shown in FIG. 5, the p-type thermoelectric semiconductor 11 and the n-type thermoelectric semiconductor 12 adjacent to each other in an oblique direction are connected to electrically connect a plurality of thermoelectric semiconductors in series.

【0024】即ち、配線電極13によって、一対のp型
熱電半導体11とn型熱電半導体12は複数の連続した
熱電対となり、熱電素子ブロック10の上面15又は下
面16上に形成された配線電極13は、熱電子ブロック
10のそれぞれの上面15と下面16上で熱電対の冷接
点又は温接点を平面的に形成する構成となっている。
That is, the pair of p-type thermoelectric semiconductors 11 and n-type thermoelectric semiconductors 12 become a plurality of continuous thermocouples by the wiring electrodes 13, and the wiring electrodes 13 formed on the upper surface 15 or the lower surface 16 of the thermoelectric element block 10. Has a configuration in which a cold junction or a hot junction of a thermocouple is planarly formed on each of the upper surface 15 and the lower surface 16 of the thermoelectron block 10.

【0025】更に、図4,5には示さない熱電素子ブロ
ック10の上面15と下面16には絶縁層19を配し、
その絶縁層19上には熱伝導板18を配置する(図1参
照)。本発明において、絶縁層19にはアルミナやボロ
ンナイトライドや窒化アルミ等の微粒子を含む高熱伝導
性の樹脂系接着剤またはセラミックス系接着剤を用いて
いる。これは上面15及び下面16と熱伝導板18の間
の熱抵抗を出来るだけ小さくして、熱伝導性を出来るだ
け良くするためである。
Further, an insulating layer 19 is arranged on the upper surface 15 and the lower surface 16 of the thermoelectric element block 10 not shown in FIGS.
The heat conduction plate 18 is arranged on the insulating layer 19 (see FIG. 1). In the present invention, the insulating layer 19 is made of a highly heat-conductive resin adhesive or ceramic adhesive containing fine particles of alumina, boron nitride, aluminum nitride or the like. This is to reduce the thermal resistance between the upper surface 15 and the lower surface 16 and the heat conducting plate 18 as much as possible to improve the heat conductivity as much as possible.

【0026】その熱伝導板18には、上記の如くアルミ
ナや窒化アルミ等の絶縁性を有し熱伝導性の良いセラミ
ックスを用いることが望ましい。絶縁性を有する熱伝導
板18を使用する理由は絶縁層19が薄い場合には、熱
伝導板18が配線電極13に接触して配線電極13がシ
ョートする可能性があり、そのショート発生を防止する
ためである。しかし絶縁層19が配線電極13のショー
トを防げる程度の厚さを有し、絶縁性を十分に取ること
が出来れば、熱伝導板18として銅(Cu)またはアル
ミニウム(Al)等の金属材料を用いることも出来る。
For the heat conducting plate 18, it is desirable to use ceramics having high heat conductivity having insulating properties such as alumina and aluminum nitride as described above. The reason why the heat conductive plate 18 having an insulating property is used is that when the insulating layer 19 is thin, the heat conductive plate 18 may come into contact with the wiring electrode 13 to short-circuit the wiring electrode 13 and prevent the occurrence of short circuit. This is because However, if the insulating layer 19 has a thickness that can prevent short-circuiting of the wiring electrodes 13 and has sufficient insulating properties, a metal material such as copper (Cu) or aluminum (Al) is used as the heat conducting plate 18. It can also be used.

【0027】また、前記絶縁層19と前記熱伝導板18
の代わりに、熱電素子ブロック10の上面15および下
面16上に窒化アルミやダイアモンドライクカーボン等
の絶縁膜を真空蒸着などで成膜することにより、絶縁層
19と熱伝導板18の両方の役割を持たせる構造でもよ
い。
In addition, the insulating layer 19 and the heat conducting plate 18
In place of the above, by forming an insulating film such as aluminum nitride or diamond-like carbon on the upper surface 15 and the lower surface 16 of the thermoelectric element block 10 by vacuum vapor deposition or the like, the roles of both the insulating layer 19 and the heat conductive plate 18 are fulfilled. It may have a structure.

【0028】ところで、従来技術である特開昭63−2
0880号公報(セイコー電子工業株式会社)に開示さ
れている絶縁体としてのエポキシ樹脂の熱伝導率は、お
よそ0.3W/m℃である。
By the way, the prior art of JP-A-63-2
The thermal conductivity of the epoxy resin as an insulator disclosed in Japanese Patent No. 0880 (Seiko Denshi Kogyo Co., Ltd.) is about 0.3 W / m ° C.

【0029】熱電性能は、熱電材料内部に生じる熱エネ
ルギーと電気エネルギーとのエネルギー変換現象である
ため、一般的に熱電素子の性能においては、熱電素子の
熱電材料のみに熱流が生じることが理想的であり、熱電
材料以外に熱を運ぶ物質が存在すると、その分熱電材料
が運ぶ熱が少なくなるため、エネルギー変換効率が悪く
なってしまう。したがって、エポキシ樹脂は、絶縁性の
機能は十分であるが、熱伝導率が大きいため、熱電素子
で発生した熱がエポキシ樹脂を伝播して、前記熱電性能
が下がってしまう。
Since thermoelectric performance is an energy conversion phenomenon between heat energy and electric energy generated inside the thermoelectric material, it is generally ideal in the performance of the thermoelectric element that heat flow occurs only in the thermoelectric material of the thermoelectric element. Therefore, if there is a substance that carries heat in addition to the thermoelectric material, the amount of heat carried by the thermoelectric material is reduced accordingly, and the energy conversion efficiency becomes poor. Therefore, the epoxy resin has a sufficient insulating function, but has a large thermal conductivity, so that the heat generated in the thermoelectric element propagates through the epoxy resin and the thermoelectric performance is deteriorated.

【0030】本発明の特徴的な構造は、絶縁体14とし
てミクロな気泡21を含有する多孔質なウレタン系樹脂
やスチレン系樹脂等を用いていることである。一般に熱
伝導経路において樹脂のような固体媒体が存在すると、
多くの熱が伝導し、樹脂中にミクロな気泡が含有されて
いるとその気泡に起因して熱伝導が抑制される。このよ
うな熱伝導のメカニズムにより、気泡を含有している樹
脂は熱伝導率を小さくすることができる。
A characteristic structure of the present invention is that a porous urethane resin or styrene resin containing microscopic bubbles 21 is used as the insulator 14. Generally, the presence of a solid medium such as resin in the heat conduction path,
A lot of heat is conducted, and when the resin contains micro bubbles, the heat conduction is suppressed due to the bubbles. Due to such a heat conduction mechanism, the resin containing bubbles can have a low heat conductivity.

【0031】このミクロな気泡21を含有する多孔質な
ウレタン系樹脂やスチレン系樹脂の熱伝導率は0.02
5〜0.03W/mKであり、空気あるいは窒素などの
気体の熱伝導率0.020W/mKに近い値である。そ
のため、本発明の熱電素子は、絶縁体を充填していない
一般的な熱電素子と同等レベルの熱電性能を得ることが
できる。
The thermal conductivity of the porous urethane resin or styrene resin containing the microscopic bubbles 21 is 0.02.
It is 5 to 0.03 W / mK, which is close to the thermal conductivity of 0.020 W / mK of gas such as air or nitrogen. Therefore, the thermoelectric element of the present invention can obtain the same level of thermoelectric performance as a general thermoelectric element that is not filled with an insulator.

【0032】このミクロな気泡21の大きさや気泡21
の量は、樹脂中に含有させる発泡剤の重量により制御す
ることができる。発泡剤としては炭酸ソーダ等の無機系
或いはアゾビスフォルムアルデヒド等の有機系発泡剤を
用いることが可能であるが、無機系は金属イオンを含有
しているため、絶縁性を高め、かつ熱伝導率を小さくす
るためには有機系発泡剤が好ましい。
The size of the micro bubbles 21 and the bubbles 21
The amount of can be controlled by the weight of the foaming agent contained in the resin. As the foaming agent, it is possible to use an inorganic foaming agent such as sodium carbonate or an organic foaming agent such as azobisformaldehyde, but since the inorganic system contains metal ions, the insulating property is improved and the thermal conductivity is improved. An organic foaming agent is preferable in order to reduce the rate.

【0033】前記有機系発泡剤としてアゾビスフォルム
アルデヒドを用い、一対の熱電対の間に目的の樹脂を充
填した後の加熱段階で、基本的には窒素ガスが発生して
気泡21を形成することとなる。1モルのアゾビスフォ
ルムアルデヒドを用いると22.4リットルの窒素ガス
等を発生するので、その含有モル数を制御することによ
り発生ガス量、すなわち気泡21の大きさや量を制御す
ることができる。
Azobisformaldehyde is used as the organic foaming agent. Nitrogen gas is basically generated to form bubbles 21 in the heating step after the target resin is filled between the pair of thermocouples. It will be. When 1 mol of azobisformaldehyde is used, 22.4 liters of nitrogen gas or the like is generated, so that the amount of generated gas, that is, the size and amount of the bubbles 21 can be controlled by controlling the number of moles contained.

【0034】例えば、2nmの直径を有する気泡21を
形成させるためには、1.88×10-34モル即ち2.
18×10-32グラムのアゾビスフォルムアルデヒドを
ポリウレタン系或いはポリスチレン系樹脂等に分散して
熱分解する。この原理を用いて樹脂中に所定量の気泡2
1を形成させることができる。
For example, to form a bubble 21 having a diameter of 2 nm, 1.88 × 10 −34 mol or 2.
18 × 10 −32 g of azobisformaldehyde is dispersed in polyurethane resin or polystyrene resin and thermally decomposed. Using this principle, a certain amount of bubbles 2 in the resin
1 can be formed.

【0035】さらに好ましくは、上記発泡剤と同時に適
当な製泡剤を混入することにより、発生した気体が製泡
剤により樹脂中に均一にかつ安定よく捕獲され、均一で
ミクロな気泡21をつくることができる。
More preferably, by mixing an appropriate foaming agent together with the above foaming agent, the generated gas is trapped in the resin uniformly and stably by the foaming agent to form uniform micro bubbles 21. be able to.

【0036】絶縁体14の気泡21の粗密は機械的強度
と熱電性能に関係し、気泡21が粗な場合には、熱伝導
率が小さくなるため熱電性能が高くなるが、機械的強度
は多少低くなる。また気泡21が密な場合には、熱伝導
率が高くなるため熱電性能は多少低くなるが、機械的強
度は高くなる。つまり絶縁体14の気泡21の粗密をコ
ントロールすれば、様々な使用目的に応じた熱電素子を
得ることができる。
The density of the bubbles 21 of the insulator 14 is related to the mechanical strength and the thermoelectric performance. When the bubbles 21 are rough, the thermal conductivity is low because the thermal conductivity is small, but the mechanical strength is somewhat. Get lower. Further, when the bubbles 21 are dense, the thermal conductivity is high and the thermoelectric performance is somewhat low, but the mechanical strength is high. That is, by controlling the density of the bubbles 21 of the insulator 14, thermoelectric elements can be obtained according to various purposes of use.

【0037】また本発明の熱電素子では、絶縁体14が
熱電半導体11、12の間に充填されており、更に外周
部にも被覆されている。絶縁体14はミクロな気泡21
を含有する樹脂であるが、その気泡21は殆ど孤立した
状態で存在しており、気泡21の連結は認められない。
さらに熱電素子ブロック10の上面15及び下面16が
絶縁層19によって被覆されている。
In the thermoelectric element of the present invention, the insulator 14 is filled between the thermoelectric semiconductors 11 and 12, and the outer peripheral portion is also covered. The insulator 14 is a micro bubble 21.
However, the bubbles 21 exist in an almost isolated state, and no connection of the bubbles 21 is observed.
Furthermore, the upper surface 15 and the lower surface 16 of the thermoelectric element block 10 are covered with an insulating layer 19.

【0038】そのため、熱電素子ブロック10の熱電半
導体11、12及び熱電半導体11,12と配線電極1
3及び引き出し電極17との電気的接点は外部と遮断さ
れ、外部からの水分等の液体の侵入を防ぐことができる
ため、耐腐食性が向上するという効果も持つ。
Therefore, the thermoelectric semiconductors 11 and 12 of the thermoelectric element block 10 and the thermoelectric semiconductors 11 and 12 and the wiring electrode 1
The electrical contact between the electrode 3 and the extraction electrode 17 is blocked from the outside, and liquid such as moisture can be prevented from entering from the outside, so that the corrosion resistance is also improved.

【0039】このように絶縁体14として気泡21を含
有している樹脂を用いることにより、従来技術のエポキ
シ樹脂を用いる熱電素子と同様に機械的強度が高いとい
う利点を生かしつつ、従来技術では致命的であった熱電
性能の低下を防ぎ、一般の熱電素子と同等の熱電性能を
得ることができた。
Thus, by using the resin containing the bubbles 21 as the insulator 14, while utilizing the advantage of high mechanical strength as in the thermoelectric element using the epoxy resin of the prior art, it is fatal in the prior art. It was possible to obtain the thermoelectric performance equivalent to that of a general thermoelectric element by preventing the deterioration of the thermoelectric performance which was a target.

【0040】また、2つの引き出し電極17に流す電流
を徐々に大きくしていくと、熱電素子ブロック10の上
面15と下面16の間の温度差が徐々に大きくなり(ペ
ルチェ効果)、ある電流で最大となる。このときの温度
差を最大温度差という。この熱電素子の熱電性能が高い
か否か、すなわちゼーベック効果およびペルチェ効果の
度合いが優れているか否かは、その最大温度差の大きさ
で判断できる。すなわちその最大温度差が大きいほど熱
電性能が高くなり、優れた熱電素子であることとなる。
この発明を具体的に適用した実施例について以下に具体
的に説明するが、本発明はもとより下記実施例によって
制限を受けるものではない。
When the currents flowing through the two extraction electrodes 17 are gradually increased, the temperature difference between the upper surface 15 and the lower surface 16 of the thermoelectric element block 10 gradually increases (Peltier effect), and a certain current flows. It will be the maximum. The temperature difference at this time is called the maximum temperature difference. Whether or not the thermoelectric performance of this thermoelectric element is high, that is, whether the Seebeck effect and the Peltier effect are excellent, can be judged by the magnitude of the maximum temperature difference. That is, the larger the maximum temperature difference is, the higher the thermoelectric performance is, and the thermoelectric element is excellent.
Examples to which the present invention is specifically applied will be specifically described below, but the present invention is not limited to the following examples.

【0041】(実施例1)前記の実施の形態で説明した
熱電素子の構造(図1参照)において、p型熱電半導体
(BiTeSb)とn型熱電半導体(BiTe)の形状
は、縦100μm、横100μm、高さ1mmの棒状で
あり、p型熱電半導体とn型熱電半導体の間のスペース
幅は50μmであり、そのスペース部に前記実施の形態
で説明した方法で形成された気泡を含有するウレタン系
樹脂(熱伝導率:0.025W/mK)が充填されてい
る。このウレタン樹脂の熱伝導率の測定は、熱伝導率測
定装置(アムコ社製TCA Point2)を用いて、
200×200×20mmのサンプルを作製して行っ
た。熱電素子ブロックの上面と下面の大きさは何れも5
mmの正方形であり、p型熱電半導体とn型熱電半導体
は配線電極である銅(Cu)を用いて直列に配線されて
いる。これらの材料構成からなる熱電素子ブロック10
の下面を25℃に設定して電流を流したところ、熱電素
子ブロック10の上面の温度が低下して、電流が0.0
39Aの時に熱電素子ブロック10の上下面の最大温度
差が74.4℃であった。
Example 1 In the structure of the thermoelectric element described in the above embodiment (see FIG. 1), the p-type thermoelectric semiconductor (BiTeSb) and the n-type thermoelectric semiconductor (BiTe) are 100 μm in length and 100 μm in width. A urethane having a rod shape of 100 μm and a height of 1 mm, a space width between the p-type thermoelectric semiconductor and the n-type thermoelectric semiconductor is 50 μm, and the space portion contains the bubbles formed by the method described in the above embodiment. A system resin (heat conductivity: 0.025 W / mK) is filled. The thermal conductivity of this urethane resin was measured using a thermal conductivity measuring device (TCA Point2 manufactured by Amco).
A sample of 200 × 200 × 20 mm was prepared and performed. The size of both the upper surface and the lower surface of the thermoelectric element block is 5
It is a square of mm, and the p-type thermoelectric semiconductor and the n-type thermoelectric semiconductor are wired in series using copper (Cu) which is a wiring electrode. Thermoelectric element block 10 having these material configurations
When the lower surface of the thermoelectric element block 10 was set to 25 ° C. and an electric current was passed through it, the temperature of the upper surface of the thermoelectric element block 10 decreased and the electric current was 0.0
At 39 A, the maximum temperature difference between the upper and lower surfaces of the thermoelectric element block 10 was 74.4 ° C.

【0042】(実施例2)実施例1と同様な方法で熱電
素子ブロックのp型熱電半導体とn型熱電半導体の間の
スペース部に絶縁体として気泡を含有するスチレン系樹
脂(熱伝導率:0.030W/mK)を充填して、実施
例1と同様な方法で熱電素子ブロックの上下面の最大温
度差を測定したところ電流値が0.039Aの時に7
4.2℃であった。スチレン樹脂の熱伝導率の測定は実
施例1と同様な方法で行った。
(Example 2) In the same manner as in Example 1, a styrene resin containing bubbles as an insulator in the space between the p-type thermoelectric semiconductor and the n-type thermoelectric semiconductor of the thermoelectric element block (heat conductivity: 0.030 W / mK) and the maximum temperature difference between the upper and lower surfaces of the thermoelectric element block was measured by the same method as in Example 1. The result was 7 when the current value was 0.039A.
It was 4.2 ° C. The thermal conductivity of the styrene resin was measured by the same method as in Example 1.

【0043】(比較例1)実施例1と同様な方法で熱電
素子ブロックのp型熱電半導体とn型熱電半導体の間の
スペース部に絶縁体としてエポキシ樹脂(熱伝導率:
0.30W/mK)を充填して、実施例1と同様な方法
で熱電素子ブロックの上下面の最大温度差を測定したと
ころ電流値が0.041Aの時に63.8℃であった。
エポキシ樹脂の熱伝導率の測定は実施例1と同様な方法
で行った。
Comparative Example 1 In the same manner as in Example 1, an epoxy resin (thermal conductivity: thermal conductivity: was used as an insulator in the space between the p-type thermoelectric semiconductor and the n-type thermoelectric semiconductor of the thermoelectric element block.
0.30 W / mK) and the maximum temperature difference between the upper and lower surfaces of the thermoelectric element block was measured by the same method as in Example 1, and it was 63.8 ° C. when the current value was 0.041 A.
The thermal conductivity of the epoxy resin was measured by the same method as in Example 1.

【0044】本発明の実施例1および実施例2では最大
温度差が74℃以上であるのに対して、従来技術の比較
例1では最大温度差は64℃弱であり、明らかに本発明
の熱電素子の熱電性能が高いことが確認された。
In Example 1 and Example 2 of the present invention, the maximum temperature difference is 74 ° C. or more, whereas in Comparative Example 1 of the prior art, the maximum temperature difference is slightly less than 64 ° C. It was confirmed that the thermoelectric performance of the thermoelectric element was high.

【0045】[0045]

【発明の効果】本発明によれば、熱電素子のp型熱電半
導体とn型熱電半導体の間にミクロな気泡を含有する多
孔質のウレタン系樹脂或いはスチレン系樹脂等から成る
絶縁体を充填することによって、従来技術の熱電素子と
同等の機械的強度を維持しつつ、一般的な熱電素子と同
等の熱電性能を持った熱電素子を得ることができた。
According to the present invention, between the p-type thermoelectric semiconductor and the n-type thermoelectric semiconductor of the thermoelectric element, an insulator made of a porous urethane resin or styrene resin containing micro bubbles is filled. As a result, it was possible to obtain a thermoelectric element having thermoelectric performance equivalent to that of a general thermoelectric element while maintaining mechanical strength equivalent to that of the thermoelectric element of the related art.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態における熱電素子の構成を
示す断面図である。
FIG. 1 is a sectional view showing a configuration of a thermoelectric element according to an embodiment of the present invention.

【図2】本発明の実施の形態における絶縁体近傍の要部
拡大断面図である。
FIG. 2 is an enlarged cross-sectional view of a main part near an insulator according to the embodiment of the present invention.

【図3】本発明の実施の形態における熱電素子の構成を
示す平面図である。
FIG. 3 is a plan view showing a configuration of a thermoelectric element according to an embodiment of the present invention.

【図4】本発明の実施の形態における熱電素子ブロック
を一方の方向から見た場合の構成を説明するための斜視
図である。
FIG. 4 is a perspective view for explaining the configuration of the thermoelectric element block according to the embodiment of the present invention when viewed from one direction.

【図5】本発明の実施の形態における熱電素子ブロック
を他方の方向から見た場合の構成を説明するための斜視
図である。
FIG. 5 is a perspective view for explaining the configuration of the thermoelectric element block according to the embodiment of the present invention when viewed from the other direction.

【符号の説明】[Explanation of symbols]

10 熱電素子ブロック 11 p型熱電半導体 12 n型熱電半導体 13 配線電極 14 絶縁体 15 上面 16 下面 17 引き出し電極 18 熱伝導板 19 絶縁層 20 熱電素子ブロック側面 21 気泡 10 Thermoelectric element block 11 p-type thermoelectric semiconductor 12 n-type thermoelectric semiconductor 13 wiring electrodes 14 Insulator 15 Upper surface 16 Lower surface 17 Extraction electrode 18 heat conduction plate 19 Insulation layer 20 Thermoelectric element block side 21 bubbles

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定の間隔を持って配置された少なくと
も一対のp型熱電半導体とn型熱電半導体を配線電極に
て電気的に直列に接続し、その各熱電半導体の隙間に絶
縁体が充填された熱電素子において、前記絶縁体が、気
泡を含有する絶縁性樹脂であることを特徴とする熱電素
子。
1. At least a pair of a p-type thermoelectric semiconductor and an n-type thermoelectric semiconductor, which are arranged at a predetermined interval, are electrically connected in series by a wiring electrode, and the gap between the thermoelectric semiconductors is filled with an insulator. In the thermoelectric element, the thermoelectric element is characterized in that the insulator is an insulating resin containing bubbles.
【請求項2】 前記絶縁樹脂が、ウレタン系樹脂とスチ
レン系樹脂等の高分子材料のいずれかで構成されている
ことを特徴とする請求項1記載の熱電素子。
2. The thermoelectric element according to claim 1, wherein the insulating resin is made of a polymer material such as urethane resin and styrene resin.
【請求項3】 前記熱電素子の側面が前記絶縁性樹脂に
より覆われた構成とすることを特徴とする請求項1また
は2に記載の熱電素子。
3. The thermoelectric element according to claim 1, wherein a side surface of the thermoelectric element is covered with the insulating resin.
JP2002061334A 2002-03-07 2002-03-07 Thermoelectric device Pending JP2003258323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002061334A JP2003258323A (en) 2002-03-07 2002-03-07 Thermoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002061334A JP2003258323A (en) 2002-03-07 2002-03-07 Thermoelectric device

Publications (1)

Publication Number Publication Date
JP2003258323A true JP2003258323A (en) 2003-09-12

Family

ID=28670287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002061334A Pending JP2003258323A (en) 2002-03-07 2002-03-07 Thermoelectric device

Country Status (1)

Country Link
JP (1) JP2003258323A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108480A (en) * 2004-10-07 2006-04-20 Japan Aerospace Exploration Agency Self-power-generation type panel
JP2007273572A (en) * 2006-03-30 2007-10-18 Furukawa Electric Co Ltd:The Electronic cryogenic module and manufacturing method therefor
JP2008186977A (en) * 2007-01-30 2008-08-14 Furukawa Electric Co Ltd:The Thermo-module and its manufacturing method
JP2010532577A (en) * 2007-06-29 2010-10-07 レアード テクノロジーズ インコーポレイテッド Flexible assembly with integrated thermoelectric module suitable for power extraction or heat dissipation from fluid pipes
WO2011016876A1 (en) * 2009-08-06 2011-02-10 Laird Technologies, Inc. Thermoelectric modules, thermoelectric assemblies, and related methods
JP2012080761A (en) * 2010-09-10 2012-04-19 Toshiba Corp Temperature difference power generation apparatus and thermoelectric conversion element frame
JP2013040939A (en) * 2011-08-16 2013-02-28 Leica Microsystems Cms Gmbh Detection device
JP2013110157A (en) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd Thermoelectric conversion module
US8649179B2 (en) 2011-02-05 2014-02-11 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
DE102014203052A1 (en) 2013-02-21 2014-08-21 Ngk Insulators, Ltd. Thermoelectric conversion elements
JP2014179372A (en) * 2013-03-13 2014-09-25 Kitagawa Kogyo Co Ltd Thermoelectric conversion module
US9142749B2 (en) 2011-02-22 2015-09-22 Fujitsu Limited Thermoelectric conversion module
WO2016199484A1 (en) * 2015-06-09 2016-12-15 株式会社村田製作所 Thermoelectric conversion element, thermoelectric conversion module, and electrical device
WO2017074003A1 (en) 2015-10-27 2017-05-04 한국과학기술원 Flexible thermoelectric device and method for preparing same
WO2018124792A1 (en) * 2016-12-28 2018-07-05 주식회사 테그웨이 Composition for foam, flexible thermoelectric element, ductile conductive laminate, and method for manufacturing same
CN108475718A (en) * 2015-10-27 2018-08-31 韩国科学技术院 Flexible thermoelectric element and method for manufacturing same
CN109941168A (en) * 2017-12-20 2019-06-28 李尔公司 For heating and the vehicles decorative components of cooling traffic vehicle seat
CN110435067A (en) * 2017-09-01 2019-11-12 顺德职业技术学院 A kind of thermoelectric semiconductor to be foamed using mold
JP2021072382A (en) * 2019-10-31 2021-05-06 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device equipped with the same
JP2022042809A (en) * 2020-09-03 2022-03-15 愛三工業株式会社 Battery module
JPWO2022092177A1 (en) * 2020-10-30 2022-05-05

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108480A (en) * 2004-10-07 2006-04-20 Japan Aerospace Exploration Agency Self-power-generation type panel
JP2007273572A (en) * 2006-03-30 2007-10-18 Furukawa Electric Co Ltd:The Electronic cryogenic module and manufacturing method therefor
JP4579855B2 (en) * 2006-03-30 2010-11-10 古河電気工業株式会社 Electronic cooling module and method for manufacturing the same
JP2008186977A (en) * 2007-01-30 2008-08-14 Furukawa Electric Co Ltd:The Thermo-module and its manufacturing method
JP2010532577A (en) * 2007-06-29 2010-10-07 レアード テクノロジーズ インコーポレイテッド Flexible assembly with integrated thermoelectric module suitable for power extraction or heat dissipation from fluid pipes
WO2011016876A1 (en) * 2009-08-06 2011-02-10 Laird Technologies, Inc. Thermoelectric modules, thermoelectric assemblies, and related methods
CN102473833A (en) * 2009-08-06 2012-05-23 莱尔德技术股份有限公司 Thermoelectric modules, thermoelectric assemblies, and related methods
JP2012080761A (en) * 2010-09-10 2012-04-19 Toshiba Corp Temperature difference power generation apparatus and thermoelectric conversion element frame
US8649179B2 (en) 2011-02-05 2014-02-11 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
US9322580B2 (en) 2011-02-05 2016-04-26 Laird Technologies, Inc. Circuit assemblies including thermoelectric modules
US9142749B2 (en) 2011-02-22 2015-09-22 Fujitsu Limited Thermoelectric conversion module
JP2013040939A (en) * 2011-08-16 2013-02-28 Leica Microsystems Cms Gmbh Detection device
JP2013040940A (en) * 2011-08-16 2013-02-28 Leica Microsystems Cms Gmbh Detection device
JP2013110157A (en) * 2011-11-17 2013-06-06 Kitagawa Ind Co Ltd Thermoelectric conversion module
DE102014203052A1 (en) 2013-02-21 2014-08-21 Ngk Insulators, Ltd. Thermoelectric conversion elements
JP2014179372A (en) * 2013-03-13 2014-09-25 Kitagawa Kogyo Co Ltd Thermoelectric conversion module
JPWO2016199484A1 (en) * 2015-06-09 2018-01-18 株式会社村田製作所 Thermoelectric conversion element, thermoelectric conversion module, and electrical equipment
CN107615502B (en) * 2015-06-09 2020-06-30 株式会社村田制作所 Thermoelectric conversion element, thermoelectric conversion module, and electrical device
WO2016199484A1 (en) * 2015-06-09 2016-12-15 株式会社村田製作所 Thermoelectric conversion element, thermoelectric conversion module, and electrical device
CN107615502A (en) * 2015-06-09 2018-01-19 株式会社村田制作所 Thermoelectric conversion elements, thermoelectric (al) inversion module and electrical equipment
US20180083175A1 (en) * 2015-06-09 2018-03-22 Murata Manufacturing Co., Ltd. Thermoelectric conversion element, thermoelectric conversion module, and electrical device
US10847703B2 (en) 2015-06-09 2020-11-24 Murata Manufacturing Co., Ltd. Thermoelectric conversion element, thermoelectric conversion module, and electrical device
CN108475718A (en) * 2015-10-27 2018-08-31 韩国科学技术院 Flexible thermoelectric element and method for manufacturing same
JP2019500757A (en) * 2015-10-27 2019-01-10 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible thermoelectric element and manufacturing method thereof
WO2017074003A1 (en) 2015-10-27 2017-05-04 한국과학기술원 Flexible thermoelectric device and method for preparing same
WO2018124792A1 (en) * 2016-12-28 2018-07-05 주식회사 테그웨이 Composition for foam, flexible thermoelectric element, ductile conductive laminate, and method for manufacturing same
CN110435067A (en) * 2017-09-01 2019-11-12 顺德职业技术学院 A kind of thermoelectric semiconductor to be foamed using mold
CN110435067B (en) * 2017-09-01 2021-04-13 顺德职业技术学院 Thermoelectric semiconductor foamed by adopting mold
CN109941168A (en) * 2017-12-20 2019-06-28 李尔公司 For heating and the vehicles decorative components of cooling traffic vehicle seat
JP2021072382A (en) * 2019-10-31 2021-05-06 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device equipped with the same
WO2021085039A1 (en) * 2019-10-31 2021-05-06 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device provided with same
JP7342623B2 (en) 2019-10-31 2023-09-12 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device equipped with the same
US11963449B2 (en) 2019-10-31 2024-04-16 Tdk Corporation Thermoelectric conversion element and thermoelectric conversion device having the same
JP2022042809A (en) * 2020-09-03 2022-03-15 愛三工業株式会社 Battery module
JP7413212B2 (en) 2020-09-03 2024-01-15 愛三工業株式会社 battery module
JPWO2022092177A1 (en) * 2020-10-30 2022-05-05

Similar Documents

Publication Publication Date Title
JP2003258323A (en) Thermoelectric device
KR102281065B1 (en) Cooling thermoelectric moudule and device using the same
JP5664326B2 (en) Thermoelectric conversion module
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP4663469B2 (en) Heat exchanger
KR100668610B1 (en) Thin-layer thermoelectric module
CN111433924B (en) Heat conversion equipment
WO2005124882A1 (en) Thermoelectric conversion module
KR102083611B1 (en) Heat conversion device
RU2011129862A (en) HIGH TEMPERATURE HIGH EFFICIENT THERMOELECTRIC MODULE
JP2006294935A (en) High efficiency and low loss thermoelectric module
JP2012222244A (en) Thermoelectric conversion device and method of manufacturing the same
TW202127693A (en) Power generating apparatus
AU2018220031A1 (en) Thermoelectric device
JP3147096U (en) Solid temperature difference power generation plate and solid temperature difference power generation device
JP2008141161A (en) Peltier module
JP2003282972A (en) Thermoelectric element
JP2010192776A (en) Structure of thick film type thermoelectric power generation module
KR102316222B1 (en) Heat conversion device
US20130228205A1 (en) Apparatus for reversibly converting thermal energy to electric energy
KR102673621B1 (en) Phonon-Glass Electron-Crystal for power generation
KR100807068B1 (en) The element device of the thermoelectric
JPH0555639A (en) Thermoelectric device
KR20210128982A (en) Heat conversion device
CN116648128A (en) Thermoelectric device for thermoelectric power generation and thermoelectric power generation device