KR102673621B1 - Phonon-Glass Electron-Crystal for power generation - Google Patents

Phonon-Glass Electron-Crystal for power generation Download PDF

Info

Publication number
KR102673621B1
KR102673621B1 KR1020190139884A KR20190139884A KR102673621B1 KR 102673621 B1 KR102673621 B1 KR 102673621B1 KR 1020190139884 A KR1020190139884 A KR 1020190139884A KR 20190139884 A KR20190139884 A KR 20190139884A KR 102673621 B1 KR102673621 B1 KR 102673621B1
Authority
KR
South Korea
Prior art keywords
temperature metal
metal part
low
temperature
power generation
Prior art date
Application number
KR1020190139884A
Other languages
Korean (ko)
Other versions
KR20210054139A (en
Inventor
여종빈
Original Assignee
여종빈
Filing date
Publication date
Application filed by 여종빈 filed Critical 여종빈
Priority to KR1020190139884A priority Critical patent/KR102673621B1/en
Publication of KR20210054139A publication Critical patent/KR20210054139A/en
Application granted granted Critical
Publication of KR102673621B1 publication Critical patent/KR102673621B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions

Abstract

본 발명은 발전용 박막열전소자에 관한 것으로서, 열원에 의한 발전효율을 극대화할 수 있도록 함을 목적으로 한 것이다.
즉, 본 발명은 발전용 열전소자에 있어서, 열전소자를 PGEC(Phonon-Glass Electron-Crystal)화 할 수 있게 고온의 열원과 접하며 박막화된 고온금속부와 저온의 열원과 접하며 박막화된 저온금속부, 상기 고온금속부에 접속되어 음극전원단자 및 상기 저온금속부와 접속되는 양극전원단자로 구성한 것을 특징으로 하는 것이다.
따라서, 본 발명은 고온금속부에서 저온금속부의 열전도가 최소화되고 고온금속부와 저온금속부 사이의 내부저항이 최소되어 발전효율이 극대화되는 효과를 갖는 것이다.
The present invention relates to a thin film thermoelectric element for power generation, and its purpose is to maximize power generation efficiency by a heat source.
That is, the present invention relates to a thermoelectric element for power generation, which includes a high-temperature metal part that is thinned in contact with a high-temperature heat source and a low-temperature metal part that is thinned in contact with a low-temperature heat source so that the thermoelectric element can be converted into a PGEC (Phonon-Glass Electron-Crystal). It is characterized in that it is composed of a negative power terminal connected to the high-temperature metal part and a positive power terminal connected to the low-temperature metal part.
Therefore, the present invention has the effect of minimizing heat conduction from the high-temperature metal part to the low-temperature metal part and minimizing internal resistance between the high-temperature metal part and the low-temperature metal part, thereby maximizing power generation efficiency.

Description

발전용 박막열전소자{Phonon-Glass Electron-Crystal for power generation}Thin film thermoelectric element for power generation {Phonon-Glass Electron-Crystal for power generation}

본 발명은 발전용 박막열전소자에 관한 것으로서, 더욱 상세하게는 발전용 열조소자에 있어서, 저온에서 고온으로의 열전도율 낮고 전기 전도도가 우수하게 열전소자를 박막화하여서 열원에 의한 발전효율을 극대화할 수 있도록 함을 목적으로 한 것이다.The present invention relates to a thin film thermoelectric element for power generation, and more specifically, to a thermoelectric element for power generation, by thinning the thermoelectric element with low thermal conductivity from low temperature to high temperature and excellent electrical conductivity to maximize power generation efficiency by a heat source. It is intended for this purpose.

일반적으로, 발전용 열전소자는 태양열 ·방사성 동위원소 ·원자로 등을 열원으로 발전하는 소자인 것이다.Generally, thermoelectric elements for power generation are devices that generate power using solar heat, radioactive isotopes, nuclear reactors, etc. as heat sources.

이상과 같은 발전용 열전소자는 소형 ·경량 제작이 가능하고 움직이는 부분이 없으며 진동 등이 없어 발전으로 인한 주변기기에 영향을 주지 않는 것이다.The thermoelectric element for power generation as described above can be manufactured in a small and lightweight manner, has no moving parts, and does not vibrate, so it does not affect peripheral devices due to power generation.

이상과 같은 열전소자의 재료는 저온금속부용으로 Bi-Te계, 중온금속부용으로 Pb-Te계, Ge-Te계 및 Si-Ge계, 고온금속부용으로 천이금속 규화물계가 사용되고 있다. The above thermoelectric element materials are Bi-Te based for the low temperature metal part, Pb-Te based, Ge-Te based and Si-Ge based for the medium temperature metal part, and transition metal silicide based for the high temperature metal part.

한편, 상기한 바와 같은 발전용 열전소자는 같은 종류 또는 서로 다른 종류의 금속판을 마주 보게 하여 한쪽은 고온과 접하게 하고 다른 한쪽은 저온으로 유지하여서 전자군의 평형압력차이로 인해 전자가 고온금속(음극)에서 저온금속(양극) 쪽으로 흐르게 되는 현상을 이용한 것이다. On the other hand, in the thermoelectric element for power generation as described above, metal plates of the same type or different types are placed face to face, one side is in contact with high temperature, and the other side is maintained at low temperature, so that electrons are transferred to the high temperature metal (cathode) due to the difference in the equilibrium pressure of the electron group. ) to the low-temperature metal (anode).

이와 같은 발전용 열전소자는 열전자발전의 효율을 높이기 위해서는 열전자방사체가 전기의 양도체인 동시에 열전도율이 낮은 물질이어야 하며, 고온부와 저온부 사이의 접속부면에서 생기는 내부저항증가를 억제할 수 있어야 하는 것이다.In order to increase the efficiency of thermoelectric power generation, such a thermoelectric element for power generation must have a thermoelectron radiator that is both a conductor of electricity and a material with low thermal conductivity, and must be able to suppress the increase in internal resistance that occurs at the connection surface between the high-temperature section and the low-temperature section.

따라서, 내부저항증가를 억제하기 위하여 고온부와 저온부의 접촉면에 세슘 증기를 주입, 세슘플라스마에 의해 전기의 전도성을 높임과 동시에 전자의 공간밀도를제하여 해결하고 있는 것이다.Therefore, in order to suppress the increase in internal resistance, cesium vapor is injected into the contact surface of the high-temperature section and the low-temperature section, thereby increasing electrical conductivity through cesium plasma and simultaneously reducing the spatial density of electrons.

그러나, 상기한 바와 같은 발전용 열전소자는 고온부에서 저온부로의 열전도율이 낮게 설계하면 고온부와 저온부 사이의 내부저항이 증가하여 발전효율이 저하되는 문제점이 있었다.However, if the thermoelectric element for power generation as described above is designed to have low thermal conductivity from the high temperature part to the low temperature part, there is a problem that the internal resistance between the high temperature part and the low temperature part increases, resulting in a decrease in power generation efficiency.

대한민국 특허 공개 제10-2011-0077492호Republic of Korea Patent Publication No. 10-2011-0077492

이에, 본 발명은 상기한 바와 같은 발전용 열전소자는 고온부에서 저온부로의 열전도율이 낮게 설계하면 고온부와 저온부 사이의 내부저항이 증가하여 발전효율이 저하되는 문제점을 해결하고자 하는 것이다.Accordingly, the present invention is intended to solve the problem that when the thermoelectric element for power generation as described above is designed to have low thermal conductivity from the high temperature part to the low temperature part, the internal resistance between the high temperature part and the low temperature part increases, resulting in a decrease in power generation efficiency.

즉, 본 발명은 발전용 열전소자에 있어서, 열전소자를 PGEC(Phonon-Glass Electron-Crystal)화 할 수 있게 고온의 열원과 접하며 박막화된 고온금속부와 저온의 열원과 접하며 박막화된 저온금속부, 상기 고온금속부에 접속되어 음극전원단자 및 상기 저온금속부와 접속되는 양극전원단자로 구성한 것을 특징으로 하는 것이다.That is, the present invention relates to a thermoelectric element for power generation, which includes a high-temperature metal part that is thinned in contact with a high-temperature heat source and a low-temperature metal part that is thinned in contact with a low-temperature heat source so that the thermoelectric element can be converted into a PGEC (Phonon-Glass Electron-Crystal). It is characterized in that it is composed of a negative power terminal connected to the high-temperature metal part and a positive power terminal connected to the low-temperature metal part.

본 발명은 고온금속부와 저온금속부의 사이에 금재질의 선재로 이루어진 전기전도브릿지를 등 간격으로 구비하고, 상기 전기전도브릿지 사이에 구비되는 열전도차단층을 형성한 것을 특징으로 하는 것이다.The present invention is characterized in that electrically conductive bridges made of gold wire are provided at equal intervals between the high-temperature metal portion and the low-temperature metal portion, and a heat conduction barrier layer is provided between the electrically conductive bridges.

본 발명은 전기전도브릿지는 관체로 형성하고 내부에 냉각기체가 순화되게 한 것을 특징으로 하는 것이다.The present invention is characterized in that the electrical conduction bridge is formed as a tubular body and the cooling gas is purified therein.

본 발명은 고온금속부와 저온금속부의 외면에 면상전도율이 우수한 동재질의 열전도층을 형성한 것을 특징으로 하는 것이다.The present invention is characterized by forming a heat conductive layer made of copper with excellent planar conductivity on the outer surfaces of the high-temperature metal portion and the low-temperature metal portion.

따라서, 본 발명은 고온의 열원과 접하며 박막화된 고온금속부와 저온의 열원과 접하며 박막화된 저온금속부, 상기 고온금속부에 접속되어 음극전원단자 및 상기 저온금속부와 접속되는 양극전원단자로 구성함으로써, 고온금속부에서 저온금속부의 열전도가 최소화되고 고온금속부와 저온금속부 사이의 내부저항이 최소되어 발전효율이 극대화되는 효과를 갖는 것이다.Therefore, the present invention consists of a high-temperature metal part that is thinned and in contact with a high-temperature heat source, a low-temperature metal part that is thinned and in contact with a low-temperature heat source, a negative power terminal connected to the high-temperature metal part, and a positive power terminal connected to the low-temperature metal part. By doing so, heat conduction from the high-temperature metal part to the low-temperature metal part is minimized and internal resistance between the high-temperature metal part and the low-temperature metal part is minimized, thereby maximizing power generation efficiency.

도 1 은 본 발명의 일 실시 예를 보인 예시도.
도 2 는 본 발명의 일 실시 예를 보인 측 단면 예시도.
도 3 은 본 발명의 다른 실시 예를 보인 측 다면 예시도.
1 is an exemplary diagram showing an embodiment of the present invention.
Figure 2 is an exemplary side cross-sectional view showing one embodiment of the present invention.
Figure 3 is a side view illustrating another embodiment of the present invention.

이하, 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.Hereinafter, it will be described in detail with the accompanying drawings.

본 발명은 고온금속부에서 저온금속부의 열전도가 최소화되고 고온금속부와 저온금속부 사이의 내부저항이 최소되어 발전효율이 극대화되도록 한 것으로서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The present invention is designed to maximize power generation efficiency by minimizing heat conduction from the high-temperature metal part to the low-temperature metal part and minimizing internal resistance between the high-temperature metal part and the low-temperature metal part. The terms and words used in this specification and claims are common or It should not be construed as limited to the dictionary meaning, but a meaning that is consistent with the technical idea of the present invention based on the principle that the inventor can appropriately define the concept of the term in order to explain his or her invention in the best way. It must be interpreted as a concept.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in this specification and the configurations shown in the drawings are only one of the most preferred embodiments of the present invention, and do not represent the entire technical idea of the present invention, so they can be replaced at the time of filing the present application. It should be understood that various equivalents and variations may exist.

즉, 본 발명은 발전용 열전소자에 있어서, 열전소자를 PGEC(Phonon-Glass Electron-Crystal)화 할 수 있게 고온금속부(1)와 저온금속부(2), 음극전원단자(3) 및 양극전원단자(4)로 구성한 것이다.That is, the present invention is a thermoelectric element for power generation, which includes a high-temperature metal part (1), a low-temperature metal part (2), a negative power terminal (3), and an anode so that the thermoelectric element can be converted into a PGEC (Phonon-Glass Electron-Crystal). It consists of a power terminal (4).

여기서, 상기 고온금속부(1)는 열전소자를 PGEC(Phonon-Glass Electron-Crystal)화 할 수 있게 고온의 열원과 접하며 박막화되게 형성된 것이다.Here, the high-temperature metal part 1 is formed as a thin film in contact with a high-temperature heat source so that the thermoelectric element can be converted into a PGEC (Phonon-Glass Electron-Crystal).

상기 고온금속부(1)의 일측에는 음금전원단자 접속되는 것이다.A negative power supply terminal is connected to one side of the high-temperature metal part (1).

그리고, 상기 저온금속부(2)는 열전소자를 PGEC(Phonon-Glass Electron-Crystal)화 할 수 있게 저온의 열원과 접하며 박막화되게 형성된 것이다.In addition, the low-temperature metal part 2 is formed to be thin and in contact with a low-temperature heat source so that the thermoelectric element can be converted into a PGEC (Phonon-Glass Electron-Crystal).

상기 저온금속부(2)의 일측에는 양극전원단자(4)가 접속되는 것이다.A positive power terminal (4) is connected to one side of the low-temperature metal portion (2).

또한, 상기 음극전원단자(3)는 전자군의 평형압력차이로 인해 전자가 저온금속부(2)로 이동하여 발전이 이루어지게 하는 고온금속부(1)에 접속되는 것이다.In addition, the negative power terminal (3) is connected to the high-temperature metal part (1), which causes electrons to move to the low-temperature metal part (2) and generate electricity due to the difference in the equilibrium pressure of the electron group.

또한, 상기 양극전원단자(4)는 전자군의 평형압력차이로 인해 고온금속부(1)에서 전자가 이동해 오는 저온금속부(2)에 접속되는 것이다.In addition, the positive power terminal (4) is connected to the low-temperature metal part (2) through which electrons move from the high-temperature metal part (1) due to the difference in the equilibrium pressure of the electron group.

한편, 본 발명의 실시에 있어서, 고온금속부(1)와 저온금속부(2)의 사이에 금재질의 선재로 이루어진 전기전도브릿지(5a)를 등 간격으로 구비하고, 상기 전기전도브릿지(5a) 사이에 구비되는 열전도차단층(5b)을 형성하여 실시할 수 있는 것이다.Meanwhile, in the practice of the present invention, electrically conductive bridges (5a) made of gold wire are provided at equal intervals between the high-temperature metal portion (1) and the low-temperature metal portion (2), and the electrically conductive bridges (5a) are provided at equal intervals. ) can be carried out by forming a heat conduction blocking layer (5b) provided between them.

상기 전기전도브릿지(5a)는 관체로 형성하고 내부에 냉각기체가 순화되게 실시할 수 있는 것이다.The electrical conduction bridge 5a is formed of a tubular body and can be purified within the cooling gas.

또한, 상기 고온금속부(1)와 저온금속부(2)의 외면에 면상전도율이 우수한 동재질의 열전도층을 형성하여 실시할 수 있는 것이다.In addition, it can be carried out by forming a heat conductive layer made of copper with excellent planar conductivity on the outer surfaces of the high temperature metal part 1 and the low temperature metal part 2.

이하, 본 발명의 적용실시에 따른 작용효과에 대하여 설명하면 다음과 같다.Hereinafter, the effects of applying the present invention will be described as follows.

상기한 바와 같이 발전용 열전소자에 있어서, 열전소자를 PGEC(Phonon-Glass Electron-Crystal)화 할 수 있게 고온의 열원과 접하며 박막화된 고온금속부(1)와 저온의 열원과 접하며 박막화된 저온금속부(2), 상기 고온금속부(1)에 접속되어 음극전원단자(3) 및 상기 저온금속부와 접속되는 양극전원단자(4)로 구성한 본 발명을 적용하여 실시하게 되면, 고온금속부(1)에서 저온금속부(2)의 열전도가 최소화되고 고온금속부(1)와 저온금속부(2) 사이의 내부저항이 최소되어 발전효율이 극대화되는 것이다.As described above, in the thermoelectric element for power generation, a high-temperature metal part (1) made into a thin film in contact with a high-temperature heat source and a low-temperature metal part made into a thin film in contact with a low-temperature heat source so that the thermoelectric element can be converted into a PGEC (Phonon-Glass Electron-Crystal) When the present invention is implemented by applying the present invention consisting of a part (2), a negative power terminal (3) connected to the high-temperature metal part (1), and a positive power terminal (4) connected to the low-temperature metal part, the high-temperature metal part ( In 1), heat conduction of the low-temperature metal part (2) is minimized and internal resistance between the high-temperature metal part (1) and the low-temperature metal part (2) is minimized, thereby maximizing power generation efficiency.

한편, 본 발명의 실시에 있어 고온금속부(1)와 저온금속부(2)의 사이에 금재질의 선재로 이루어진 전기전도브릿지(5a)를 등 간격으로 구비하고, 상기 전기전도브릿지(5a) 사이에 구비되는 열전도차단층(5b)을 형성하여 실시하게 되면, 열전소자의 성능을 나타내는 성능지수가 제벡계수가 동일할 때 전기전도도가 높을수록, 열전도도가 낮을수록 성능지수가 높아지는 것을 확인할 수 있는 바와 같이 발전효율이 향상되는 것입니다. Meanwhile, in the practice of the present invention, electrically conductive bridges (5a) made of gold wire are provided at equal intervals between the high-temperature metal portion (1) and the low-temperature metal portion (2), and the electrically conductive bridges (5a) When the heat conduction blocking layer 5b is formed and implemented, it can be confirmed that the performance index indicating the performance of the thermoelectric element increases as the electrical conductivity is higher and the thermal conductivity is lower when the Seebeck coefficient is the same. As you can see, power generation efficiency is improved.

ZT = α² σ T / kZT = α²σT/k

Z : 성능지수(figure-of-merit)Z: figure-of-merit

T : 온도(Temperature) T: Temperature

α : Seebeck Coefficient. ΔV/ΔTα: Seebeck Coefficient. ΔV/ΔT

σ : Electric Conductivity σ : Electric Conductivity

k : Thermal Conductivityk : Thermal Conductivity

또한, 본 발명의 실시에 있어서, 상기 전기전도브릿지(5a)는 관체로 형성하고 내부에 냉각기체가 순화되게 실시하게 되면, 전기전도브릿지(5a)를 통한 고온금속부(1)에서 저온금속부(2)로의 열전도가 최소화되는 것이다.In addition, in the practice of the present invention, when the electrical conduction bridge (5a) is formed as a tubular body and the cooling gas is purified inside, the high temperature metal portion (1) through the electrical conduction bridge (5a) is connected to the low temperature metal portion. (2) Heat conduction is minimized.

또한, 본 발명의 실시에 있어서, 상기 고온금속부(1)와 저온금속부(2)의 외면에 면상전도율이 우수한 동재질의 열전도층을 형성하여 실시하게 되면, 고온금속부(1)에서의 면상 고온열원 흡열과 저온금속부(2)에서의 면상 열원방출에 의하여 전자군의 평형압력차가 극대화되어 발전효율이 향상되는 것이다.In addition, in the practice of the present invention, if a heat conductive layer made of copper material with excellent planar conductivity is formed on the outer surfaces of the high temperature metal part 1 and the low temperature metal part 2, the heat conductive layer in the high temperature metal part 1 The equilibrium pressure difference of the electron group is maximized by the planar high-temperature heat source heat absorption and the planar heat source emission from the low-temperature metal part (2), thereby improving power generation efficiency.

1 : 고온금속부
2 : 저온금속부
3 : 음극전원단자
4 : 양극전원단자
5a: 전기전도브릿지
5b: 열전도차단층
1: High temperature metal part
2: Low temperature metal part
3: Negative power terminal
4: Positive power terminal
5a: Electrical conduction bridge
5b: Heat conduction barrier layer

Claims (4)

발전용 열전소자에 있어서;
열전소자를 PGEC(Phonon-Glass Electron-Crystal)화 할 수 있게 고온의 열원과 접하며 박막화된 고온금속부와 저온의 열원과 접하며 박막화된 저온금속부, 상기 고온금속부에 접속되어 음극전원단자 및 상기 저온금속부와 접속되는 양극전원단자로 구성하고,
상기 고온금속부와 저온금속부의 사이에 금재질의 선재로 이루어진 전기전도브릿지를 등 간격으로 구비하고, 상기 전기전도브릿지 사이에 구비되는 열전도차단층을 형성한 것을 특징으로 하는 발전용 박막열전소자.
In thermoelectric elements for power generation;
A high-temperature metal part made into a thin film in contact with a high-temperature heat source so that the thermoelectric element can be converted into a PGEC (Phonon-Glass Electron-Crystal), a low-temperature metal part made into a thin film in contact with a low-temperature heat source, and connected to the high-temperature metal part to the negative power terminal and the above. It consists of a positive power terminal connected to the low-temperature metal part,
A thin-film thermoelectric element for power generation, characterized in that electrically conductive bridges made of gold wire are provided at equal intervals between the high-temperature metal portion and the low-temperature metal portion, and a heat-conductive barrier layer is provided between the electrically conductive bridges.
제 1 항에 있어서;
상기 전기전도브릿지는 관체로 형성하고 내부에 냉각기체가 순화되게 한 것을 특징으로 하는 발전용 박막열전소자.
According to claim 1;
The electrical conduction bridge is a thin film thermoelectric element for power generation, characterized in that it is formed of a tubular body and the cooling gas is purified therein.
제 1 항에 있어서;
상기 고온금속부와 저온금속부의 외면에 면상전도율이 우수한 동재질의 열전도층을 형성한 것을 특징으로 하는 발전용 박막열전소자.
According to claim 1;
A thin-film thermoelectric element for power generation, characterized in that a heat-conducting layer made of copper material with excellent planar conductivity is formed on the outer surfaces of the high-temperature metal portion and the low-temperature metal portion.
삭제delete
KR1020190139884A 2019-11-05 Phonon-Glass Electron-Crystal for power generation KR102673621B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190139884A KR102673621B1 (en) 2019-11-05 Phonon-Glass Electron-Crystal for power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190139884A KR102673621B1 (en) 2019-11-05 Phonon-Glass Electron-Crystal for power generation

Publications (2)

Publication Number Publication Date
KR20210054139A KR20210054139A (en) 2021-05-13
KR102673621B1 true KR102673621B1 (en) 2024-06-07

Family

ID=

Similar Documents

Publication Publication Date Title
US3129116A (en) Thermoelectric device
JP4881919B2 (en) Thermoelectric generator with thermoelectric element
JP4896336B2 (en) Thermal diode for energy conversion
US20100258155A1 (en) Thermoelectric element
US8334450B2 (en) Seebeck solar cell
US20070283702A1 (en) Dual heat to cooling converter
CA3039119A1 (en) Flexible thermoelectric generator
US20050236028A1 (en) Heat to cooling converter
US3053923A (en) Solar power source
JP6976631B2 (en) Thermoelectric module and thermoelectric generator
KR102673621B1 (en) Phonon-Glass Electron-Crystal for power generation
JP6067745B2 (en) Thermoelectric element having a structure capable of improving thermal efficiency
WO2018042708A1 (en) Thermoelectric conversion device and electronic device
CN218450993U (en) Energy recovery device and electronic equipment
US10897001B2 (en) Thermoelectric conversion module
JP3147096U (en) Solid temperature difference power generation plate and solid temperature difference power generation device
KR20160005588A (en) temperature sensor
US20180287038A1 (en) Thermoelectric conversion device
US20050126618A1 (en) Device for producing electric energy
KR101046130B1 (en) Thermoelectric element
KR20210054139A (en) Phonon-Glass Electron-Crystal for power generation
KR20190090928A (en) Thermo electric module
US20200203592A1 (en) Electric power generation from a thin-film based thermoelectric module placed between each hot plate and cold plate of a number of hot plates and cold plates
US20100294324A1 (en) Molding device capable of converting heat from molten molding material into electricity
US20190252593A1 (en) Thermoelectric conversion device and manufacturing method thereof