WO2018042708A1 - Thermoelectric conversion device and electronic device - Google Patents

Thermoelectric conversion device and electronic device Download PDF

Info

Publication number
WO2018042708A1
WO2018042708A1 PCT/JP2017/006811 JP2017006811W WO2018042708A1 WO 2018042708 A1 WO2018042708 A1 WO 2018042708A1 JP 2017006811 W JP2017006811 W JP 2017006811W WO 2018042708 A1 WO2018042708 A1 WO 2018042708A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
thin film
base
thermoelectric conversion
heat conductive
Prior art date
Application number
PCT/JP2017/006811
Other languages
French (fr)
Japanese (ja)
Inventor
菅原聡
近藤剛
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2018536912A priority Critical patent/JP6995370B2/en
Publication of WO2018042708A1 publication Critical patent/WO2018042708A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Definitions

  • the present invention relates to a thermoelectric conversion device and an electronic device, for example, a thermoelectric conversion device and an electronic device having a thermoelectric thin film.
  • thermoelectric generator or thermoelectric generator
  • TMG thermoelectric generator
  • ⁇ TEG Micro Thermoelectric Generator
  • SoC system-on-chip
  • ⁇ TEG By forming a large number of n-type and p-type thermoelectric materials processed into columnar shapes on the lower surface of the upper substrate and the upper surface of the lower substrate, respectively, and bonding the upper substrate and the lower substrate , ⁇ TEG is known (for example, Patent Document 1).
  • the direction of heat flow and current in the thermoelectric layer is the normal direction of the substrate. Since this type of ⁇ TEG has a structure in which a large number of ⁇ -type Seebeck elements are connected, it is hereinafter referred to as ⁇ -type.
  • thermoelectric thin films are alternately arranged in the width direction of the strips, and the ends of the thermoelectric thin films are alternately connected.
  • the direction of heat flow and current in the thermoelectric thin film is the length direction of the strip.
  • This type of ⁇ TEG is hereinafter referred to as an in-plane type.
  • thermoelectric conversion device By using a thin-film thermoelectric material, the thermoelectric conversion device can be miniaturized and highly integrated. However, when a thin thermoelectric material is used for ⁇ -type or in-plane ⁇ TEG, the thermal resistance and the electrical resistance are in a trade-off relationship, and it is difficult to realize a high-power thermoelectric conversion device.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a small-sized and high-output thermoelectric conversion device and electronic device.
  • the present invention provides the first thermoelectric thin film and the second thermoelectric thin film having opposite conductivity types alternately provided in a first direction parallel to the surfaces of the first thermoelectric thin film and the second thermoelectric thin film, and the first thermoelectric thin film, Between the thermoelectric thin film and the second thermoelectric thin film, the first thermoelectric thin film and the second thermoelectric thin film are electrically and thermally connected, and the first connection layer and the second are alternately provided in the first direction.
  • the first thermoelectric thin film and the second thermoelectric thin film may have a thickness of 10 ⁇ m or less.
  • first heat conductive layer and the second heat conductive layer may be provided on opposite sides of the surfaces of the first thermoelectric thin film and the second thermoelectric thin film.
  • the said structure WHEREIN The said 1st heat conductive layer and the said 2nd heat conductive layer can be set as the structure which comprises the insulator whose heat conductivity is smaller than the said 1st heat conductive layer and the said 2nd heat conductive layer. .
  • the first thermoelectric thin film and the second thermoelectric thin film extend in a third direction parallel to the surface and intersecting the first direction, and the first thermoelectric thin film and the second thermoelectric thin film
  • the length in the third direction may be 10 times or more the film thickness of the first thermoelectric thin film and the second thermoelectric thin film.
  • the width of the first thermoelectric thin film and the second thermoelectric thin film in the first direction may be larger than the thickness of the first thermoelectric thin film and the second thermoelectric thin film.
  • a first base and a second base that are thermally connected to the first heat conductive layer and the second heat conductive layer, respectively, may be provided.
  • the first heat conductive layer penetrates through the solid first insulator having a lower thermal conductivity than the first heat conductive layer, and the second heat conductive layer penetrates through the second heat conductive layer.
  • the layer including the first thermoelectric thin film, the second thermoelectric thin film, the first connection layer, the second connection layer, the first heat conduction layer, and the second heat conduction layer intersects the surface.
  • a plurality of layers are stacked in a direction, and the first heat conductive layer included in one of the adjacent layers among the plurality of layers and the second heat conductive layer included in the other of the adjacent layers are thermally connected. It can be set as a structure.
  • the first base is thermally connected to the surface of the living body of the thermostat animal
  • the second base is thermally connected to the air, and is provided between the first base and the second base.
  • the two heat conductive layers are each provided between the first base and the second base, and between the first base and the second base and outside the thermoelectric conversion unit.
  • a thermal insulator having a thermal conductivity smaller than that of the first thermoelectric thin film, the second thermoelectric thin film, the first base portion, and the second base portion.
  • the present invention is provided between a first base that is thermally connected to the surface of a living body of a thermostat animal, a second base that is thermally connected to air, and the first base and the second base.
  • the first thermoelectric material provided between the first connection layer and the second connection layer and the second thermoelectric material having a conductivity type opposite to that of the first thermoelectric material are the first connection layer and the second connection layer.
  • a thermoelectric conversion device comprising a thermal insulator having conductivity.
  • the thermal insulator may be a solid layer.
  • the thermal insulator may be a gas layer or vacuum having a pressure lower than atmospheric pressure
  • the thermoelectric conversion device may include a holding unit that holds the gas layer or vacuum.
  • thermoelectric conversion units separated from each other via the thermal insulator may be provided between the first base and the second base.
  • the present invention includes an integrated circuit element, a heat radiating member that radiates heat generated in the integrated circuit element, and the thermoelectric conversion device, and is provided between the integrated circuit element and the heat radiating member, and the first heat And a power generating device in which a conductive layer is thermally connected to the integrated circuit element and the second heat conductive layer is connected to the heat dissipation member.
  • the present invention provides an integrated circuit element, a heat radiating member that radiates heat generated in the integrated circuit element, a first thermoelectric material provided between a first connection layer and a second connection layer, and the first thermoelectric material.
  • a thermoelectric conversion device in which a second thermoelectric material having a conductivity type opposite to that of the thermoelectric conversion device is alternately connected in series via the first connection layer and the second connection layer, and the integrated circuit element and the heat dissipation member
  • a power generation device in which the first connection layer is thermally connected to the integrated circuit element and the second connection layer is connected to the heat dissipation member.
  • a power storage device that stores the power generated by the power generation device and supplies the power to the integrated circuit element can be provided.
  • the present invention provides a first base and a second base, the first thermoelectric thin film and the second thermoelectric thin film arranged in the surface direction of the first base and the second base and having opposite conductivity types, A first connection in which the first thermoelectric thin film and the second thermoelectric thin film are alternately and thermally connected in a direction intersecting the plane direction, and thermally connected to the first base and the second base, respectively. And a second connection layer, wherein the size of the first thermoelectric thin film and the second thermoelectric thin film in the surface direction is 1 ⁇ m or less.
  • thermoelectric conversion device a small and high output thermoelectric conversion device and electronic device can be provided.
  • FIG. 1 is a schematic diagram showing a Seebeck element.
  • FIG. 2A and FIG. 2B are a plan view and a cross-sectional view, respectively, of the thermoelectric conversion device according to Comparative Example 1.
  • FIG. 3A and FIG. 3B are a plan view and a cross-sectional view, respectively, of the thermoelectric conversion device according to Comparative Example 2.
  • FIG. 4A and FIG. 4B are a plan view and a cross-sectional view, respectively, of the thermoelectric conversion device according to the first embodiment.
  • FIG. 5A to FIG. 5C are diagrams showing simulation results of m 0 , ⁇ d and P OUT for ⁇ in Comparative Example 1, respectively.
  • FIG. 7 is a diagram illustrating simulation results of P OUT , m 0 , ⁇ d, (1- ⁇ ) d, and t Cu with respect to V S in Comparative Example 1.
  • FIG. 8A to FIG. 8C are diagrams illustrating simulation results of m 0 , ⁇ d, and P OUT for ⁇ in Example 1, respectively.
  • FIG. 9 is a diagram illustrating simulation results of P OUT , m 0 , ⁇ d, (1- ⁇ ) d, and t Cu with respect to t 0 in Example 1.
  • FIG. 10 is a diagram illustrating the P OUT , m 0 , ⁇ d, (1- ⁇ ) d and t Cu simulation results for V S in Example 1.
  • FIG. 11A and FIG. 11B are cross-sectional views of the thermoelectric conversion device according to the first modification of the first embodiment.
  • FIG. 12 is a plan view of the thermoelectric conversion device according to the second modification of the first embodiment.
  • FIG. 13A and FIG. 13B are a cross-sectional view and a plan view of the thermoelectric conversion device according to the third modification of the first embodiment.
  • 14A and 14B are cross-sectional views of the thermoelectric conversion device according to the fourth modification of the first embodiment, and
  • FIG. 14C is a thermoelectric conversion device according to the fifth modification of the first embodiment.
  • FIG. 15A and FIG. 15B are cross-sectional views of an electronic device using the thermoelectric conversion device according to the sixth modification of the first embodiment.
  • FIG. 16 is a cross-sectional view of the electronic device according to the second embodiment.
  • FIG. 17 is a block diagram of an electronic device according to the first modification of the second embodiment.
  • FIG. 18 is a block diagram of a power system according to a first modification of the second embodiment.
  • FIG. 19A and FIG. 19B are diagrams showing a simulation model.
  • 20A and 20B are diagrams showing simulation results of ⁇ d, (1- ⁇ ) d, ⁇ T, ⁇ T, V S and P OUT for ⁇ and m 0 in Example 1, respectively.
  • FIG. 21 is a diagram illustrating simulation results of ⁇ d, (1 ⁇ ) d, ⁇ T, ⁇ T, V S and P OUT with respect to t 0 in Example 1.
  • FIG. 22 is a diagram illustrating simulation results of ⁇ d, (1- ⁇ ) d, ⁇ T, ⁇ T, V S and P OUT with respect to t 0 in Comparative Example 1.
  • FIG. 23A and FIG. 23B are schematic cross-sectional views of thermoelectric conversion devices according to Comparative Example 1 and Example 1, respectively.
  • FIG. 24 is a diagram illustrating the current I and the output power P OUT with respect to the output voltage V out in the first embodiment.
  • FIG. 25 is a diagram showing simulation results of ⁇ d, (1- ⁇ ) d, ⁇ T, ⁇ T, V S and P OUT with respect to the minimum dimension in Comparative Example 1.
  • FIG. 26A is a plan view of the thermoelectric conversion device according to the fourth embodiment, and FIG. 26B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 27 is a diagram illustrating simulation results of ⁇ d, (1- ⁇ ) d, ⁇ T, ⁇ T, V S and P OUT with respect to D in Example 4.
  • FIG. 28A is a plan view of a thermoelectric conversion device according to Modification 1 of Embodiment 4
  • FIG. 28B is a cross-sectional view taken along line AA of FIG. FIG.
  • FIG. 29A is a diagram showing a simulation result of t Cu , ⁇ d, m 0 , V S and P OUT with respect to L in Modification 1 of Example 4, and FIG. 29B is a diagram showing L, ⁇ d with respect to t Cu . , M 0 , V S and P OUT are diagrams illustrating simulation results.
  • FIG. 30 is a diagram showing simulation results of L, ⁇ d, m 0 , V S and P OUT with respect to t Cu when the thermal insulator is vacuum.
  • FIG. 31 is a cross-sectional view of the thermoelectric conversion device according to the second modification of the fourth embodiment.
  • FIG. 32A is a plan view of a thermoelectric conversion device according to a third modification of the fourth embodiment, and FIG.
  • FIG. 32B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 33A is a plan view of a thermoelectric conversion device according to a fourth modification of the fourth embodiment
  • FIG. 33B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 1 is a schematic diagram showing a Seebeck element.
  • the Seebeck element 10 includes thermoelectric materials 32a and 32b, electrodes 24a and 24b, and a connection layer 34a.
  • the thermoelectric materials 32a and 32b are, for example, n-type and p-type, respectively.
  • One ends of the thermoelectric materials 32a and 32b are connected via a connection layer 34a.
  • the other ends of the thermoelectric materials 32a and 32b are connected to electrodes 24a and 24b, respectively.
  • the connection layer 34a absorbs heat as indicated by an arrow 36a and radiates heat from the electrodes 24a and 24b as indicated by an arrow 36b
  • an electromotive force is generated between the electrodes 24a and 24b due to the Seebeck effect.
  • a load 40 is connected between the electrodes 24a and 24b, a current 42 flows.
  • the electromotive force can be increased by connecting a plurality of such Seebeck elements 10 in series.
  • thermoelectric conversion device (or thermoelectric power generation device) is manufactured by joining a number of pellets of n-type thermoelectric material and p-type thermoelectric material cut by, for example, machining.
  • thermoelectric conversion device can be manufactured by attaching a substrate on which a p-type thermoelectric material is formed in a number of pellets to a substrate on which a n-type thermoelectric material is formed in a number of pellets. In these manufacturing methods, it is difficult to increase the degree of integration of Seebeck elements, and the degree of integration of Seebeck elements is, for example, about several hundred.
  • thermoelectric conversion device Since the electromotive force per Seebeck element is small, it is preferable to use a plurality of Seebeck elements connected in series. However, if the integration degree of Seebeck elements is small, the number of Seebeck elements connected in series is limited. For this reason, when trying to increase the output power of the thermoelectric conversion device, the thermoelectric conversion device is designed with priority given to the electromotive force per Seebeck element. In general, such a design that gives priority to electromotive force per unit does not have a structure optimized for output power.
  • thermoelectric conversion device by applying a microfabrication technique and a thin film formation technique based on a photolithography technique used for production of a semiconductor integrated circuit or the like.
  • a thermoelectric conversion device having desired output characteristics from the number of Seebeck elements to be integrated and the degree of freedom of the element shape and dimensions.
  • Seebeck elements having an optimized structure are integrated at a high density and on a large scale may be realized.
  • thermoelectric conversion device The structure of a thermoelectric converter using a thin film as the thermoelectric material was investigated. Comparative Example 1 is an example using a ⁇ -type Seebeck element.
  • FIG. 2A and FIG. 2B are a plan view and a cross-sectional view, respectively, of the thermoelectric conversion device according to Comparative Example 1.
  • FIG. 2A the thermoelectric thin film, the connection layer, and the electrode are illustrated.
  • FIG. 2B is a cross-sectional view taken along the line AA in FIG.
  • the arrangement direction of the thermoelectric thin films 12a and 12b is the X direction and the Y direction, and the lamination method of each layer is the Z direction.
  • thermoelectric thin films 12a and the thermoelectric thin films 12b are alternately arranged in the X direction.
  • the thermoelectric thin films 12a and 12b are, for example, n-type and p-type, respectively.
  • Adjacent thermoelectric thin films 12a and 12b are electrically and thermally connected to connection layers 14a and 14b in the -Z direction and the + Z direction, respectively.
  • One Seebeck element 10 is formed by a pair of thermoelectric thin films 12a and 12b.
  • the plurality of Seebeck elements 10 are connected in series between the electrodes 24a and 24b.
  • the connection layer 14a is thermally connected to the high temperature base portion 22a via the electrical insulating film 20 in the -Z direction.
  • the connection layer 14b is thermally connected to the low temperature base portion 22b via the electrical insulating film 20 in the + Z direction.
  • An electrical and thermal insulating layer 18 is provided between the thermoelectric thin films 12a and 12b.
  • the dimensions of the base portions 22a and 22b in the X direction and the Y direction are D, the length of one side of the square 26 including the one thermoelectric thin film 12a or 12b is d, and the dimension of one side of the thermoelectric thin film 12a or 12b in the square 26 Is the element size ⁇ d.
  • the temperature difference between the surfaces of the base portions 22a and 22b is ⁇ T
  • the film thicknesses of the thermoelectric thin films 12a and 12b are t 0
  • the thickness of the insulating film 20 t Al2 O3 the thickness of the base portion 22a and 22b and t HS.
  • thermoelectric film 12a and 12b In Comparative Example 1, heat conduction occurs in the Z direction. Therefore, the thickness t 0 of the thermoelectric film 12a and 12b is reduced (e.g. 100 nm), heat resistance is reduced, the temperature difference [Delta] T G in the Z direction of the thermoelectric film 12a and 12b (not shown) is reduced. For this reason, an electromotive force will fall. An attempt to obtain sufficient heat resistance, will be the X-direction and Y dimensions of the thermoelectric film 12a and 12b and the thickness of about t 0, the processing process is not realistic not easy.
  • Comparative Example 2 is an example using an in-plane type Seebeck element.
  • FIG. 3A and FIG. 3B are a plan view and a cross-sectional view, respectively, of the thermoelectric conversion device according to Comparative Example 2.
  • FIG. 3A shows the thermoelectric thin film, the connection layer, and the base.
  • FIG. 3B is a cross-sectional view taken along the line AA in FIG.
  • the arrangement direction and the stretching direction of the thermoelectric thin films 12a and 12b are the X direction and the Y direction, respectively, and the lamination method of each layer is the Z direction.
  • thermoelectric thin films 12a and the thermoelectric thin films 12b are alternately arranged in the X direction and extend in the Y direction.
  • the thermoelectric thin films 12a and 12b are, for example, n-type and p-type, respectively.
  • Adjacent thermoelectric thin films 12a and 12b are electrically and thermally connected to connection layers 14a and 14b in the -Y direction and the + Y direction, respectively.
  • One Seebeck element 10 is formed by a pair of thermoelectric thin films 12a and 12b.
  • the plurality of Seebeck elements 10 are connected in series between the electrodes 24a and 24b.
  • the connection layer 14a is thermally connected to the high temperature base portion 22a in the -Y direction.
  • the connection layer 14b is thermally connected to the low temperature base 22b in the + Y direction.
  • An insulating layer 18 is provided between the thermoelectric thin films 12a and 12b.
  • the length L in the Y direction in which heat conduction of the thermoelectric thin films 12a and 12b occurs can be increased.
  • temperature difference (DELTA) TG (not shown) of the Y direction of the thermoelectric thin films 12a and 12b can be enlarged.
  • the electrical resistance of the thermoelectric thin films 12a and 12b increases. Thereby, even if the electromotive force V S can be increased, the output power cannot be increased.
  • Comparative Examples 1 and 2 do not have a structure suitable for optimizing the thermal resistance and electrical resistance in a trade-off relationship and realizing high output power.
  • FIGS. 4A and 4B are a plan view and a cross-sectional view, respectively, of the thermoelectric conversion device according to the first embodiment.
  • FIG. 4A illustrates a thermoelectric thin film, a connection layer, and electrodes.
  • FIG. 4B is a cross-sectional view taken along the line AA in FIG.
  • the surface of the thermoelectric thin films 12a and 12b is the XY plane, the arrangement direction (width direction) and the stretching direction (length direction) of the thermoelectric thin films 12a and 12b are the X direction and the Y direction, respectively, and the lamination method of each layer is the Z direction. .
  • thermoelectric thin film 12a and the thermoelectric thin film 12b have a strip shape in plan view.
  • the thermoelectric thin films 12a and 12b are alternately arranged in the X direction and extend in the Y direction.
  • the thermoelectric thin films 12a and 12b are, for example, n-type and p-type, respectively.
  • Adjacent thermoelectric thin films 12a and 12b are electrically and thermally connected to connection layers 14a and 14b alternately in the X direction.
  • connection layers 14a and 14b extend in the Y direction.
  • One Seebeck element 10 is formed by a pair of thermoelectric thin films 12a and 12b.
  • the plurality of Seebeck elements 10 are connected in series between the electrodes 24a and 24b.
  • Connection layers 14a and 14b are thermally connected to heat conductive layers 16a and 16b in the ⁇ Z direction and the + Z direction, respectively.
  • the heat conductive layers 16a and 16b are thermally connected to the high temperature base portion 22a and the low temperature base portion 22b through the electrical insulating film 20, respectively.
  • Insulating layers 18a and 18b are provided between heat conductive layers 16a and 16b.
  • thermoelectric conversion device 100 in the X direction and the Y direction is D
  • the pitch of the thermoelectric thin films 12a and 12b in the X direction is d
  • the dimension of one thermoelectric thin film 12a or 12b is the element dimension ⁇ d.
  • the electromotive force V S by the Seebeck element 10 and the temperature difference between the surfaces of the base portions 22a and 22b are ⁇ T.
  • thermoelectric thin films 12a and 12b and the connection layers 14a and 14b is t 0
  • the film thickness of the heat conductive layers 16a and 16b is t Cu
  • the film thickness of the insulating film 20 is t Al2O3
  • the film thickness of the base portions 22a and 22b is t Let it be HS .
  • thermoelectric thin films 12a and 12b In such a structure, the heat flow and current directions of the thermoelectric thin films 12a and 12b are in the X direction.
  • the film thickness t 0 of the thermoelectric film 12a and 12b is reduced, the thermal resistance is reduced, in Example 1, the thermal resistance when the film thickness t 0 becomes smaller increases.
  • the electrical resistance increased as the length L in the Y direction of the thermoelectric thin films 12a and 12b increased. However, in Example 1, the electrical resistance decreased as the length L increased.
  • the thermal resistance is not too small, and without electrical resistance is too large, a trade-off using the X-direction of the element dimensions .gamma.d (or gamma) It is possible to obtain a desired output power by optimizing the related thermal resistance and electrical resistance.
  • thermoelectric material used for the thermoelectric thin films 12a and 12b can be a bismuth tellurium alloy, a full Heusler alloy, or a half Heusler alloy.
  • the bismuth tellurium-based alloy is, for example, Bi 2 Te 3-x Se x as the n-type, and Bi 2-x Sb x Te 3 as the p-type, for example.
  • the full Heusler alloy is, for example, Fe 2 VAl 1-x Ge x , Fe 2 VAl 1-x Si x or Fe 2 VTa x Al 1-x as n-type, and Fe 2 V 1-x W x as p-type, for example.
  • the half-Heusler-based alloy includes, for example, TiPtSn, (Hf 1-x Zr x ) NiSn or NbCoSn as n-type, and TiCoSn x Sb 1-x , Zr (Ni 1-x Co x ) Sn, Zr (Ni 1-x In x ) Sn, HfPtSn.
  • thermoelectric thin films 12a and 12b can be easily manufactured.
  • Si or SiGe alloy can be used as the thermoelectric material used for the thermoelectric thin films 12a and 12b.
  • connection layers 14a and 14b are preferably made of a material having a high electrical conductivity and thermal conductivity.
  • a metal layer such as Cu, Al, Au, or Ag can be used.
  • the connection layers 14a and 14b may be made of different materials.
  • the heat conductive layers 16a and 16b a material having a high thermal conductivity is preferable, and for example, a metal layer such as Cu, Al, Au, or Ag can be used.
  • the heat conductive layers 16a and 16b may be insulator layers as long as the heat conductivity is large.
  • the heat conductive layers 16a and 16b may be made of different materials.
  • the connection layers 14a and 14b and the heat conductive layers 16a and 16b may be made of different materials.
  • the insulating layers 18a and 18b As the insulating layers 18a and 18b (insulator), a material having a high insulating property and a thermal conductivity sufficiently smaller than those of the heat conductive layers 16a and 16b is preferable.
  • an inorganic insulator such as silicon oxide or a porous material thereof, alkyl group-containing silica or similar oxide and insulator, resin (for example, acrylic resin, epoxy resin, vinyl chloride resin, silicone) Insulators such as resin, fluororesin, phenol resin, bakelite resin, polyethylene resin, polycarbonate resin, polystyrene resin, polypropylene resin) or rubber (natural rubber, ethylene propylene rubber, chloroprene rubber, silicon rubber, butyl rubber or polyurethane rubber), An insulating gas such as nitrogen or air, or a vacuum can be used.
  • the insulating layers 18a and 18b can be formed using a CVD (Chemical Vapor Deposition) method, a sputtering method, or
  • the insulating film 20 is preferably made of a material having high insulating properties and high thermal conductivity.
  • an inorganic insulator such as aluminum oxide can be used.
  • the insulating film 20 may not be provided, but is preferably provided for insulation when the heat conductive layers 16a and 16b and the base portions 22a and 22b are conductors.
  • the base portions 22a and 22b are preferably made of a material having a high thermal conductivity.
  • a metal such as Cu, Al, Au, or Ag, or a ceramic such as Si or alumina can be used.
  • the insulating film 20 may be formed on the base portions 22a and 22b by sputtering or CVD. When the base portions 22a and 22b are electrical insulators, the insulating film 20 may not be used.
  • At least one of the base portions 22a and 22b can be formed using a sputtering method or a CVD method. Thereby, base 22a and 22b can be thinned. At least one of the base portions 22a and 22b can be formed by a plating method.
  • base 22a and 22b can be made into a film
  • a coating film by spin coating or the like can be used.
  • a structure for example, fin structure or heat sink structure
  • a material for example, a heat dissipation sheet, a heat dissipation material including a volatile material or a heat absorption material having high heat exchange characteristics and heat dissipation characteristics, or Al having an anodized surface, etc.
  • thermoelectric thin films 12a and 12b were used for Comparative Example 1 and Example 1, simulation was performed to optimize the thermal resistance and electrical resistance in a trade-off relationship.
  • the simulation was performed assuming a lumped constant circuit using the thermal conductivity, electrical conductivity, and Seebeck coefficient of each material.
  • the dimensions D ⁇ D of the bases 22a and 22b, the temperature difference ⁇ T between the bases 22a and 22b, the electromotive force V S by the Seebeck element, the film thickness t 0 of the thermoelectric thin films 12a and 12b, and the trade-off parameter ⁇ are set. The other dimensions were calculated.
  • Thermoelectric thin film 12a n-type Fe 2 VAl 1-x Ta x
  • Thermoelectric thin film 12b p-type Fe 2 V 1-x Ti x Ga
  • Connection layers 14a, 14b Cu
  • Thermal conductive layers 16a, 16b Cu
  • Insulating layer 18 SiO 2 Insulating film 20: Al 2 O 3
  • film thickness t Al2O3 100 nm
  • Base 22a, 22b Cu
  • film thickness t HS 1 mm D x D: 10 mm x 10 mm ⁇ T: 1K
  • FIGS. 5A to 5C are diagrams showing simulation results of the element pair number m 0 , the element size ⁇ d, and the output power P OUT with respect to ⁇ in Comparative Example 1, respectively.
  • Element logarithm m 0 Seebeck elements are a pair of the number of thermoelectric films 12a and 12b.
  • the element size ⁇ d is the width of each thermoelectric thin film 12a and 12b in the X direction.
  • the output power P OUT is the maximum output power of the thermoelectric conversion device of the thermoelectric conversion device obtained by adjusting the load resistance.
  • the temperature difference ⁇ T is optimized so as to always be 1K. In actual design, optimization is performed in consideration of the amount of heat input.
  • the number of element pairs m 0 increases as ⁇ increases. This is because the thermal resistance between the base portions 22a and 22b decreases as the trade-off parameter ⁇ increases. For this reason, the electromotive force per Seebeck element 10 is reduced, and the number of series connection of Seebeck elements 10 is increased in order to secure the electromotive force V S.
  • ⁇ d increases as ⁇ increases.
  • ⁇ 2 is the area ratio of the thermoelectric thin films 12a and 12b in D ⁇ D.
  • ⁇ d is a dimensional ratio of the thermoelectric thin films 12a and 12b to d.
  • the output power P OUT is about 11 ⁇ W and peaks when ⁇ is about 0.12. From FIG. 5A and FIG. 5B, the element logarithm m 0 and the element size ⁇ d at which the output power P OUT peaks are obtained.
  • thermoelectric thin films 12a and 12b were changed from 10 nm to 10000 nm, and the element logarithm m 0 and the element size ⁇ d that maximized the output power P OUT were calculated.
  • P OUT represents the maximum value of output power. In FIGS. 6A and 6B, the output power is indicated as P out . The same applies to the following figures.
  • the output power P OUT decreases as the film thickness t 0 decreases.
  • the film thickness to which a fine processing technique such as a normal dry etching method and a thin film forming technique such as a sputtering method or a CVD method can be applied is about 1000 nm or less, preferably about 100 nm. In this range, the output power P OUT becomes very small.
  • FIG. 7 is a diagram illustrating simulation results of P OUT , m 0 , ⁇ d, (1- ⁇ ) d, and t Cu with respect to V S in Comparative Example 1.
  • the film thickness t 0 is set to 100nm. As shown in FIG. 7, when V S becomes smaller, P OUT becomes smaller.
  • FIG. 8A to FIG. 8C are diagrams illustrating simulation results of m 0 , ⁇ d, and P OUT for ⁇ in Example 1, respectively. As shown in FIGS. 8A and 8B, there is no solution when ⁇ ⁇ 0.5. For 0.5 ⁇ , two solutions are obtained.
  • a solution having a large electromotive force per Seebeck element and a small number of elements (solid line) and a solution having a small electromotive force per Seebeck element and a large number of elements (dotted line).
  • a solution (solid line) with a small number of elements was adopted from the viewpoint of ease of element fabrication.
  • thermoelectric film 12a and 12b when the electromotive force V S is 100 mV, the thickness t 0 of the thermoelectric film 12a and 12b is changed from 10nm to 200 nm, output power P OUT element logarithmic m 0 and element dimensions ⁇ d and becomes maximum (1- ⁇ ) d was calculated.
  • FIG. 9 is a diagram illustrating simulation results of P OUT , m 0 , ⁇ d, (1- ⁇ ) d, and t Cu with respect to t 0 in Example 1.
  • the output power P OUT is 250 ⁇ W or more even when the film thickness t 0 is 200 nm or less.
  • P OUT hardly depends on the film thickness t 0 .
  • FIG. 10 is a diagram illustrating simulation results of P OUT , m 0 , ⁇ d, (1- ⁇ ) d, and t Cu with respect to V S in Example 1.
  • the film thickness t 0 is set to 100nm.
  • P OUT is large even when V S is small. Even if V S is 100 mV or less, 250 ⁇ W can be realized as P OUT .
  • thermoelectric material having a larger Seebeck coefficient is used as the thermoelectric material used for the thermoelectric thin films 12a and 12b.
  • the insulating layers 18a and 18b are made of a material having a lower thermal conductivity than SiO 2 such as resin. Furthermore, the output power P OUT can be further improved by thinning the base portions 22a and 22b.
  • thermoelectric thin film 12a first thermoelectric thin film
  • thermoelectric thin film 12b second thermoelectric thin film
  • Thermoelectric thin films 12a and 12b have opposite conductivity types.
  • the connection layers 14a (first connection layer) and 14b (second connection layer) are electrically and thermally connected to the thermoelectric thin films 12a and 12b between the thermoelectric thin films 12a and 12b, and are alternately provided in the X direction.
  • the heat conductive layers 16a and 16b are thermally connected to the connection layers 14a and 14b, respectively, and extend in the Z direction (second direction intersecting the XY plane).
  • the heat conductive layers 16a and 16b are provided on the opposite sides to the surfaces of the thermoelectric thin films 12a and 12b. That is, the heat conductive layer 16a is thermally connected to the connection layer 14a and extends in the ⁇ Z direction (second direction intersecting the XY plane). The heat conductive layer 16b is thermally connected to the connection layer 14b and extends in the + Z direction (the direction opposite to the second direction). Thereby, the temperature difference of the X direction of the thermoelectric thin films 12a and 12b generate
  • the heat conductive layers 16a and 16b may be provided on the same side with respect to the surfaces of the thermoelectric thin films 12a and 12b by forming the base portions 22a and 22b in a comb shape.
  • the film thickness t 0 of the thermoelectric thin films 12a and 12b is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the film thickness t 0 of the thermoelectric thin films 12a and 12b that can be formed by using a semiconductor integrated circuit manufacturing technique capable of increasing the degree of freedom of shape and size is 1 ⁇ m or less. Even in the case where the film thickness t 0 is 1 ⁇ m or less, the output power P OUT can be increased in Example 1 as compared with Comparative Example 1.
  • the film thickness t 0 is preferably 500 nm or less, and more preferably 200 nm or less.
  • the insulating layers 18a and 18b penetrate the heat conductive layers 16a and 16b and have a lower thermal conductivity than the heat conductive layers 16a and 16b.
  • the insulating layers 18a (first insulator) and 18b (second insulator) are disposed on the ⁇ Z direction side of the thermoelectric thin films 12a and 12b and
  • the heat conductive layers 16a and 16b penetrate through the + Z direction side, respectively, and have a lower thermal conductivity than the heat conductive layers 16a and 16b.
  • the thermal resistance of the portion other than the heat conductive layers 16a and 16b between the base portions 22a and 22b can be increased.
  • thermoelectric thin films 12a and 12b extend in the Y direction (a third direction that is parallel to the surface and intersects the first direction). Thereby, the electrical resistance of the X direction of the thermoelectric thin films 12a and 12b can be made small. Length in the Y direction of the thermoelectric film 12a and 12b is preferably 10 times or more the thickness t 0, and more preferably at least 100-fold, more preferably 1000 times or more.
  • Thermoelectric films 12a and 12b .gamma.d (X direction width) is greater than the thickness t 0 of the thermoelectric film 12a and 12b. Thereby, the thermal resistance of the X direction of the thermoelectric thin films 12a and 12b can be enlarged.
  • the element size ⁇ d is preferably 2 times or more of the film thickness t 0 , and more preferably 10 times or more.
  • FIG. 11A and FIG. 11B are cross-sectional views of the thermoelectric conversion device according to the first modification of the first embodiment.
  • the X-direction width of the heat conductive layers 16a and 16b may be larger than the X-direction width of the connection layers 14a and 14b.
  • the width in the X direction of the heat conductive layers 16a and 16b may be smaller than that of the connection layers 14a and 14b.
  • Other configurations are the same as those of the first embodiment, and the description thereof is omitted.
  • FIG. 12 is a plan view of the thermoelectric conversion device according to the second modification of the first embodiment.
  • a plurality of modules 30 are provided in the Y direction.
  • Each module 30 includes a Seebeck element 10 arranged in the X direction between the electrodes 24a and 24b.
  • the modules 30 are electrically and thermally separated by the insulating layer 18.
  • the modules 30 can be connected in series, connected in parallel, or combined electrically in series and parallel.
  • the internal resistance of the wiring can be reduced.
  • Other configurations are the same as those of the first embodiment, and the description thereof is omitted.
  • FIG. 13A and FIG. 13B are a cross-sectional view and a plan view of the thermoelectric conversion device according to the third modification of the first embodiment.
  • a groove 28a is formed in the base portion 22a and the insulating layer 18a
  • a groove 28b is formed in the base portion 22b and the insulating layer 18b.
  • the insulating layers 18a and 18b are solid.
  • the grooves 28a and 28b are a gas such as air or a vacuum and have a higher thermal conductivity than the insulating layers 18a and 18b.
  • the base portion 22b is provided with a plurality of grooves 28b.
  • the base portion 22a is provided with a plurality of grooves 28a.
  • the grooves 28b are arranged in the X direction and the Y direction.
  • the strength of the thermoelectric conversion device can be increased by dividing the groove 28b.
  • the groove 28b may be provided so as to extend in the Y direction.
  • Other configurations are the same as those of the first embodiment, and the description thereof is omitted.
  • the base 22a and the insulating layer 18a have the groove 28a (first groove) between the heat conductive layers 16a.
  • the base 22b and the insulating layer 18b have a groove 28b (second groove) between the heat conductive layers 16a.
  • the insulating layers 18a and 18b may all be removed to form the grooves 28a and 28b.
  • FIG. 14A is a cross-sectional view of the thermoelectric conversion device according to the fourth modification of the first embodiment. As shown in FIG. 14A, the positions of the thermoelectric thin films 12a and 12b in the Z direction are not the same. Other configurations are the same as those of the first embodiment, and the description thereof is omitted. Depending on the manufacturing method of the thermoelectric thin films 12a and 12b, the thermoelectric thin films 12a and 12b may not be located on the same XY plane.
  • FIG. 14B is another example of the fourth modification of the first embodiment.
  • the connection layers 14a and 14b may be in contact with the thermoelectric thin film 12a in the + Z direction and in contact with the thermoelectric thin film 12b in the -Z direction.
  • the heat conductive layer 16a may be thermally connected to the connection layers 14a and 14b via the thermoelectric thin film 12b, and the heat conductive layer 16b may be thermally connected to the connection layers 14a and 14b via the thermoelectric thin film 12a.
  • the X direction width of the heat conductive layers 16a and 16b may be larger than the X direction width of the connection layers 14a and 14b.
  • the X direction width of the heat conductive layers 16a and 16b may be smaller than that of the connection layers 14a and 14b.
  • the thermoelectric thin film 12b, the connection layers 14a and 14b, and the thermoelectric thin film 12a are laminated in the Z direction, the thermoelectric thin films 12a and 12b and the connection layers 14a and 14b can be easily contacted.
  • FIG. 14C is a cross-sectional view of the thermoelectric conversion device according to the fifth modification of the first embodiment.
  • a plurality of layers 48 are stacked with the insulating film 20 between the base portions 22a and 22b.
  • Each layer 48 includes the thermoelectric thin films 12a and 12b, the connection layers 14a and 14b, the heat conductive layers 16a and 16b, and the insulating layers 18a and 18b of the fourth modification of the first embodiment.
  • the insulating film 20 is an electrical insulator and has high thermal conductivity. Other configurations are the same as those in the first embodiment, and a description thereof will be omitted.
  • the heat conductive layer 16a included in one of the adjacent layers among the plurality of layers 48 and the heat conductive layer 16b included in the other of the adjacent layers 48 are electrically Thermally connected through the insulating film 20.
  • the plurality of layers 48 can be thermally connected in series between the base portions 22a and 22b. Thereby, heat can be efficiently converted into electric power.
  • the Seebeck element of the first embodiment and the first to third modifications thereof may be stacked as in the fifth modification of the first embodiment.
  • thermoelectric conversion device can be used as a power source for a wearable device, a microcontroller, or a sensor.
  • a thermoelectric conversion device is worn on the body.
  • the thermoelectric conversion apparatus can generate electric power using heat radiation from the body, and supply the generated electric power to the wearable device or sensor.
  • the thermoelectric converter can be used for power generation by exhaust heat (heat from exhaust gas) from a car engine.
  • FIG. 15A and FIG. 15B are cross-sectional views of an electronic device using the thermoelectric conversion device according to the sixth modification of the first embodiment.
  • an integrated circuit element 52 is mounted on a substrate 58 such as a printed circuit board.
  • the integrated circuit element 52 is, for example, a microprocessor or a SoC (System on a Chip).
  • a heat conducting member 56, a thermoelectric conversion device 51, a heat conducting member 56, and a heat radiating member 54 are provided on the integrated circuit element 52.
  • the thermoelectric conversion device 51 uses the thermoelectric conversion device according to the first embodiment and its modification as a Peltier element.
  • the heat conducting member 56 is a metal layer that takes thermal contact, such as copper or indium.
  • the heat radiating member 54 is, for example, a heat radiating fin.
  • the materials exemplified in the second embodiment may be used for the heat conducting member 56 and the heat radiating member 54.
  • the thermoelectric conversion device 51 may be directly mounted on the integrated circuit element 52.
  • the integrated circuit element 52 can be cooled by applying power to the thermoelectric conversion device 51 that is a Peltier element.
  • the thermoelectric conversion device 51 may be mounted between the integrated circuit element 52 and the heat radiating member 54 via a heat conducting member 56.
  • the thermoelectric conversion device 51 may be directly integrated on the integrated circuit element 52 using a semiconductor process. In this case, it is also possible to integrate the thermoelectric conversion device 51 directly above the portion where the rise in heat on the integrated circuit element 52 is particularly high. Accordingly, the problem of heat dissipation in the integrated circuit element 52 can be solved by forcibly cooling the integrated circuit element 52.
  • Example 2 is an example of an electronic device having a thermoelectric conversion device.
  • FIG. 16 is a cross-sectional view of the electronic device according to the second embodiment. As shown in FIG. 16, in the electronic device 105, the power generation device 50 is provided between the integrated circuit element 52 and the heat dissipation member 54. The integrated circuit element 52 is mounted on the substrate 58. The power generation device 50 and the integrated circuit element 52 are thermally connected via a heat conducting member 56.
  • the power generation device 50 includes, for example, thermoelectric conversion devices according to comparative example 1, comparative example 2, example 1, and modifications thereof.
  • One of the connection layers 14a and 14b in the thermoelectric conversion device is thermally connected to the heat conducting member 56 through one of the base portions 22a and 22b.
  • the other of the connection layers 14a and 14b is thermally connected to the heat dissipation member 54 via the other of the base portions 22a and 22b.
  • the integrated circuit element 52 is a chip on which an integrated circuit such as SoC (System on chip) is formed or a package on which the integrated circuit chip is mounted.
  • the integrated circuit element 52 may be a microprocessor or the like.
  • substrate 58 is a printed circuit board, for example.
  • the heat conductive member 56 is preferably made of a material having a high heat conductivity. For example, a metal such as Cu, Al, Au, or Ag, ceramics, or a high heat conductive silicone resin can be used.
  • the base portions 22 a and 22 b of the thermoelectric conversion device may be directly brought into contact with the integrated circuit element 52 without providing the heat conducting member 56.
  • the heat radiating member 54 is, for example, a housing of an electronic device, a heat radiating plate subjected to anodizing, a heat radiating fin, or a heat radiating fan.
  • the power generation device 50 may be a ⁇ -type thermoelectric conversion device and other thermoelectric conversion devices.
  • the power generation device 50 includes thermoelectric thin films (thermoelectric materials) 12a and 12b provided between the connection layers 14a and 14b, and the connection layer 14a. 14b and thermoelectric conversion devices connected in series alternately.
  • One of the connection layers 14 a and 14 b is thermally connected to the integrated circuit element 52, and the other of the connection layers 14 a and 14 b is connected to the heat dissipation member 54.
  • Example 1 the output power of the power generation device 50 can be increased.
  • FIG. 17 is a block diagram of an electronic device according to the first modification of the second embodiment.
  • the electronic device 106 includes a control circuit 60 and a power storage device 62 in addition to the electronic device 105 according to the second embodiment.
  • the power storage device 62 is, for example, a secondary battery.
  • External power 70 is supplied to the control circuit 60.
  • the control circuit 60 supplies power 71 to the integrated circuit element 52.
  • the control circuit 60 may supply electric power 71 having a plurality of voltages to the integrated circuit element 52 corresponding to the power supply voltage of the integrated circuit element 52.
  • the heat 80 generated in the integrated circuit element 52 is conducted or transmitted to the power generation device 50.
  • the power generation device 50 a part of heat is converted into electric power 72.
  • the remaining heat 81 is conducted or transmitted to the heat dissipation member 54.
  • Heat 82 is released from the heat dissipation member 54.
  • Electric power 72 generated by the power generation device 50 is output to the control circuit 60.
  • the control circuit 60 supplies the power 72 generated by the power generation device 50 to the power storage device 62 or the integrated circuit element 52.
  • the power storage device 62 stores the electric power 73 supplied from the control circuit 60.
  • the power storage device 62 supplies power 74 to the control circuit 60.
  • the control circuit 60 supplies the electric power 74 supplied from the power storage device 62 to the integrated circuit element 52 as electric power 71.
  • the control circuit 60 selects, for example, a charging mode and an operation assist mode.
  • the control circuit 60 mainly uses the power 72 generated by the power generation device 50 for charging the power storage device 62.
  • the external power 70 is mainly used.
  • the charging mode the power consumption speed of the power storage device 62 can be reduced.
  • the charging time of the power storage device 62 can be shortened as compared with the case where the power storage device 62 is charged only by an external power source.
  • the control circuit 60 supplies the integrated circuit element 52 with the power 72 generated by the power generation device 50 and / or the power 74 discharged by the power storage device 62 in addition to the external power 70.
  • the operation assist mode as compared with the case where the operation assist mode such as the charging mode is not used, if the operation speed of the integrated circuit element 52 is the same, the consumption of the external power 70 can be suppressed (that is, the power consumption is reduced). If the external power 70 is the same, the integrated circuit element 52 can be operated at a higher speed (that is, voltage boosted by thermoelectric power generation).
  • the energy collected from the thermoelectric conversion device can hold data in the memory in the integrated circuit when the integrated circuit enters the sleep state. For this data retention, the operation assist mode and energy from the battery can also be used.
  • the power storage device 62 stores the power generated by the power generation device 50 and supplies the stored power to the integrated circuit element 52. Thereby, low power consumption and / or high-speed operation are possible.
  • FIG. 18 is a block diagram of a power system according to a second modification of the second embodiment.
  • the power system 108 includes a control circuit 60 and a power recovery device 64 in addition to the electronic device 105.
  • the control circuit 60 supplies external power 70 to the integrated circuit element 52.
  • the power recovery device 64 recovers the electric power 72 generated by the power generation device 50 in the plurality of electronic devices 105.
  • the power recovery device 64 supplies power 75, which is a collection of the recovered power 72, to the outside.
  • thermoelectric conversion device in Example 1 was simulated using a constant temperature animal model for the skin temperature of the human body.
  • FIG. 19A and FIG. 19B are diagrams showing a simulation model.
  • FIG. 19A and FIG. 19B show a constant heat flow model and a constant temperature difference model, respectively.
  • the constant heat flow corresponds to a constant current source model if expressed by an equivalent electric circuit
  • the constant temperature difference corresponds to a constant voltage source model if expressed by an equivalent electric circuit.
  • a constant current source model is generally used for performance evaluation of thermoelectric converters.
  • thermal resistances k M and k air are connected in series.
  • k M and k air correspond to the thermal resistance of the thermoelectric converter and the thermal resistance between the thermoelectric converter and the atmosphere, respectively.
  • Thermal resistance k M and k air to the series constant current source 66 i.e. Teinetsu flow source
  • the constant current source model and constant heat flow through the k M and k air constant current source 66 is a power Q was placed on one end of the heat resistance k M.
  • the power Q corresponds to the power input from the human skin to the thermoelectric converter.
  • the constant current source model, the temperature of the skin surface which depends on the thermal resistance k M. This cannot express the human body which is a constant temperature animal.
  • the thermal resistance k M when the thermal resistance k M is large, it will put a large power Q for the heat flow constant.
  • the power input from the human body is limited, and the constant current source model is not appropriate as a simulation model of a power source for wearable devices.
  • the thermal resistance k M and k air in series the constant voltage source 68 (i.e. constant temperature difference source) is provided.
  • the constant voltage source 68 keeps the temperature difference ⁇ T S applied to the thermal resistances k M and k air constant.
  • the temperature difference ⁇ T applied to both sides of the thermoelectric converter varies depending on the thermal resistances k M and k air , but the skin surface temperature can be kept constant.
  • Example 1 The structure of Example 1 is shown in FIGS. 4 (a) and 4 (b), and the structure of Comparative Example 1 is shown in FIGS. 2 (a) and 2 (b).
  • the simulation conditions are shown below.
  • Atmospheric thermal resistance k air 212.5 K / W
  • Thermoelectric thin films 12a and 12b Seebeck coefficient S S p ⁇ S n : 434 ⁇ V / K
  • Thermal conductivity ⁇ ( ⁇ p + ⁇ n ) /2:1.43 Wm ⁇ 1 K ⁇ 1
  • Electrical resistivity ⁇ ( ⁇ p + ⁇ n ) / 2: 8.11 ⁇ m
  • Connection layers 14a and 14b Cu Film thickness t Cu : 10 ⁇ m (Example 1), ⁇ 10 ⁇ m (Comparative Example 1)
  • Thermal conductivity ⁇ Cu 386 Wm ⁇ 1 K ⁇ 1
  • Electrical resistivity ⁇ Cu 1.69 ⁇ 10 ⁇ 8 ⁇ m
  • Insulating layer 18 Vacuum D
  • the temperature difference ⁇ T S between the skin surface temperature and the outside air temperature is constant at 10K. This corresponds to a case where the body temperature is 35 ° C. and the air temperature is 25 ° C., for example.
  • the heat resistance k air for heat dissipation by convection and radiation from the base of the thermoelectric converter was kept constant at 212.5 K / W regardless of temperature.
  • Example 1 was simulated using a constant temperature animal model. Similar to the simulation of ⁇ T is constant, the output power P OUT tradeoff parameter is maximum ⁇ and the output power P OUT is optimized device logarithmic m 0 to the maximum.
  • 20A and 20B are diagrams showing simulation results of ⁇ d, (1- ⁇ ) d, ⁇ T, ⁇ T, V S and P OUT for ⁇ and m 0 in Example 1, respectively.
  • ⁇ T is a temperature difference between both ends of each of the thermoelectric thin films 12a and 12b.
  • Other parameters are the same as in the simulation with ⁇ T constant.
  • P OUT changes.
  • ⁇ that maximizes P OUT is an optimized ⁇ .
  • P OUT does not have a peak with respect to ⁇
  • ⁇ that maximizes P OUT within the range of ⁇ d ⁇ 1 ⁇ m and (1- ⁇ ) d ⁇ 1 ⁇ m was determined as an optimized ⁇ .
  • FIG. 21 is a diagram illustrating simulation results of ⁇ d, (1 ⁇ ) d, ⁇ T, ⁇ T, V S and P OUT with respect to t 0 in Example 1.
  • m 0 is optimized at every t 0 by the method of FIG. As shown in FIG. 21, P OUT is 100 ⁇ W or more when the film thickness t 0 is 300 nm or less.
  • FIG. 22 is a diagram illustrating simulation results of ⁇ d, (1- ⁇ ) d, ⁇ T, ⁇ T, V S and P OUT with respect to t 0 in Comparative Example 1.
  • the minimum values of ⁇ d and (1- ⁇ ) d are limited to 1 ⁇ m.
  • P OUT decreases as the film thickness t 0 decreases. When the film thickness t 0 is 1000 nm or less, P OUT is 100 ⁇ W or less.
  • Example 1 the output power P OUT hardly depends on the film thickness t 0 .
  • Comparative Example 1 the output power P OUT decreases as the film thickness t 0 decreases.
  • Example 1 the reason why the output power P OUT can be increased even if the film thickness t 0 of the thermoelectric thin films 12a and 12b is made smaller than that in Comparative Example 1 will be described.
  • FIG. 23A and FIG. 23B are schematic cross-sectional views of thermoelectric conversion devices according to Comparative Example 1 and Example 1, respectively.
  • the direction of the temperature difference ⁇ T is the Z direction in both Comparative Example 1 and Example 1.
  • the direction of heat flow of the thermoelectric thin films 12a and 12b is the same Z direction as the temperature difference ⁇ T.
  • the direction in which the heat flow of the thermoelectric thin films 12a and 12b flows is the X direction that intersects the temperature difference ⁇ T.
  • Example 1 as shown in FIG. 23 (b), the thermal resistance k of the reduced thickness t 0 of the thermoelectric film 12a and 12b for the thinning of the thermoelectric film 12a and 12b thermoelectric films 12a and 12b is increased. Accordingly, as shown in FIG. 21, the temperature difference ⁇ T generated in the entire thermoelectric conversion device is large, and the temperature difference ⁇ T and the temperature difference ⁇ T between both ends of each of the thermoelectric thin films 12a and 12b are almost the same. As a result, the output power P OUT does not decrease even when the film thickness t 0 decreases.
  • FIG. 24 is a diagram illustrating the current I and the output power P OUT with respect to the output voltage V out in the first embodiment.
  • the film thickness t 0 is set to 100 nm, and the area S on the XY plane is changed from 20 cm 2 to 120 cm 2 in 20 cm 2 steps.
  • the maximum value of the output power P OUT is the output power when the output is impedance matched. As shown in FIG. 24, the output power P OUT peaks when the output voltage V out is 1V.
  • the mounting area is about 100 cm 2 . Even if the area S is about 100 cm 2 , an output power P OUT of about 10 mW can be obtained, which can be sufficiently applied to a healthcare device or a wearable device including short / medium distance communication.
  • FIG. 25 is a diagram showing simulation results of ⁇ d, (1- ⁇ ) d, ⁇ T, ⁇ T, V S and P OUT with respect to the minimum dimension in Comparative Example 1.
  • the minimum dimension corresponds to d.
  • the film thickness t 0 was set to 100nm.
  • Comparative Example 1 when the minimum dimension is reduced, the temperature difference ⁇ T of the entire thermoelectric conversion device is increased, and the temperature difference ⁇ T generated in the thermoelectric material is reduced from the difference with ⁇ T. As a result, the difference between the temperature differences ⁇ T and ⁇ T decreases, and the output power P OUT increases.
  • the output power P OUT is 20 ⁇ W or more.
  • the minimum dimension is 100 nm or less, the temperature differences ⁇ T and ⁇ T are substantially the same, and the output power P OUT is 100 ⁇ W or more.
  • the output power P OUT can be improved by reducing the minimum dimension.
  • the minimum dimension is made smaller than the micron order (for example, 1 ⁇ m)
  • the cost for fine processing increases.
  • the output power P OUT can be increased even when the minimum dimension is 1 ⁇ m or more, and high output power can be realized at low cost.
  • thermoelectric thin films 12a and 12b are arranged in the surface direction of the base portions 22a and 22b.
  • the connection layers 14a and 14b are thermally connected to the base portions 22a and 22b, respectively, and are alternately and thermally connected to the thermoelectric thin films 12a and 12b in the direction intersecting the plane direction (Z direction).
  • the output power can be reduced by setting the pitch (period: for example, the dimension ⁇ d and / or (1- ⁇ ) d) of the thermoelectric thin films 12a and 12b to 1 ⁇ m or less.
  • P OUT can be increased.
  • thermoelectric thin films 12a and 12b The size of the thermoelectric thin films 12a and 12b is preferably 0.5 ⁇ m or less, and more preferably 0.1 ⁇ m or less.
  • thermoelectric film 12a and 12b thickness t 0 of, preferably 10 ⁇ m or less, more preferably 5 [mu] m.
  • the film thickness of the thermoelectric thin films 12a and 12b formed by using a semiconductor integrated circuit manufacturing technique is preferably 1 ⁇ m or less, more preferably 500 nm or less, and further preferably 200 nm or less. As shown in FIG. 25, the output power P OUT can be increased even when the film thickness t0 is 100 nm.
  • FIG. 26 (a) is a plan view of the thermoelectric conversion device according to the fourth embodiment
  • FIG. 26 (b) is a cross-sectional view taken along the line AA of FIG. 26 (a).
  • FIG. 26A shows the base portions 22 a and 22 b and the thermoelectric conversion unit 44.
  • a thermoelectric conversion unit 44 is provided between the base portions 22a and 22b.
  • the thermoelectric conversion unit 44 includes the thermoelectric thin films 12a and 12b, the connection layers 14a and 14b, and the insulating layer 18 as in FIGS. 2A and 2B of the first comparative example.
  • the area of the thermoelectric conversion unit 44 is made smaller than the base portions 22a and 22b in plan view.
  • a thermal insulator 46 is provided at a portion other than the thermoelectric conversion unit 44 between the base portions 22a and 22b.
  • the thermal insulator 46 has a lower thermal conductivity than the thermoelectric thin films 12a and 12b, the connection layers 14a and 14b, and the base portions 22a and 22b.
  • the thermal insulator 46 is an electrical and thermal insulator.
  • the sizes of the bases 22a and 22b are D0 ⁇ D0, and the size of the thermoelectric conversion unit 44 is D ⁇ D.
  • Example 4 it simulated using the thermostat animal model.
  • D0 1 cm
  • t 0 100 nm
  • ⁇ T S was 10 K
  • the thermal insulator 46 and the insulating layer 18 were evacuated
  • Optimization was performed with ⁇ and m 0 .
  • FIG. 27 is a diagram illustrating simulation results of ⁇ d, (1- ⁇ ) d, ⁇ T, ⁇ T, V S and P OUT with respect to D in Example 4.
  • the output power P OUT increases as D decreases.
  • the thermoelectric conversion unit 44 is a ⁇ type, if the thermoelectric thin films 12a and 12b are uniformly dispersed in the region of D0 ⁇ D0, the connection layers 14a and 14b that electrically connect the thermoelectric thin films 12a and 12b become longer, Impedance increases. If the thermoelectric thin films 12a and 12b are housed in a narrow D ⁇ D range as in the fourth embodiment, the connection layers 14a and 14b are shortened, and the internal impedance can be reduced.
  • FIG. 28A is a plan view of a thermoelectric conversion device according to Modification 1 of Embodiment 4, and FIG. 28B is a cross-sectional view taken along line AA of FIG. FIG. 28A shows the base portions 22 a and 22 b and the thermoelectric conversion unit 44.
  • the thermoelectric conversion unit 44 includes the thermoelectric thin films 12a and 12b, the connection layer 14a, the same as FIGS. 14b, having a heat conductive layer and an insulating layer.
  • the area of the thermoelectric conversion unit 44 is made smaller than the base portions 22a and 22b in plan view.
  • the thermal insulator 46 has a lower thermal conductivity than the thermoelectric thin films 12a and 12b, the connection layers 14a and 14b, and the base portions 22a and 22b.
  • the sizes of the base portions 22a and 22b are D ⁇ D, and the length of the thermoelectric conversion unit 44 is L.
  • FIG. 29A is a diagram showing a simulation result of t Cu , ⁇ d, m 0 , V S and P OUT with respect to L in Modification 1 of Example 4, and FIG. 29B is a diagram showing L, ⁇ d with respect to t Cu . , M 0 , V S and P OUT are diagrams illustrating simulation results.
  • the insulating layers 18a and 18b and the thermal insulator 46 in the thermoelectric conversion unit 44 are made of porous silicon. As shown in FIG. 29A, when the thermal insulator 46 is porous silicon, the output power P OUT increases as L decreases. In this example, when L is about 30 ⁇ m, the output power P OUT is maximized. As shown in FIG.
  • FIG. 30 is a diagram showing simulation results of L, ⁇ d, m 0 , V S and P OUT with respect to t Cu when the thermal insulator 46 is vacuum.
  • the insulating layers 18a and 18b in the thermoelectric conversion unit 44 are made of porous silicon.
  • the output power P OUT decreases as L and t Cu decrease.
  • L and t Cu are about 0.1 ⁇ m
  • the output power P OUT is about 100 ⁇ W.
  • the output power P OUT increases. Since the heat flow through the thermal insulator 46 hardly flows, the output power P OUT can be increased even if t Cu is thin.
  • FIG. 31 is a cross-sectional view of the thermoelectric conversion device according to the second modification of the fourth embodiment. As shown in FIG. 31, a holding wall 47 for holding a space between the base portions 22a and 22b in a vacuum 46a is provided. Other configurations are the same as those of the fourth embodiment and the first modification thereof, and the description thereof is omitted.
  • the base 22a (first base) is thermally connected to the surface of a living body of a thermostat animal such as a human body.
  • the base 22b (second base) is thermally connected to the atmosphere (air).
  • the thermoelectric conversion unit 44 (thermoelectric conversion unit) is provided between the base portions 22a and 22b.
  • the thermal insulator 46 is provided between the base portion 22a and the base portion 22b and outside the thermoelectric conversion unit 44, and has a thermal conductivity smaller than that of the thermoelectric thin films 12a and 12b, the base portion 22a, and the base portion 22b. Thereby, the output power P OUT can be improved as in the simulation results of FIG. 27 and FIG. 29A to FIG.
  • the thermal insulator 46 may completely surround the thermoelectric conversion unit 44 in a plan view as shown in FIG.
  • the thermal insulator 46 may be provided only on both sides of the thermoelectric conversion unit 44 in plan view as shown in FIG. 28A of the first modification of the fourth embodiment.
  • the thermal insulator 46 may be provided only on one side of the thermoelectric conversion unit 44.
  • the width in the X direction of the thermoelectric conversion unit 44 may be smaller than D. That is, at least one of the thermoelectric conversion units 44 in the ⁇ X direction may be provided with the thermal insulator 46.
  • the area of the thermoelectric conversion unit 44 is preferably 1/10 or less, more preferably 1/100 or less, of the areas of the base portions 22a and 22b in plan view.
  • the thermal insulator 46 the material of the insulating layers 18a and 18b exemplified in the first embodiment can be used.
  • the thermal insulator 46 may be a solid layer such as porous silicon.
  • the porous silicon for example, porous silicon using high-resistance silicon or porous silicon that is electrically and thermally insulated by oxidation or the like can be used. Thereby, base 22a and 22b can be reinforced.
  • a porous layer such as porous silica other than porous silicon can be used.
  • the thermal insulator 46 is a gas layer or vacuum having a pressure lower than atmospheric pressure, and the holding wall 47 (holding portion) holds the vacuum. Thereby, the thermal conductivity of the thermal insulator 46 can be reduced as compared with the case where the thermal insulator 46 is a solid layer. Therefore, the output power P OUT can be increased as shown in FIG.
  • the thermal insulator 46 may be air at atmospheric pressure or other gas (for example, nitrogen). Also in the fourth embodiment, the thermal insulator 46 may be vacuum, atmospheric pressure air, or other gas.
  • the insulating layers 18, 18a, and 18b (see FIG. 4B, etc.) in the thermoelectric conversion unit 44 may be vacuum, air, or other gases besides solids.
  • the thermal insulator 46 and the insulating layers 18, 18a and 18b may be the same material or different materials.
  • the insulating layers 18, 18a and 18b may be solid layers for holding the thermoelectric thin films 12a and 12b and the connection layers 14a and 14b, and the thermal insulator 46 may be an air layer or a vacuum for increasing the output power P OUT .
  • FIG. 32A is a plan view of a thermoelectric conversion device according to a third modification of the fourth embodiment
  • FIG. 32B is a cross-sectional view taken along the line AA in FIG.
  • a plurality of thermoelectric conversion units 44 corresponding to the thermoelectric conversion units 44 of the fourth embodiment are provided between the single base 22a and the single base 22b.
  • Each thermoelectric conversion unit 44 is surrounded by a thermal insulator 46 in plan view.
  • the plurality of thermoelectric conversion units 44 may be electrically connected in series or in parallel.
  • FIG. 33A is a plan view of a thermoelectric conversion device according to a fourth modification of the fourth embodiment
  • FIG. 33B is a cross-sectional view taken along the line AA in FIG.
  • a thermoelectric conversion unit 44 corresponding to the thermoelectric conversion unit 44 of the fourth modification example 1 is provided between the single base portion 22a and the single base portion 22b.
  • Each thermoelectric conversion unit 44 is surrounded by a thermal insulator 46 in plan view.
  • the plurality of thermoelectric conversion units 44 may be electrically connected in series or in parallel.
  • thermoelectric conversion units 44 that are separated from each other via the thermal insulator 46 are provided between the base portions 22a and 22b. With these interconnections, the output voltage and power can be set appropriately.

Abstract

This thermoelectric conversion device is provided with: first thermoelectric thin films 12a and second thermoelectric thin films 12b, which are alternately provided in the first direction that is parallel to the surfaces of the first thermoelectric thin films and those of the second thermoelectric thin films, and which respectively have conductivity types different from each other; first connection layers 14a and second connection layers 14b, which are, among the first thermoelectric thin films and the second thermoelectric thin films, electrically and thermally connected to the first thermoelectric thin films and the second thermoelectric thin films, and which are alternately provided in the first direction; and first thermally conductive layers 16a and second thermally conductive layers 16b, which are thermally connected to the first connection layers and the second connection layers, respectively, and which extend in the second direction orthogonal to the surfaces.

Description

熱電変換装置および電子装置Thermoelectric conversion device and electronic device
 本発明は、熱電変換装置および電子装置に関し、例えば熱電薄膜を有する熱電変換装置および電子装置に関する。 The present invention relates to a thermoelectric conversion device and an electronic device, for example, a thermoelectric conversion device and an electronic device having a thermoelectric thin film.
 熱電材料から構成されるゼーベック素子を多数集積化した熱電発電モジュール(TEG:Thermoelectric Generator)と呼ばれる熱電変換装置(または熱電発電装置)は、発電所や工場、さらには自動車の排熱を利用した発電技術として期待されている。最近では、マイクロ熱電発電モジュール(μTEG:Micro Thermoelectric Generator)と呼ばれる小型の熱電変換装置が、ウエアラブルデバイスやセンサーノードに活用できる環境発電素子として期待されている。また、このようなμTEGではマイクロプロセッサやシステムオンチップ(SoC)の排熱を利用した発電も考えられる。 A thermoelectric generator (or thermoelectric generator) called a thermoelectric generator (TEG) that integrates a large number of Seebeck elements made of thermoelectric materials is used to generate power using exhaust heat from power plants, factories, and automobiles. Expected as a technology. Recently, a small thermoelectric conversion device called a micro thermoelectric generation module (μTEG: Micro Thermoelectric Generator) is expected as an energy harvesting element that can be used for wearable devices and sensor nodes. Further, in such a μTEG, power generation using exhaust heat from a microprocessor or a system-on-chip (SoC) can be considered.
 上側の基板の下面および下側の基板の上面にそれぞれ、多数の柱状に加工されたn型およびp型の熱電材料を互い違いに形成し、上側の基板と下側の基板とを接合することで、μTEGを作製することが知られている(例えば特許文献1)。この構造では、熱電層内の熱流および電流の向きは基板の法線方向である。このタイプのμTEGはπ型のゼーベック素子を多数接続した構造となるため、以下では、π型ということにする。 By forming a large number of n-type and p-type thermoelectric materials processed into columnar shapes on the lower surface of the upper substrate and the upper surface of the lower substrate, respectively, and bonding the upper substrate and the lower substrate , ΜTEG is known (for example, Patent Document 1). In this structure, the direction of heat flow and current in the thermoelectric layer is the normal direction of the substrate. Since this type of μTEG has a structure in which a large number of π-type Seebeck elements are connected, it is hereinafter referred to as π-type.
 n型とp型の短冊状の熱電薄膜を短冊の幅方向に交互に配列させ、熱電薄膜の延伸方向の端部を互い違いに接続させる構造が記載されている。この構造では、熱電薄膜内の熱流および電流の向きは短冊の長さ方向である。このタイプのμTEGを以下インプレーン型という。 A structure is described in which n-type and p-type strip-shaped thermoelectric thin films are alternately arranged in the width direction of the strips, and the ends of the thermoelectric thin films are alternately connected. In this structure, the direction of heat flow and current in the thermoelectric thin film is the length direction of the strip. This type of μTEG is hereinafter referred to as an in-plane type.
米国特許第7402910号US Pat. No. 7,402,910
 薄膜の熱電材料を用いることで、熱電変換装置の小型化および高集積化が可能である。しかしながら、π型やインプレーン型のμTEGに薄膜の熱電材料を用いると、熱抵抗と電気抵抗とがトレードオフの関係となり、高出力な熱電変換装置を実現することが難しい。 By using a thin-film thermoelectric material, the thermoelectric conversion device can be miniaturized and highly integrated. However, when a thin thermoelectric material is used for π-type or in-plane μTEG, the thermal resistance and the electrical resistance are in a trade-off relationship, and it is difficult to realize a high-power thermoelectric conversion device.
 本発明は、上記課題に鑑みなされたものであり、小型かつ高出力の熱電変換装置および電子装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a small-sized and high-output thermoelectric conversion device and electronic device.
 本発明は、第1熱電薄膜および第2熱電薄膜の表面に平行な第1方向に交互に設けられた互いに反対の導電型を有する前記第1熱電薄膜および前記第2熱電薄膜と、前記第1熱電薄膜と前記第2熱電薄膜との間において前記第1熱電薄膜および前記第2熱電薄膜と電気的および熱的に接続され、前記第1方向に交互に設けられた第1接続層および第2接続層と、前記第1接続層および前記第2接続層にそれぞれ熱的に接続し前記表面に交差する第2方向に延伸する第1熱伝導層および第2熱伝導層と、を具備することを特徴とする熱電変換装置である。 The present invention provides the first thermoelectric thin film and the second thermoelectric thin film having opposite conductivity types alternately provided in a first direction parallel to the surfaces of the first thermoelectric thin film and the second thermoelectric thin film, and the first thermoelectric thin film, Between the thermoelectric thin film and the second thermoelectric thin film, the first thermoelectric thin film and the second thermoelectric thin film are electrically and thermally connected, and the first connection layer and the second are alternately provided in the first direction. A connection layer; and a first heat conduction layer and a second heat conduction layer that are thermally connected to the first connection layer and the second connection layer, respectively, and extend in a second direction intersecting the surface. Is a thermoelectric conversion device characterized by
 上記構成において、前記第1熱電薄膜および前記第2熱電薄膜の膜厚は10μm以下である構成とすることができる。 In the above configuration, the first thermoelectric thin film and the second thermoelectric thin film may have a thickness of 10 μm or less.
 上記構成において、前記第1熱伝導層および前記第2熱伝導層は、前記第1熱電薄膜および前記第2熱電薄膜の表面に対し互いに反対側に設けられている構成とすることができる。 In the above configuration, the first heat conductive layer and the second heat conductive layer may be provided on opposite sides of the surfaces of the first thermoelectric thin film and the second thermoelectric thin film.
 上記構成において、前記第1熱伝導層および前記第2熱伝導層が貫通し前記第1熱伝導層および前記第2熱伝導層より熱伝導率の小さな絶縁体を具備する構成とすることができる。 The said structure WHEREIN: The said 1st heat conductive layer and the said 2nd heat conductive layer can be set as the structure which comprises the insulator whose heat conductivity is smaller than the said 1st heat conductive layer and the said 2nd heat conductive layer. .
 上記構成において、前記第1熱電薄膜および前記第2熱電薄膜は、前記表面に平行であって前記第1方向に交差する第3方向に延伸し、前記第1熱電薄膜および前記第2熱電薄膜の前記第3方向の長さは、前記第1熱電薄膜および前記第2熱電薄膜の膜厚の10倍以上である構成とすることができる。 In the above configuration, the first thermoelectric thin film and the second thermoelectric thin film extend in a third direction parallel to the surface and intersecting the first direction, and the first thermoelectric thin film and the second thermoelectric thin film The length in the third direction may be 10 times or more the film thickness of the first thermoelectric thin film and the second thermoelectric thin film.
 上記構成において、前記第1熱電薄膜および前記第2熱電薄膜の前記第1方向の幅は、前記第1熱電薄膜および前記第2熱電薄膜の膜厚より大きい構成とすることができる。 In the above configuration, the width of the first thermoelectric thin film and the second thermoelectric thin film in the first direction may be larger than the thickness of the first thermoelectric thin film and the second thermoelectric thin film.
 上記構成において、前記第1熱伝導層および前記第2熱伝導層にそれぞれ熱的に接続する第1基部および第2基部を具備する構成とすることができる。 In the above configuration, a first base and a second base that are thermally connected to the first heat conductive layer and the second heat conductive layer, respectively, may be provided.
 上記構成において、前記第1熱伝導層が貫通し前記第1熱伝導層より熱伝導率の小さな固体の第1絶縁体と、前記第2熱伝導層が貫通し前記第2熱伝導層より熱伝導率の小さな固体の第2絶縁体と、前記第1熱伝導層および前記第2熱伝導層にそれぞれ熱的に接続する第1基部および第2基部と、を具備し、前記第1基部および前記第1絶縁体は、前記第1熱伝導層の間において第1溝を有し、前記第2基部および前記第2絶縁体は、前記第2熱伝導層の間において第2溝を有する構成とすることができる。 In the above-described configuration, the first heat conductive layer penetrates through the solid first insulator having a lower thermal conductivity than the first heat conductive layer, and the second heat conductive layer penetrates through the second heat conductive layer. A solid second insulator having low conductivity; and a first base and a second base that are thermally connected to the first heat conductive layer and the second heat conductive layer, respectively, and the first base and The first insulator has a first groove between the first heat conductive layers, and the second base and the second insulator have a second groove between the second heat conductive layers. It can be.
 上記構成において、前記第1熱電薄膜、前記第2熱電薄膜、前記第1接続層、前記第2接続層、前記第1熱伝導層および前記第2熱伝導層を含む層が前記表面に交差する方向に複数積層され、前記複数の層のうち隣接する層の一方に含まれる第1熱伝導層と、前記隣接する層の他方に含まれる第2熱伝導層と、は熱的に接続されている構成とすることができる。 In the above configuration, the layer including the first thermoelectric thin film, the second thermoelectric thin film, the first connection layer, the second connection layer, the first heat conduction layer, and the second heat conduction layer intersects the surface. A plurality of layers are stacked in a direction, and the first heat conductive layer included in one of the adjacent layers among the plurality of layers and the second heat conductive layer included in the other of the adjacent layers are thermally connected. It can be set as a structure.
 上記構成において、恒温動物の生体の表面に熱的に接続される第1基部と、空気に熱的に接続される第2基部と、前記第1基部と前記第2基部との間に設けられ、前記第1熱電薄膜、前記第2熱電薄膜、前記第1接続層、前記第2接続層、前記第1熱伝導層および前記第2熱伝導層を備え、前記第1熱伝導層および前記第2熱伝導層はそれぞれ前記第1基部および前記第2基部に接続された熱電変換ユニットと、前記第1基部と前記第2基部との間であって前記熱電変換ユニットの外側に設けられ、前記第1熱電薄膜、前記第2熱電薄膜、前記第1基部および前記第2基部の熱伝導率より小さい熱伝導率を有する熱絶縁体と、を具備する構成とすることができる。 In the above configuration, the first base is thermally connected to the surface of the living body of the thermostat animal, the second base is thermally connected to the air, and is provided between the first base and the second base. The first thermoelectric thin film, the second thermoelectric thin film, the first connection layer, the second connection layer, the first heat conduction layer, and the second heat conduction layer, the first heat conduction layer and the first heat conduction layer. The two heat conductive layers are each provided between the first base and the second base, and between the first base and the second base and outside the thermoelectric conversion unit. And a thermal insulator having a thermal conductivity smaller than that of the first thermoelectric thin film, the second thermoelectric thin film, the first base portion, and the second base portion.
 本発明は、恒温動物の生体の表面に熱的に接続される第1基部と、空気に熱的に接続される第2基部と、前記第1基部と前記第2基部との間に設けられ、第1接続層と第2接続層との間に設けられた第1熱電材料と前記第1熱電材料と反対の導電型を有する第2熱電材料とが、前記第1接続層と前記第2接続層とを介して交互に直列に接続され、前記第1接続部および前記第2接続部はそれぞれ前記第1基部および前記第2基部に熱的に接続された熱電変換ユニットと、前記第1基部と前記第2基部との間であって前記熱電変換ユニットの外側に設けられ、前記第1熱電材料、前記第2熱電材料、前記第1基部および前記第2基部の熱伝導率より小さい熱伝導率を有する熱絶縁体と、を具備することを特徴とする熱電変換装置である。 The present invention is provided between a first base that is thermally connected to the surface of a living body of a thermostat animal, a second base that is thermally connected to air, and the first base and the second base. The first thermoelectric material provided between the first connection layer and the second connection layer and the second thermoelectric material having a conductivity type opposite to that of the first thermoelectric material are the first connection layer and the second connection layer. A thermoelectric conversion unit connected in series alternately via a connection layer, wherein the first connection part and the second connection part are thermally connected to the first base part and the second base part, respectively; Heat that is between the base and the second base and provided outside the thermoelectric conversion unit and that is smaller than the thermal conductivity of the first thermoelectric material, the second thermoelectric material, the first base, and the second base. A thermoelectric conversion device comprising a thermal insulator having conductivity.
 上記構成において、前記熱絶縁体は、固体層である構成とすることができる。 In the above configuration, the thermal insulator may be a solid layer.
 上記構成において、前記熱絶縁体は、大気圧より低い圧力を有する気体層または真空であり、前記熱電変換装置は、前記気体層または真空を保持する保持部を具備する構成とすることができる。 In the above configuration, the thermal insulator may be a gas layer or vacuum having a pressure lower than atmospheric pressure, and the thermoelectric conversion device may include a holding unit that holds the gas layer or vacuum.
 上記構成において、前記第1基部と前記第2基部との間に前記熱絶縁体を介し互いに離間した複数の前記熱電変換ユニットを具備する構成とすることができる。 In the above-described configuration, a plurality of the thermoelectric conversion units separated from each other via the thermal insulator may be provided between the first base and the second base.
 本発明は、集積回路素子と、前記集積回路素子において発生した熱を放熱する放熱部材と、上記熱電変換装置を含み、前記集積回路素子と前記放熱部材との間に設けられ、前記第1熱伝導層が前記集積回路素子に熱的に接続し、前記第2熱伝導層が前記放熱部材に接続された発電装置と、を具備することを特徴とする電子装置である。 The present invention includes an integrated circuit element, a heat radiating member that radiates heat generated in the integrated circuit element, and the thermoelectric conversion device, and is provided between the integrated circuit element and the heat radiating member, and the first heat And a power generating device in which a conductive layer is thermally connected to the integrated circuit element and the second heat conductive layer is connected to the heat dissipation member.
 本発明は、集積回路素子と、前記集積回路素子において発生した熱を放熱する放熱部材と、第1接続層と第2接続層との間に設けられた第1熱電材料と前記第1熱電材料と反対の導電型を有する第2熱電材料とが、前記第1接続層と前記第2接続層とを介して交互に直列に接続された熱電変換装置を含み、前記集積回路素子と前記放熱部材との間に設けられ、前記第1接続層が前記集積回路素子に熱的に接続し、前記第2接続層が前記放熱部材に接続された発電装置と、を具備することを特徴とする電子装置である。 The present invention provides an integrated circuit element, a heat radiating member that radiates heat generated in the integrated circuit element, a first thermoelectric material provided between a first connection layer and a second connection layer, and the first thermoelectric material. A thermoelectric conversion device in which a second thermoelectric material having a conductivity type opposite to that of the thermoelectric conversion device is alternately connected in series via the first connection layer and the second connection layer, and the integrated circuit element and the heat dissipation member And a power generation device in which the first connection layer is thermally connected to the integrated circuit element and the second connection layer is connected to the heat dissipation member. Device.
 上記構成において、前記発電装置が発電した電力を蓄え、前記集積回路素子に供給する蓄電装置を具備する構成とすることができる。 In the above configuration, a power storage device that stores the power generated by the power generation device and supplies the power to the integrated circuit element can be provided.
 本発明は、第1基部および第2基部と、前記第1基部および前記第2基部の面方向に配列され、互いに反対の導電型を有する前記第1熱電薄膜および前記第2熱電薄膜と、前記面方向に交差する方向において前記第1熱電薄膜と前記第2熱電薄膜と交互に熱的および電気的に接続され、それぞれ前記第1基部および前記第2基部と熱的に接続された第1接続層および第2接続層と、を具備し、前記第1熱電薄膜および前記第2熱電薄膜の前記面方向の大きさは1μm以下であることを特徴とする熱電変換装置である。 The present invention provides a first base and a second base, the first thermoelectric thin film and the second thermoelectric thin film arranged in the surface direction of the first base and the second base and having opposite conductivity types, A first connection in which the first thermoelectric thin film and the second thermoelectric thin film are alternately and thermally connected in a direction intersecting the plane direction, and thermally connected to the first base and the second base, respectively. And a second connection layer, wherein the size of the first thermoelectric thin film and the second thermoelectric thin film in the surface direction is 1 μm or less.
 本発明によれば、小型かつ高出力な熱電変換装置および電子装置を提供することができる。 According to the present invention, a small and high output thermoelectric conversion device and electronic device can be provided.
図1は、ゼーベック素子を示す模式図である。FIG. 1 is a schematic diagram showing a Seebeck element. 図2(a)および図2(b)は、比較例1に係る熱電変換装置のそれぞれ平面図および断面図である。FIG. 2A and FIG. 2B are a plan view and a cross-sectional view, respectively, of the thermoelectric conversion device according to Comparative Example 1. 図3(a)および図3(b)は、比較例2に係る熱電変換装置のそれぞれ平面図および断面図である。FIG. 3A and FIG. 3B are a plan view and a cross-sectional view, respectively, of the thermoelectric conversion device according to Comparative Example 2. 図4(a)および図4(b)は、実施例1に係る熱電変換装置のそれぞれ平面図および断面図である。FIG. 4A and FIG. 4B are a plan view and a cross-sectional view, respectively, of the thermoelectric conversion device according to the first embodiment. 図5(a)から図5(c)は、比較例1におけるγに対するそれぞれm、γdおよびPOUTのシミュレーション結果を示す図である。FIG. 5A to FIG. 5C are diagrams showing simulation results of m 0 , γd and P OUT for γ in Comparative Example 1, respectively. 図6(a)および図6(b)は、比較例1におけるtに対するPOUT、m、γd、(1-γ)dおよびtCuのシミュレーション結果を示す図である。FIGS. 6 (a) and 6 (b), P OUT, m 0 for t 0 in Comparative Example 1, .gamma.d, a diagram illustrating a simulation result of (1-γ) d and t Cu. 図7は、比較例1におけるVに対するPOUT、m、γd、(1-γ)dおよびtCuのシミュレーション結果を示す図である。FIG. 7 is a diagram illustrating simulation results of P OUT , m 0 , γd, (1-γ) d, and t Cu with respect to V S in Comparative Example 1. 図8(a)から図8(c)は、実施例1におけるγに対するそれぞれm、γdおよびPOUTのシミュレーション結果を示す図である。FIG. 8A to FIG. 8C are diagrams illustrating simulation results of m 0 , γd, and P OUT for γ in Example 1, respectively. 図9は、実施例1におけるtに対するPOUT、m、γd、(1-γ)dおよびtCuのシミュレーション結果を示す図である。FIG. 9 is a diagram illustrating simulation results of P OUT , m 0 , γd, (1-γ) d, and t Cu with respect to t 0 in Example 1. 図10は、実施例1におけるVに対するPOUT、m、γd、(1-γ)dおよびtCuシミュレーション結果を示す図である。FIG. 10 is a diagram illustrating the P OUT , m 0 , γd, (1-γ) d and t Cu simulation results for V S in Example 1. 図11(a)および図11(b)は、実施例1の変形例1に係る熱電変換装置の断面図である。FIG. 11A and FIG. 11B are cross-sectional views of the thermoelectric conversion device according to the first modification of the first embodiment. 図12は、実施例1の変形例2に係る熱電変換装置の平面図である。FIG. 12 is a plan view of the thermoelectric conversion device according to the second modification of the first embodiment. 図13(a)および図13(b)は、実施例1の変形例3に係る熱電変換装置の断面図および平面図である。FIG. 13A and FIG. 13B are a cross-sectional view and a plan view of the thermoelectric conversion device according to the third modification of the first embodiment. 図14(a)および図14(b)は、実施例1の変形例4に係る熱電変換装置の断面図であり、図14(c)は、実施例1の変形例5に係る熱電変換装置の断面図である。14A and 14B are cross-sectional views of the thermoelectric conversion device according to the fourth modification of the first embodiment, and FIG. 14C is a thermoelectric conversion device according to the fifth modification of the first embodiment. FIG. 図15(a)および図15(b)は、実施例1の変形例6に係る熱電変換装置を用いた電子装置の断面図である。FIG. 15A and FIG. 15B are cross-sectional views of an electronic device using the thermoelectric conversion device according to the sixth modification of the first embodiment. 図16は、実施例2に係る電子装置の断面図である。FIG. 16 is a cross-sectional view of the electronic device according to the second embodiment. 図17は、実施例2の変形例1に係る電子装置のブロック図である。FIG. 17 is a block diagram of an electronic device according to the first modification of the second embodiment. 図18は、実施例2の変形例1に係る電力システムのブロック図である。FIG. 18 is a block diagram of a power system according to a first modification of the second embodiment. 図19(a)および図19(b)は、シミュレーションモデルを示す図である。FIG. 19A and FIG. 19B are diagrams showing a simulation model. 図20(a)および図20(b)は、実施例1におけるそれぞれγおよびmに対するγd、(1-γ)d、ΔT、βΔT、VおよびPOUTのシミュレーション結果を示す図である。20A and 20B are diagrams showing simulation results of γd, (1-γ) d, ΔT, βΔT, V S and P OUT for γ and m 0 in Example 1, respectively. 図21は、実施例1におけるtに対するγd、(1-γ)d、ΔT、βΔT、VおよびPOUTのシミュレーション結果を示す図である。FIG. 21 is a diagram illustrating simulation results of γd, (1−γ) d, ΔT, βΔT, V S and P OUT with respect to t 0 in Example 1. 図22は、比較例1におけるtに対するγd、(1-γ)d、ΔT、βΔT、VおよびPOUTのシミュレーション結果を示す図である。FIG. 22 is a diagram illustrating simulation results of γd, (1-γ) d, ΔT, βΔT, V S and P OUT with respect to t 0 in Comparative Example 1. 図23(a)および図23(b)は、それぞれ比較例1および実施例1に係る熱電変換装置の断面模式図である。FIG. 23A and FIG. 23B are schematic cross-sectional views of thermoelectric conversion devices according to Comparative Example 1 and Example 1, respectively. 図24は、実施例1における出力電圧Voutに対する電流Iおよび出力電力POUTを示す図である。FIG. 24 is a diagram illustrating the current I and the output power P OUT with respect to the output voltage V out in the first embodiment. 図25は、比較例1における最小寸法に対するγd、(1-γ)d、ΔT、βΔT、VおよびPOUTのシミュレーション結果を示す図である。FIG. 25 is a diagram showing simulation results of γd, (1-γ) d, ΔT, βΔT, V S and P OUT with respect to the minimum dimension in Comparative Example 1. 図26(a)は、実施例4に係る熱電変換装置の平面図、図26(b)は、図26(a)のA-A断面図である。FIG. 26A is a plan view of the thermoelectric conversion device according to the fourth embodiment, and FIG. 26B is a cross-sectional view taken along the line AA in FIG. 図27は、実施例4におけるDに対するγd、(1-γ)d、ΔT、βΔT、VおよびPOUTのシミュレーション結果を示す図である。FIG. 27 is a diagram illustrating simulation results of γd, (1-γ) d, ΔT, βΔT, V S and P OUT with respect to D in Example 4. 図28(a)は、実施例4の変形例1に係る熱電変換装置の平面図、図28(b)は、図28(a)のA-A断面図である。FIG. 28A is a plan view of a thermoelectric conversion device according to Modification 1 of Embodiment 4, and FIG. 28B is a cross-sectional view taken along line AA of FIG. 図29(a)は、実施例4の変形例1におけるLに対するtCu、γd、m、VおよびPOUTのシミュレーション結果を示す図、図29(b)は、tCuに対するL、γd、m、VおよびPOUTのシミュレーション結果を示す図である。FIG. 29A is a diagram showing a simulation result of t Cu , γd, m 0 , V S and P OUT with respect to L in Modification 1 of Example 4, and FIG. 29B is a diagram showing L, γd with respect to t Cu . , M 0 , V S and P OUT are diagrams illustrating simulation results. 図30は、熱絶縁体が真空のときのtCuに対するL、γd、m、VおよびPOUTのシミュレーション結果を示す図である。FIG. 30 is a diagram showing simulation results of L, γd, m 0 , V S and P OUT with respect to t Cu when the thermal insulator is vacuum. 図31は、実施例4の変形例2に係る熱電変換装置の断面図である。FIG. 31 is a cross-sectional view of the thermoelectric conversion device according to the second modification of the fourth embodiment. 図32(a)は、実施例4の変形例3に係る熱電変換装置の平面図、図32(b)は、図32(a)のA-A断面図である。FIG. 32A is a plan view of a thermoelectric conversion device according to a third modification of the fourth embodiment, and FIG. 32B is a cross-sectional view taken along the line AA in FIG. 図33(a)は、実施例4の変形例4に係る熱電変換装置の平面図、図33(b)は、図33(a)のA-A断面図である。FIG. 33A is a plan view of a thermoelectric conversion device according to a fourth modification of the fourth embodiment, and FIG. 33B is a cross-sectional view taken along the line AA in FIG.
 図1は、ゼーベック素子を示す模式図である。図1に示すように、ゼーベック素子10は、熱電材料32a、32b、電極24a、24bおよび接続層34aを含む。熱電材料32aおよび32bは例えばそれぞれn型およびp型である。熱電材料32aおよび32bの一端は接続層34aを介し接続されている。熱電材料32aおよび32bの他端はそれぞれ電極24aおよび24bに接続されている。接続層34aに矢印36aのように吸熱し、電極24aおよび24bから矢印36bのように放熱すると、ゼーベック効果により、電極24aと24bとの間に起電力が生じる。電極24aと24bとの間に負荷40を接続すると、電流42が流れる。このようなゼーベック素子10を複数直列に接続することにより、起電力を大きくできる。 FIG. 1 is a schematic diagram showing a Seebeck element. As shown in FIG. 1, the Seebeck element 10 includes thermoelectric materials 32a and 32b, electrodes 24a and 24b, and a connection layer 34a. The thermoelectric materials 32a and 32b are, for example, n-type and p-type, respectively. One ends of the thermoelectric materials 32a and 32b are connected via a connection layer 34a. The other ends of the thermoelectric materials 32a and 32b are connected to electrodes 24a and 24b, respectively. When the connection layer 34a absorbs heat as indicated by an arrow 36a and radiates heat from the electrodes 24a and 24b as indicated by an arrow 36b, an electromotive force is generated between the electrodes 24a and 24b due to the Seebeck effect. When a load 40 is connected between the electrodes 24a and 24b, a current 42 flows. The electromotive force can be increased by connecting a plurality of such Seebeck elements 10 in series.
 熱電変換装置(または熱電発電装置)は、例えば機械加工により切断したn型熱電材料およびp型熱電材料のペレットを多数接合して作製する。また、熱電変換装置は、n型熱電材料を多数のペレット状に形成した基板に、p型熱電材料を多数のペレット状に形成した基板を張り合わせることにより作製することもできる。これらの作製方法では、ゼーベック素子の集積度を大きくすることが難しく、ゼーベック素子の集積度は例えば数100個程度である。 The thermoelectric conversion device (or thermoelectric power generation device) is manufactured by joining a number of pellets of n-type thermoelectric material and p-type thermoelectric material cut by, for example, machining. In addition, the thermoelectric conversion device can be manufactured by attaching a substrate on which a p-type thermoelectric material is formed in a number of pellets to a substrate on which a n-type thermoelectric material is formed in a number of pellets. In these manufacturing methods, it is difficult to increase the degree of integration of Seebeck elements, and the degree of integration of Seebeck elements is, for example, about several hundred.
 ゼーベック素子1つ当たりの起電力は小さいため、ゼーベック素子を複数直列に接続して用いることが好ましい。しかし、ゼーベック素子の集積度が小さいと、直列に接続されるゼーベック素子数が制約される。このため、熱電変換装置の出力電力を高くしようとすると、ゼーベック素子1個当たりの起電力を優先して熱電変換装置を設計することになる。このように1個当たりの起電力を優先した設計では、一般的には、出力電力に対し最適化された構造とはならない。 Since the electromotive force per Seebeck element is small, it is preferable to use a plurality of Seebeck elements connected in series. However, if the integration degree of Seebeck elements is small, the number of Seebeck elements connected in series is limited. For this reason, when trying to increase the output power of the thermoelectric conversion device, the thermoelectric conversion device is designed with priority given to the electromotive force per Seebeck element. In general, such a design that gives priority to electromotive force per unit does not have a structure optimized for output power.
 そこで、半導体集積回路等の作製に用いられるフォトリソグラフィ技術等に基づく微細加工技術および薄膜形成技術を応用して熱電変換装置を作製することが考えられる。このような方法では、集積化されるゼーベック素子の数と素子形状および寸法の大きな自由度から所望の出力特性を有する熱電変換装置を設計できる。これにより、最適化された構造を有するゼ-ベック素子を高密度かつ大規模に集積化した熱電変換装置を実現できる可能性がある。 Therefore, it is conceivable to produce a thermoelectric conversion device by applying a microfabrication technique and a thin film formation technique based on a photolithography technique used for production of a semiconductor integrated circuit or the like. In such a method, it is possible to design a thermoelectric conversion device having desired output characteristics from the number of Seebeck elements to be integrated and the degree of freedom of the element shape and dimensions. As a result, there is a possibility that a thermoelectric conversion device in which Seebeck elements having an optimized structure are integrated at a high density and on a large scale may be realized.
[比較例1]
 熱電材料として薄膜を用いる熱電変換装置の構造について検討した。比較例1はπ型のゼーベック素子を用いる例である。図2(a)および図2(b)は、比較例1に係る熱電変換装置のそれぞれ平面図および断面図である。図2(a)では、熱電薄膜、接続層および電極を図示している。図2(b)は、図2(a)のA-A断面図である。熱電薄膜12aおよび12bの配列方向をX方向およびY方向とし、各層の積層方法をZ方向としている。
[Comparative Example 1]
The structure of a thermoelectric converter using a thin film as the thermoelectric material was investigated. Comparative Example 1 is an example using a π-type Seebeck element. FIG. 2A and FIG. 2B are a plan view and a cross-sectional view, respectively, of the thermoelectric conversion device according to Comparative Example 1. In FIG. 2A, the thermoelectric thin film, the connection layer, and the electrode are illustrated. FIG. 2B is a cross-sectional view taken along the line AA in FIG. The arrangement direction of the thermoelectric thin films 12a and 12b is the X direction and the Y direction, and the lamination method of each layer is the Z direction.
 図2(a)および図2(b)に示すように、熱電変換装置110において、熱電薄膜12aおよび熱電薄膜12bがX方向に交互に配列されている。熱電薄膜12aおよび12bは例えばそれぞれn型およびp型である。隣接する熱電薄膜12aと12bとは、-Z方向および+Z方向においてそれぞれ接続層14aおよび14bに電気的および熱的に接続されている。一対の熱電薄膜12aと12bとで1つのゼーベック素子10を形成する。複数のゼーベック素子10は、電極24aと24bとの間に直列に接続されている。接続層14aは-Z方向において電気的な絶縁膜20を介し高温の基部22aに熱的に接続されている。接続層14bは+Z方向において電気的な絶縁膜20を介し低温の基部22bに熱的に接続されている。熱電薄膜12aおよび12bの間に電気的および熱的な絶縁層18が設けられている。 As shown in FIGS. 2A and 2B, in the thermoelectric converter 110, the thermoelectric thin films 12a and the thermoelectric thin films 12b are alternately arranged in the X direction. The thermoelectric thin films 12a and 12b are, for example, n-type and p-type, respectively. Adjacent thermoelectric thin films 12a and 12b are electrically and thermally connected to connection layers 14a and 14b in the -Z direction and the + Z direction, respectively. One Seebeck element 10 is formed by a pair of thermoelectric thin films 12a and 12b. The plurality of Seebeck elements 10 are connected in series between the electrodes 24a and 24b. The connection layer 14a is thermally connected to the high temperature base portion 22a via the electrical insulating film 20 in the -Z direction. The connection layer 14b is thermally connected to the low temperature base portion 22b via the electrical insulating film 20 in the + Z direction. An electrical and thermal insulating layer 18 is provided between the thermoelectric thin films 12a and 12b.
 基部22aおよび22bのX方向およびY方向の寸法をD、1個の熱電薄膜12aまたは12bを含む正方形26の1辺の長さをd、正方形26内の熱電薄膜12aまたは12bの1辺の寸法を素子寸法γdとする。電極24aと24bとの間の電圧差のうちゼーベック素子10による起電力V、基部22aと22bの表面間の温度差をΔT、熱電薄膜12aおよび12bの膜厚をt、接続層14aおよび14bの膜厚をtCu、絶縁膜20の膜厚をtAl2O3、基部22aおよび22bの膜厚をtHSとする。 The dimensions of the base portions 22a and 22b in the X direction and the Y direction are D, the length of one side of the square 26 including the one thermoelectric thin film 12a or 12b is d, and the dimension of one side of the thermoelectric thin film 12a or 12b in the square 26 Is the element size γd. Of the voltage difference between the electrodes 24a and 24b, the electromotive force V S by the Seebeck element 10, the temperature difference between the surfaces of the base portions 22a and 22b is ΔT, the film thicknesses of the thermoelectric thin films 12a and 12b are t 0 , the connection layer 14a and the thickness of 14b t Cu, the thickness of the insulating film 20 t Al2 O3, the thickness of the base portion 22a and 22b and t HS.
 比較例1では、Z方向に熱伝導が生じる。このため、熱電薄膜12aおよび12bの膜厚tが小さくなる(例えば100nm)と、熱抵抗が小さくなり、熱電薄膜12aおよび12bのZ方向の温度差ΔT(不図示)が小さくなる。このため、起電力が低下してしまう。十分な熱抵抗を得ようとすると、熱電薄膜12aおよび12bのX方向およびY方向の寸法を膜厚t程度とすることになり、加工プロセスが容易ではなく現実的でない。 In Comparative Example 1, heat conduction occurs in the Z direction. Therefore, the thickness t 0 of the thermoelectric film 12a and 12b is reduced (e.g. 100 nm), heat resistance is reduced, the temperature difference [Delta] T G in the Z direction of the thermoelectric film 12a and 12b (not shown) is reduced. For this reason, an electromotive force will fall. An attempt to obtain sufficient heat resistance, will be the X-direction and Y dimensions of the thermoelectric film 12a and 12b and the thickness of about t 0, the processing process is not realistic not easy.
[比較例2]
 比較例2は、インプレーン型のゼーベック素子を用いる例である。図3(a)および図3(b)は、比較例2に係る熱電変換装置のそれぞれ平面図および断面図である。図3(a)では、熱電薄膜、接続層および基部を図示している。図3(b)は、図3(a)のA-A断面図である。熱電薄膜12aおよび12bの配列方向および延伸方向をそれぞれX方向およびY方向とし、各層の積層方法をZ方向としている。
[Comparative Example 2]
Comparative Example 2 is an example using an in-plane type Seebeck element. FIG. 3A and FIG. 3B are a plan view and a cross-sectional view, respectively, of the thermoelectric conversion device according to Comparative Example 2. FIG. 3A shows the thermoelectric thin film, the connection layer, and the base. FIG. 3B is a cross-sectional view taken along the line AA in FIG. The arrangement direction and the stretching direction of the thermoelectric thin films 12a and 12b are the X direction and the Y direction, respectively, and the lamination method of each layer is the Z direction.
 図3(a)および図3(b)に示すように、熱電変換装置112において、熱電薄膜12aおよび熱電薄膜12bはX方向に交互に配列されており、Y方向に延伸している。熱電薄膜12aおよび12bは例えばそれぞれn型およびp型である。隣接する熱電薄膜12aと12bとは、-Y方向および+Y方向においてそれぞれ接続層14aおよび14bに電気的および熱的に接続されている。一対の熱電薄膜12aと12bとで1つのゼーベック素子10を形成する。複数のゼーベック素子10は、電極24aと24bとの間に直列に接続されている。接続層14aは-Y方向において高温の基部22aに熱的に接続されている。接続層14bは+Y方向において低温の基部22bに熱的に接続されている。熱電薄膜12aおよび12bの間に絶縁層18が設けられている。 3 (a) and 3 (b), in the thermoelectric conversion device 112, the thermoelectric thin films 12a and the thermoelectric thin films 12b are alternately arranged in the X direction and extend in the Y direction. The thermoelectric thin films 12a and 12b are, for example, n-type and p-type, respectively. Adjacent thermoelectric thin films 12a and 12b are electrically and thermally connected to connection layers 14a and 14b in the -Y direction and the + Y direction, respectively. One Seebeck element 10 is formed by a pair of thermoelectric thin films 12a and 12b. The plurality of Seebeck elements 10 are connected in series between the electrodes 24a and 24b. The connection layer 14a is thermally connected to the high temperature base portion 22a in the -Y direction. The connection layer 14b is thermally connected to the low temperature base 22b in the + Y direction. An insulating layer 18 is provided between the thermoelectric thin films 12a and 12b.
 比較例2では、熱電薄膜12aおよび12bの熱伝導の生じるY方向の長さLを大きくできる。これにより、熱電薄膜12aおよび12bのY方向の温度差ΔT(不図示)を大きくできる。しかしながら、長さLが大きくなると熱電薄膜12aおよび12bの電気抵抗が大きくなる。これにより、起電力Vを大きくできても出力電力は大きくできない。 In Comparative Example 2, the length L in the Y direction in which heat conduction of the thermoelectric thin films 12a and 12b occurs can be increased. Thereby, temperature difference (DELTA) TG (not shown) of the Y direction of the thermoelectric thin films 12a and 12b can be enlarged. However, as the length L increases, the electrical resistance of the thermoelectric thin films 12a and 12b increases. Thereby, even if the electromotive force V S can be increased, the output power cannot be increased.
 以上のように、熱電薄膜12aおよび12bを用いたπ型の比較例1では、熱抵抗が小さくなりすぎ、インプレーン型の比較例2では、電気抵抗が大きくなりすぎる。このように、比較例1および2では、トレードオフ関係にある熱抵抗と電気抵抗とを最適化し高出力電力を実現するために適した構造とはなっていない。 As described above, in the π-type comparative example 1 using the thermoelectric thin films 12a and 12b, the thermal resistance is too low, and in the in-plane type comparative example 2, the electric resistance is too high. Thus, Comparative Examples 1 and 2 do not have a structure suitable for optimizing the thermal resistance and electrical resistance in a trade-off relationship and realizing high output power.
 図4(a)および図4(b)は、実施例1に係る熱電変換装置のそれぞれ平面図および断面図である。図4(a)では、熱電薄膜、接続層および電極を図示している。図4(b)は、図4(a)のA-A断面図である。熱電薄膜12aおよび12bの表面をXY平面とし、熱電薄膜12aおよび12bの配列方向(幅方向)および延伸方向(長さ方向)をそれぞれX方向およびY方向とし、各層の積層方法をZ方向としている。 FIGS. 4A and 4B are a plan view and a cross-sectional view, respectively, of the thermoelectric conversion device according to the first embodiment. FIG. 4A illustrates a thermoelectric thin film, a connection layer, and electrodes. FIG. 4B is a cross-sectional view taken along the line AA in FIG. The surface of the thermoelectric thin films 12a and 12b is the XY plane, the arrangement direction (width direction) and the stretching direction (length direction) of the thermoelectric thin films 12a and 12b are the X direction and the Y direction, respectively, and the lamination method of each layer is the Z direction. .
 図4(a)および図4(b)に示すように、熱電変換装置100において、平面視において熱電薄膜12aおよび熱電薄膜12bは短冊状である。熱電薄膜12aおよび12bはX方向に交互に配列されており、Y方向に延伸している。熱電薄膜12aおよび12bは例えばそれぞれn型およびp型である。隣接する熱電薄膜12aと12bとは、X方向において交互に接続層14aおよび14bに電気的および熱的に接続されている。接続層14aおよび14bはY方向に延伸している。一対の熱電薄膜12aと12bとで1つのゼーベック素子10を形成する。複数のゼーベック素子10は、電極24aと24bとの間に直列に接続されている。接続層14aおよび14bはそれぞれ-Z方向および+Z方向において熱伝導層16aおよび16bと熱的に接続されている。熱伝導層16aおよび16bは電気的な絶縁膜20を介しそれぞれ高温の基部22aおよび低温の基部22bに熱的に接続されている。熱伝導層16aおよび16bの間に絶縁層18aおよび18bが設けられている。 As shown in FIGS. 4A and 4B, in the thermoelectric conversion device 100, the thermoelectric thin film 12a and the thermoelectric thin film 12b have a strip shape in plan view. The thermoelectric thin films 12a and 12b are alternately arranged in the X direction and extend in the Y direction. The thermoelectric thin films 12a and 12b are, for example, n-type and p-type, respectively. Adjacent thermoelectric thin films 12a and 12b are electrically and thermally connected to connection layers 14a and 14b alternately in the X direction. The connection layers 14a and 14b extend in the Y direction. One Seebeck element 10 is formed by a pair of thermoelectric thin films 12a and 12b. The plurality of Seebeck elements 10 are connected in series between the electrodes 24a and 24b. Connection layers 14a and 14b are thermally connected to heat conductive layers 16a and 16b in the −Z direction and the + Z direction, respectively. The heat conductive layers 16a and 16b are thermally connected to the high temperature base portion 22a and the low temperature base portion 22b through the electrical insulating film 20, respectively. Insulating layers 18a and 18b are provided between heat conductive layers 16a and 16b.
 熱電変換装置100のX方向およびY方向の寸法をD、X方向の熱電薄膜12aおよび12bのピッチをd、1個の熱電薄膜12aまたは12bの寸法を素子寸法γdとする。電極24aと24bとの間の電圧差のうちゼーベック素子10による起電力V、基部22aと22bの表面間の温度差をΔTとする。熱電薄膜12aおよび12b並びに接続層14aおよび14bの膜厚をt、熱伝導層16aおよび16bの膜厚をtCu、絶縁膜20の膜厚をtAl2O3、基部22aおよび22bの膜厚をtHSとする。 The dimension of the thermoelectric conversion device 100 in the X direction and the Y direction is D, the pitch of the thermoelectric thin films 12a and 12b in the X direction is d, and the dimension of one thermoelectric thin film 12a or 12b is the element dimension γd. Of the voltage difference between the electrodes 24a and 24b, the electromotive force V S by the Seebeck element 10 and the temperature difference between the surfaces of the base portions 22a and 22b are ΔT. The film thickness of the thermoelectric thin films 12a and 12b and the connection layers 14a and 14b is t 0 , the film thickness of the heat conductive layers 16a and 16b is t Cu , the film thickness of the insulating film 20 is t Al2O3 , and the film thickness of the base portions 22a and 22b is t Let it be HS .
 このような構造では、熱電薄膜12aおよび12bの熱流および電流の方向はX方向となる。比較例1では、熱電薄膜12aおよび12bの膜厚tが小さくなると、熱抵抗が小さくなったが、実施例1では、膜厚tが小さくなると熱抵抗は大きくなる。比較例2では、熱電薄膜12aおよび12bのY方向の長さLが大きくなると電気抵抗が大きくなったが、実施例1では、長さLが大きくなると電気抵抗は小さくなる。このように、長さLを膜厚tに比べ十分大きくすることにより、熱抵抗が小さすぎず、かつ電気抵抗が大きすぎることなく、X方向の素子寸法γd(またはγ)を用いトレードオフ関係にある熱抵抗と電気抵抗との最適化を行い所望の出力電力を得ることができる。 In such a structure, the heat flow and current directions of the thermoelectric thin films 12a and 12b are in the X direction. In Comparative Example 1, the film thickness t 0 of the thermoelectric film 12a and 12b is reduced, the thermal resistance is reduced, in Example 1, the thermal resistance when the film thickness t 0 becomes smaller increases. In Comparative Example 2, the electrical resistance increased as the length L in the Y direction of the thermoelectric thin films 12a and 12b increased. However, in Example 1, the electrical resistance decreased as the length L increased. Thus, by sufficiently larger than the length L to thickness t 0, the thermal resistance is not too small, and without electrical resistance is too large, a trade-off using the X-direction of the element dimensions .gamma.d (or gamma) It is possible to obtain a desired output power by optimizing the related thermal resistance and electrical resistance.
 使用温度が室温近傍または数100℃程度までの応用では、熱電薄膜12aおよび12bに用いる熱電材料として、ビスマステルル系合金、フルホイスラー系合金またはハーフホイスラー系合金とすることができる。ビスマステルル系合金は、n型として例えばBiTe3-xSe、およびp型として例えばBi2-xSbTeである。フルホイスラー系合金は、n型として例えばFeVAl1-xGe、FeVAl1-xSiまたはFeVTaAl1-x、およびp型として例えばFe1-xAl、Fe1-xTiAlまたはFe1-xTiGa、その他例えばFeNbGa、FeHfSi、FeTaIn、FeTiSnまたはFeZrGeを母体とした材料である。ハーフホイスラー系合金は、n型として例えばTiPtSn、(Hf1-xZr)NiSnまたはNbCoSn、およびp型として例えばTiCoSnSb1-x、Zr(Ni1-xCo)Sn、Zr(Ni1-xIn)Sn、HfPtSnである。n型熱電材料とp型熱電材料とを同系の材料とすることで、熱電薄膜12aおよび12bの作製が容易となる。また、使用する温度領域が室温より十分に高い場合には、熱電薄膜12aおよび12bに用いる熱電材料として、SiまたはSiGe合金を用いることもできる。 In applications where the operating temperature is near room temperature or up to about several hundreds of degrees Celsius, the thermoelectric material used for the thermoelectric thin films 12a and 12b can be a bismuth tellurium alloy, a full Heusler alloy, or a half Heusler alloy. The bismuth tellurium-based alloy is, for example, Bi 2 Te 3-x Se x as the n-type, and Bi 2-x Sb x Te 3 as the p-type, for example. The full Heusler alloy is, for example, Fe 2 VAl 1-x Ge x , Fe 2 VAl 1-x Si x or Fe 2 VTa x Al 1-x as n-type, and Fe 2 V 1-x W x as p-type, for example. Al, Fe 2 V 1-x Ti x Al or Fe 2 V 1-x Ti x Ga, and other materials such as Fe 2 NbGa, Fe 2 HfSi, Fe 2 TaIn, Fe 2 TiSn or Fe 2 ZrGe . The half-Heusler-based alloy includes, for example, TiPtSn, (Hf 1-x Zr x ) NiSn or NbCoSn as n-type, and TiCoSn x Sb 1-x , Zr (Ni 1-x Co x ) Sn, Zr (Ni 1-x In x ) Sn, HfPtSn. By making the n-type thermoelectric material and the p-type thermoelectric material in the same material, the thermoelectric thin films 12a and 12b can be easily manufactured. In addition, when the temperature range to be used is sufficiently higher than room temperature, Si or SiGe alloy can be used as the thermoelectric material used for the thermoelectric thin films 12a and 12b.
 接続層14aおよび14bとしては電気伝導率および熱伝導率が大きな材料が好ましく、例えばCu、Al、AuまたはAg等の金属層を用いることができる。接続層14aと14bとは異なる材料でもよい。 The connection layers 14a and 14b are preferably made of a material having a high electrical conductivity and thermal conductivity. For example, a metal layer such as Cu, Al, Au, or Ag can be used. The connection layers 14a and 14b may be made of different materials.
 熱伝導層16aおよび16bとしては、熱伝導率が大きな材料が好ましく、例えばCu、Al、AuまたはAg等の金属層を用いることができる。熱伝導層16aおよび16bは、熱伝導率が大きければ絶縁体層でもよい。熱伝導層16aと16bとは異なる材料でもよい。接続層14aおよび14bと熱伝導層16aおよび16bとは異なる材料でもよい。 As the heat conductive layers 16a and 16b, a material having a high thermal conductivity is preferable, and for example, a metal layer such as Cu, Al, Au, or Ag can be used. The heat conductive layers 16a and 16b may be insulator layers as long as the heat conductivity is large. The heat conductive layers 16a and 16b may be made of different materials. The connection layers 14a and 14b and the heat conductive layers 16a and 16b may be made of different materials.
 絶縁層18aおよび18b(絶縁体)としては、絶縁性が高く熱伝導率が熱伝導層16aおよび16bに比べ十分小さな材料が好ましい。絶縁層18aおよび18bとして、例えば酸化シリコン等の無機絶縁体もしくはこれをポーラス化した材料、アルキル基含有シリカもしくは同様の酸化物および絶縁体、樹脂(例えばアクリル樹脂、エポキシ樹脂、塩化ビニル樹脂、シリコーン樹脂、フッ素樹脂、フェノール樹脂、ベークライト樹脂、ポリエチレン樹脂、ポリカーボネイト樹脂、ポリスチレン樹脂、ポリプロプレン樹脂)もしくはゴム(天然ゴム、エチレンプロピレンゴム、クロロプレンゴム、シリコンゴム、ブチルゴムもしくはポリウレタンゴム)等の絶縁体、窒素もしくは空気等の絶縁性ガス、または真空等を用いることができる。絶縁層18aおよび18bは、CVD(Chemical Vapor Deposition)法、スパッタ法またはスピンコート法を用い形成できる。 As the insulating layers 18a and 18b (insulator), a material having a high insulating property and a thermal conductivity sufficiently smaller than those of the heat conductive layers 16a and 16b is preferable. As the insulating layers 18a and 18b, for example, an inorganic insulator such as silicon oxide or a porous material thereof, alkyl group-containing silica or similar oxide and insulator, resin (for example, acrylic resin, epoxy resin, vinyl chloride resin, silicone) Insulators such as resin, fluororesin, phenol resin, bakelite resin, polyethylene resin, polycarbonate resin, polystyrene resin, polypropylene resin) or rubber (natural rubber, ethylene propylene rubber, chloroprene rubber, silicon rubber, butyl rubber or polyurethane rubber), An insulating gas such as nitrogen or air, or a vacuum can be used. The insulating layers 18a and 18b can be formed using a CVD (Chemical Vapor Deposition) method, a sputtering method, or a spin coating method.
 絶縁膜20としては、絶縁性が高く熱伝導率が大きい材料が好ましく、例えば酸化アルミニウム等の無機絶縁体を用いることができる。絶縁膜20は、設けなくてもよいが、熱伝導層16aおよび16bと基部22aおよび22bが導電体の場合には絶縁のため設けることが好ましい。 The insulating film 20 is preferably made of a material having high insulating properties and high thermal conductivity. For example, an inorganic insulator such as aluminum oxide can be used. The insulating film 20 may not be provided, but is preferably provided for insulation when the heat conductive layers 16a and 16b and the base portions 22a and 22b are conductors.
 基部22aおよび22bとしては、熱伝導率が大きい材料が好ましく、例えばCu、Al、AuもしくはAg等の金属、Siもしくはアルミナなどのセラミックス等を用いることができる。絶縁膜20は基部22aおよび22bにスパッタまたはCVD法を用い形成してもよい。基部22aおよび22bが電気的な絶縁体の場合、絶縁膜20は用いなくてもよい。基部22aおよび22bの少なくとも一方は、スパッタ法またはCVD法を用い形成できる。これにより、基部22aおよび22bを薄膜化できる。基部22aおよび22bの少なくとも一方は、メッキ法で形成できる。これにより、基部22aおよび22bをある程度厚い膜にすることができる。基部22aおよび22bの少なくとも一方を酸化膜またはセラミックスとする場合、スピンコート等による塗布膜を用いることができる。基部22aおよび22bとして、熱交換特性および放熱特性の高い構造(例えばフィン構造またはヒートシンク構造)および材料(例えば放熱シート、揮発性材料を含んだ放熱材料または吸熱材料、または表面をアルマイト加工したAlなど)を用いることができる。 The base portions 22a and 22b are preferably made of a material having a high thermal conductivity. For example, a metal such as Cu, Al, Au, or Ag, or a ceramic such as Si or alumina can be used. The insulating film 20 may be formed on the base portions 22a and 22b by sputtering or CVD. When the base portions 22a and 22b are electrical insulators, the insulating film 20 may not be used. At least one of the base portions 22a and 22b can be formed using a sputtering method or a CVD method. Thereby, base 22a and 22b can be thinned. At least one of the base portions 22a and 22b can be formed by a plating method. Thereby, base 22a and 22b can be made into a film | membrane thick to some extent. When at least one of the base portions 22a and 22b is an oxide film or ceramic, a coating film by spin coating or the like can be used. As the base portions 22a and 22b, a structure (for example, fin structure or heat sink structure) and a material (for example, a heat dissipation sheet, a heat dissipation material including a volatile material or a heat absorption material having high heat exchange characteristics and heat dissipation characteristics, or Al having an anodized surface, etc. ) Can be used.
 比較例1および実施例1について、トレードオフ関係にある熱抵抗と電気抵抗とを最適化するシミュレーションを行った。基部22aおよび22bの面積に対する熱電薄膜12aおよび12bが占める割合を示すトレードオフパラメータγを用いた。シミュレーションは、各材料の熱伝導率、電気伝導率およびゼーベック係数を用い集中定数回路を仮定して行った。シミュレーションでは、基部22aおよび22bの寸法D×D、基部22aと22bとの間の温度差ΔT、ゼーベック素子による起電力V、熱電薄膜12aおよび12bの膜厚tおよびトレードオフパラメータγを設定し、その他の寸法を算出した。 For Comparative Example 1 and Example 1, simulation was performed to optimize the thermal resistance and electrical resistance in a trade-off relationship. A trade-off parameter γ indicating the ratio of the thermoelectric thin films 12a and 12b to the area of the base portions 22a and 22b was used. The simulation was performed assuming a lumped constant circuit using the thermal conductivity, electrical conductivity, and Seebeck coefficient of each material. In the simulation, the dimensions D × D of the bases 22a and 22b, the temperature difference ΔT between the bases 22a and 22b, the electromotive force V S by the Seebeck element, the film thickness t 0 of the thermoelectric thin films 12a and 12b, and the trade-off parameter γ are set. The other dimensions were calculated.
 以下にシミュレーション条件を示す。
 熱電薄膜12a:n型FeVAl1-xTa
 熱電薄膜12b:p型Fe1-xTiGa
  無次元性能指数:0.09
 接続層14a、14b:Cu
 熱伝導層16a、16b:Cu
 絶縁層18:SiO
 絶縁膜20:Al、膜厚tAl2O3:100nm
 基部22a、22b:Cu、膜厚tHS:1mm
 D×D:10mm×10mm
 ΔT:1K
The simulation conditions are shown below.
Thermoelectric thin film 12a: n-type Fe 2 VAl 1-x Ta x
Thermoelectric thin film 12b: p-type Fe 2 V 1-x Ti x Ga
Dimensionless figure of merit: 0.09
Connection layers 14a, 14b: Cu
Thermal conductive layers 16a, 16b: Cu
Insulating layer 18: SiO 2
Insulating film 20: Al 2 O 3 , film thickness t Al2O3 : 100 nm
Base 22a, 22b: Cu, film thickness t HS : 1 mm
D x D: 10 mm x 10 mm
ΔT: 1K
[比較例1のシミュレーション]
 t=100nm、V=1Vとしてシミュレーションを行った。図5(a)から図5(c)は、比較例1におけるγに対するそれぞれ素子対数m、素子寸法γdおよび出力電力POUTのシミュレーション結果を示す図である。ゼーベック素子の素子対数mは、熱電薄膜12aと12bの一対の数である。素子寸法γdは、各熱電薄膜12aおよび12bのX方向の幅である。出力電力POUTは、負荷抵抗を調整して得られる熱電変換装置の最大の熱電変換装置の出力電力である。ここでのシミュレーションでは、温度差ΔTが必ず1Kつくものとして最適化したものである。実際の設計の際は、投入される熱量を考慮して最適化を行うこととなる。
[Simulation of Comparative Example 1]
The simulation was performed with t 0 = 100 nm and V S = 1V. FIGS. 5A to 5C are diagrams showing simulation results of the element pair number m 0 , the element size γd, and the output power P OUT with respect to γ in Comparative Example 1, respectively. Element logarithm m 0 Seebeck elements are a pair of the number of thermoelectric films 12a and 12b. The element size γd is the width of each thermoelectric thin film 12a and 12b in the X direction. The output power P OUT is the maximum output power of the thermoelectric conversion device of the thermoelectric conversion device obtained by adjusting the load resistance. In this simulation, the temperature difference ΔT is optimized so as to always be 1K. In actual design, optimization is performed in consideration of the amount of heat input.
 図5(a)に示すように、γが大きくなると素子対数mが増加する。これは、トレードオフパラメータγが大きくなると、基部22aと22b間の熱抵抗が小さくなる。このため、1つのゼーベック素子10当たりの起電力が小さくなり、起電力Vを確保するためゼーベック素子10の直列接続数が増加するためである。 As shown in FIG. 5A, the number of element pairs m 0 increases as γ increases. This is because the thermal resistance between the base portions 22a and 22b decreases as the trade-off parameter γ increases. For this reason, the electromotive force per Seebeck element 10 is reduced, and the number of series connection of Seebeck elements 10 is increased in order to secure the electromotive force V S.
 図5(b)に示すように、γが大きくなるとγdが大きくなる。γはD×D内に占める熱電薄膜12aおよび12bの面積比である。γdはdに対する熱電薄膜12aおよび12bの寸法比である。 As shown in FIG. 5B, γd increases as γ increases. γ 2 is the area ratio of the thermoelectric thin films 12a and 12b in D × D. γd is a dimensional ratio of the thermoelectric thin films 12a and 12b to d.
 図5(c)に示すように、出力電力POUTは、γが約0.12のときに約11μWでありピークとなる。図5(a)および図5(b)から出力電力POUTがピークとなる素子対数mおよび素子寸法γdが求まる。 As shown in FIG. 5C, the output power P OUT is about 11 μW and peaks when γ is about 0.12. From FIG. 5A and FIG. 5B, the element logarithm m 0 and the element size γd at which the output power P OUT peaks are obtained.
 次に、熱電薄膜12aおよび12bの膜厚tを10nmから10000nmに変化させ、出力電力POUTが最大となる素子対数mおよび素子寸法γdを算出した。ΔT=1Kとして、起電力Vが1Vのときと100mVのときについてシミュレーションした。 Next, the film thickness t 0 of the thermoelectric thin films 12a and 12b was changed from 10 nm to 10000 nm, and the element logarithm m 0 and the element size γd that maximized the output power P OUT were calculated. A simulation was performed when ΔT = 1K and the electromotive force V S was 1 V and 100 mV.
 図6(a)および図6(b)は、比較例1におけるtに対するPOUT、m、γd、(1-γ)dおよびtCuのシミュレーション結果を示す図である。図6(a)および図6(b)は、それぞれV=1VおよびV=100mVである。POUTは出力電力の最大値を示す。なお、図6(a)および図6(b)では、出力電力をPoutと示している。以下の図も同様である。 FIGS. 6 (a) and 6 (b), P OUT, m 0 for t 0 in Comparative Example 1, .gamma.d, a diagram illustrating a simulation result of (1-γ) d and t Cu. FIG. 6A and FIG. 6B are V S = 1V and V S = 100 mV, respectively. P OUT represents the maximum value of output power. In FIGS. 6A and 6B, the output power is indicated as P out . The same applies to the following figures.
 図6(a)および図6(b)に示すように、膜厚tが薄くなると出力電力POUTが小さくなる。通常のドライエッチング法等の微細加工技術およびスパッタ法またはCVD法等の薄膜形成技術が適用できる膜厚は、1000nm程度以下であり、好ましくは100nm程度である。この範囲では出力電力POUTは非常に小さくなってしまう。 As shown in FIGS. 6A and 6B, the output power P OUT decreases as the film thickness t 0 decreases. The film thickness to which a fine processing technique such as a normal dry etching method and a thin film forming technique such as a sputtering method or a CVD method can be applied is about 1000 nm or less, preferably about 100 nm. In this range, the output power P OUT becomes very small.
 図7は、比較例1におけるVに対するPOUT、m、γd、(1-γ)dおよびtCuのシミュレーション結果を示す図である。膜厚tを100nmとしている。図7に示すように、Vが小さくなるとPOUTは小さくなってしまう。 FIG. 7 is a diagram illustrating simulation results of P OUT , m 0 , γd, (1-γ) d, and t Cu with respect to V S in Comparative Example 1. The film thickness t 0 is set to 100nm. As shown in FIG. 7, when V S becomes smaller, P OUT becomes smaller.
[実施例1のシミュレーション]
 t=100nm、V=100mVとしてシミュレーションを行った。シミュレーション条件は比較例1と同じである。熱伝導層16aおよび16bのX方向の幅は接続層14aおよび14bのX方向の幅と同じとした。図8(a)から図8(c)は、実施例1におけるγに対するそれぞれm、γdおよびPOUTのシミュレーション結果を示す図である。図8(a)および図8(b)に示すように、γ<0.5では、解がない。0.5<γでは2つの解が得られる。ゼーベック素子1個当たりの起電力が大きく素子数が小さい解(実線)と、ゼーベック素子1個当たりの起電力が小さく素子数が大きい解(点線)である。図8(c)に示すように、出力電力POUTは2つの解とも同じであり、γ=0.5において最大となる。素子の作製の容易性の観点で、素子数が小さい解(実線)を採用した。
[Simulation of Example 1]
The simulation was performed with t 0 = 100 nm and V S = 100 mV. The simulation conditions are the same as in Comparative Example 1. The width in the X direction of the heat conductive layers 16a and 16b was the same as the width in the X direction of the connection layers 14a and 14b. FIG. 8A to FIG. 8C are diagrams illustrating simulation results of m 0 , γd, and P OUT for γ in Example 1, respectively. As shown in FIGS. 8A and 8B, there is no solution when γ <0.5. For 0.5 <γ, two solutions are obtained. A solution having a large electromotive force per Seebeck element and a small number of elements (solid line) and a solution having a small electromotive force per Seebeck element and a large number of elements (dotted line). As shown in FIG. 8C, the output power P OUT is the same for the two solutions, and is maximum at γ = 0.5. A solution (solid line) with a small number of elements was adopted from the viewpoint of ease of element fabrication.
 次に、起電力Vが100mVのとき、熱電薄膜12aおよび12bの膜厚tを10nmから200nmに変化させ、出力電力POUTが最大となる素子対数mおよび素子寸法γdおよび(1-γ)dを算出した。 Then, when the electromotive force V S is 100 mV, the thickness t 0 of the thermoelectric film 12a and 12b is changed from 10nm to 200 nm, output power P OUT element logarithmic m 0 and element dimensions γd and becomes maximum (1- γ) d was calculated.
 図9は、実施例1におけるtに対するPOUT、m、γd、(1-γ)dおよびtCuのシミュレーション結果を示す図である。図9に示すように、膜厚tが200nm以下でも出力電力POUTは250μW以上である。POUTは膜厚tにほとんど依存しない。微細加工技術および薄膜形成技術に適したt=100nm程度でPOUTとして250μWを実現できる。 FIG. 9 is a diagram illustrating simulation results of P OUT , m 0 , γd, (1-γ) d, and t Cu with respect to t 0 in Example 1. As shown in FIG. 9, the output power P OUT is 250 μW or more even when the film thickness t 0 is 200 nm or less. P OUT hardly depends on the film thickness t 0 . 250 μW can be realized as P OUT at about t 0 = 100 nm suitable for microfabrication technology and thin film formation technology.
 図10は、実施例1におけるVに対するPOUT、m、γd、(1-γ)dおよびtCuのシミュレーション結果を示す図である。膜厚tを100nmとしている。図10に示すように、Vが小さくなってもPOUTは大きい。Vを100mV以下としてもPOUTとして250μWを実現できる。 FIG. 10 is a diagram illustrating simulation results of P OUT , m 0 , γd, (1-γ) d, and t Cu with respect to V S in Example 1. The film thickness t 0 is set to 100nm. As shown in FIG. 10, P OUT is large even when V S is small. Even if V S is 100 mV or less, 250 μW can be realized as P OUT .
 熱電薄膜12aおよび12bに用いる熱電材料をよりゼーベック係数の大きなBiTe系材料を用いる。また、絶縁層18aおよび18bを樹脂等のSiOより熱伝導率の小さな材料を用いる。さらに、基部22aおよび22bを薄膜化することで、出力電力POUTをより向上できる。 A BiTe material having a larger Seebeck coefficient is used as the thermoelectric material used for the thermoelectric thin films 12a and 12b. The insulating layers 18a and 18b are made of a material having a lower thermal conductivity than SiO 2 such as resin. Furthermore, the output power P OUT can be further improved by thinning the base portions 22a and 22b.
 実施例1によれば、熱電薄膜12a(第1熱電薄膜)および熱電薄膜12b(第2熱電薄膜)はX方向(熱電薄膜12aおよび12bの表面に平行な第1方向)に交互に設けられている。熱電薄膜12aおよび12bは互いに反対の導電型を有する。接続層14a(第1接続層)および14b(第2接続層)は、熱電薄膜12aと12bとの間において熱電薄膜12aおよび12bと電気的および熱的に接続され、X方向に交互に設けられている。熱伝導層16aおよび16bは,接続層14aおよび14bにそれぞれ熱的に接続しZ方向(XY平面に交差する第2方向)に延伸する。これにより、熱電材料の薄膜を用いても、出力電力POUTを大きくできる。 According to Example 1, the thermoelectric thin film 12a (first thermoelectric thin film) and the thermoelectric thin film 12b (second thermoelectric thin film) are alternately provided in the X direction (first direction parallel to the surfaces of the thermoelectric thin films 12a and 12b). Yes. Thermoelectric thin films 12a and 12b have opposite conductivity types. The connection layers 14a (first connection layer) and 14b (second connection layer) are electrically and thermally connected to the thermoelectric thin films 12a and 12b between the thermoelectric thin films 12a and 12b, and are alternately provided in the X direction. ing. The heat conductive layers 16a and 16b are thermally connected to the connection layers 14a and 14b, respectively, and extend in the Z direction (second direction intersecting the XY plane). Thereby, even if it uses the thin film of a thermoelectric material, output electric power POUT can be enlarged.
 また、熱伝導層16aおよび16bは、熱電薄膜12aおよび12bの表面に対し互いに反対側に設けられている。すなわち、熱伝導層16aは、接続層14aに熱的に接続し-Z方向(XY平面に交差する第2方向)に延伸する。熱伝導層16bは、接続層14bに熱的に接続し+Z方向(第2方向に反対の方向)に延伸する。これにより、熱電薄膜12aおよび12bのX方向の温度差が発生し、発電することができる。例えば基部22aおよび22bを櫛形とすることで、熱伝導層16aおよび16bは、熱電薄膜12aおよび12bの表面に対し同じ側に設けられていてもよい。 Further, the heat conductive layers 16a and 16b are provided on the opposite sides to the surfaces of the thermoelectric thin films 12a and 12b. That is, the heat conductive layer 16a is thermally connected to the connection layer 14a and extends in the −Z direction (second direction intersecting the XY plane). The heat conductive layer 16b is thermally connected to the connection layer 14b and extends in the + Z direction (the direction opposite to the second direction). Thereby, the temperature difference of the X direction of the thermoelectric thin films 12a and 12b generate | occur | produces, and it can generate electric power. For example, the heat conductive layers 16a and 16b may be provided on the same side with respect to the surfaces of the thermoelectric thin films 12a and 12b by forming the base portions 22a and 22b in a comb shape.
 熱電薄膜12aおよび12bの膜厚tは、10μm以下が好ましく、5μm以下がより好ましい。形状および寸法の自由度を高めることができる半導体集積回路の作製技術を用いて成膜できる熱電薄膜12aおよび12bの膜厚tは1μm以下である。膜厚tは1μm以下でも、実施例1では比較例1と比べ出力電力POUTを大きくできる。実施例1および比較例1のシミュレーション結果では、膜厚tは、500nm以下が好ましく200nm以下がより好ましい。 The film thickness t 0 of the thermoelectric thin films 12a and 12b is preferably 10 μm or less, and more preferably 5 μm or less. The film thickness t 0 of the thermoelectric thin films 12a and 12b that can be formed by using a semiconductor integrated circuit manufacturing technique capable of increasing the degree of freedom of shape and size is 1 μm or less. Even in the case where the film thickness t 0 is 1 μm or less, the output power P OUT can be increased in Example 1 as compared with Comparative Example 1. In the simulation results of Example 1 and Comparative Example 1, the film thickness t 0 is preferably 500 nm or less, and more preferably 200 nm or less.
 絶縁層18aおよび18b(絶縁体)は、熱伝導層16aおよび16bが貫通し熱伝導層16aおよび16bより熱伝導率が小さい。熱伝導層16aおよび16bが+Z側および-Z側に設けられている場合、絶縁層18a(第1絶縁体)および18b(第2絶縁体)は、熱電薄膜12aおよび12bの-Z方向側および+Z方向側にそれぞれ熱伝導層16aおよび16bが貫通し熱伝導層16aおよび16bより熱伝導率が小さい。このように、絶縁層18aおよび18bを用いることにより、基部22aと22b間の熱伝導層16aおよび16b以外の部分の熱抵抗を大きくできる。 The insulating layers 18a and 18b (insulators) penetrate the heat conductive layers 16a and 16b and have a lower thermal conductivity than the heat conductive layers 16a and 16b. When the heat conductive layers 16a and 16b are provided on the + Z side and the −Z side, the insulating layers 18a (first insulator) and 18b (second insulator) are disposed on the −Z direction side of the thermoelectric thin films 12a and 12b and The heat conductive layers 16a and 16b penetrate through the + Z direction side, respectively, and have a lower thermal conductivity than the heat conductive layers 16a and 16b. Thus, by using the insulating layers 18a and 18b, the thermal resistance of the portion other than the heat conductive layers 16a and 16b between the base portions 22a and 22b can be increased.
 熱電薄膜12aおよび12bは、Y方向(表面に平行な方向であって第1方向に交差する第3方向)に延伸する。これにより、熱電薄膜12aおよび12bのX方向の電気抵抗を小さくできる。熱電薄膜12aおよび12bのY方向の長さは、膜厚tの10倍以上が好ましく、100倍以上がより好ましく、1000倍以上はさらに好ましい。 The thermoelectric thin films 12a and 12b extend in the Y direction (a third direction that is parallel to the surface and intersects the first direction). Thereby, the electrical resistance of the X direction of the thermoelectric thin films 12a and 12b can be made small. Length in the Y direction of the thermoelectric film 12a and 12b is preferably 10 times or more the thickness t 0, and more preferably at least 100-fold, more preferably 1000 times or more.
 熱電薄膜12aおよび12bのγd(X方向の幅)は、熱電薄膜12aおよび12bの膜厚tより大きい。これにより、熱電薄膜12aおよび12bのX方向の熱抵抗を大きくできる。素子寸法γdは膜厚tの2倍以上が好ましく、10倍以上がより好ましい。 Thermoelectric films 12a and 12b .gamma.d (X direction width) is greater than the thickness t 0 of the thermoelectric film 12a and 12b. Thereby, the thermal resistance of the X direction of the thermoelectric thin films 12a and 12b can be enlarged. The element size γd is preferably 2 times or more of the film thickness t 0 , and more preferably 10 times or more.
[実施例1の変形例1]
 図11(a)および図11(b)は、実施例1の変形例1に係る熱電変換装置の断面図である。図11(a)に示すように、熱伝導層16aおよび16bのX方向の幅は、接続層14aおよび14bのX方向の幅より大きくてもよい。図11(b)に示すように、熱伝導層16aおよび16bのX方向の幅は接続層14aおよび14bより小さくてもよい。その他の構成は実施例1と同じであり説明を省略する。
[Modification 1 of Example 1]
FIG. 11A and FIG. 11B are cross-sectional views of the thermoelectric conversion device according to the first modification of the first embodiment. As shown in FIG. 11A, the X-direction width of the heat conductive layers 16a and 16b may be larger than the X-direction width of the connection layers 14a and 14b. As shown in FIG. 11B, the width in the X direction of the heat conductive layers 16a and 16b may be smaller than that of the connection layers 14a and 14b. Other configurations are the same as those of the first embodiment, and the description thereof is omitted.
[実施例1の変形例2]
 図12は、実施例1の変形例2に係る熱電変換装置の平面図である。図12に示すように、Y方向に複数のモジュール30が設けられている。各モジュール30は、電極24aと24bとの間にX方向に配列したゼーベック素子10を備えている。各モジュール30間は絶縁層18により電気的および熱的に分離されている。用途に応じ、各モジュール30を直列に接続、並列に接続、または直列と並列を組み合わせて電気接続できる。モジュール30間を接続する配線を基板上に集積化することで、配線の内部抵抗を低減できる。その他の構成は実施例1と同じであり説明を省略する。
[Modification 2 of Embodiment 1]
FIG. 12 is a plan view of the thermoelectric conversion device according to the second modification of the first embodiment. As shown in FIG. 12, a plurality of modules 30 are provided in the Y direction. Each module 30 includes a Seebeck element 10 arranged in the X direction between the electrodes 24a and 24b. The modules 30 are electrically and thermally separated by the insulating layer 18. Depending on the application, the modules 30 can be connected in series, connected in parallel, or combined electrically in series and parallel. By integrating the wiring connecting the modules 30 on the substrate, the internal resistance of the wiring can be reduced. Other configurations are the same as those of the first embodiment, and the description thereof is omitted.
[実施例1の変形例3]
 図13(a)および図13(b)は、実施例1の変形例3に係る熱電変換装置の断面図および平面図である。図13(a)に示すように、基部22aおよび絶縁層18aに溝28aが形成され、基部22bおよび絶縁層18bに溝28bが形成されている。絶縁層18aおよび18bは固体である。溝28aおよび28b内は空気等の気体または真空であり絶縁層18aおよび18bより熱伝導率が大きい。このため、基部22aと22b間の温度差が同じでも熱電薄膜12aおよび12bの温度差を大きくできる。図13(b)に示すように、基部22bに複数の溝28bが設けられている。基部22aにも同様に複数の溝28aが設けられている。溝28bはX方向およびY方向に配列されている。溝28bを短く分断することで、熱電変換装置の強度を高くできる。溝28bはY方向に延伸するように設けられていてもよい。その他の構成は実施例1と同じであり説明を省略する。
[Modification 3 of Embodiment 1]
FIG. 13A and FIG. 13B are a cross-sectional view and a plan view of the thermoelectric conversion device according to the third modification of the first embodiment. As shown in FIG. 13A, a groove 28a is formed in the base portion 22a and the insulating layer 18a, and a groove 28b is formed in the base portion 22b and the insulating layer 18b. The insulating layers 18a and 18b are solid. The grooves 28a and 28b are a gas such as air or a vacuum and have a higher thermal conductivity than the insulating layers 18a and 18b. For this reason, even if the temperature difference between the bases 22a and 22b is the same, the temperature difference between the thermoelectric thin films 12a and 12b can be increased. As shown in FIG. 13B, the base portion 22b is provided with a plurality of grooves 28b. Similarly, the base portion 22a is provided with a plurality of grooves 28a. The grooves 28b are arranged in the X direction and the Y direction. The strength of the thermoelectric conversion device can be increased by dividing the groove 28b. The groove 28b may be provided so as to extend in the Y direction. Other configurations are the same as those of the first embodiment, and the description thereof is omitted.
 実施例1の変形例3によれば、基部22aおよび絶縁層18aは、熱伝導層16aの間において溝28a(第1溝)を有している。基部22bおよび絶縁層18bは、熱伝導層16aの間において溝28b(第2溝)を有する。これにより、熱電薄膜12aおよび12b間の温度差を大きくできる。なお、絶縁層18aおよび18bが全て除去されて溝28aおよび28bを形成してもよい。 According to Modification 3 of Example 1, the base 22a and the insulating layer 18a have the groove 28a (first groove) between the heat conductive layers 16a. The base 22b and the insulating layer 18b have a groove 28b (second groove) between the heat conductive layers 16a. Thereby, the temperature difference between the thermoelectric thin films 12a and 12b can be enlarged. The insulating layers 18a and 18b may all be removed to form the grooves 28a and 28b.
[実施例1の変形例4]
 図14(a)は、実施例1の変形例4に係る熱電変換装置の断面図である。図14(a)に示すように、熱電薄膜12aおよび12bのZ方向の位置は同じでない。その他の構成は実施例1と同じであり説明を省略する。熱電薄膜12aおよび12bの製造方法によっては、熱電薄膜12aと12bとは同一のXY平面上に位置していなくてもよい。
[Modification 4 of Example 1]
FIG. 14A is a cross-sectional view of the thermoelectric conversion device according to the fourth modification of the first embodiment. As shown in FIG. 14A, the positions of the thermoelectric thin films 12a and 12b in the Z direction are not the same. Other configurations are the same as those of the first embodiment, and the description thereof is omitted. Depending on the manufacturing method of the thermoelectric thin films 12a and 12b, the thermoelectric thin films 12a and 12b may not be located on the same XY plane.
 図14(b)は、実施例1の変形例4の別の例である。図14(b)に示すように、接続層14aおよび14bは、+Z方向において熱電薄膜12aと接触し、-Z方向において熱電薄膜12bと接触してもよい。熱伝導層16aは、熱電薄膜12bを介し接続層14aおよび14bと熱的に接続し、熱伝導層16bは、熱電薄膜12aを介し接続層14aおよび14bと熱的に接続してもよい。熱伝導層16aおよび16bのX方向の幅は、接続層14aおよび14bのX方向の幅より大きくてもよい。熱伝導層16aおよび16bのX方向の幅は接続層14aおよび14bより小さくてもよい。図14(b)では熱電薄膜12b、接続層14aおよび14b、並びに熱電薄膜12aがZ方向に積層させるため、熱電薄膜12aおよび12bと接続層14aおよび14bとの接触が容易となる。 FIG. 14B is another example of the fourth modification of the first embodiment. As shown in FIG. 14B, the connection layers 14a and 14b may be in contact with the thermoelectric thin film 12a in the + Z direction and in contact with the thermoelectric thin film 12b in the -Z direction. The heat conductive layer 16a may be thermally connected to the connection layers 14a and 14b via the thermoelectric thin film 12b, and the heat conductive layer 16b may be thermally connected to the connection layers 14a and 14b via the thermoelectric thin film 12a. The X direction width of the heat conductive layers 16a and 16b may be larger than the X direction width of the connection layers 14a and 14b. The X direction width of the heat conductive layers 16a and 16b may be smaller than that of the connection layers 14a and 14b. In FIG. 14B, since the thermoelectric thin film 12b, the connection layers 14a and 14b, and the thermoelectric thin film 12a are laminated in the Z direction, the thermoelectric thin films 12a and 12b and the connection layers 14a and 14b can be easily contacted.
[実施例1の変形例5]
 図14(c)は、実施例1の変形例5に係る熱電変換装置の断面図である。図14(c)に示すように、基部22aと22bとの間に、層48が絶縁膜20を介し複数積層されている。各層48は、実施例1の変形例4の熱電薄膜12aおよび12b、接続層14aおよび14b、熱伝導層16aおよび16b、並びに絶縁層18aおよび18bを含む。絶縁膜20は、電気的な絶縁体でありかつ熱伝導率が高い。その他の構成は、実施例1と同じであり説明を省略する。
[Modification 5 of Embodiment 1]
FIG. 14C is a cross-sectional view of the thermoelectric conversion device according to the fifth modification of the first embodiment. As shown in FIG. 14C, a plurality of layers 48 are stacked with the insulating film 20 between the base portions 22a and 22b. Each layer 48 includes the thermoelectric thin films 12a and 12b, the connection layers 14a and 14b, the heat conductive layers 16a and 16b, and the insulating layers 18a and 18b of the fourth modification of the first embodiment. The insulating film 20 is an electrical insulator and has high thermal conductivity. Other configurations are the same as those in the first embodiment, and a description thereof will be omitted.
 実施例1の変形例5によれば、複数の層48のうち隣接する層の一方に含まれる熱伝導層16aと、隣接する層48の他方に含まれる熱伝導層16bと、は電気的な絶縁膜20を介し熱的に接続されている。このように、熱電材料を薄膜とすることで、複数の層48が基部22aと22bとの間に熱的に直列に接続することができる。これにより、効率的に熱を電力に変換することができる。実施例1およびその変形例1から3のゼーベック素子を実施例1の変形例5のように積層してもよい。 According to the fifth modification of the first embodiment, the heat conductive layer 16a included in one of the adjacent layers among the plurality of layers 48 and the heat conductive layer 16b included in the other of the adjacent layers 48 are electrically Thermally connected through the insulating film 20. Thus, by using a thin thermoelectric material, the plurality of layers 48 can be thermally connected in series between the base portions 22a and 22b. Thereby, heat can be efficiently converted into electric power. The Seebeck element of the first embodiment and the first to third modifications thereof may be stacked as in the fifth modification of the first embodiment.
 実施例1およびその変形例に係る熱電変換装置は、ウエアラブルデバイス、マイクロコントローラまたはセンサの電源として用いることができる。例えば、熱電変換装置を身体に装着する。これにより、熱電変換装置は,身体からの放熱を用い発電し、発電した電力をウエアラブルデバイスまたはセンサに供給することができる。また、熱電変換装置を、車のエンジンからの排熱(排気ガスによる熱)などによる発電に用いることができる。 The thermoelectric conversion device according to the first embodiment and its modification can be used as a power source for a wearable device, a microcontroller, or a sensor. For example, a thermoelectric conversion device is worn on the body. Thereby, the thermoelectric conversion apparatus can generate electric power using heat radiation from the body, and supply the generated electric power to the wearable device or sensor. Further, the thermoelectric converter can be used for power generation by exhaust heat (heat from exhaust gas) from a car engine.
[実施例1の変形例6]
 実施例1の変形例6は、実施例1およびその変形例に係る熱電変換装置をペルチェ素子として用いる例である。図15(a)および図15(b)は、実施例1の変形例6に係る熱電変換装置を用いた電子装置の断面図である。図15(a)に示すように、プリント基板等の基板58上に集積回路素子52が搭載されている。集積回路素子52は、例えばマイクロプロセッサまたはSoC(System on a Chip)である。集積回路素子52上に熱伝導部材56、熱電変換装置51、熱伝導部材56および放熱部材54が設けられている。熱電変換装置51は、実施例1およびその変形例に係る熱電変換装置をペルチェ素子として用いている。熱伝導部材56は例えば銅またはインジウム等のように熱コンタクトをとる金属層である。放熱部材54は例えば放熱フィンである。熱伝導部材56および放熱部材54には、実施例2において例示する材料を用いてもよい。図15(b)に示すように、集積回路素子52上に熱電変換装置51を直接搭載してもよい。
[Modification 6 of Example 1]
A sixth modification of the first embodiment is an example in which the thermoelectric conversion device according to the first embodiment and the modification is used as a Peltier element. FIG. 15A and FIG. 15B are cross-sectional views of an electronic device using the thermoelectric conversion device according to the sixth modification of the first embodiment. As shown in FIG. 15A, an integrated circuit element 52 is mounted on a substrate 58 such as a printed circuit board. The integrated circuit element 52 is, for example, a microprocessor or a SoC (System on a Chip). A heat conducting member 56, a thermoelectric conversion device 51, a heat conducting member 56, and a heat radiating member 54 are provided on the integrated circuit element 52. The thermoelectric conversion device 51 uses the thermoelectric conversion device according to the first embodiment and its modification as a Peltier element. The heat conducting member 56 is a metal layer that takes thermal contact, such as copper or indium. The heat radiating member 54 is, for example, a heat radiating fin. The materials exemplified in the second embodiment may be used for the heat conducting member 56 and the heat radiating member 54. As shown in FIG. 15B, the thermoelectric conversion device 51 may be directly mounted on the integrated circuit element 52.
 実施例1の変形例6のように、ペルチェ素子である熱電変換装置51に電力を加えることで、集積回路素子52を冷却することができる。図15(a)のように、熱電変換装置51を集積回路素子52と放熱部材54との間に熱伝導部材56を介し実装してもよい。図15(b)のように、半導体プロセスを用い熱電変換装置51を集積回路素子52上に直接集積化してもよい。この場合は、集積回路素子52上の熱の上昇が特に高くなる箇所の直上に熱電変換装置51を集積化することも可能である。これらによって、集積回路素子52を強制的に冷却することで、集積回路素子52における放熱の問題を解決することができる。 As in the sixth modification of the first embodiment, the integrated circuit element 52 can be cooled by applying power to the thermoelectric conversion device 51 that is a Peltier element. As shown in FIG. 15A, the thermoelectric conversion device 51 may be mounted between the integrated circuit element 52 and the heat radiating member 54 via a heat conducting member 56. As shown in FIG. 15B, the thermoelectric conversion device 51 may be directly integrated on the integrated circuit element 52 using a semiconductor process. In this case, it is also possible to integrate the thermoelectric conversion device 51 directly above the portion where the rise in heat on the integrated circuit element 52 is particularly high. Accordingly, the problem of heat dissipation in the integrated circuit element 52 can be solved by forcibly cooling the integrated circuit element 52.
 実施例2は、熱電変換装置を有する電子装置の例である。図16は、実施例2に係る電子装置の断面図である。図16に示すように、電子装置105において、発電装置50は、集積回路素子52と放熱部材54との間に設けられている。集積回路素子52は、基板58上に搭載されている。発電装置50と集積回路素子52とは熱伝導部材56を介し熱的に接続されている。 Example 2 is an example of an electronic device having a thermoelectric conversion device. FIG. 16 is a cross-sectional view of the electronic device according to the second embodiment. As shown in FIG. 16, in the electronic device 105, the power generation device 50 is provided between the integrated circuit element 52 and the heat dissipation member 54. The integrated circuit element 52 is mounted on the substrate 58. The power generation device 50 and the integrated circuit element 52 are thermally connected via a heat conducting member 56.
 発電装置50は、例えば比較例1、比較例2、実施例1およびその変形例に係る熱電変換装置を含む。熱電変換装置のうち接続層14aおよび14bの一方は、基部22aおよび22bの一方を介し熱伝導部材56に熱的に接続されている。接続層14aおよび14bの他方は、基部22aおよび22bの他方を介し放熱部材54に熱的に接続されている。 The power generation device 50 includes, for example, thermoelectric conversion devices according to comparative example 1, comparative example 2, example 1, and modifications thereof. One of the connection layers 14a and 14b in the thermoelectric conversion device is thermally connected to the heat conducting member 56 through one of the base portions 22a and 22b. The other of the connection layers 14a and 14b is thermally connected to the heat dissipation member 54 via the other of the base portions 22a and 22b.
 集積回路素子52は、例えばSoC(System on a Chip)等の集積回路が形成されたチップまたは集積回路チップが実装されたパッケージである。集積回路素子52は、マイクロプロセッサ等でもよい。基板58は、例えばプリント基板である。熱伝導部材56は、熱伝導率が大きい材料が好ましく、例えばCu、Al、AuもしくはAg等の金属、セラミックスまたは高熱伝導性シリコーン樹脂等を用いることができる。熱伝導部材56を設けず、熱電変換装置の基部22aおよび22bを直接集積回路素子52に接触させてもよい。放熱部材54は、例えば電子装置の筐体、アルマイト加工などを施した放熱板、放熱フィンまたは放熱ファンである。発電装置50は、π型の熱電変換装置およびその他の熱電変換装置でもよい。 The integrated circuit element 52 is a chip on which an integrated circuit such as SoC (System on chip) is formed or a package on which the integrated circuit chip is mounted. The integrated circuit element 52 may be a microprocessor or the like. The board | substrate 58 is a printed circuit board, for example. The heat conductive member 56 is preferably made of a material having a high heat conductivity. For example, a metal such as Cu, Al, Au, or Ag, ceramics, or a high heat conductive silicone resin can be used. The base portions 22 a and 22 b of the thermoelectric conversion device may be directly brought into contact with the integrated circuit element 52 without providing the heat conducting member 56. The heat radiating member 54 is, for example, a housing of an electronic device, a heat radiating plate subjected to anodizing, a heat radiating fin, or a heat radiating fan. The power generation device 50 may be a π-type thermoelectric conversion device and other thermoelectric conversion devices.
 実施例2によれば、集積回路素子52が動作すると、集積回路素子52において熱が発生する。発生した熱は、熱伝導部材56、発電装置50を介し放熱部材54に伝導し、放熱部材54により放熱される。発電装置50は、比較例1、2、実施例1およびその変形例のように、接続層14aと14bとの間に設けられた熱電薄膜(熱電材料)12aと12bとが、接続層14aと14bとを介して交互に直列に接続された熱電変換装置を含む。接続層14aと14bの一方が集積回路素子52に熱的に接続し、接続層14aと14bの他方が放熱部材54に接続されている。 According to the second embodiment, when the integrated circuit element 52 operates, heat is generated in the integrated circuit element 52. The generated heat is conducted to the heat radiating member 54 via the heat conducting member 56 and the power generation device 50, and is radiated by the heat radiating member 54. As in Comparative Examples 1 and 2 and Example 1 and modifications thereof, the power generation device 50 includes thermoelectric thin films (thermoelectric materials) 12a and 12b provided between the connection layers 14a and 14b, and the connection layer 14a. 14b and thermoelectric conversion devices connected in series alternately. One of the connection layers 14 a and 14 b is thermally connected to the integrated circuit element 52, and the other of the connection layers 14 a and 14 b is connected to the heat dissipation member 54.
 これにより、集積回路素子52と放熱部材54との温度差を用い発電することができる。発電装置50として、実施例1およびその変形例を用いることにより、発電装置50の出力電力を大きくできる。 Thereby, it is possible to generate power using the temperature difference between the integrated circuit element 52 and the heat dissipation member 54. By using Example 1 and its modification as the power generation device 50, the output power of the power generation device 50 can be increased.
[実施例2の変形例1]
 図17は、実施例2の変形例1に係る電子装置のブロック図である。図17に示すように、電子装置106は、実施例2に係る電子装置105に加え制御回路60および蓄電装置62を備えている。蓄電装置62は、例えば2次電池である。制御回路60には、外部電力70が供給される。制御回路60は電力71を集積回路素子52に供給する。制御回路60は、集積回路素子52の電源電圧に対応し集積回路素子52に複数の電圧の電力71を供給してもよい。
[Modification 1 of Embodiment 2]
FIG. 17 is a block diagram of an electronic device according to the first modification of the second embodiment. As illustrated in FIG. 17, the electronic device 106 includes a control circuit 60 and a power storage device 62 in addition to the electronic device 105 according to the second embodiment. The power storage device 62 is, for example, a secondary battery. External power 70 is supplied to the control circuit 60. The control circuit 60 supplies power 71 to the integrated circuit element 52. The control circuit 60 may supply electric power 71 having a plurality of voltages to the integrated circuit element 52 corresponding to the power supply voltage of the integrated circuit element 52.
 集積回路素子52において発生した熱80は、発電装置50に伝導または伝達する。発電装置50において一部の熱は電力72に変換される。残りの熱81は放熱部材54に伝導または伝達する。放熱部材54より熱82は放出される。 The heat 80 generated in the integrated circuit element 52 is conducted or transmitted to the power generation device 50. In the power generation device 50, a part of heat is converted into electric power 72. The remaining heat 81 is conducted or transmitted to the heat dissipation member 54. Heat 82 is released from the heat dissipation member 54.
 発電装置50において発電された電力72は制御回路60に出力される。制御回路60は、発電装置50が発電した電力72を蓄電装置62または集積回路素子52に供給する。蓄電装置62は、制御回路60から供給された電力73を蓄電する。また、蓄電装置62は電力74を制御回路60に供給する。制御回路60は、蓄電装置62から供給された電力74を集積回路素子52に電力71として供給する。 Electric power 72 generated by the power generation device 50 is output to the control circuit 60. The control circuit 60 supplies the power 72 generated by the power generation device 50 to the power storage device 62 or the integrated circuit element 52. The power storage device 62 stores the electric power 73 supplied from the control circuit 60. The power storage device 62 supplies power 74 to the control circuit 60. The control circuit 60 supplies the electric power 74 supplied from the power storage device 62 to the integrated circuit element 52 as electric power 71.
 制御回路60は、例えば充電モードと動作アシストモードを選択する。充電モードでは、制御回路60は、発電装置50が発電した電力72を主に蓄電装置62の充電に用いる。集積回路素子52に供給する電力71は主に外部電力70を用いる。充電モードでは、蓄電装置62の電力消費速度を緩和できる。または、外部電源のみで蓄電装置62を充電する場合に比べ、蓄電装置62の充電時間を早くできる。 The control circuit 60 selects, for example, a charging mode and an operation assist mode. In the charging mode, the control circuit 60 mainly uses the power 72 generated by the power generation device 50 for charging the power storage device 62. As the power 71 supplied to the integrated circuit element 52, the external power 70 is mainly used. In the charging mode, the power consumption speed of the power storage device 62 can be reduced. Alternatively, the charging time of the power storage device 62 can be shortened as compared with the case where the power storage device 62 is charged only by an external power source.
 動作アシストモードでは、制御回路60は、外部電力70に加え発電装置50が発電した電力72および/または蓄電装置62が放電した電力74を集積回路素子52に供給する。動作アシストモードでは、充電モードなど動作アシストモードを使用しない場合に比べ、集積回路素子52の動作速度が同じであれば、外部電力70の消費を抑制できる(すなわち低消費電力となる)。外部電力70が同じであれば、集積回路素子52をより高速動作させる(すなわち、熱電発電による電圧ブーストする)ことができる。また、熱電変換装置から回収したエネルギーで、集積回路がスリープ状態となったときの、集積回路内のメモリのデータ保持を行うこともできる。このデータ保持には、動作アシストモードやバッテリーからのエネルギーも活用することができる。 In the operation assist mode, the control circuit 60 supplies the integrated circuit element 52 with the power 72 generated by the power generation device 50 and / or the power 74 discharged by the power storage device 62 in addition to the external power 70. In the operation assist mode, as compared with the case where the operation assist mode such as the charging mode is not used, if the operation speed of the integrated circuit element 52 is the same, the consumption of the external power 70 can be suppressed (that is, the power consumption is reduced). If the external power 70 is the same, the integrated circuit element 52 can be operated at a higher speed (that is, voltage boosted by thermoelectric power generation). In addition, the energy collected from the thermoelectric conversion device can hold data in the memory in the integrated circuit when the integrated circuit enters the sleep state. For this data retention, the operation assist mode and energy from the battery can also be used.
 実施例2の変形例1によれば、蓄電装置62は、発電装置50が発電した電力を蓄え、蓄えた電力を集積回路素子52に供給する。これにより、低消費電力および/または高速動作が可能となる。 According to the first modification of the second embodiment, the power storage device 62 stores the power generated by the power generation device 50 and supplies the stored power to the integrated circuit element 52. Thereby, low power consumption and / or high-speed operation are possible.
[実施例2の変形例2]
 図18は、実施例2の変形例2に係る電力システムのブロック図である。図18に示すように、電力システム108は、電子装置105に加え制御回路60および電力回収装置64を備えている。制御回路60は、外部電力70を集積回路素子52に供給する。電力回収装置64は、複数の電子装置105における発電装置50が発電した電力72を回収する。電力回収装置64は、回収した電力72を集積した電力75を外部に供給する。
[Modification 2 of Embodiment 2]
FIG. 18 is a block diagram of a power system according to a second modification of the second embodiment. As shown in FIG. 18, the power system 108 includes a control circuit 60 and a power recovery device 64 in addition to the electronic device 105. The control circuit 60 supplies external power 70 to the integrated circuit element 52. The power recovery device 64 recovers the electric power 72 generated by the power generation device 50 in the plurality of electronic devices 105. The power recovery device 64 supplies power 75, which is a collection of the recovered power 72, to the outside.
 データセンタ等では、膨大なマイクロプロセッサ等の集積回路素子52が動作している。このため、膨大な電力を消費している。そこで、集積回路素子52において発生した熱の一部を発電装置50において電力72に変換する。電力72を回収し、再利用する。再利用する電力75は、例えばデータセンタ等の空調または照明等の電力に使用する。回収される電力72が集積回路素子52の消費電力の10%程度であっても、空調または照明等の電力として十分使用することができる。 In a data center or the like, a large number of integrated circuit elements 52 such as microprocessors are operating. For this reason, enormous electric power is consumed. Therefore, a part of the heat generated in the integrated circuit element 52 is converted into electric power 72 in the power generation device 50. The electric power 72 is collected and reused. The electric power 75 to be reused is used for electric power for air conditioning or lighting of a data center, for example. Even if the recovered power 72 is about 10% of the power consumption of the integrated circuit element 52, it can be sufficiently used as power for air conditioning or lighting.
[恒温動物モデルを用いたシミュレーション]
 上記比較例1および実施例1のシミュレーションは、熱電変換装置に加わる温度差ΔTが一定としている。このモデルは熱電発電モジュール単体の評価方法の1つである。しかし、熱電変換装置をウエアラブルデバイスの電源として用いる場合、熱電変換装置は人体の体温と大気の温度との温度差を用いて発電することになる。このような場合、上記シミュレーションは適正でない。そこで、人体の皮膚温度に恒温動物モデルを用い、実施例1における熱電変換装置のシミュレーションを行った。
[Simulation using constant temperature animal model]
In the simulations of Comparative Example 1 and Example 1, the temperature difference ΔT applied to the thermoelectric converter is constant. This model is one of the evaluation methods for a single thermoelectric generator module. However, when the thermoelectric conversion device is used as the power source of the wearable device, the thermoelectric conversion device generates power using a temperature difference between the human body temperature and the atmospheric temperature. In such a case, the simulation is not appropriate. Therefore, a thermoelectric conversion device in Example 1 was simulated using a constant temperature animal model for the skin temperature of the human body.
 図19(a)および図19(b)は、シミュレーションモデルを示す図である。図19(a)および図19(b)はそれぞれ定熱流モデルおよび定温度差モデルを示している。定熱流は等価な電気回路で表現すれば定電流源モデルに相当し、定温度差は等価な電気回路で表現すれば定電圧源モデルに相当する。熱電変換装置の性能評価には一般に定電流源モデルが用いられる。 FIG. 19A and FIG. 19B are diagrams showing a simulation model. FIG. 19A and FIG. 19B show a constant heat flow model and a constant temperature difference model, respectively. The constant heat flow corresponds to a constant current source model if expressed by an equivalent electric circuit, and the constant temperature difference corresponds to a constant voltage source model if expressed by an equivalent electric circuit. A constant current source model is generally used for performance evaluation of thermoelectric converters.
 図19(a)に示すように、熱抵抗kおよびkairが直列に接続されている。kおよびkairはそれぞれ熱電変換装置の熱抵抗および熱電変換装置と大気との間の熱抵抗に相当する。熱抵抗kおよびkairに直列に定電流源66(すなわち定熱流源)が設けられている。定電流源モデルでは定電流源66が熱抵抗kの一端にパワーQを投入しkおよびkairを流れる熱流を一定とする。パワーQは人体の皮膚から熱電変換装置に投入されるパワーに相当する。しかし、定電流源モデルでは、熱抵抗kの大きさによって皮膚表面の温度が変化する。これは恒温動物である人体を表現できていない。このため,例えば熱抵抗kが大きい場合、熱流を一定にするため大きなパワーQを投入することになる。しかし人体から投入されるパワーには限りがあり、ウエアラブルデバイス用の電源のシミュレーションモデルとして定電流源モデルは適切でない。 As shown in FIG. 19A, thermal resistances k M and k air are connected in series. k M and k air correspond to the thermal resistance of the thermoelectric converter and the thermal resistance between the thermoelectric converter and the atmosphere, respectively. Thermal resistance k M and k air to the series constant current source 66 (i.e. Teinetsu flow source) is provided. The constant current source model and constant heat flow through the k M and k air constant current source 66 is a power Q was placed on one end of the heat resistance k M. The power Q corresponds to the power input from the human skin to the thermoelectric converter. However, the constant current source model, the temperature of the skin surface which depends on the thermal resistance k M. This cannot express the human body which is a constant temperature animal. Thus, for example, when the thermal resistance k M is large, it will put a large power Q for the heat flow constant. However, the power input from the human body is limited, and the constant current source model is not appropriate as a simulation model of a power source for wearable devices.
 図19(b)に示すように、熱抵抗kおよびkairに直列に定電圧源68(すなわち定温度差源)が設けられている。定電圧源モデルでは、人体が恒温動物であることを考慮し、外気と皮膚表面との間の温度差を一定に保つことで、人体の皮膚の表面の温度を一定とする。すなわち、定電圧源68は熱抵抗kおよびkairに加わる温度差ΔTを一定とする。熱電変換装置の両側に加わる温度差ΔTは、熱抵抗kおよびkairに依存して変化するが、皮膚表面の温度は一定に保てる。 As shown in FIG. 19 (b), the thermal resistance k M and k air in series the constant voltage source 68 (i.e. constant temperature difference source) is provided. In the constant voltage source model, considering that the human body is a constant temperature animal, the temperature difference between the outside air and the skin surface is kept constant so that the temperature of the human skin surface is constant. That is, the constant voltage source 68 keeps the temperature difference ΔT S applied to the thermal resistances k M and k air constant. The temperature difference ΔT applied to both sides of the thermoelectric converter varies depending on the thermal resistances k M and k air , but the skin surface temperature can be kept constant.
 実施例1の構造は図4(a)および図4(b)とし、比較例1の構造は図2(a)および図2(b)とした。
 以下にシミュレーション条件を示す。
 大気の熱抵抗kair:212.5K/W
 熱電薄膜12aおよび12b
  ゼーベック係数S=S-S:434μV/K
  熱伝導率λ=(λ+λ)/2:1.43Wm-1-1
  電気抵抗率ρ=(ρ+ρ)/2:8.11μΩm
 接続層14aおよび14b:Cu
  膜厚tCu:10μm(実施例1)、≦10μm(比較例1)
  熱伝導率λCu:386Wm-1-1
  電気抵抗率λCu:1.69×10-8Ωm
 絶縁層18:真空
 D×D:10mm×10mm
 ΔT:10K
 SおよびSはそれぞれn型およびp型の熱電薄膜12aおよび12bのゼーベック係数、λおよびλはそれぞれn型およびp型の熱電薄膜12aおよび12bの熱伝導率、並びにρおよびρはそれぞれn型およびp型の熱電薄膜12aおよび12bの電気抵抗率である。Dはモジュールの一辺の長さである。
The structure of Example 1 is shown in FIGS. 4 (a) and 4 (b), and the structure of Comparative Example 1 is shown in FIGS. 2 (a) and 2 (b).
The simulation conditions are shown below.
Atmospheric thermal resistance k air : 212.5 K / W
Thermoelectric thin films 12a and 12b
Seebeck coefficient S = S p −S n : 434 μV / K
Thermal conductivity λ = (λ p + λ n ) /2:1.43 Wm −1 K −1
Electrical resistivity ρ = (ρ p + ρ n ) / 2: 8.11 μΩm
Connection layers 14a and 14b: Cu
Film thickness t Cu : 10 μm (Example 1), ≦ 10 μm (Comparative Example 1)
Thermal conductivity λ Cu : 386 Wm −1 K −1
Electrical resistivity λ Cu : 1.69 × 10 −8 Ωm
Insulating layer 18: Vacuum D × D: 10 mm × 10 mm
ΔT S : 10K
S n and S p are the Seebeck coefficients of the n-type and p-type thermoelectric thin films 12a and 12b, respectively, λ n and λ p are the thermal conductivities of the n-type and p-type thermoelectric thin films 12a and 12b, respectively, and ρ n and ρ p is the electrical resistivity of the n-type and p-type thermoelectric thin films 12a and 12b, respectively. D is the length of one side of the module.
 以上のように、恒温動物モデルでは、皮膚の表面温度と外気温との温度差ΔTを10Kと一定とした。これは、例えば体温が35℃であり気温が25℃の場合に相当する。熱電変換装置の基部からの対流および輻射による放熱の熱抵抗kairを温度に依存せず212.5K/Wと一定とした。 As described above, in the constant temperature animal model, the temperature difference ΔT S between the skin surface temperature and the outside air temperature is constant at 10K. This corresponds to a case where the body temperature is 35 ° C. and the air temperature is 25 ° C., for example. The heat resistance k air for heat dissipation by convection and radiation from the base of the thermoelectric converter was kept constant at 212.5 K / W regardless of temperature.
[実施例1のシミュレーション]
 実施例1について恒温動物モデルを用いシミュレーションを行った。ΔTを一定としたシミュレーションと同様に、出力電力POUTが最大となるトレードオフパラメータγおよび出力電力POUTが最大となる素子対数mで最適化した。
[Simulation of Example 1]
Example 1 was simulated using a constant temperature animal model. Similar to the simulation of ΔT is constant, the output power P OUT tradeoff parameter is maximum γ and the output power P OUT is optimized device logarithmic m 0 to the maximum.
 図20(a)および図20(b)は、実施例1におけるそれぞれγおよびmに対するγd、(1-γ)d、ΔT、βΔT、VおよびPOUTのシミュレーション結果を示す図である。βΔTは熱電薄膜12aおよび12bの各々の両端間の温度差である。その他のパラメータはΔTを一定としたシミュレーションと同じである。 20A and 20B are diagrams showing simulation results of γd, (1-γ) d, ΔT, βΔT, V S and P OUT for γ and m 0 in Example 1, respectively. βΔT is a temperature difference between both ends of each of the thermoelectric thin films 12a and 12b. Other parameters are the same as in the simulation with ΔT constant.
 図20(a)は、m=100ペア、t=100nmにおいてγを最適化するときの図である。図20(a)に示すように、γが変化するとPOUTが変化する。POUTが最大となるγが最適化されたγである。POUTがγに対しピークを持たない場合、γd≧1μmかつ(1-γ)d≧1μmの範囲内でPOUTが最大となるγを最適化されたγとした。 FIG. 20A is a diagram when γ is optimized at m 0 = 100 pairs and t 0 = 100 nm. As shown in FIG. 20A, when γ changes, P OUT changes. Γ that maximizes P OUT is an optimized γ. When P OUT does not have a peak with respect to γ, γ that maximizes P OUT within the range of γd ≧ 1 μm and (1-γ) d ≧ 1 μm was determined as an optimized γ.
 図20(b)は、t=100nmにおいてmを最適化するときの図である。m毎に図20(a)の方法でγを最適化している。図20(b)に示すように、mが変化するとPOUTが変化する。図に示すように、POUTとVのピークをとるmは異なるため、例えば、V≧100mVの範囲でかつPOUTが最大となるmを最適化されたmとすることができる。 FIG. 20B is a diagram when m 0 is optimized at t 0 = 100 nm. For each m 0 , γ is optimized by the method of FIG. As shown in FIG. 20B, P OUT changes when m 0 changes. As shown in the figure, since m 0 that takes the peak of P OUT and V S is different, for example, m 0 that maximizes P OUT in the range of V S ≧ 100 mV may be optimized m 0. it can.
 図21は、実施例1におけるtに対するγd、(1-γ)d、ΔT、βΔT、VおよびPOUTのシミュレーション結果を示す図である。t毎に図20(b)の方法でmを最適化している。図21に示すように、膜厚tが300nm以下においてPOUTは100μW以上である。 FIG. 21 is a diagram illustrating simulation results of γd, (1−γ) d, ΔT, βΔT, V S and P OUT with respect to t 0 in Example 1. m 0 is optimized at every t 0 by the method of FIG. As shown in FIG. 21, P OUT is 100 μW or more when the film thickness t 0 is 300 nm or less.
[比較例1のシミュレーション]
 比較例1のπ型について恒温動物モデルを用い実施例1と同様にシミュレーションを行った。図22は、比較例1におけるtに対するγd、(1-γ)d、ΔT、βΔT、VおよびPOUTのシミュレーション結果を示す図である。ここでは、γdおよび(1-γ)dの最小値を1μmに制限してある。図22に示すように、膜厚tが小さくなるとPOUTが小さくなる。膜厚tが1000nm以下となるとPOUTが100μW以下となる。
[Simulation of Comparative Example 1]
A simulation was performed for the π-type of Comparative Example 1 in the same manner as in Example 1 using a constant temperature animal model. FIG. 22 is a diagram illustrating simulation results of γd, (1-γ) d, ΔT, βΔT, V S and P OUT with respect to t 0 in Comparative Example 1. Here, the minimum values of γd and (1-γ) d are limited to 1 μm. As shown in FIG. 22, P OUT decreases as the film thickness t 0 decreases. When the film thickness t 0 is 1000 nm or less, P OUT is 100 μW or less.
 以上のように、恒温動物モデルを用いたシミュレーションを用いても、ΔTを一定としたシミュレーション結果と同様の結果が得られた。すなわち、実施例1では出力電力POUTは膜厚tにほとんど依存しない。一方、比較例1では、膜厚tが小さくなると出力電力POUTが小さくなる。 As described above, the same result as the simulation result with a constant ΔT was obtained even when the simulation using the thermostat animal model was used. That is, in Example 1, the output power P OUT hardly depends on the film thickness t 0 . On the other hand, in Comparative Example 1, the output power P OUT decreases as the film thickness t 0 decreases.
 実施例1では比較例1に比べ熱電薄膜12aおよび12bの膜厚tを小さくしても出力電力POUTを大きくできる理由を説明する。 In Example 1, the reason why the output power P OUT can be increased even if the film thickness t 0 of the thermoelectric thin films 12a and 12b is made smaller than that in Comparative Example 1 will be described.
 図23(a)および図23(b)は、それぞれ比較例1および実施例1に係る熱電変換装置の断面模式図である。図23(a)および図23(b)に示すように、比較例1および実施例1とも温度差ΔTの方向はZ方向である。比較例1では、熱電薄膜12aおよび12bの熱流の流れる方向は温度差ΔTと同じZ方向である。実施例1では、熱電薄膜12aおよび12bの熱流の流れる方向は温度差ΔTと交差するX方向である。 FIG. 23A and FIG. 23B are schematic cross-sectional views of thermoelectric conversion devices according to Comparative Example 1 and Example 1, respectively. As shown in FIG. 23A and FIG. 23B, the direction of the temperature difference ΔT is the Z direction in both Comparative Example 1 and Example 1. In Comparative Example 1, the direction of heat flow of the thermoelectric thin films 12a and 12b is the same Z direction as the temperature difference ΔT. In Example 1, the direction in which the heat flow of the thermoelectric thin films 12a and 12b flows is the X direction that intersects the temperature difference ΔT.
 比較例1では、図23(a)のように、熱電薄膜12aおよび12bの薄膜化のため熱電薄膜12aおよび12bの膜厚tを小さくすると熱電薄膜12aおよび12bの熱抵抗kが小さくなる。熱電薄膜12aおよび12bの各々の両端間の温度差βΔTが小さくなってしまう。図22のように、膜厚tが小さくなると、熱電変換装置(モジュール)全体に生じる温度差ΔTが小さくなるが、さらに、温度差ΔTに比べβΔTが小さくなる。これにより出力電力POUTが小さくなる。 In Comparative Example 1, as shown in FIG. 23 (a), the thermal resistance k of the reduced thickness t 0 of the thermoelectric film 12a and 12b for the thinning of the thermoelectric film 12a and 12b thermoelectric films 12a and 12b is reduced. The temperature difference βΔT between both ends of each of the thermoelectric thin films 12a and 12b becomes small. As shown in FIG. 22, when the film thickness t 0 becomes smaller, the temperature difference ΔT generated in the entire thermoelectric conversion device (module) becomes smaller, but βΔT becomes smaller than the temperature difference ΔT. As a result, the output power P OUT is reduced.
 実施例1では、図23(b)のように、熱電薄膜12aおよび12bの薄膜化のため熱電薄膜12aおよび12bの膜厚tを小さくすると熱電薄膜12aおよび12bの熱抵抗kが大きくなる。これにより、図21のように、熱電変換装置全体に生じる温度差ΔTは大きく、熱電薄膜12aおよび12bの各々の両端間の温度差βΔTと温度差ΔTとはほとんど同じとなる。これにより、膜厚tが小さくなっても出力電力POUTは低下しない。 In Example 1, as shown in FIG. 23 (b), the thermal resistance k of the reduced thickness t 0 of the thermoelectric film 12a and 12b for the thinning of the thermoelectric film 12a and 12b thermoelectric films 12a and 12b is increased. Accordingly, as shown in FIG. 21, the temperature difference ΔT generated in the entire thermoelectric conversion device is large, and the temperature difference βΔT and the temperature difference ΔT between both ends of each of the thermoelectric thin films 12a and 12b are almost the same. As a result, the output power P OUT does not decrease even when the film thickness t 0 decreases.
 図24は、実施例1における出力電圧Voutに対する電流Iおよび出力電力POUTを示す図である。膜厚tを100nmとしXY平面の面積Sを20cmから120cmまで20cmステップで変えている。出力電力POUTの最大値は出力をインピーダンス整合したときの出力電力である。図24に示すように、出力電圧Voutが1Vのとき出力電力POUTはピークとなる。リストバンド方式のウエアラブルデバイスでは実装面積は100cm程度である。面積Sが100cm程度でも10mW程度の出力電力POUTを得ることができ、ヘルスケアデバイスまたは短・中距離通信を含むウエアラブルデバイスに十分応用化可能である。 FIG. 24 is a diagram illustrating the current I and the output power P OUT with respect to the output voltage V out in the first embodiment. The film thickness t 0 is set to 100 nm, and the area S on the XY plane is changed from 20 cm 2 to 120 cm 2 in 20 cm 2 steps. The maximum value of the output power P OUT is the output power when the output is impedance matched. As shown in FIG. 24, the output power P OUT peaks when the output voltage V out is 1V. In the wristband type wearable device, the mounting area is about 100 cm 2 . Even if the area S is about 100 cm 2 , an output power P OUT of about 10 mW can be obtained, which can be sufficiently applied to a healthcare device or a wearable device including short / medium distance communication.
 比較例1において、γd≧1μmかつ(1-γ)d≧1μmの条件をなくし、シミュレーションを行った。図25は、比較例1における最小寸法に対するγd、(1-γ)d、ΔT、βΔT、VおよびPOUTのシミュレーション結果を示す図である。最小寸法はdに対応する。膜厚tを100nmとした。比較例1においても最小寸法を小さくすると、熱電変換装置の全体の温度差ΔTが大きくなり、熱電材料に生じる温度差βΔTはΔTとの差が小さくなる。このことで、温度差βΔTとΔTとの差が小さくなり、出力電力POUTが大きくなる。例えば最小寸法が1μm以下では出力電力POUTは20μW以上となる。最小寸法が100nm以下では温度差βΔTとΔTとがほぼ同じとなり、出力電力POUTは100μW以上となる。 In Comparative Example 1, the simulation was performed without the conditions of γd ≧ 1 μm and (1-γ) d ≧ 1 μm. FIG. 25 is a diagram showing simulation results of γd, (1-γ) d, ΔT, βΔT, V S and P OUT with respect to the minimum dimension in Comparative Example 1. The minimum dimension corresponds to d. The film thickness t 0 was set to 100nm. Also in Comparative Example 1, when the minimum dimension is reduced, the temperature difference ΔT of the entire thermoelectric conversion device is increased, and the temperature difference βΔT generated in the thermoelectric material is reduced from the difference with ΔT. As a result, the difference between the temperature differences βΔT and ΔT decreases, and the output power P OUT increases. For example, when the minimum dimension is 1 μm or less, the output power P OUT is 20 μW or more. When the minimum dimension is 100 nm or less, the temperature differences βΔT and ΔT are substantially the same, and the output power P OUT is 100 μW or more.
 このように、比較例1でも最小寸法を小さくすると、出力電力POUTを向上できる。しかし、最小寸法をミクロンオーダー(例えば1μm)より小さくすると、微細加工に関するコストアップとなる。実施例1では、最小寸法が1μm以上でも出力電力POUTを大きくでき、低コストで高い出力電力を実現できる。 Thus, even in the first comparative example, the output power P OUT can be improved by reducing the minimum dimension. However, if the minimum dimension is made smaller than the micron order (for example, 1 μm), the cost for fine processing increases. In the first embodiment, the output power P OUT can be increased even when the minimum dimension is 1 μm or more, and high output power can be realized at low cost.
 図2(a)および図2(b)のように、熱電薄膜12aおよび12bが基部22aおよび22bの面方向に配列されている。接続層14aおよび14bは、それぞれ基部22aおよび22bに熱的に接続されており、面方向に交差する方向(Z方向)において熱電薄膜12aと12bと交互に熱的および電気的に接続されている。このようなπ型の熱電変換装置において、図25のように、熱電薄膜12aおよび12bのピッチ(周期:例えば寸法γdおよび/または(1-γ)d)を1μm以下とすることで、出力電力POUTを大きくできる。熱電薄膜12aおよび12bの大きさは、0.5μm以下が好ましく、0.1μm以下がより好ましい。熱電薄膜12aおよび12bを薄膜技術で作製するため、熱電薄膜12aおよび12bの膜厚tは、10μm以下が好ましく、5μm以下がより好ましい。また、半導体集積回路の作製技術を用いて成膜する熱電薄膜12aおよび12bの膜厚は1μm以下が好ましく、500nm以下がより好ましく200nm以下がさらに好ましい。図25のように膜厚t0が100nmでも出力電力POUTを大きくできる。 As shown in FIGS. 2A and 2B, the thermoelectric thin films 12a and 12b are arranged in the surface direction of the base portions 22a and 22b. The connection layers 14a and 14b are thermally connected to the base portions 22a and 22b, respectively, and are alternately and thermally connected to the thermoelectric thin films 12a and 12b in the direction intersecting the plane direction (Z direction). . In such a π-type thermoelectric conversion device, as shown in FIG. 25, the output power can be reduced by setting the pitch (period: for example, the dimension γd and / or (1-γ) d) of the thermoelectric thin films 12a and 12b to 1 μm or less. P OUT can be increased. The size of the thermoelectric thin films 12a and 12b is preferably 0.5 μm or less, and more preferably 0.1 μm or less. To generate thermoelectric films 12a and 12b in the thin-film technology, thermoelectric film 12a and 12b thickness t 0 of, preferably 10μm or less, more preferably 5 [mu] m. Further, the film thickness of the thermoelectric thin films 12a and 12b formed by using a semiconductor integrated circuit manufacturing technique is preferably 1 μm or less, more preferably 500 nm or less, and further preferably 200 nm or less. As shown in FIG. 25, the output power P OUT can be increased even when the film thickness t0 is 100 nm.
 図26(a)は、実施例4に係る熱電変換装置の平面図、図26(b)は、図26(a)のA-A断面図である。図26(a)は、基部22a、22bおよび熱電変換ユニット44を示している。図26(a)および図26(b)に示すように、基部22aと22bとの間に熱電変換ユニット44が設けられている。熱電変換ユニット44は、比較例1の図2(a)および図2(b)と同様に熱電薄膜12a、12b、接続層14a、14bおよび絶縁層18を有している。平面視において基部22aおよび22bに比べ熱電変換ユニット44の面積を小さくする。基部22aと22bとの間の熱電変換ユニット44以外の部分には熱絶縁体46が設けられている。熱絶縁体46は、熱電薄膜12a、12b、接続層14a、14b、基部22aおよび22bより熱伝導率が小さい。このように、熱絶縁体46は電気的および熱的絶縁体である。基部22aおよび22bの大きさはD0×D0であり、熱電変換ユニット44の大きさはD×Dである。 FIG. 26 (a) is a plan view of the thermoelectric conversion device according to the fourth embodiment, and FIG. 26 (b) is a cross-sectional view taken along the line AA of FIG. 26 (a). FIG. 26A shows the base portions 22 a and 22 b and the thermoelectric conversion unit 44. As shown in FIGS. 26A and 26B, a thermoelectric conversion unit 44 is provided between the base portions 22a and 22b. The thermoelectric conversion unit 44 includes the thermoelectric thin films 12a and 12b, the connection layers 14a and 14b, and the insulating layer 18 as in FIGS. 2A and 2B of the first comparative example. The area of the thermoelectric conversion unit 44 is made smaller than the base portions 22a and 22b in plan view. A thermal insulator 46 is provided at a portion other than the thermoelectric conversion unit 44 between the base portions 22a and 22b. The thermal insulator 46 has a lower thermal conductivity than the thermoelectric thin films 12a and 12b, the connection layers 14a and 14b, and the base portions 22a and 22b. Thus, the thermal insulator 46 is an electrical and thermal insulator. The sizes of the bases 22a and 22b are D0 × D0, and the size of the thermoelectric conversion unit 44 is D × D.
 実施例4について、恒温動物モデルを用いシミュレーションを行った。シミュレーションでは、D0=1cm、t=100nm、ΔTを10K、熱絶縁体46および絶縁層18を真空とし、γd≧1μmかつ(1-γ)d≧1μmとした。γとmで最適化を行った。 About Example 4, it simulated using the thermostat animal model. In the simulation, D0 = 1 cm, t 0 = 100 nm, ΔT S was 10 K, the thermal insulator 46 and the insulating layer 18 were evacuated, and γd ≧ 1 μm and (1−γ) d ≧ 1 μm. Optimization was performed with γ and m 0 .
 図27は、実施例4におけるDに対するγd、(1-γ)d、ΔT、βΔT、VおよびPOUTのシミュレーション結果を示す図である。図27に示すように、熱電変換ユニット44が比較例1と同様のπ型であってもDを小さくすると出力電力POUTが大きくなる。熱電変換ユニット44がπ型の場合、D0×D0の領域に熱電薄膜12aおよび12bを均一に分散させると、熱電薄膜12aおよび12b間を電気的に接続する接続層14aおよび14bが長くなり、内部インピーダンスが高くなる。実施例4のように、D×Dの狭い範囲に熱電薄膜12aおよび12bを収めると接続層14aおよび14bが短くなり、内部インピーダンスを小さくできる。 FIG. 27 is a diagram illustrating simulation results of γd, (1-γ) d, ΔT, βΔT, V S and P OUT with respect to D in Example 4. As shown in FIG. 27, even if the thermoelectric conversion unit 44 is the same π type as in Comparative Example 1, the output power P OUT increases as D decreases. When the thermoelectric conversion unit 44 is a π type, if the thermoelectric thin films 12a and 12b are uniformly dispersed in the region of D0 × D0, the connection layers 14a and 14b that electrically connect the thermoelectric thin films 12a and 12b become longer, Impedance increases. If the thermoelectric thin films 12a and 12b are housed in a narrow D × D range as in the fourth embodiment, the connection layers 14a and 14b are shortened, and the internal impedance can be reduced.
[実施例4の変形例1]
図28(a)は、実施例4の変形例1に係る熱電変換装置の平面図、図28(b)は、図28(a)のA-A断面図である。図28(a)は、基部22a、22bおよび熱電変換ユニット44を示している。図28(a)および図28(b)に示すように、熱電変換ユニット44は、実施例1の図4(a)および図4(b)と同様に熱電薄膜12a、12b、接続層14a、14b、熱伝導層および絶縁層を有している。平面視において基部22aおよび22bに比べ熱電変換ユニット44の面積を小さくする。熱絶縁体46は、熱電薄膜12a、12b、接続層14a、14b、基部22aおよび22bより熱伝導率が小さい。基部22aおよび22bの大きさはD×Dであり、熱電変換ユニット44の長さはLである。
[Modification 1 of Example 4]
FIG. 28A is a plan view of a thermoelectric conversion device according to Modification 1 of Embodiment 4, and FIG. 28B is a cross-sectional view taken along line AA of FIG. FIG. 28A shows the base portions 22 a and 22 b and the thermoelectric conversion unit 44. As shown in FIGS. 28 (a) and 28 (b), the thermoelectric conversion unit 44 includes the thermoelectric thin films 12a and 12b, the connection layer 14a, the same as FIGS. 14b, having a heat conductive layer and an insulating layer. The area of the thermoelectric conversion unit 44 is made smaller than the base portions 22a and 22b in plan view. The thermal insulator 46 has a lower thermal conductivity than the thermoelectric thin films 12a and 12b, the connection layers 14a and 14b, and the base portions 22a and 22b. The sizes of the base portions 22a and 22b are D × D, and the length of the thermoelectric conversion unit 44 is L.
 実施例4の変形例1ついて、恒温動物モデルを用いシミュレーションを行った。シミュレーションでは、D=1cm、t=100nm、ΔTを10K、熱電変換ユニット44内の絶縁層18aおよび18bをポーラスシリコン(熱伝導率が35.7mWm-1-1)とし、熱絶縁体46をポーラスシリコンまたは真空とし、γd≧1μmかつ(1-γ)d≧1μmとした。γとmで最適化を行った。 About the modification 1 of Example 4, it simulated using the thermostat animal model. In the simulation, D = 1 cm, t 0 = 100 nm, ΔT S is 10 K, the insulating layers 18 a and 18 b in the thermoelectric conversion unit 44 are porous silicon (thermal conductivity is 35.7 mWm −1 K −1 ), and a thermal insulator is used. 46 was porous silicon or vacuum, and γd ≧ 1 μm and (1-γ) d ≧ 1 μm. Optimization was performed with γ and m 0 .
 図29(a)は、実施例4の変形例1におけるLに対するtCu、γd、m、VおよびPOUTのシミュレーション結果を示す図、図29(b)は、tCuに対するL、γd、m、VおよびPOUTのシミュレーション結果を示す図である。熱電変換ユニット44内の絶縁層18aおよび18bおよび熱絶縁体46をポーラスシリコンとした。図29(a)に示すように、熱絶縁体46がポーラスシリコンのとき、Lを小さくすると出力電力POUTが大きくなる。この例ではLが約30μmで出力電力POUTが最大となる。図29(b)のように、Lが約30μmおよびtCuが約500μmのとき、出力電力POUTは約20μWで最大となる。熱絶縁体46をポーラスシリコンの場合、熱絶縁体46を介した熱流を抑制するため、tCuを大きくすることでPOUTが大きくなるが、tCuが大きすぎると熱伝導層の熱抵抗が大きくなるためPOUTはピークを持つ. FIG. 29A is a diagram showing a simulation result of t Cu , γd, m 0 , V S and P OUT with respect to L in Modification 1 of Example 4, and FIG. 29B is a diagram showing L, γd with respect to t Cu . , M 0 , V S and P OUT are diagrams illustrating simulation results. The insulating layers 18a and 18b and the thermal insulator 46 in the thermoelectric conversion unit 44 are made of porous silicon. As shown in FIG. 29A, when the thermal insulator 46 is porous silicon, the output power P OUT increases as L decreases. In this example, when L is about 30 μm, the output power P OUT is maximized. As shown in FIG. 29B, when L is about 30 μm and t Cu is about 500 μm, the output power P OUT becomes maximum at about 20 μW. If the heat insulator 46 of porous silicon, in order to suppress the heat flow through the heat insulator 46, but P OUT increases by increasing the t Cu, the thermal resistance of the t Cu is too large thermally conductive layer Since it becomes larger, P OUT has a peak.
 図30は、熱絶縁体46が真空のときのtCuに対するL、γd、m、VおよびPOUTのシミュレーション結果を示す図である。熱電変換ユニット44内の絶縁層18aおよび18bはポーラスシリコンとした。図30に示すように、LおよびtCuが小さくなると出力電力POUTが小さくなる。LおよびtCuが約0.1μmのとき出力電力POUTは約100μWである。このように、熱絶縁体46を真空とすると出力電力POUTが大きくなる。熱絶縁体46を介した熱流がほとんど流れないため、tCuが薄くても出力電力POUTを大きくできる。 FIG. 30 is a diagram showing simulation results of L, γd, m 0 , V S and P OUT with respect to t Cu when the thermal insulator 46 is vacuum. The insulating layers 18a and 18b in the thermoelectric conversion unit 44 are made of porous silicon. As shown in FIG. 30, the output power P OUT decreases as L and t Cu decrease. When L and t Cu are about 0.1 μm, the output power P OUT is about 100 μW. Thus, when the thermal insulator 46 is evacuated, the output power P OUT increases. Since the heat flow through the thermal insulator 46 hardly flows, the output power P OUT can be increased even if t Cu is thin.
[実施例4の変形例2]
 図31は、実施例4の変形例2に係る熱電変換装置の断面図である。図31に示すように、基部22aと22bとの間を真空46aに保持するための保持壁47を備えている。その他の構成は実施例4およびその変形例1と同じであり説明を省略する。
[Modification 2 of Example 4]
FIG. 31 is a cross-sectional view of the thermoelectric conversion device according to the second modification of the fourth embodiment. As shown in FIG. 31, a holding wall 47 for holding a space between the base portions 22a and 22b in a vacuum 46a is provided. Other configurations are the same as those of the fourth embodiment and the first modification thereof, and the description thereof is omitted.
 実施例4およびその変形例1および2によれば、基部22a(第1基部)は人体等の恒温動物の生体の表面に熱的に接続される。基部22b(第2基部)は、大気(空気)に熱的に接続される。熱電変換ユニット44(熱電変換ユニット)は、基部22aと22bとの間に設けられている。熱絶縁体46は、基部22aと基部22bとの間であって熱電変換ユニット44の外側に設けられ、熱電薄膜12a、12b、基部22aおよび基部22bの熱伝導率より小さい熱伝導率を有する。これにより、図27、図29(a)から図30のシミュレーション結果のように、出力電力POUTを向上できる。 According to Example 4 and its modifications 1 and 2, the base 22a (first base) is thermally connected to the surface of a living body of a thermostat animal such as a human body. The base 22b (second base) is thermally connected to the atmosphere (air). The thermoelectric conversion unit 44 (thermoelectric conversion unit) is provided between the base portions 22a and 22b. The thermal insulator 46 is provided between the base portion 22a and the base portion 22b and outside the thermoelectric conversion unit 44, and has a thermal conductivity smaller than that of the thermoelectric thin films 12a and 12b, the base portion 22a, and the base portion 22b. Thereby, the output power P OUT can be improved as in the simulation results of FIG. 27 and FIG. 29A to FIG.
 熱絶縁体46は、実施例4の図26(a)ように平面視において熱電変換ユニット44を完全に囲っていてもよい。熱絶縁体46は、実施例4の変形例1の図28(a)ように平面視において熱電変換ユニット44の両側のみに設けられていてもよい。熱絶縁体46は、熱電変換ユニット44の片側のみに設けられていてもよい。熱電変換ユニット44のX方向の幅はDより小さくてもよい。すなわち、熱電変換ユニット44の±X方向の少なくとも一方は熱絶縁体46が設けられていてもよい。図26(a)および図28(a)の場合ともに、平面視において、熱電変換ユニット44の面積は基部22aおよび22bの面積の1/10以下が好ましく、1/100以下がより好ましい。 The thermal insulator 46 may completely surround the thermoelectric conversion unit 44 in a plan view as shown in FIG. The thermal insulator 46 may be provided only on both sides of the thermoelectric conversion unit 44 in plan view as shown in FIG. 28A of the first modification of the fourth embodiment. The thermal insulator 46 may be provided only on one side of the thermoelectric conversion unit 44. The width in the X direction of the thermoelectric conversion unit 44 may be smaller than D. That is, at least one of the thermoelectric conversion units 44 in the ± X direction may be provided with the thermal insulator 46. In both cases of FIGS. 26A and 28A, the area of the thermoelectric conversion unit 44 is preferably 1/10 or less, more preferably 1/100 or less, of the areas of the base portions 22a and 22b in plan view.
 熱絶縁体46は、実施例1において例示した絶縁層18aおよび18bの材料を用いることができる。例えば、熱絶縁体46は、ポーラスシリコンのような固体層でもよい。ポーラスシリコンとしては、例えば高抵抗シリコンを用いたポーラスシリコン、または酸化等により電気的および熱的に絶縁体となるポーラスシリコンを用いることができる。これにより、基部22aおよび22bを補強することができる。固体層としては、ポーラスシリコン以外のポーラスシリカなどの多孔質層等を用いることができる。 As the thermal insulator 46, the material of the insulating layers 18a and 18b exemplified in the first embodiment can be used. For example, the thermal insulator 46 may be a solid layer such as porous silicon. As the porous silicon, for example, porous silicon using high-resistance silicon or porous silicon that is electrically and thermally insulated by oxidation or the like can be used. Thereby, base 22a and 22b can be reinforced. As the solid layer, a porous layer such as porous silica other than porous silicon can be used.
 また、実施例4の変形例2のように、熱絶縁体46は、大気圧より低い圧力を有する気体層または真空であり、保持壁47(保持部)が真空を保持する。これにより、熱絶縁体46を固体層とする場合に比べ熱絶縁体46の熱伝導率を小さくできる。よって、図30のように、出力電力POUTを大きくできる。熱絶縁体46は大気圧の空気またはその他の気体(例えば窒素等)でもよい。実施例4についても、熱絶縁体46は、真空、大気圧の空気またはその他の気体でもよい。また、実施例4およびその変形例において、熱電変換ユニット44内の絶縁層18、18aおよび18b(図4(b)等参照)は、固体以外に真空、空気またはその他の気体でもよい。 Further, as in Modification 2 of Example 4, the thermal insulator 46 is a gas layer or vacuum having a pressure lower than atmospheric pressure, and the holding wall 47 (holding portion) holds the vacuum. Thereby, the thermal conductivity of the thermal insulator 46 can be reduced as compared with the case where the thermal insulator 46 is a solid layer. Therefore, the output power P OUT can be increased as shown in FIG. The thermal insulator 46 may be air at atmospheric pressure or other gas (for example, nitrogen). Also in the fourth embodiment, the thermal insulator 46 may be vacuum, atmospheric pressure air, or other gas. Moreover, in Example 4 and its modification, the insulating layers 18, 18a, and 18b (see FIG. 4B, etc.) in the thermoelectric conversion unit 44 may be vacuum, air, or other gases besides solids.
 熱絶縁体46と絶縁層18、18aおよび18bとは同じ材料でもよいし異なる材料でもよい。絶縁層18、18aおよび18bは、熱電薄膜12a、12b、接続層14aおよび14bを保持するため固体層とし、熱絶縁体46は出力電力POUTを大きくするため空気層または真空としてもよい。 The thermal insulator 46 and the insulating layers 18, 18a and 18b may be the same material or different materials. The insulating layers 18, 18a and 18b may be solid layers for holding the thermoelectric thin films 12a and 12b and the connection layers 14a and 14b, and the thermal insulator 46 may be an air layer or a vacuum for increasing the output power P OUT .
[実施例4の変形例3]
 図32(a)は、実施例4の変形例3に係る熱電変換装置の平面図、図32(b)は、図32(a)のA-A断面図である。図32(a)および図32(b)に示すように、単一の基部22aと単一の基部22bとの間に実施例4の熱電変換ユニット44に対応する熱電変換ユニット44が複数設けられている。各熱電変換ユニット44は平面視において熱絶縁体46に囲まれている。複数の熱電変換ユニット44は、電気的に直列または並列に接続されていてもよい。
[Modification 3 of Example 4]
FIG. 32A is a plan view of a thermoelectric conversion device according to a third modification of the fourth embodiment, and FIG. 32B is a cross-sectional view taken along the line AA in FIG. As shown in FIGS. 32 (a) and 32 (b), a plurality of thermoelectric conversion units 44 corresponding to the thermoelectric conversion units 44 of the fourth embodiment are provided between the single base 22a and the single base 22b. ing. Each thermoelectric conversion unit 44 is surrounded by a thermal insulator 46 in plan view. The plurality of thermoelectric conversion units 44 may be electrically connected in series or in parallel.
[実施例4の変形例4]
 図33(a)は、実施例4の変形例4に係る熱電変換装置の平面図、図33(b)は、図33(a)のA-A断面図である。図33(a)および図33(b)に示すように、単一の基部22aと単一の基部22bとの間に実施例4お変形例1の熱電変換ユニット44に対応する熱電変換ユニット44が複数設けられている。各熱電変換ユニット44は平面視において熱絶縁体46に囲まれている。複数の熱電変換ユニット44は、電気的に直列または並列に接続されていてもよい。
[Modification 4 of Example 4]
FIG. 33A is a plan view of a thermoelectric conversion device according to a fourth modification of the fourth embodiment, and FIG. 33B is a cross-sectional view taken along the line AA in FIG. As shown in FIGS. 33 (a) and 33 (b), a thermoelectric conversion unit 44 corresponding to the thermoelectric conversion unit 44 of the fourth modification example 1 is provided between the single base portion 22a and the single base portion 22b. Are provided. Each thermoelectric conversion unit 44 is surrounded by a thermal insulator 46 in plan view. The plurality of thermoelectric conversion units 44 may be electrically connected in series or in parallel.
 実施例4の変形例3および4によれば、基部22aと22bとの間に熱絶縁体46を介し互いに離間した複数の熱電変換ユニット44が設けられている。これらの相互接続により、出力電圧および電力を適切に設定できる。 According to the third and fourth modifications of the fourth embodiment, a plurality of thermoelectric conversion units 44 that are separated from each other via the thermal insulator 46 are provided between the base portions 22a and 22b. With these interconnections, the output voltage and power can be set appropriately.
 以上、本発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to such specific embodiments, and various modifications can be made within the scope of the gist of the present invention described in the claims.・ Change is possible.
  10 ゼーベック素子
  12a、12b 熱電薄膜
  14a、14b 接続層
  16a、16b 熱伝導層
  18、18a、18b 絶縁層
  20 絶縁膜
  22a、22b 基部
  24a、24b 電極
  28a、28b 溝
  44 熱電変換ユニット
  46 熱絶縁体
  47 保持壁
  50 発電装置
  52 集積回路素子
  54 放熱部材
  60 制御回路
  62 蓄電装置
DESCRIPTION OF SYMBOLS 10 Seebeck element 12a, 12b Thermoelectric thin film 14a, 14b Connection layer 16a, 16b Thermal conductive layer 18, 18a, 18b Insulating layer 20 Insulating film 22a, 22b Base 24a, 24b Electrode 28a, 28b Groove 44 Thermoelectric conversion unit 46 Thermal insulator 47 Holding wall 50 Power generation device 52 Integrated circuit element 54 Heat radiation member 60 Control circuit 62 Power storage device

Claims (18)

  1.  第1熱電薄膜および第2熱電薄膜の表面に平行な第1方向に交互に設けられた互いに反対の導電型を有する前記第1熱電薄膜および前記第2熱電薄膜と、
     前記第1熱電薄膜と前記第2熱電薄膜との間において前記第1熱電薄膜および前記第2熱電薄膜と電気的および熱的に接続され、前記第1方向に交互に設けられた第1接続層および第2接続層と、
     前記第1接続層および前記第2接続層にそれぞれ熱的に接続し前記表面に交差する第2方向に延伸する第1熱伝導層および第2熱伝導層と、
    を具備することを特徴とする熱電変換装置。
    The first thermoelectric thin film and the second thermoelectric thin film having opposite conductivity types provided alternately in a first direction parallel to the surfaces of the first thermoelectric thin film and the second thermoelectric thin film;
    A first connection layer electrically and thermally connected to the first thermoelectric thin film and the second thermoelectric thin film between the first thermoelectric thin film and the second thermoelectric thin film and provided alternately in the first direction And a second connection layer;
    A first heat conductive layer and a second heat conductive layer that are thermally connected to the first connection layer and the second connection layer, respectively, and extend in a second direction intersecting the surface;
    A thermoelectric conversion device comprising:
  2.  前記第1熱電薄膜および前記第2熱電薄膜の膜厚は10μm以下であることを特徴とする請求項1記載の熱電変換装置。 The thermoelectric conversion device according to claim 1, wherein the first thermoelectric thin film and the second thermoelectric thin film have a thickness of 10 μm or less.
  3.  前記第1熱伝導層および前記第2熱伝導層は、前記第1熱電薄膜および前記第2熱電薄膜の表面に対し互いに反対側に設けられていることを特徴とする請求項1または2記載の熱電変換装置。 The said 1st heat conductive layer and the said 2nd heat conductive layer are provided in the mutually opposite side with respect to the surface of the said 1st thermoelectric thin film and the said 2nd thermoelectric thin film, The Claim 1 or 2 characterized by the above-mentioned. Thermoelectric converter.
  4.  前記第1熱伝導層および前記第2熱伝導層が貫通し前記第1熱伝導層および前記第2熱伝導層より熱伝導率の小さな絶縁体を具備することを特徴とする請求項1から3のいずれか一項記載の熱電変換装置。 The said 1st heat conductive layer and the said 2nd heat conductive layer penetrated, and comprise the insulator whose heat conductivity is smaller than the said 1st heat conductive layer and the said 2nd heat conductive layer. The thermoelectric conversion apparatus as described in any one of these.
  5.  前記第1熱電薄膜および前記第2熱電薄膜は、前記表面に平行であって前記第1方向に交差する第3方向に延伸し、
     前記第1熱電薄膜および前記第2熱電薄膜の前記第3方向の長さは、前記第1熱電薄膜および前記第2熱電薄膜の膜厚の10倍以上であることを特徴とする請求項1から4のいずれか一項記載の熱電変換装置。
    The first thermoelectric thin film and the second thermoelectric thin film extend in a third direction parallel to the surface and intersecting the first direction;
    The length in the third direction of the first thermoelectric thin film and the second thermoelectric thin film is 10 times or more the film thickness of the first thermoelectric thin film and the second thermoelectric thin film. 5. The thermoelectric conversion device according to claim 4.
  6.  前記第1熱電薄膜および前記第2熱電薄膜の前記第1方向の幅は、前記第1熱電薄膜および前記第2熱電薄膜の膜厚より大きい請求項1から5のいずれか一項記載の熱電変換装置。 6. The thermoelectric conversion according to claim 1, wherein a width of the first thermoelectric thin film and the second thermoelectric thin film in the first direction is larger than a thickness of the first thermoelectric thin film and the second thermoelectric thin film. apparatus.
  7.  前記第1熱伝導層および前記第2熱伝導層にそれぞれ熱的に接続する第1基部および第2基部を具備する請求項1から6のいずれか一項記載の熱電変換装置。 The thermoelectric conversion device according to any one of claims 1 to 6, further comprising a first base and a second base that are thermally connected to the first heat conductive layer and the second heat conductive layer, respectively.
  8.  前記第1熱伝導層が貫通し前記第1熱伝導層より熱伝導率の小さな固体の第1絶縁体と、
     前記第2熱伝導層が貫通し前記第2熱伝導層より熱伝導率の小さな固体の第2絶縁体と、
     前記第1熱伝導層および前記第2熱伝導層にそれぞれ熱的に接続する第1基部および第2基部と、
    を具備し、
     前記第1基部および前記第1絶縁体は、前記第1熱伝導層の間において第1溝を有し、
     前記第2基部および前記第2絶縁体は、前記第2熱伝導層の間において第2溝を有することを特徴とする請求項3記載の熱電変換装置。
    A first solid insulator through which the first thermal conductive layer penetrates and having a thermal conductivity smaller than that of the first thermal conductive layer;
    A solid second insulator through which the second heat conductive layer penetrates and having a lower thermal conductivity than the second heat conductive layer;
    A first base and a second base thermally connected to the first heat conductive layer and the second heat conductive layer, respectively;
    Comprising
    The first base and the first insulator have a first groove between the first heat conductive layers,
    The thermoelectric conversion device according to claim 3, wherein the second base and the second insulator have a second groove between the second heat conductive layers.
  9.  前記第1熱電薄膜、前記第2熱電薄膜、前記第1接続層、前記第2接続層、前記第1熱伝導層および前記第2熱伝導層を含む層が前記表面に交差する方向に複数積層され、
     前記複数の層のうち隣接する層の一方に含まれる第1熱伝導層と、前記隣接する層の他方に含まれる第2熱伝導層と、は熱的に接続されている請求項1から8のいずれか一項記載の熱電変換装置。
    A plurality of layers including the first thermoelectric thin film, the second thermoelectric thin film, the first connection layer, the second connection layer, the first heat conductive layer, and the second heat conductive layer are stacked in a direction intersecting the surface. And
    The first heat conductive layer included in one of the adjacent layers among the plurality of layers and the second heat conductive layer included in the other of the adjacent layers are thermally connected. The thermoelectric conversion apparatus as described in any one of these.
  10.  恒温動物の生体の表面に熱的に接続される第1基部と、
     空気に熱的に接続される第2基部と、
     前記第1基部と前記第2基部との間に設けられ、前記第1熱電薄膜、前記第2熱電薄膜、前記第1接続層、前記第2接続層、前記第1熱伝導層および前記第2熱伝導層を備え、前記第1熱伝導層および前記第2熱伝導層はそれぞれ前記第1基部および前記第2基部に接続された熱電変換ユニットと、
     前記第1基部と前記第2基部との間であって前記熱電変換ユニットの外側に設けられ、前記第1熱電薄膜、前記第2熱電薄膜、前記第1基部および前記第2基部の熱伝導率より小さい熱伝導率を有する熱絶縁体と、
    を具備することを特徴とする請求項1から9のいずれか一項記載の熱電変換装置。
    A first base thermally connected to the surface of the living body of the thermostat animal;
    A second base thermally connected to the air;
    Provided between the first base and the second base, the first thermoelectric thin film, the second thermoelectric thin film, the first connection layer, the second connection layer, the first heat conductive layer, and the second A thermoelectric conversion unit comprising a heat conductive layer, wherein the first heat conductive layer and the second heat conductive layer are respectively connected to the first base and the second base;
    Thermal conductivity of the first thermoelectric thin film, the second thermoelectric thin film, the first base, and the second base provided between the first base and the second base and outside the thermoelectric conversion unit. A thermal insulator having a smaller thermal conductivity;
    The thermoelectric conversion device according to claim 1, wherein the thermoelectric conversion device is provided.
  11.  恒温動物の生体の表面に熱的に接続される第1基部と、
     空気に熱的に接続される第2基部と、
     前記第1基部と前記第2基部との間に設けられ、第1接続層と第2接続層との間に設けられた第1熱電材料と前記第1熱電材料と反対の導電型を有する第2熱電材料とが、前記第1接続層と前記第2接続層とを介して交互に直列に接続され、前記第1接続部および前記第2接続部はそれぞれ前記第1基部および前記第2基部に熱的に接続された熱電変換ユニットと、
     前記第1基部と前記第2基部との間であって前記熱電変換ユニットの外側に設けられ、前記第1熱電材料、前記第2熱電材料、前記第1基部および前記第2基部の熱伝導率より小さい熱伝導率を有する熱絶縁体と、
     を具備することを特徴とする熱電変換装置。
    A first base thermally connected to the surface of the living body of the thermostat animal;
    A second base thermally connected to the air;
    A first thermoelectric material provided between the first base portion and the second base portion and having a conductivity type opposite to that of the first thermoelectric material provided between the first connection layer and the second connection layer; Two thermoelectric materials are alternately connected in series via the first connection layer and the second connection layer, and the first connection portion and the second connection portion are the first base portion and the second base portion, respectively. A thermoelectric conversion unit thermally connected to the
    Thermal conductivity of the first thermoelectric material, the second thermoelectric material, the first base, and the second base provided between the first base and the second base and outside the thermoelectric conversion unit. A thermal insulator having a smaller thermal conductivity;
    A thermoelectric conversion device comprising:
  12.  前記熱絶縁体は、固体層であることを特徴とする請求項10または11記載の熱電変換装置。 The thermoelectric conversion device according to claim 10 or 11, wherein the thermal insulator is a solid layer.
  13.  前記熱絶縁体は、大気圧より低い圧力を有する気体層または真空であり、
     前記熱電変換装置は、前記気体層または真空を保持する保持部を具備することを特徴とする請求項10または11記載の熱電変換装置。
    The thermal insulator is a gas layer or vacuum having a pressure below atmospheric pressure;
    The thermoelectric conversion device according to claim 10 or 11, wherein the thermoelectric conversion device includes a holding unit that holds the gas layer or vacuum.
  14.  前記第1基部と前記第2基部との間に前記熱絶縁体を介し互いに離間した複数の前記熱電変換ユニットを具備することを特徴とする請求項10から13のいずれか一項記載の熱電変換装置。 The thermoelectric conversion according to any one of claims 10 to 13, further comprising a plurality of the thermoelectric conversion units spaced from each other via the thermal insulator between the first base and the second base. apparatus.
  15.  集積回路素子と、
     前記集積回路素子において発生した熱を放熱する放熱部材と、
     請求項1から10のいずれか一項記載の熱電変換装置を含み、前記集積回路素子と前記放熱部材との間に設けられ、前記第1熱伝導層が前記集積回路素子に熱的に接続し、前記第2熱伝導層が前記放熱部材に接続された発電装置と、
    を具備することを特徴とする電子装置。
    An integrated circuit element;
    A heat dissipating member that dissipates heat generated in the integrated circuit element;
    11. The thermoelectric conversion device according to claim 1, wherein the thermoelectric conversion device is provided between the integrated circuit element and the heat dissipation member, and the first thermal conductive layer is thermally connected to the integrated circuit element. A power generation device in which the second heat conductive layer is connected to the heat dissipation member;
    An electronic device comprising:
  16.  集積回路素子と、
     前記集積回路素子において発生した熱を放熱する放熱部材と、
     第1接続層と第2接続層との間に設けられた第1熱電材料と前記第1熱電材料と反対の導電型を有する第2熱電材料とが、前記第1接続層と前記第2接続層とを介して交互に直列に接続された熱電変換装置を含み、前記集積回路素子と前記放熱部材との間に設けられ、前記第1接続層が前記集積回路素子に熱的に接続し、前記第2接続層が前記放熱部材に接続された発電装置と、
    を具備することを特徴とする電子装置。
    An integrated circuit element;
    A heat dissipating member that dissipates heat generated in the integrated circuit element;
    A first thermoelectric material provided between the first connection layer and the second connection layer and a second thermoelectric material having a conductivity type opposite to that of the first thermoelectric material are the first connection layer and the second connection. Thermoelectric conversion devices connected in series alternately via layers, provided between the integrated circuit element and the heat dissipation member, the first connection layer thermally connected to the integrated circuit element, A power generation device in which the second connection layer is connected to the heat dissipation member;
    An electronic device comprising:
  17.  前記発電装置が発電した電力を蓄え、前記集積回路素子に供給する蓄電装置を具備することを特徴とする請求項15または16記載の電子装置。 17. The electronic device according to claim 15, further comprising a power storage device that stores electric power generated by the power generation device and supplies the power to the integrated circuit element.
  18.  第1基部および第2基部と、
     前記第1基部および前記第2基部の面方向に配列され、互いに反対の導電型を有する前記第1熱電薄膜および前記第2熱電薄膜と、
     前記面方向に交差する方向において前記第1熱電薄膜と前記第2熱電薄膜と交互に熱的および電気的に接続され、それぞれ前記第1基部および前記第2基部と熱的に接続された第1接続層および第2接続層と、
    を具備し、
     前記第1熱電薄膜および前記第2熱電薄膜の前記面方向の大きさは1μm以下であることを特徴とする熱電変換装置。
    A first base and a second base;
    The first thermoelectric thin film and the second thermoelectric thin film arranged in the surface direction of the first base and the second base and having opposite conductivity types;
    The first thermoelectric thin film and the second thermoelectric thin film are alternately and thermally connected in a direction intersecting the plane direction, and are thermally connected to the first base and the second base, respectively. A connection layer and a second connection layer;
    Comprising
    The thermoelectric conversion device, wherein the size of the first thermoelectric thin film and the second thermoelectric thin film in the surface direction is 1 μm or less.
PCT/JP2017/006811 2016-08-30 2017-02-23 Thermoelectric conversion device and electronic device WO2018042708A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018536912A JP6995370B2 (en) 2016-08-30 2017-02-23 Thermoelectric converters and electronic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-168415 2016-08-30
JP2016168415 2016-08-30

Publications (1)

Publication Number Publication Date
WO2018042708A1 true WO2018042708A1 (en) 2018-03-08

Family

ID=61300358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006811 WO2018042708A1 (en) 2016-08-30 2017-02-23 Thermoelectric conversion device and electronic device

Country Status (2)

Country Link
JP (1) JP6995370B2 (en)
WO (1) WO2018042708A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194873A (en) * 2019-05-28 2020-12-03 国立大学法人 東京大学 Thermoelectric converter, electronic device, and manufacturing method of thermoelectric converter
KR20210007573A (en) * 2019-07-12 2021-01-20 최병대 a thermoelectric module
WO2022176832A1 (en) * 2021-02-16 2022-08-25 国立研究開発法人科学技術振興機構 Thermoelectric conversion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158760A (en) * 2007-12-27 2009-07-16 Daikin Ind Ltd Thermoelectric device
JP2014135455A (en) * 2013-01-11 2014-07-24 Fujitsu Ltd Thermoelectric conversion element, electronic device, and method of manufacturing thermoelectric conversion element
JP2016187008A (en) * 2015-03-27 2016-10-27 シャープ株式会社 Thermoelectric conversion device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100816A (en) 2000-09-22 2002-04-05 Matsushita Refrig Co Ltd Thermoelectric cooling system
JP4481606B2 (en) 2003-08-29 2010-06-16 株式会社東芝 Thermoelectric converter
WO2005117154A1 (en) 2004-05-31 2005-12-08 Kazukiyo Yamada High-density integrated type thin-layer thermoelectric module and hybrid power generating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158760A (en) * 2007-12-27 2009-07-16 Daikin Ind Ltd Thermoelectric device
JP2014135455A (en) * 2013-01-11 2014-07-24 Fujitsu Ltd Thermoelectric conversion element, electronic device, and method of manufacturing thermoelectric conversion element
JP2016187008A (en) * 2015-03-27 2016-10-27 シャープ株式会社 Thermoelectric conversion device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUYOSHI KONDO ET AL.: "Komitsudo Shusekika Micro Netsuden Hatsuden Module no Sekkeiho", THE 63RD JSAP SPRING MEETING KOEN YOKOSHU, 3 March 2016 (2016-03-03) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194873A (en) * 2019-05-28 2020-12-03 国立大学法人 東京大学 Thermoelectric converter, electronic device, and manufacturing method of thermoelectric converter
JP7360120B2 (en) 2019-05-28 2023-10-18 国立大学法人 東京大学 Thermoelectric conversion device, electronic equipment, and method for manufacturing thermoelectric conversion device
KR20210007573A (en) * 2019-07-12 2021-01-20 최병대 a thermoelectric module
KR102228971B1 (en) * 2019-07-12 2021-03-17 최병대 a thermoelectric module
WO2022176832A1 (en) * 2021-02-16 2022-08-25 国立研究開発法人科学技術振興機構 Thermoelectric conversion device

Also Published As

Publication number Publication date
JPWO2018042708A1 (en) 2019-06-24
JP6995370B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
US10305014B2 (en) Methods and devices for controlling thermal conductivity and thermoelectric power of semiconductor nanowires
US8258393B2 (en) Nanowire thermoelectric device
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP5708174B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP2006080526A (en) Thin film thermoelectric element module
WO2018042708A1 (en) Thermoelectric conversion device and electronic device
Zhang et al. The possibility of mW/cm 2-class on-chip power generation using ultrasmall Si nanowire-based thermoelectric generators
KR101680766B1 (en) Thermoelectric device and Array of Thermoelectric device
US20100263701A1 (en) Thermoelectric device, manufacturing method for manufacturing thermoelectric device, control system for controlling thermoelectric device, and electronic appliance
CA3039119A1 (en) Flexible thermoelectric generator
KR101237235B1 (en) Manufacturing Method of Thermoelectric Film
KR20120019536A (en) Thermoelectric module comprising thermoelectric element doped with nanoparticles and manufacturing method of the same
JP5775163B2 (en) Thermoelectric conversion element and thermoelectric conversion module using the same
US10580957B2 (en) Thermoelectric material structure
KR102343090B1 (en) Thermo electric module
JP2009194309A (en) Thermoelectric module
US20180287038A1 (en) Thermoelectric conversion device
JP7116465B2 (en) thermoelectric converter
Yadav et al. Experimental analysis of power generation for ultra-low power wireless sensor nodes using various coatings on thermoelectric energy harvester
Enju et al. Design and fabrication of on-chip micro-thermoelectric cooler based on electrodeposition process
WO2022176832A1 (en) Thermoelectric conversion device
KR20190044236A (en) Thermoelectric element and thermoelectric conversion device comprising the same
KR20130019883A (en) Thermoelectric module and manufacturing method for theremoelectric module
KR20170107273A (en) Thermoelectric module
Shiotsu et al. Design and Performance of Silicon Nanowire Micro Thermoelectric Generators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018536912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845719

Country of ref document: EP

Kind code of ref document: A1