JP4481606B2 - Thermoelectric converter - Google Patents

Thermoelectric converter Download PDF

Info

Publication number
JP4481606B2
JP4481606B2 JP2003307971A JP2003307971A JP4481606B2 JP 4481606 B2 JP4481606 B2 JP 4481606B2 JP 2003307971 A JP2003307971 A JP 2003307971A JP 2003307971 A JP2003307971 A JP 2003307971A JP 4481606 B2 JP4481606 B2 JP 4481606B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
heat
conversion module
temperature side
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003307971A
Other languages
Japanese (ja)
Other versions
JP2005079347A (en
Inventor
治 常岡
成仁 近藤
和樹 舘山
敬寛 十河
雅雄 瀬川
新哉 桜田
直樹 首藤
昭浩 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003307971A priority Critical patent/JP4481606B2/en
Publication of JP2005079347A publication Critical patent/JP2005079347A/en
Application granted granted Critical
Publication of JP4481606B2 publication Critical patent/JP4481606B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、熱エネルギを電気エネルギに直接変換する熱電変換モジュールあるいは熱電変換ユニットを備えた熱電変換装置に係り、特に熱損失を低減し、熱電変換効率を向上させた熱電変換装置に関する。   The present invention relates to a thermoelectric conversion device including a thermoelectric conversion module or a thermoelectric conversion unit that directly converts heat energy into electric energy, and more particularly to a thermoelectric conversion device that reduces heat loss and improves thermoelectric conversion efficiency.

一般にこの種の熱電変換装置には熱電変換モジュールあるいは複数の熱電変換モジュールを組み合せた熱電変換ユニットが備えられる。熱電変換モジュールあるいはユニットは、P型半導体およびN型半導体の熱電変換素子を組み合せて構成され、トムソン効果、ペルチェ効果、ゼーベック効果等の熱電効果を利用して、熱エネルギを電気エネルギに直接変換するようになっている。   In general, this type of thermoelectric conversion device includes a thermoelectric conversion module or a thermoelectric conversion unit in which a plurality of thermoelectric conversion modules are combined. The thermoelectric conversion module or unit is configured by combining P-type semiconductor and N-type semiconductor thermoelectric conversion elements, and directly converts thermal energy into electrical energy using thermoelectric effects such as the Thomson effect, Peltier effect, Seebeck effect, etc. It is like that.

従来の熱電変換装置には、特開2003−179274号公報(特許文献1)に開示されたものがある。   A conventional thermoelectric conversion device is disclosed in Japanese Patent Laid-Open No. 2003-179274 (Patent Document 1).

この熱電変換装置は、熱電変換モジュールを複数対のP型半導体およびN型半導体の柱状熱電変換素子を対向する絶縁基板間に並列状に林立させ、熱電変換素子の両端部に半田層を介して電極に接合し、各熱電変換素子を電気的に直列に接続し、熱的に並列配置している。
特開2003−179274号公報(図3)
In this thermoelectric conversion device, a plurality of pairs of P-type semiconductor and N-type semiconductor columnar thermoelectric conversion elements are erected in parallel between opposing insulating substrates, and solder layers are provided at both ends of the thermoelectric conversion elements. It joins to an electrode, each thermoelectric conversion element is electrically connected in series, and is thermally arranged in parallel.
Japanese Patent Laying-Open No. 2003-179274 (FIG. 3)

従来の熱電変換装置は、P型半導体およびN型半導体からなる各柱状熱電変換素子の両端部を半田層を介して絶縁性基板上の電極にリジットに固定させて剛体構造の熱電変換モジュールを構成している。熱電変換モジュールは各熱電変換素子の両側が電極にリジットに固定される剛体構造を採用するため、熱膨張に対する自由度が小さく、熱電変換モジュールの使用時、各熱電変換素子の熱膨張に伴い、高温側端部に大きな応力集中が発生し、熱電変換素子の破損や損傷を生じさせ、機械的寿命を損ねる原因となっていた。   A conventional thermoelectric conversion device constitutes a rigid thermoelectric conversion module by rigidly fixing both ends of each columnar thermoelectric conversion element composed of a P-type semiconductor and an N-type semiconductor to an electrode on an insulating substrate via a solder layer. is doing. Since the thermoelectric conversion module adopts a rigid structure in which both sides of each thermoelectric conversion element are rigidly fixed to the electrodes, the degree of freedom with respect to thermal expansion is small, and when using the thermoelectric conversion module, along with the thermal expansion of each thermoelectric conversion element, A large stress concentration occurs at the end portion on the high temperature side, causing breakage or damage to the thermoelectric conversion element, which is a cause of deteriorating the mechanical life.

また、熱電変換装置は、熱電変換モジュールあるいはユニットの熱電変換効率(性能)を向上させるためには、熱電変換素子への熱供給と熱電変換素子からの放熱がスムーズに行なわれ、かつ熱源の高温側系統から供給された熱は、全て熱電変換素子10を通って低温側系統から放熱されることが望ましい。   Further, in order to improve the thermoelectric conversion efficiency (performance) of the thermoelectric conversion module or unit, the thermoelectric conversion device smoothly supplies heat to the thermoelectric conversion element and releases heat from the thermoelectric conversion element, and the heat source has a high temperature. It is desirable that all the heat supplied from the side system is radiated from the low temperature side system through the thermoelectric conversion element 10.

しかし、従来の熱電変換モジュールあるいはユニットでは、高温側系統(熱供給)から供給された熱の一部は、熱電変換素子あるいは熱電変換モジュールの隙間において、熱輻射や対流によって熱量伝達され、熱電変換素子を通過せずに低温側系統に達するものが存在するため、熱電変換モジュールあるいはユニットの熱電変換効率は、熱電変換素子の持つ性能に対して低い等の問題があった。   However, in the conventional thermoelectric conversion module or unit, a part of the heat supplied from the high temperature side system (heat supply) is transferred by heat radiation or convection in the gap between the thermoelectric conversion element or thermoelectric conversion module, and the thermoelectric conversion Since there are those that reach the low temperature system without passing through the element, there is a problem that the thermoelectric conversion efficiency of the thermoelectric conversion module or unit is low with respect to the performance of the thermoelectric conversion element.

しかも、従来の熱電変換モジュールあるいはユニットでは、熱電変換モジュールからの熱損失防止対策が一切考慮されておらず、大きな熱損失が生じたり、また、各熱電変換素子は両端がそれぞれ半田層を介して電極に接合されるリジット構造であるため、熱電変換モジュールの熱伝導率が小さく、熱電変換効率が大きくとれないため、発生する起電力も小さい等の問題があった。   Moreover, in the conventional thermoelectric conversion module or unit, no measures for preventing heat loss from the thermoelectric conversion module are taken into consideration, and a large heat loss occurs, and both ends of each thermoelectric conversion element are respectively connected via solder layers. Since the rigid structure is bonded to the electrode, the thermoelectric conversion module has a low thermal conductivity, and the thermoelectric conversion efficiency cannot be increased.

本発明は、上述した事情を考慮してなされたもので、熱電変換モジュールの熱損失対策を充分にかつ効果的に施し、熱電変換効率を向上させ、大きな起電力が得られるようにした熱電変換装置を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and has been provided with sufficient and effective measures for heat loss of the thermoelectric conversion module, improving the thermoelectric conversion efficiency, and obtaining a large electromotive force. An object is to provide an apparatus.

本発明の他の目的は、熱電変換モジュールあるいはユニットの熱伝達を向上させ、熱電変換効率を向上させた熱伝達変換装置を提供するにある。   Another object of the present invention is to provide a heat transfer conversion device that improves heat transfer of a thermoelectric conversion module or unit and improves thermoelectric conversion efficiency.

さらに、本発明の別の目的は、熱電変換モジュールあるいはユニットを熱損失の低減および熱伝達を向上させ、各熱電変換素子の性能を効率よく、充分に引出すことができる熱伝達変換装置を提供するにある。   Furthermore, another object of the present invention is to provide a heat transfer conversion device that can reduce the heat loss and improve the heat transfer of the thermoelectric conversion module or unit, and can efficiently and sufficiently draw out the performance of each thermoelectric conversion element. It is in.

本発明に係る熱電変換モジュールは、上述した課題を解決するために、請求項1に記載したように、対向する吸熱側絶縁基板と、放熱側絶縁基板との間に複数の熱電変換素子をマトリックス状に配列した熱電変換素子群を挟持させ、熱電変換素子の吸熱面に吸熱側電極を、その放熱面に放熱側電極をそれぞれ取り付けて全熱電変換素子を電気的直列にかつ熱的に並列に接続して構成された熱電変換モジュールにおいて、上記熱電変換モジュール内部を、輻射・対流により熱電変換素子を通過しない熱量を低減させるために、熱損失防止構造に構成し、前記熱電変換モジュールは各熱電変換素子と吸熱側電極との接合面の少なくとも一方、および各熱電変換素子と放熱側電極との接合面の少なくとも一方に熱伝導特性の優れた物質のメッキあるいは塗装により被膜を形成したり、または前記各熱電変換素子と吸熱側電極との接合面および各熱電変換素子と放熱側電極との接合面に前記熱伝導特性の優れた物質で形成された薄板を介装させ、さらに、前記各熱電変換素子の高温側吸熱面は、吸熱側電極に接触あるいは接合により自由度があり、リジットでない取付けとし、前記各熱電変換素子の低温側放熱面は、放熱側電極に直接あるいは半田層を介して一体に取り付けられ、前記熱損失防止構造は、高温側絶縁基板と低温側絶縁基板とで形成される内部空間を、複数の偏平な小空間に区画するように、複数枚の輻射防止板を多段状に配列して構成されたことを特徴とするものである。 In order to solve the above-described problem, a thermoelectric conversion module according to the present invention includes a matrix of a plurality of thermoelectric conversion elements between an opposing heat-absorbing-side insulating substrate and a heat-dissipating-side insulating substrate. The thermoelectric conversion elements are arranged in a shape, and the heat absorption side electrode is attached to the heat absorption surface of the thermoelectric conversion element, and the heat dissipation side electrode is attached to the heat dissipation surface, so that all thermoelectric conversion elements are electrically connected in series and thermally in parallel. In the thermoelectric conversion module configured to be connected, the inside of the thermoelectric conversion module is configured to have a heat loss prevention structure in order to reduce the amount of heat that does not pass through the thermoelectric conversion element due to radiation and convection, and the thermoelectric conversion module includes each thermoelectric conversion module. At least one of the joint surfaces between the conversion element and the heat absorption side electrode and at least one of the joint surfaces between each thermoelectric conversion element and the heat radiation side electrode are plated with a material having excellent heat conduction characteristics. Is a thin plate formed with a material having excellent heat conduction characteristics on the bonding surface between each thermoelectric conversion element and the heat absorption side electrode and the bonding surface between each thermoelectric conversion element and the heat radiation side electrode. Furthermore, the high temperature side heat absorption surface of each thermoelectric conversion element has a degree of freedom by contact or bonding to the heat absorption side electrode and is not rigidly attached, and the low temperature side heat dissipation surface of each thermoelectric conversion element The heat loss prevention structure is attached to the side electrode directly or via a solder layer so that the internal space formed by the high temperature side insulating substrate and the low temperature side insulating substrate is divided into a plurality of flat small spaces. In addition, a plurality of radiation prevention plates are arranged in a multi-stage shape .

また、本発明に係る熱電変換モジュールは、上述した課題を解決するために、請求項8に記載したように、対向する吸熱側絶縁基板と、放熱側絶縁基板との間に複数の熱電変換素子をマトリックス状に配列した熱電変換素子群を挟持させ、熱電変換素子の吸熱面に吸熱側電極を、その放熱面に放熱側電極をそれぞれ取り付けて全熱電変換素子を電気的直列にかつ熱的に並列に接続して構成された熱電変換モジュールにおいて、上記熱電変換モジュール内部を、輻射・対流により熱電変換素子を通過しない熱量を低減させるために、熱損失防止構造に構成する一方、前記熱電変換モジュール内部の接合面の少なくとも一方に熱伝導特性に優れた物質を塗布またはメッキにより被膜を施したり、または、前記熱電変換モジュール内部の接合面に熱伝導特性に優れた物質からなる薄板を介装させ、さらに、前記各熱電変換素子の高温側吸熱面は、吸熱側電極に接触あるいは接合により自由度があり、リジットでない取付けとし、前記各熱電変換素子の低温側放熱面は、放熱側電極に直接あるいは半田層を介して一体に取り付けられ、前記熱損失防止構造は高温側絶縁基板と低温側絶縁基板とで形成される内部空間を複数枚の輻射防止板で偏平な小空間に多段状に仕切って構成されたことを特徴とするものである。 Also, the thermoelectric conversion module according to the present invention, in order to solve the above problems, as described in claim 8, and the heat absorption side insulating substrate facing the plurality of thermoelectric conversion elements between the radiation side insulating substrate The thermoelectric conversion elements are arranged in a matrix, and the heat absorption side electrode is attached to the heat absorption surface of the thermoelectric conversion element, and the heat dissipation side electrode is attached to the heat dissipation surface, so that all thermoelectric conversion elements are electrically connected in series and thermally. In the thermoelectric conversion module configured to be connected in parallel, the thermoelectric conversion module is configured in a heat loss prevention structure in order to reduce the amount of heat that does not pass through the thermoelectric conversion element due to radiation and convection, while the thermoelectric conversion module Applying or plating a material having excellent heat conductivity to at least one of the internal joint surfaces, or applying heat to the joint surface inside the thermoelectric conversion module Conductive properties is interposed sheet made of superior materials, further, the hot-side heat absorbing faces of the thermoelectric conversion element, there is freedom in contact or joined to the heat absorption side electrodes, and attaching not rigid, the conversion each thermoelectric The low temperature side heat radiating surface of the element is attached directly to the heat radiating side electrode directly or via a solder layer, and the heat loss prevention structure has a plurality of internal spaces formed by the high temperature side insulating substrate and the low temperature side insulating substrate. It is characterized in that it is configured by dividing it into flat small spaces in a multistage manner with a radiation preventing plate .

また、本発明に係る熱電変換装置は、上述した課題を解決するために、請求項16に記載したように、請求項1または8に記載の熱電変換モジュールを備え、前記熱電変換モジュールを複数個組み合わせて熱電変換ユニットを構成したことを特徴とするものである。 Moreover, in order to solve the above-described problem, a thermoelectric conversion device according to the present invention includes the thermoelectric conversion module according to claim 1 or 8 as described in claim 16 , and includes a plurality of the thermoelectric conversion modules. A thermoelectric conversion unit is configured in combination.

本発明に係る熱電変換装置においては、熱電変換モジュールあるいは熱電変換ユニットに熱損失防止構造を備えたので、高温側系統からの吸熱を熱電変換モジュールの各熱電変換素子に効率的に案内でき、熱電変換性能を向上させることができ、熱電変換モジュールや熱電変換ユニットに可動部分がないので信頼性が向上し、機械的・物理的寿命を充分に維持できる。   In the thermoelectric conversion device according to the present invention, since the thermoelectric conversion module or the thermoelectric conversion unit is provided with a heat loss prevention structure, the heat absorption from the high temperature side system can be efficiently guided to each thermoelectric conversion element of the thermoelectric conversion module, Conversion performance can be improved, and since there are no moving parts in the thermoelectric conversion module or thermoelectric conversion unit, the reliability is improved and the mechanical and physical life can be sufficiently maintained.

また、本発明に係る熱電変換装置は、熱電変換モジュールや熱電変換ユニット内の熱伝導特性を向上させたので、熱電変換モジュールの各熱電変換素子を流れる熱流が増大し、熱電変換性能ひいては発電性能を大幅に向上させることができる。   Moreover, since the thermoelectric conversion device according to the present invention has improved the heat conduction characteristics in the thermoelectric conversion module and the thermoelectric conversion unit, the heat flow flowing through each thermoelectric conversion element of the thermoelectric conversion module increases, and the thermoelectric conversion performance and thus the power generation performance Can be greatly improved.

本発明に係る熱電変換装置の実施形態について、添付図面を参照して説明する。   An embodiment of a thermoelectric conversion device according to the present invention will be described with reference to the accompanying drawings.

図1は、本発明に係る熱電変換装置の第1実施形態を原理的に示す概略図である。   FIG. 1 is a schematic diagram showing in principle a first embodiment of a thermoelectric conversion device according to the present invention.

熱電変換装置10は、熱エネルギを電気エネルギに直接変換する熱電変換モジュール11を有する。この熱電変換モジュール11は高温側あるいは吸熱側絶縁基板12と低温側あるいは放熱側絶縁基板13との間に挟持され、熱電変換手段を構成するマトリックス状、格子状あるいは列状の熱電変換素子群15を有する。高温側および低温側絶縁基板12,13は熱伝導性に優れ、かつ電気絶縁特性を有するセラミックス等の耐熱性材料で形成される。高温側絶縁基板12の外表面は高温側伝熱面12aに、その内表面は高温側壁面12bとされ、また、低温側絶縁基板13の外表面は低温側伝熱面13aに、その内表面は低温側壁面13bに構成される。   The thermoelectric conversion device 10 includes a thermoelectric conversion module 11 that directly converts thermal energy into electrical energy. This thermoelectric conversion module 11 is sandwiched between a high temperature side or heat absorption side insulating substrate 12 and a low temperature side or heat dissipation side insulating substrate 13, and is formed into a matrix, grid or row of thermoelectric conversion element groups 15 constituting thermoelectric conversion means. Have The high temperature side and low temperature side insulating substrates 12 and 13 are formed of a heat-resistant material such as ceramics having excellent thermal conductivity and electrical insulating properties. The outer surface of the high temperature side insulating substrate 12 is a high temperature side heat transfer surface 12a, the inner surface is a high temperature side wall surface 12b, and the outer surface of the low temperature side insulating substrate 13 is a low temperature side heat transfer surface 13a. Is formed on the low temperature side wall surface 13b.

熱電変換素子群15は、角柱状、円柱状等の柱状P型半導体(半導体素子)16およびN型半導体(半導体素子)17を複数対ずつ組み合わせ、全体としてマトリックス状あるいは格子状に配設した多数の熱電変換素子で構成される。各熱電変換素子16,17は一端側が高温側の吸熱面とされ、他端側に低温側の放熱面に成形される。各熱電変換素子16,17の吸熱面は、吸熱側電極18に接触あるいは接合せしめられる一方、その放熱面は放熱側電極19に直接あるいは半田層20を介して一体に取り付けられる。吸熱側電極18は高温側絶縁性基板12に設けられ、放熱側電極19は低温側絶縁基板13に設けられる。   The thermoelectric conversion element group 15 is a combination of a plurality of pairs of columnar P-type semiconductors (semiconductor elements) 16 and N-type semiconductors (semiconductor elements) 17 such as prismatic or cylindrical, and arranged in a matrix or grid as a whole. The thermoelectric conversion element is used. One end side of each thermoelectric conversion element 16, 17 is a high-temperature side heat absorption surface, and the other end side is formed as a low-temperature side heat dissipation surface. The heat absorbing surfaces of the thermoelectric conversion elements 16 and 17 are in contact with or bonded to the heat absorbing side electrode 18, while the heat radiating surfaces are attached to the heat radiating side electrode 19 directly or via the solder layer 20. The heat absorption side electrode 18 is provided on the high temperature side insulating substrate 12, and the heat dissipation side electrode 19 is provided on the low temperature side insulating substrate 13.

一方、熱電変換モジュール11は、熱電変換素子16,17の高温側吸熱面21と低温側放熱面22で生成される素子両端の温度差により起電力を得るため、熱電変換モジュール11の性能は素子両端の温度差を保つことにより、より高い熱電変換性能を得ることができる。   On the other hand, the thermoelectric conversion module 11 obtains an electromotive force due to a temperature difference between both ends of the element generated on the high temperature side heat absorbing surface 21 and the low temperature side heat radiating surface 22 of the thermoelectric conversion elements 16 and 17. By maintaining the temperature difference between both ends, higher thermoelectric conversion performance can be obtained.

熱電変換モジュール11は、各熱電変換素子16,17に取り付けられる吸熱側電極18と放熱側電極19とを交互にジグザグ状に配列することにより、図2に示すように、全熱電変換素子16,17が電気的に直列に接続され、熱的に並列配設される。各熱電変換素子16,17で発生した起電力はリード線23を通して外部に取り出される。   As shown in FIG. 2, the thermoelectric conversion module 11 arranges the heat absorption side electrodes 18 and the heat radiation side electrodes 19 attached to the thermoelectric conversion elements 16 and 17 alternately in a zigzag manner. 17 are electrically connected in series and thermally arranged in parallel. The electromotive force generated in each thermoelectric conversion element 16, 17 is taken out through the lead wire 23.

熱電変換モジュール11には熱電変換性能を向上させるために、熱損失防止対策や熱伝導向上対策が施される。熱電変換モジュール11は、熱電変換性能を向上させるためには、熱電変換素子16,17への熱供給と熱電変換素子16,17からの放熱がスムーズに行なわれ、高温部材や高温部位等の熱源である高温側系統から供給された熱が、全て熱電変換素子16,17を通過し、低温側系統から放熱されることが望ましい。   In order to improve the thermoelectric conversion performance, the thermoelectric conversion module 11 is subjected to heat loss prevention measures and heat conduction improvement measures. In order to improve the thermoelectric conversion performance, the thermoelectric conversion module 11 smoothly supplies heat to the thermoelectric conversion elements 16 and 17 and dissipates heat from the thermoelectric conversion elements 16 and 17, and heat sources such as high-temperature members and high-temperature parts. It is desirable that all the heat supplied from the high temperature side system passes through the thermoelectric conversion elements 16 and 17 and is radiated from the low temperature side system.

高温側系統から供給された熱の一部が、熱電変換素子16,17間や熱電変換モジュール11の隙間に生じる熱輻射や対流によって熱伝達され、熱電変換素子16,17間を通る熱流が少なくなるのを防止するため、熱電変換素子16,17の表面や高温側および低温側絶縁基板12,13の対向面や電極18,19の露出面に白色または銀色等の熱反射率の高い塗装あるいはメッキの被膜24が施される。   A part of the heat supplied from the high temperature side system is transferred by heat radiation or convection generated between the thermoelectric conversion elements 16 and 17 or in the gap between the thermoelectric conversion modules 11, and there is little heat flow through the thermoelectric conversion elements 16 and 17. In order to prevent this, the surface of the thermoelectric conversion elements 16, 17, the opposing surface of the high-temperature side and low-temperature side insulating substrates 12, 13, and the exposed surfaces of the electrodes 18, 19 are painted with a high heat reflectance such as white or silver. A plating coating 24 is applied.

熱電変換素子16,17の表面や対をなす絶縁基板12,13の対向面等の露出面に熱反射率の高い塗装あるいはメッキ等の被膜24で被覆されることにより、各熱電変換素子16,17からの放出される輻射熱a、高温側絶縁基板12からの輻射熱b、熱電変換モジュール11内での流体の対流cが生じるのを大幅に軽減させることができ、熱損失対策を施すことができる。   The surface of the thermoelectric conversion elements 16 and 17 and the exposed surface such as the opposing surfaces of the pair of insulating substrates 12 and 13 are covered with a coating 24 such as a coating or plating having high heat reflectivity, whereby each thermoelectric conversion element 16, The generation of radiant heat a emitted from 17, radiant heat b from the high temperature side insulating substrate 12, and fluid convection c in the thermoelectric conversion module 11 can be greatly reduced, and measures against heat loss can be taken. .

熱反射率の高い被膜24は、銀(Ag)、白金(Pt)、金(Au)、銅(Cu)、錫、Ni、Zn等をメッキ処理により形成しても、また、焼物の上塗り薬、Al等を塗布することにより、形成してもよい。熱反射率の高い被膜24を施す代りに、熱電変換モジュール11内で露出する表面を鏡面仕上げとしてもよい。 The coating 24 having a high heat reflectivity can be formed by plating silver (Ag), platinum (Pt), gold (Au), copper (Cu), tin, Ni, Zn, or the like. Alternatively, Al 2 O 3 or the like may be applied. Instead of applying the coating 24 having a high thermal reflectance, the surface exposed in the thermoelectric conversion module 11 may be mirror-finished.

この熱損失防止対策を施すことにより、高温側絶縁基板12や各熱電変換素子16,17の高温側壁面の温度低下を防止でき、熱電変換素子16,17の低温側部分や低温側絶縁基板13の温度上昇を有効的に防止でき、各熱電変換素子16,17の両端部の温度差を減少させることが少なく、熱電変換性能ひいては発電性能を低下させることがない。   By taking this heat loss prevention measure, it is possible to prevent the temperature of the high-temperature side insulating substrate 12 and the high-temperature side wall surfaces of the thermoelectric conversion elements 16 and 17 from decreasing, and the low-temperature side portion of the thermoelectric conversion elements 16 and 17 and the low-temperature side insulating substrate 13. Therefore, the temperature difference between the both ends of each thermoelectric conversion element 16 and 17 is hardly reduced, and the thermoelectric conversion performance and thus the power generation performance is not deteriorated.

また、熱電変換モジュール11の各熱電変換素子16,17は高温側電極18および低温側電極19に接合あるいは接触せしめられるが、その際、各熱電変換素子16,17と高温側電極18または低温側電極19との接合面の少なくとも一方に、熱伝導の大きな材料、例えばCu,Ag,Au,Niでメッキを施してもよい。これにより、各熱電変換素子16,17の熱伝導効率を向上させることができる。   The thermoelectric conversion elements 16 and 17 of the thermoelectric conversion module 11 are joined or brought into contact with the high temperature side electrode 18 and the low temperature side electrode 19. At this time, the thermoelectric conversion elements 16 and 17 and the high temperature side electrode 18 or the low temperature side electrode 19 are joined. At least one of the joint surfaces with the electrode 19 may be plated with a material having high thermal conductivity, such as Cu, Ag, Au, or Ni. Thereby, the heat conduction efficiency of each thermoelectric conversion element 16 and 17 can be improved.

熱電変換モジュール11は、熱源や高温側系統から高温、例えば400℃〜800℃の放射熱を高温側絶縁基板12で吸熱し、この吸熱された熱を各熱電変換素子16,17に案内し、熱流を熱電変換素子16,17内を流すことにより発電作用が生じ、熱流は例えば100℃程度に温度降下する。温度降下した熱流は低温側絶縁基板13から放熱される。   The thermoelectric conversion module 11 absorbs high-temperature, for example, 400 ° C. to 800 ° C. radiant heat from a heat source or a high-temperature side system by the high-temperature side insulating substrate 12, and guides the absorbed heat to the thermoelectric conversion elements 16 and 17. By causing the heat flow to flow through the thermoelectric conversion elements 16 and 17, a power generation action occurs, and the heat flow drops in temperature to about 100 ° C., for example. The heat flow whose temperature has dropped is dissipated from the low-temperature insulating substrate 13.

その際、熱電変換モジュール11は内部の露出表面に熱反射率の大きな物質による被膜24が施され、熱損失防止構造に構成される。このため、熱電変換モジュール11の内部空間(隙間)に生じる輻射a,bや対流cの発生が少なく、熱電変換モジュール11の高温側で吸熱した熱を各熱電変換素子16,17に有効的に導き、熱電変換能力ひいては発電能力を向上させることができる。   At that time, the thermoelectric conversion module 11 is provided with a coating 24 made of a material having a high heat reflectivity on the exposed surface inside, so that a heat loss prevention structure is formed. For this reason, there is little generation | occurrence | production of the radiation a and b which generate | occur | produce in the internal space (gap) of the thermoelectric conversion module 11, and the heat | fever absorbed at the high temperature side of the thermoelectric conversion module 11 is effective in each thermoelectric conversion element 16 and 17. As a result, it is possible to improve the thermoelectric conversion capacity and thus the power generation capacity.

熱電変換モジュール11の熱電変換素子群15を構成する各熱電変換素子16,17は数mm程度、例えば2〜3mm程度の角柱状に形成され、柱状熱電変換素子16,17の高さは1mm〜数cm程度、好ましくは2〜3mmに構成される。また、熱電変換素子群15の各熱電変換素子16,17間の間隔は1mm以下、例えば0.3mm〜0.4mm程度とすることで、各熱電変換素子16,17の充填密度を高めることができ、熱電変換効率を向上させることができる。   The thermoelectric conversion elements 16 and 17 constituting the thermoelectric conversion element group 15 of the thermoelectric conversion module 11 are formed in a prismatic shape of about several mm, for example, about 2 to 3 mm, and the height of the columnar thermoelectric conversion elements 16 and 17 is 1 mm to The thickness is about several cm, preferably 2 to 3 mm. In addition, the spacing between the thermoelectric conversion elements 16 and 17 of the thermoelectric conversion element group 15 is 1 mm or less, for example, about 0.3 mm to 0.4 mm, thereby increasing the packing density of the thermoelectric conversion elements 16 and 17. And thermoelectric conversion efficiency can be improved.

この熱電変換モジュール11は、熱電変換素子16,17を数個ずつマトリックス状に配列しても、全体として数cm角程度の大きさとなる。数cm角の大きさの熱電変換モジュール11でも、高温側を500℃〜600℃、低温側を100℃とし、例えば熱電変換素子16,17を数個×数個(例えば4×4個)のマトリックス状に配列した場合には、実験では1モジュール当り2桁のワット出力が得られる。   The thermoelectric conversion module 11 has a size of about several cm square as a whole even if several thermoelectric conversion elements 16 and 17 are arranged in a matrix. Even in the thermoelectric conversion module 11 having a size of several centimeters, the high temperature side is set to 500 ° C. to 600 ° C., and the low temperature side is set to 100 ° C. For example, several thermoelectric conversion elements 16 and 17 (for example, 4 × 4) When arranged in a matrix, the experiment yields a two-digit watt output per module.

この熱電変換モジュール11は、各熱電変換素子16,17の吸熱面を吸熱側電極18に、その放熱面を放熱側電極19にそれぞれ取り付けるが、各熱電変換素子16,17の高温側は、吸熱側電極18に接触等の比較的自由度の高い取付けとなり、半田層を介してリジットに取り付けられることがない。したがって、熱電変換モジュール11は各熱電変換素子16,17が高温側絶縁基板12の吸熱側電極18にリジットに固定される剛体構造に構成されないので、熱膨張に対する自由度が大きく、熱膨張による応力集中を防止でき、機械的・物理的寿命を充分に維持することができる。   In this thermoelectric conversion module 11, the heat absorption surfaces of the thermoelectric conversion elements 16 and 17 are attached to the heat absorption side electrode 18, and the heat dissipation surface is attached to the heat dissipation side electrode 19, respectively. The side electrode 18 is attached with a relatively high degree of freedom such as contact, and is not attached to the rigid via the solder layer. Therefore, since the thermoelectric conversion module 11 is not configured in a rigid structure in which the thermoelectric conversion elements 16 and 17 are rigidly fixed to the heat absorption side electrode 18 of the high temperature side insulating substrate 12, the degree of freedom with respect to thermal expansion is large, and stress due to thermal expansion is large. Concentration can be prevented and the mechanical and physical life can be sufficiently maintained.

図3は、本発明に係る熱電変換装置の第2実施形態を原理的に示す図である。   FIG. 3 is a view showing in principle the second embodiment of the thermoelectric conversion device according to the present invention.

図3は熱電変換装置を構成する熱電変換モジュール11Aの断面構造を簡略的に示すものであり、図2に示された熱電変換モジュール11と同じ構成には同じ符号を付して説明を省略する。   FIG. 3 schematically shows a cross-sectional structure of the thermoelectric conversion module 11A constituting the thermoelectric conversion device. The same components as those of the thermoelectric conversion module 11 shown in FIG. .

この熱電変換モジュール11Aは高温側絶縁基板12と低温側絶縁基板13との間に間隔をおいて輻射防止板30を介装させたものである。輻射防止板30は熱反射率の高い物質、例えばステンレス鋼、Niメッキを施した鉄、アルミ(アルマイト)、亜鉛等で形成される。   This thermoelectric conversion module 11 </ b> A has a radiation preventing plate 30 interposed between a high temperature side insulating substrate 12 and a low temperature side insulating substrate 13. The radiation preventing plate 30 is made of a material having high heat reflectivity, for example, stainless steel, Ni-plated iron, aluminum (alumite), zinc or the like.

輻射防止板30は、高温側絶縁基板12と低温側絶縁基板13との隙間に介装される薄板であり、この隙間の部分に熱の伝わる方向と垂直な面に隙間を2分するように設けられる。   The radiation preventing plate 30 is a thin plate interposed in the gap between the high temperature side insulating substrate 12 and the low temperature side insulating substrate 13 so that the gap is divided into two in a plane perpendicular to the direction of heat transfer. Provided.

高温側および低温側絶縁基板12,13の間に輻射防止板30を設けることにより、熱電変換モジュール11A内部の輻射や対流により、熱電変換素子16,17を通過しない熱量を低減させ、熱源である高温側系統から高温側絶縁基板12で受熱した熱を各熱電変換素子16,17を有効的に通して低温側絶縁基板13に案内し、この低温側絶縁基板13から外部に放熱している。   By providing the radiation preventing plate 30 between the high temperature side and low temperature side insulating substrates 12 and 13, the amount of heat that does not pass through the thermoelectric conversion elements 16 and 17 due to radiation and convection inside the thermoelectric conversion module 11A is reduced, and this is a heat source. Heat received by the high temperature side insulating substrate 12 from the high temperature side system is effectively guided through the thermoelectric conversion elements 16 and 17 to the low temperature side insulating substrate 13 and radiated from the low temperature side insulating substrate 13 to the outside.

熱電変換モジュール11Aは、熱源等から受熱した熱が熱電変換素子群15の各熱電変換素子16,17を熱流として流れるとき発電機能が生じ、起電力を生成する。各熱電変換素子16,17を通る熱流による発電作用により温度降下して低温側絶縁基板13に案内される。   The thermoelectric conversion module 11A generates an electromotive force when a heat received from a heat source or the like flows as a heat flow through the thermoelectric conversion elements 16 and 17 of the thermoelectric conversion element group 15 and generates an electromotive force. The temperature is lowered by the power generation action by the heat flow passing through each thermoelectric conversion element 16, 17 and is guided to the low temperature side insulating substrate 13.

その際、熱電変換モジュール11Aは内部の露出表面に図2に示されたものと同様、白色または銀色等の熱反射率の高い物質で塗装やメッキを行ない、熱反射率の高い被膜を施してもよい。この被膜を施す代りに、熱電変換モジュール11Aの内部の露出表面、少なくとも絶縁基板12,13の内表面を鏡面仕上げに形成してもよい。   At that time, the thermoelectric conversion module 11A is coated or plated with a highly heat-reflective material such as white or silver, as shown in FIG. Also good. Instead of applying this coating, the exposed surface inside the thermoelectric conversion module 11A, at least the inner surfaces of the insulating substrates 12 and 13, may be formed into a mirror finish.

図4は、図3に示された熱電変換モジュール11Aの第1変形例を示すものである。   FIG. 4 shows a first modification of the thermoelectric conversion module 11A shown in FIG.

この変形例に示された熱電変換モジュール11Bは、高温側絶縁基板12と低温側絶縁基板13との間(隙間)に複数枚の輻射防止板30を間隔をおいて設けたものである。他の構成は図3に示された熱電変換モジュール11Aと異ならないので同じ符号を付して説明を省略する。   In the thermoelectric conversion module 11B shown in this modification, a plurality of radiation prevention plates 30 are provided at intervals between the high temperature side insulating substrate 12 and the low temperature side insulating substrate 13 (gap). Other configurations are not different from the thermoelectric conversion module 11A shown in FIG.

図4に示された熱電変換モジュール11Bは、複数枚の輻射防止板30を多段構造に配設したものである。各輻射防止板30を適宜間隔をおいて両絶縁基板12,13間の内部空間(隙間)に配設することにより、この内部空間を複数の小空間に区画され、熱損失防止構造に構成される。   The thermoelectric conversion module 11B shown in FIG. 4 has a plurality of radiation prevention plates 30 arranged in a multistage structure. By disposing each radiation prevention plate 30 in an internal space (gap) between the two insulating substrates 12 and 13 at an appropriate interval, the internal space is partitioned into a plurality of small spaces, and a heat loss prevention structure is formed. The

各輻射防止板30は、熱反射率の高い物質で形成された薄板であり、各輻射防止板30はこれを貫通する複数の柱状熱電変換素子16,17により間隔保持される。   Each radiation prevention plate 30 is a thin plate formed of a material having a high heat reflectance, and each radiation prevention plate 30 is held by a plurality of columnar thermoelectric conversion elements 16 and 17 penetrating therethrough.

しかして、熱電変換モジュール11Bの両絶縁基板12,13間に形成される内部空間を並設された各輻射防止板30により複数の小空間に区画し、各小空間を両絶縁基板12,13と略平行に形成することにより、熱損失防止構造となり、両絶縁基板12,13間の内部空間に大きな輻射や対流作用が生じるのを有効的かつ確実に防止している。   Thus, the internal space formed between the two insulating substrates 12 and 13 of the thermoelectric conversion module 11B is partitioned into a plurality of small spaces by the radiation prevention plates 30 arranged in parallel, and each small space is divided into the two insulating substrates 12 and 13. Is formed in substantially parallel to the heat loss prevention structure, which effectively and reliably prevents large radiation and convection action from occurring in the internal space between the two insulating substrates 12 and 13.

複数の輻射防止板30を多段状に配設して、両絶縁基板12,13間の内部空間を複数の偏平な小空間に仕切ることにより、輻射および対流等による熱の流出を防止でき、結果的に高温側絶縁基板12で受熱し、吸熱した熱を各熱電変換素子16,17に導くことができる。   By arranging a plurality of radiation prevention plates 30 in a multi-stage manner and partitioning the internal space between the two insulating substrates 12 and 13 into a plurality of flat small spaces, heat outflow due to radiation and convection can be prevented. In particular, the heat received by the high temperature side insulating substrate 12 and absorbed can be guided to the thermoelectric conversion elements 16 and 17.

図5は、熱電変換モジュールの第2変形例を示すものである。   FIG. 5 shows a second modification of the thermoelectric conversion module.

この変形例に示された熱電変換モジュール11Cは、複数の輻射防止板30を間隔保持手段33で所定の間隔に保持した間隔保持構造が図4に示された熱電変換モジュール11Bと相違するだけであり、他の構成、作用は異ならないので同じ符号を付して説明を省略する。図5の熱電変換モジュール11Cでは高温側絶縁基板や低温側絶縁基板、各絶縁基板に接合、張設等で取り付けられる電極の図示を省略している。   The thermoelectric conversion module 11C shown in this modification is different from the thermoelectric conversion module 11B shown in FIG. 4 only in the interval holding structure in which the plurality of radiation preventing plates 30 are held at a predetermined interval by the interval holding means 33. Since other configurations and operations are not different, the same reference numerals are given and description thereof is omitted. In the thermoelectric conversion module 11C of FIG. 5, illustration of a high-temperature side insulating substrate, a low-temperature side insulating substrate, and electrodes that are attached to each insulating substrate by bonding or stretching is omitted.

図5に示された熱電変換モジュール11Cは、間隔保持手段33で複数の輻射防止板30を多段構造に間隔保持している。間隔保持手段33は各輻射防止板30に頭付きボルト34を挿通させてナット35で締着し、各輻射防止板30をスペーサ36で多段構造に間隔保持したものである。各輻射防止板30にはボルト34および熱電変換素子16,17を挿通させる孔が予め穿設されている。   In the thermoelectric conversion module 11 </ b> C shown in FIG. 5, a plurality of radiation prevention plates 30 are held in a multistage structure by a gap holding means 33. The spacing holding means 33 is configured such that a head bolt 34 is inserted into each radiation preventing plate 30 and fastened with a nut 35, and each radiation preventing plate 30 is spaced and held in a multistage structure by a spacer 36. Each radiation prevention plate 30 is previously provided with holes through which the bolts 34 and the thermoelectric conversion elements 16 and 17 are inserted.

間隔保持手段33はボルト・ナット等の締着手段34,35とスペーサ36とから構成され、図4に示すものと同様、高温側絶縁基板と低温側絶縁基板(共に図示せず)の間の内部空間を偏平な小空間に多段式に形成し、熱損失防止構造としている。輻射防止板30の配設間隔は、薄板の厚さや枚数により間隔調整をすることができる。   The interval holding means 33 is composed of fastening means 34 and 35 such as bolts and nuts, and a spacer 36, and is similar to that shown in FIG. 4 between the high temperature side insulating substrate and the low temperature side insulating substrate (both not shown). The internal space is formed in a flat and small space in a multi-stage manner, and it has a heat loss prevention structure. The arrangement interval of the radiation preventing plates 30 can be adjusted according to the thickness or number of thin plates.

図6は熱電変換モジュールの第3変形例を示すものである。   FIG. 6 shows a third modification of the thermoelectric conversion module.

この変形例に示された熱電変換モジュール11Dは、各輻射防止板30の間隔保持手段38の構成を図5に示す熱電変換モジュール11Cと異にするだけで、他の構成、作用は図5の熱電変換モジュール11Cと異ならないので同じ符号を付して説明を省略する。   The thermoelectric conversion module 11D shown in this modified example is different from the thermoelectric conversion module 11C shown in FIG. 5 only in the configuration of the interval holding means 38 of each radiation prevention plate 30, and the other configurations and functions are as shown in FIG. Since it is not different from the thermoelectric conversion module 11C, the same reference numerals are given and description thereof is omitted.

この熱電変換モジュール11Dは、各輻射防止板30の端部を鋭角に折曲し、折曲部39の先端部を隣接する輻射防止板30の非折曲側の表面に接触させることにより、間隔保持手段38を構成したものである。この場合、間隔保持手段38は、独立した構成部材を必要とせず、輻射防止板30の端部折曲加工のみで構成できるので、部品点数が少なくなり、コストの低減を図ることができる。また、輻射防止板30の端部を折り曲げて間隔調整することにより、熱損失防止構造に構成できる。   The thermoelectric conversion module 11D is configured such that the end of each radiation prevention plate 30 is bent at an acute angle, and the tip of the bent portion 39 is brought into contact with the surface of the adjacent radiation prevention plate 30 on the non-bending side. The holding means 38 is configured. In this case, the interval holding means 38 does not require an independent component member and can be configured only by bending the end portion of the radiation preventing plate 30, so that the number of parts can be reduced and the cost can be reduced. Moreover, it can comprise in a heat loss prevention structure by bending the edge part of the radiation prevention board 30, and adjusting space | interval.

一方、熱電変換モジュール11Dの図示しない高温側および低温側絶縁基板の内部空間に介装される輻射防止板30は熱反射率の大きな物質からなる薄板で形成される。このため、輻射防止板30の端部折曲げにより形成される折曲部は、鋭角に折曲させることが条件となる。また、輻射防止板30の端部を折曲する代りに、輻射防止板30の一部を舌片状に切り起こし、この舌片を鋭角に折り曲げることにより、間隔保持手段に構成してもよい。さらに、舌片は、熱電変換素子16,17を通す輻射防止板30の孔部を利用して形成してもよい。孔部として打ち抜かれる部分に舌片を形成し、この舌片を間隔保持手段としてもよい。   On the other hand, the radiation prevention plate 30 interposed in the internal space of the high-temperature side and low-temperature side insulating substrates (not shown) of the thermoelectric conversion module 11D is formed of a thin plate made of a material having a high heat reflectivity. For this reason, it is a condition that the bent portion formed by bending the end portion of the radiation preventing plate 30 is bent at an acute angle. Further, instead of bending the end portion of the radiation preventing plate 30, a part of the radiation preventing plate 30 may be cut and raised into a tongue shape, and the tongue piece may be bent at an acute angle to constitute a space holding means. . Further, the tongue piece may be formed by utilizing a hole portion of the radiation preventing plate 30 through which the thermoelectric conversion elements 16 and 17 are passed. A tongue piece may be formed in a portion to be punched out as a hole, and this tongue piece may be used as a distance holding means.

図7は本発明に係る熱電変換装置の第3実施形態を示す原理的な図である。   FIG. 7 is a principle view showing a third embodiment of the thermoelectric converter according to the present invention.

図7は、熱電変換装置を構成する熱電変換モジュール11に熱電変換素子16,17やその接合部酸化による劣化防止構造を備えたものである。   In FIG. 7, the thermoelectric conversion module 11 constituting the thermoelectric conversion device is provided with a deterioration prevention structure due to the thermoelectric conversion elements 16 and 17 and oxidation of the junctions thereof.

この熱電変換モジュール11は、密閉されたボックス状のケーシング41内に格納され、この密閉ケーシング41内を気密に保持している。熱電変換モジュール11を気密封止構造で保持することにより、熱電変換モジュール11を気密の環境下に設置することができ、その酸化を有効的かつ確実に防止できる。   The thermoelectric conversion module 11 is stored in a sealed box-shaped casing 41 and the inside of the sealed casing 41 is kept airtight. By holding the thermoelectric conversion module 11 with an airtight sealing structure, the thermoelectric conversion module 11 can be installed in an airtight environment, and its oxidation can be effectively and reliably prevented.

図7に示された熱電変換装置10Aでは、熱電変換モジュール11を気密に保つために、密閉ケーシング41の内面41aまたは外面41bあるいはその双方に白色または銀色等の熱反射率の高い物質で塗装し、被膜24を形成したり、この被膜に代えて密閉ケーシング41の内外表面を鏡面状態に仕上げてもよい。   In the thermoelectric conversion device 10A shown in FIG. 7, in order to keep the thermoelectric conversion module 11 airtight, the inner surface 41a and / or the outer surface 41b of the sealed casing 41 are coated with a material having a high heat reflectance such as white or silver. The coating 24 may be formed, or the inner and outer surfaces of the sealed casing 41 may be finished in a mirror state instead of the coating.

密閉ケーシング41内に収納される熱電変換モジュール11は、図2に示す熱電変換モジュールと同じ構成、作用を奏するので、同じ符号を付して説明を省略する。   Since the thermoelectric conversion module 11 accommodated in the hermetic casing 41 has the same configuration and function as the thermoelectric conversion module shown in FIG.

図8は本発明に係る熱電変換装置の第4実施形態を示す図である。   FIG. 8 is a diagram showing a fourth embodiment of the thermoelectric conversion device according to the present invention.

図8は、熱電変換装置10Bを熱電変換ユニット45で構成した例を示す。熱電変換ユニット45は複数の熱電変換モジュール11を組み合わせて構成される。図8の例では、3個の熱電変換モジュール11を組み合わせて構成される。熱電変換ユニット45は複数の熱電変換モジュール11を電気的に直列あるいは並列に接続することにより組み立てられる。   FIG. 8 shows an example in which the thermoelectric conversion device 10 </ b> B is configured with a thermoelectric conversion unit 45. The thermoelectric conversion unit 45 is configured by combining a plurality of thermoelectric conversion modules 11. In the example of FIG. 8, three thermoelectric conversion modules 11 are combined. The thermoelectric conversion unit 45 is assembled by electrically connecting a plurality of thermoelectric conversion modules 11 in series or in parallel.

各熱電変換モジュール11は、偏平なボックス状容器である密閉ケーシング46内に格納される。密閉ケーシング46内は各熱電変換モジュール11の集合体である熱電変換ユニット45の酸化を防止するために気密構造に形成される。   Each thermoelectric conversion module 11 is stored in a sealed casing 46 which is a flat box-shaped container. The inside of the sealed casing 46 is formed in an airtight structure in order to prevent oxidation of the thermoelectric conversion unit 45 that is an aggregate of the thermoelectric conversion modules 11.

熱電変換ユニット45は密閉ケーシング46内に気密封止構造で封止され、収納されることにより、熱電変換ユニット45に外気から遮断されて気密に保持されるために、ユニットの酸化を有効的に防止でき、熱電変換ユニット45の機械的・物理的寿命を維持することができる。   Since the thermoelectric conversion unit 45 is sealed and housed in the hermetic casing 46 with an airtight sealing structure, the thermoelectric conversion unit 45 is shielded from the outside air and kept airtight. The mechanical and physical life of the thermoelectric conversion unit 45 can be maintained.

密閉ケーシング46内に収容される熱電変換ユニット45は、要求される出力に応じて熱電変換モジュール11の個数やモジュール同士の接続方法が決定される。各熱電変換モジュール11は図2に示され熱電変換モジュール11と異ならないので、同じ符号を付して説明を省略する。   In the thermoelectric conversion unit 45 accommodated in the hermetic casing 46, the number of thermoelectric conversion modules 11 and a method for connecting the modules are determined according to the required output. Since each thermoelectric conversion module 11 is shown in FIG. 2 and is not different from the thermoelectric conversion module 11, the same reference numerals are given and description thereof is omitted.

複数の熱電変換モジュール11を収めた容器である密閉ケーシング46の壁面46aには白色または銀色等の熱反射率の高い物質で塗装が塗布され、熱反射率の高い被膜が形成される。塗装を施す代りに、密閉ケーシング46の壁面46aを鏡面状態に仕上げてもよい。   Coating is applied to the wall surface 46a of the sealed casing 46, which is a container containing the plurality of thermoelectric conversion modules 11, with a material having a high heat reflectance such as white or silver, and a film having a high heat reflectance is formed. Instead of painting, the wall surface 46a of the sealed casing 46 may be finished in a mirror state.

図9は本発明に係る熱電変換装置の第5実施形態を示す図である。   FIG. 9 is a view showing a fifth embodiment of the thermoelectric conversion device according to the present invention.

図9は、熱電変換装置10Cを熱電変換ユニット50に適用した例を示すものである。この熱電変換ユニット50は、複数の熱電変換モジュール11Aを組み合わせて構成される。図8の例では、3個の熱電変換モジュール11Aを組み合わせて構成される。   FIG. 9 shows an example in which the thermoelectric conversion device 10 </ b> C is applied to the thermoelectric conversion unit 50. The thermoelectric conversion unit 50 is configured by combining a plurality of thermoelectric conversion modules 11A. In the example of FIG. 8, it is configured by combining three thermoelectric conversion modules 11A.

各熱電変換モジュール11Aは図3に示された熱電変換モジュール11Aと同じ構成、作用を有するので、同じ符号を付して説明を省略する。各熱電変換モジュール11Aは、偏平なボックス状容器である密閉ケーシング46内に格納される。密閉ケーシング46内は気密構造とされ、収納される熱電変換ユニット50の酸化を防止している。熱電変換ユニット50の酸化が防止されることにより、熱電変換ユニット50の機械的・物理的寿命を充分に維持させることができる。   Each thermoelectric conversion module 11A has the same configuration and function as the thermoelectric conversion module 11A shown in FIG. Each thermoelectric conversion module 11A is stored in a sealed casing 46, which is a flat box-like container. The hermetic casing 46 has an airtight structure to prevent oxidation of the thermoelectric conversion unit 50 accommodated therein. By preventing oxidation of the thermoelectric conversion unit 50, the mechanical and physical life of the thermoelectric conversion unit 50 can be sufficiently maintained.

熱電変換ユニット50は、要求される出力に応じて熱電変換モジュール11Aの個数やモジュール同士の接続方法が決定される。各熱電変換モジュール11Aに備えられる熱損失防止構造の輻射防止板30は図8に示すように、各熱電変換モジュール11Aで共用させてもよく、各熱電変換モジュール11Aで個別に設けてもよい。   In the thermoelectric conversion unit 50, the number of thermoelectric conversion modules 11A and the method of connecting the modules are determined according to the required output. As shown in FIG. 8, the radiation prevention plate 30 of the heat loss prevention structure provided in each thermoelectric conversion module 11A may be shared by each thermoelectric conversion module 11A, or may be provided individually by each thermoelectric conversion module 11A.

図9では、熱電変換ユニット50を構成する各熱電変換モジュール11Aは、高温側および低温側絶縁基板12,13間の内部空間に1枚の輻射防止板30を介装させて熱損失防止構造とした例を示したが、各熱電変換モジュール11Aに代えて、図4ないし図6に示される熱電変換モジュール11B,11C,11Dを用いても、また、各熱電変換モジュール11Aを他の熱電変換モジュール11B,11C,11Dと共用させてもよい。   In FIG. 9, each thermoelectric conversion module 11 </ b> A constituting the thermoelectric conversion unit 50 has a heat loss prevention structure in which one radiation prevention plate 30 is interposed in the internal space between the high temperature side and low temperature side insulating substrates 12 and 13. However, instead of each thermoelectric conversion module 11A, the thermoelectric conversion modules 11B, 11C, and 11D shown in FIGS. 4 to 6 may be used, and each thermoelectric conversion module 11A may be replaced with another thermoelectric conversion module. It may be shared with 11B, 11C, and 11D.

各熱電変換モジュール11A(11B,11C,11D)に輻射防止板30を設けることにより、熱損失防止構造とすることができ、熱輻射や対流作用による熱の流出を効率よく防止できる。   By providing the radiation prevention plate 30 in each thermoelectric conversion module 11A (11B, 11C, 11D), a heat loss prevention structure can be provided, and heat outflow due to heat radiation or convection can be efficiently prevented.

図10は本発明に係る熱電変換装置の第6実施形態を示す図である。   FIG. 10 is a diagram showing a sixth embodiment of a thermoelectric conversion device according to the present invention.

図10は熱電変換装置10Dを熱伝導特性の優れた熱電変換モジュール11に適用した例を示す。   FIG. 10 shows an example in which the thermoelectric conversion device 10D is applied to a thermoelectric conversion module 11 having excellent heat conduction characteristics.

この熱電変換装置10Dは、熱電変換モジュール11の高温側伝熱面12aを高温側系統55に接合させ、熱電変換モジュール11の低温側伝熱面13aを低温側系統56に接合させたものである。高温側系統55は、高温部材あるいは高温部位等の熱源(図示せず)から放出される輻射熱等の放熱を受熱あるいは集熱しており、高温側系統55で吸熱した熱は、熱伝導性に優れた高温側絶縁基板12に伝熱され、吸熱側電極18を経て熱電変換素子群15の各熱電変換素子16,17に導かれる。   This thermoelectric conversion device 10D is obtained by joining the high temperature side heat transfer surface 12a of the thermoelectric conversion module 11 to the high temperature side system 55 and joining the low temperature side heat transfer surface 13a of the thermoelectric conversion module 11 to the low temperature side system 56. . The high temperature side system 55 receives or collects heat such as radiant heat emitted from a heat source (not shown) such as a high temperature member or a high temperature part, and the heat absorbed by the high temperature side system 55 is excellent in thermal conductivity. Then, the heat is transferred to the high temperature side insulating substrate 12 and led to the thermoelectric conversion elements 16 and 17 of the thermoelectric conversion element group 15 through the heat absorption side electrode 18.

その際、高温側系統55と熱電変換モジュール11との接合面あるいは接触面57の熱伝導特性を向上させるために、少なくとも一方の接合面(接触面)に、熱伝導性の優れた物質、例えばAu,Ag,Cuおよび酸化物等でメッキ処理(熱処理)を施している。   At that time, in order to improve the heat conduction characteristics of the joint surface or the contact surface 57 between the high temperature side system 55 and the thermoelectric conversion module 11, a substance having excellent thermal conductivity, for example, on at least one joint surface (contact surface), for example, Plating treatment (heat treatment) is performed with Au, Ag, Cu, oxide, or the like.

このメッキ処理(熱処理)は、低温側系統56と熱電変換モジュール11との接合面(接触面)58の少なくとも一方に施してもよい。また、熱電変換素子群15の各熱電変換素子16,17と吸熱側電極18の接合面あるいは接触面59の少なくとも一方、さらに、各熱電変換素子16,17と放熱側電極19の接合面あるいは接触面60の少なくとも一方に、それぞれ施すようにしてもよい。   This plating process (heat treatment) may be performed on at least one of the joint surfaces (contact surfaces) 58 between the low temperature side system 56 and the thermoelectric conversion module 11. Further, at least one of the bonding surfaces or contact surfaces 59 of the thermoelectric conversion elements 16 and 17 and the heat absorption side electrode 18 of the thermoelectric conversion element group 15, and the bonding surfaces or contacts of the thermoelectric conversion elements 16 and 17 and the heat dissipation side electrode 19. You may make it give to at least one of the surface 60, respectively.

熱電変換モジュール11と高温側系統55との接合面(接触面)の少なくとも一方、熱電変換モジュール11と低温側系統56との接合面の少なくとも一方、また、熱電変換素子群15の各熱電変換素子16,17と吸熱側電極18との接合面または接触面の少なくとも一方、さらには各熱電変換素子16,17と放熱側電極19との接合面の少なくとも一方に、熱伝導性の優れた物質でメッキ処理等の熱処理を施すことにより、接合面の接触面積を増大させることができ、熱電変換モジュール11の熱伝導特性を向上させることができる。   At least one of the joint surfaces (contact surfaces) between the thermoelectric conversion module 11 and the high temperature side system 55, at least one of the joint surfaces between the thermoelectric conversion module 11 and the low temperature side system 56, and each thermoelectric conversion element of the thermoelectric conversion element group 15 A material having excellent thermal conductivity is used on at least one of the joint surfaces or contact surfaces between the heat sink side electrodes 18 and 17 and the contact surface between the thermoelectric conversion elements 16 and 17 and the heat radiation side electrode 19. By performing heat treatment such as plating, the contact area of the joint surface can be increased, and the heat conduction characteristics of the thermoelectric conversion module 11 can be improved.

熱電変換モジュール11の熱伝導特性を向上させることにより、熱電変換モジュール11の各熱電変換素子16,17に案内される熱流を増加させることができ、熱電変換性能、すなわち発電性能を向上させることができる。   By improving the heat conduction characteristics of the thermoelectric conversion module 11, the heat flow guided to the thermoelectric conversion elements 16 and 17 of the thermoelectric conversion module 11 can be increased, and the thermoelectric conversion performance, that is, the power generation performance can be improved. it can.

また、熱電変換モジュール11の各接合面あるいは接触面の少なくとも一方の面に熱伝導性の優れた物質でメッキ処理する代りに、各接合面の間に熱伝導に優れた金(Au)、銀(Ag)、白金(Pt)の薄板を介装したり、銅等の熱伝導の良い薄板にAgまたは酸化物のメッキ処理を施したものを挟み込んでもよい。   In addition, instead of plating each bonding surface or at least one of the contact surfaces of the thermoelectric conversion module 11 with a material having excellent heat conductivity, gold (Au) or silver having excellent heat conductivity between the bonding surfaces. A thin plate of (Ag) or platinum (Pt) may be interposed, or a thin plate of good thermal conductivity such as copper may be sandwiched by Ag or oxide plating.

さらに、この熱電変換装置10Dは、熱電変換モジュール11を備えた例を説明したが、この熱電変換モジュール11に代えて図3ないし図6に示された熱電変換モジュールを採用してもよい。   Furthermore, although this thermoelectric conversion apparatus 10D demonstrated the example provided with the thermoelectric conversion module 11, it may replace with this thermoelectric conversion module 11, and may employ | adopt the thermoelectric conversion module shown by FIG.

図11は、本発明に係る熱電変換装置の第7実施形態を示す図である。   FIG. 11 is a diagram showing a seventh embodiment of the thermoelectric conversion device according to the present invention.

図11は、熱電変換装置10Eを熱伝導特性に優れた熱電変換ユニット45に適用した例を示す。   FIG. 11 shows an example in which the thermoelectric conversion device 10E is applied to a thermoelectric conversion unit 45 having excellent heat conduction characteristics.

熱電変換ユニット45は、ボックス状偏平容器である密閉ケーシング46に複数の熱電変換モジュール11が格納される。熱電変換ユニット45は、複数の熱電変換モジュール11を組み合わせて構成される。図11では3個の熱電変換モジュール11を組み合わせた例を図示している。   In the thermoelectric conversion unit 45, a plurality of thermoelectric conversion modules 11 are stored in a sealed casing 46 which is a box-shaped flat container. The thermoelectric conversion unit 45 is configured by combining a plurality of thermoelectric conversion modules 11. FIG. 11 illustrates an example in which three thermoelectric conversion modules 11 are combined.

熱電変換ユニット45の外壁面は、高温側系統55および低温側系統56との接合面となる。高温側系統55は高温部材あるいは高温部位等の熱源から放出される輻射熱等の放熱を受熱あるいは集熱しており、高温側系統55で吸熱した熱は、熱電変換ユニット45に案内され、この熱電変換ユニット45の密閉ケーシング46を経て各熱電変換モジュール11に案内される。   The outer wall surface of the thermoelectric conversion unit 45 becomes a joint surface with the high temperature side system 55 and the low temperature side system 56. The high temperature side system 55 receives or collects heat such as radiant heat emitted from a heat source such as a high temperature member or a high temperature part. The heat absorbed by the high temperature side system 55 is guided to the thermoelectric conversion unit 45, and this thermoelectric conversion is performed. It is guided to each thermoelectric conversion module 11 through the sealed casing 46 of the unit 45.

その際、高温側系統55と熱電変換ユニット45との接合面あるいは接触面の熱伝導特性を向上させるために、少なくとも一方の接合面(接触面)に熱伝導特性の優れた物質、例えばAu,Ag,Cuおよびその酸化物のメッキ処理が施される。   At that time, in order to improve the heat conduction characteristics of the joint surface or the contact surface between the high temperature side system 55 and the thermoelectric conversion unit 45, a material having excellent heat conductivity characteristics on at least one joint surface (contact surface), for example, Au, Ag, Cu and oxides thereof are plated.

このメッキ処理は、熱電変換ユニット45の密閉ケーシング46と熱電変換モジュール11との接合面あるいは接触面の少なくとも一方、また、熱電変換ユニット45と低温側系統56との接合面の少なくとも一方にも施される。それぞれの接合面の間にメッキ処理を施す代りに、熱伝導の優れたAu,Pt,Ag,Cu等の薄板を介装してもよい。また、銅等の熱伝導の良い薄板にAg,Ptまたはその酸化物のメッキ処理を施したものを挟み込んでもよい。   This plating process is also applied to at least one of the joint surface or the contact surface between the sealed casing 46 and the thermoelectric conversion module 11 of the thermoelectric conversion unit 45 and at least one of the joint surfaces of the thermoelectric conversion unit 45 and the low temperature side system 56. Is done. Instead of performing a plating process between each joint surface, you may interpose thin plates, such as Au, Pt, Ag, Cu, which were excellent in heat conduction. Further, a thin plate having good thermal conductivity, such as copper, may be sandwiched between Ag, Pt or an oxide thereof.

この熱電変換装置10Eは熱電変換ユニット45と高温側系統55や低温側系統56との接合面の少なくとも一方、また、熱電変換ユニット45内の密閉ケーシング46と各熱電変換モジュール11との接合面の少なくとも一方に熱伝導性に優れた物質でメッキ処理を施したり、熱伝導性の優れた薄板を接合面間に介装させたので、熱電変換ユニット45の熱伝導特性を向上させることができる。   The thermoelectric conversion device 10E includes at least one of the joint surfaces between the thermoelectric conversion unit 45 and the high temperature side system 55 and the low temperature side system 56, and the joint surface between the sealed casing 46 in the thermoelectric conversion unit 45 and each thermoelectric conversion module 11. Since at least one of them is plated with a material having excellent thermal conductivity or a thin plate having excellent thermal conductivity is interposed between the joining surfaces, the thermal conductivity characteristics of the thermoelectric conversion unit 45 can be improved.

また、熱電変換ユニット45を構成する各熱電変換モジュール11の各熱電変換素子16,17と電極との接合面の少なくとも一方に、熱伝導特性の優れた物質でメッキ処理を施してもよい。   In addition, at least one of the joint surfaces between the thermoelectric conversion elements 16 and 17 and the electrodes of the thermoelectric conversion modules 11 constituting the thermoelectric conversion unit 45 may be plated with a material having excellent heat conduction characteristics.

この場合にも、熱電変換ユニット45は、高温側系統55や低温側系統56との接合面の熱伝導特性を向上させることができ、さらに熱電変換ユニット45は各熱電変換モジュール11と密閉ケーシング46との接合面の熱伝導特性を向上させることができ、熱伝導性が向上する。熱電変換ユニット45にメッキ処理等の熱処理を製造工程で加えて熱伝導性を向上させることができるので、高温側系統55から供給された熱を効率的に各熱電変換素子16,17に案内し、各熱電変換素子16,17を通過させて低温側系統56から放熱することができる。   Also in this case, the thermoelectric conversion unit 45 can improve the heat conduction characteristics of the joint surface with the high temperature side system 55 and the low temperature side system 56, and the thermoelectric conversion unit 45 further includes each thermoelectric conversion module 11 and the sealed casing 46. It is possible to improve the heat conduction characteristics of the joint surface with and improve the heat conductivity. Since heat conductivity such as plating treatment can be applied to the thermoelectric conversion unit 45 in the manufacturing process to improve the thermal conductivity, the heat supplied from the high temperature side system 55 is efficiently guided to the thermoelectric conversion elements 16 and 17. The heat can be radiated from the low temperature side system 56 through the thermoelectric conversion elements 16 and 17.

高温側系統55で吸熱された熱が、各熱電変換モジュール11の各熱電変換素子16,17に効率よく案内させることにより、各熱電変換素子16,17での熱電変換性能を向上させることができる。   The heat absorbed by the high-temperature side system 55 is efficiently guided to the thermoelectric conversion elements 16 and 17 of the thermoelectric conversion modules 11, so that the thermoelectric conversion performance of the thermoelectric conversion elements 16 and 17 can be improved. .

本発明に係る熱電変換装置の第1実施形態を原理的に示す図。The figure which shows 1st Embodiment of the thermoelectric conversion apparatus which concerns on this invention in principle. 本発明に係る熱電変換装置を熱電変換モジュールに適用した例を示す図。The figure which shows the example which applied the thermoelectric conversion apparatus which concerns on this invention to the thermoelectric conversion module. 本発明に係る熱電変換装置の第2実施形態を示す熱電変換モジュールの断面図。Sectional drawing of the thermoelectric conversion module which shows 2nd Embodiment of the thermoelectric conversion apparatus which concerns on this invention. 図3に示された熱電変換モジュールの第1変形例を示す図。The figure which shows the 1st modification of the thermoelectric conversion module shown by FIG. 図3に示された熱電変換モジュールの第2変形例を示す図。The figure which shows the 2nd modification of the thermoelectric conversion module shown by FIG. 図3に示された熱電変換モジュールの第3変形例を示す図。The figure which shows the 3rd modification of the thermoelectric conversion module shown by FIG. 本発明に係る熱電変換装置の第3実施形態を示す図。The figure which shows 3rd Embodiment of the thermoelectric conversion apparatus which concerns on this invention. 本発明に係る熱電変換装置の第4実施形態を示す図。The figure which shows 4th Embodiment of the thermoelectric conversion apparatus which concerns on this invention. 本発明に係る熱電変換装置の第5実施形態を示す図。The figure which shows 5th Embodiment of the thermoelectric conversion apparatus which concerns on this invention. 本発明に係る熱電変換装置の第6実施形態を示す図。The figure which shows 6th Embodiment of the thermoelectric conversion apparatus which concerns on this invention. 本発明に係る熱電変換装置の第7実施形態を示す図。The figure which shows 7th Embodiment of the thermoelectric conversion apparatus which concerns on this invention.

符号の説明Explanation of symbols

10 熱電変換装置
11 熱電変換モジュール
12 高温側(吸熱側)絶縁基板
13 低温側(放熱側)絶縁基板
15 熱電変換素子群(熱電変換手段)
16 P型半導体(熱電変換素子)
17 N型半導体(熱電変換素子)
18 吸熱側電極
19 放熱側電極
20 半田層
21 吸熱面
22 放熱面
23 リード線
30 輻射防止板
33,38 間隔保持手段
34 ボルト
35 ナット
36 スペーサ
41 密閉ケーシング
45,50 熱電変換ユニット
46 密閉ケーシング
55 高温側系統
56 低温側系統
57,58,59,60 接合面(接触面)
DESCRIPTION OF SYMBOLS 10 Thermoelectric conversion apparatus 11 Thermoelectric conversion module 12 High temperature side (heat absorption side) insulating substrate 13 Low temperature side (heat radiation side) insulating substrate 15 Thermoelectric conversion element group (thermoelectric conversion means)
16 P-type semiconductor (thermoelectric conversion element)
17 N-type semiconductor (thermoelectric conversion element)
18 Heat absorption side electrode 19 Heat radiation side electrode 20 Solder layer 21 Heat absorption surface 22 Heat radiation surface 23 Lead wire 30 Radiation prevention plates 33, 38 Space holding means 34 Bolt 35 Nut 36 Spacer 41 Sealed casing 45, 50 Thermoelectric conversion unit 46 Sealed casing 55 High temperature Side system 56 Low temperature system 57, 58, 59, 60 Joint surface (contact surface)

Claims (22)

対向する吸熱側絶縁基板と、放熱側絶縁基板との間に複数の熱電変換素子をマトリックス状に配列した熱電変換素子群を挟持させ、
熱電変換素子の吸熱面に吸熱側電極を、その放熱面に放熱側電極をそれぞれ取り付けて全熱電変換素子を電気的直列にかつ熱的に並列に接続して構成された熱電変換モジュールにおいて、
上記熱電変換モジュール内部を、輻射・対流により熱電変換素子を通過しない熱量を低減させるために、熱損失防止構造に構成し、
前記熱電変換モジュールは各熱電変換素子と吸熱側電極との接合面の少なくとも一方、および各熱電変換素子と放熱側電極との接合面の少なくとも一方に熱伝導特性の優れた物質のメッキあるいは塗装により被膜を形成したり、または前記各熱電変換素子と吸熱側電極との接合面および各熱電変換素子と放熱側電極との接合面に前記熱伝導特性の優れた物質で形成された薄板を介装させ、
さらに、前記各熱電変換素子の高温側吸熱面は、吸熱側電極に接触あるいは接合により自由度があり、リジットでない取付けとし、前記各熱電変換素子の低温側放熱面は、放熱側電極に直接あるいは半田層を介して一体に取り付けられ、
前記熱損失防止構造は、高温側絶縁基板と低温側絶縁基板とで形成される内部空間を、複数の偏平な小空間に区画するように、複数枚の輻射防止板を多段状に配列して構成されたことを特徴とする熱電変換モジュール。
Sandwiching a thermoelectric conversion element group in which a plurality of thermoelectric conversion elements are arranged in a matrix between the opposing heat absorption side insulating substrate and the heat dissipation side insulating substrate;
In the thermoelectric conversion module configured by attaching the heat absorption side electrode to the heat absorption surface of the thermoelectric conversion element and attaching the heat radiation side electrode to the heat dissipation surface, respectively, and connecting all the thermoelectric conversion elements electrically in series and thermally in parallel,
In order to reduce the amount of heat that does not pass through the thermoelectric conversion element due to radiation and convection, the inside of the thermoelectric conversion module is configured in a heat loss prevention structure,
The thermoelectric conversion module is formed by plating or painting a material having excellent heat conduction characteristics on at least one of the joint surfaces of each thermoelectric conversion element and the heat absorption side electrode and at least one of the joint surfaces of each thermoelectric conversion element and the heat radiation side electrode. A thin plate formed of a material having excellent heat conduction characteristics is formed on the bonding surface between each thermoelectric conversion element and the heat absorption side electrode and the bonding surface between each thermoelectric conversion element and the heat radiation side electrode. Let
Further, the high temperature side heat absorption surface of each thermoelectric conversion element has a degree of freedom by contact or bonding to the heat absorption side electrode and is not rigidly attached, and the low temperature side heat radiation surface of each thermoelectric conversion element is directly or directly on the heat radiation side electrode. It is attached integrally through the solder layer ,
In the heat loss prevention structure, a plurality of radiation prevention plates are arranged in multiple stages so as to divide an internal space formed by the high temperature side insulating substrate and the low temperature side insulating substrate into a plurality of flat small spaces. A thermoelectric conversion module characterized by being configured .
前記熱損失防止構造は、熱電変換モジュール内部の露出表面に熱反射率の高い物質を塗布またはメッキにより形成される被膜で構成される請求項1記載の熱電変換モジュール。 2. The thermoelectric conversion module according to claim 1, wherein the heat loss prevention structure is configured by a coating formed by applying or plating a material having a high thermal reflectance on an exposed surface inside the thermoelectric conversion module. 前記熱損失防止構造は、熱電変換モジュール内部の露出表面を鏡面状態に仕上げることにより構成した請求項1記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 1, wherein the heat loss prevention structure is configured by finishing the exposed surface inside the thermoelectric conversion module in a mirror state. 前記熱損失防止構造は、高温側絶縁基板と低温側絶縁基板とで形成される内部空間に複数枚の輻射防止板を多段状に配列し、各輻射防止板を間隔保持手段にて所要の間隔に保持した請求項1記載の熱電変換モジュール。 In the heat loss prevention structure, a plurality of radiation prevention plates are arranged in a multistage shape in an internal space formed by a high temperature side insulating substrate and a low temperature side insulating substrate, and each radiation prevention plate is arranged at a predetermined interval by an interval holding means. The thermoelectric conversion module according to claim 1, which is held in a container. 前記間隔保持手段は、多段状に配列された輻射防止板の端部を鋭角に折曲させ、あるいは輻射防止板の舌片を鋭角に切り起こし、上記折曲部あるいは切起し部の先端を隣接する輻射防止板に接触させることにより構成した請求項4記載の熱電変換モジュール。 The spacing holding means bends the end portions of the radiation prevention plates arranged in a multi-stage shape at an acute angle, or cuts and raises the tongue pieces of the radiation prevention plate at an acute angle, and the tip of the bent portion or the cut and raised portion is formed. The thermoelectric conversion module according to claim 4 , wherein the thermoelectric conversion module is configured by contacting an adjacent radiation preventing plate. 前記熱電変換モジュールは気密構造の密閉ケーシング内に格納され、熱電変換モジュールと密閉ケーシングとの接合面の少なくとも一方に熱伝導特性の優れた物質の塗布あるいはメッキによる被膜あるいは薄板を施した請求項1記載の熱電変換モジュール。 2. The thermoelectric conversion module is housed in an airtight sealed casing, and at least one of the joint surfaces of the thermoelectric conversion module and the sealed casing is coated with a material having excellent heat conduction characteristics, or coated or thin by plating. The thermoelectric conversion module as described. 前記熱電変換モジュールは吸熱側に熱源からの放射熱を吸熱する高温側系統を設けるとともに、その放熱側に低温側系統を設け、低温側系統から外部に放熱させるようにした請求項1記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 1, wherein the thermoelectric conversion module is provided with a high temperature side system that absorbs radiant heat from a heat source on the heat absorption side, a low temperature side system is provided on the heat dissipation side, and heat is radiated from the low temperature side system to the outside. Conversion module. 対向する吸熱側絶縁基板と、放熱側絶縁基板との間に複数の熱電変換素子をマトリックス状に配列した熱電変換素子群を挟持させ、
熱電変換素子の吸熱面に吸熱側電極を、その放熱面に放熱側電極をそれぞれ取り付けて全熱電変換素子を電気的直列にかつ熱的に並列に接続して構成された熱電変換モジュールにおいて、
上記熱電変換モジュール内部を、輻射・対流により熱電変換素子を通過しない熱量を低減させるために、熱損失防止構造に構成する一方、
前記熱電変換モジュール内部の接合面の少なくとも一方に熱伝導特性に優れた物質を塗布またはメッキにより被膜を施したり、または、前記熱電変換モジュール内部の接合面に熱伝導特性に優れた物質からなる薄板を介装させ、
さらに、前記各熱電変換素子の高温側吸熱面は、吸熱側電極に接触あるいは接合により自由度があり、リジットでない取付けとし、前記各熱電変換素子の低温側放熱面は、放熱側電極に直接あるいは半田層を介して一体に取り付けられ、
前記熱損失防止構造は高温側絶縁基板と低温側絶縁基板とで形成される内部空間を複数枚の輻射防止板で偏平な小空間に多段状に仕切って構成されたことを特徴とする熱電変換モジュール。
Sandwiching a thermoelectric conversion element group in which a plurality of thermoelectric conversion elements are arranged in a matrix between the opposing heat absorption side insulating substrate and the heat dissipation side insulating substrate;
In the thermoelectric conversion module constituted by attaching the heat absorption side electrode to the heat absorption surface of the thermoelectric conversion element and attaching the heat dissipation side electrode to the heat dissipation surface, respectively, and connecting all the thermoelectric conversion elements electrically in series and thermally in parallel,
In order to reduce the amount of heat that does not pass through the thermoelectric conversion element due to radiation and convection, the inside of the thermoelectric conversion module is configured in a heat loss prevention structure,
A thin plate made of a material having excellent heat conductivity on the bonding surface inside the thermoelectric conversion module, or by coating or plating a material having excellent heat conductivity on at least one of the bonding surfaces inside the thermoelectric conversion module Interpose
Further, the high temperature side heat absorption surface of each thermoelectric conversion element has a degree of freedom by contact or bonding to the heat absorption side electrode and is not rigidly attached, and the low temperature side heat radiation surface of each thermoelectric conversion element is directly or directly on the heat radiation side electrode. It is attached integrally through the solder layer ,
The heat loss prevention structure is characterized in that an internal space formed by a high-temperature side insulating substrate and a low-temperature side insulating substrate is formed by dividing a plurality of radiation prevention plates into flat small spaces in a multistage manner. module.
前記熱電変換モジュール内部の露出表面に熱反射率の高い物質を塗布またはメッキにより被膜を施して熱損失防止構造に構成した請求項8記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 8 , wherein a heat loss prevention structure is configured by applying or coating a material having a high thermal reflectance on the exposed surface inside the thermoelectric conversion module. 前記熱電変換モジュール内部の露出表面を鏡面状態に仕上げて熱損失防止構造に構成した請求項8記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 8, wherein the exposed surface inside the thermoelectric conversion module is finished in a mirror state to form a heat loss prevention structure. 前記複数枚の輻射防止板は間隔保持手段により多段状で所要の間隔に保持された請求項8記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 8, wherein the plurality of radiation prevention plates are held at a predetermined interval in a multi-stage shape by an interval holding unit. 前記熱電変換モジュールは気密構造の密閉ケーシングに格納される一方、密閉ケーシングと熱電変換モジュールの接合面の少なくとも一方に熱伝導特性の優れた物質を塗布あるいはメッキにより被膜を施した請求項8記載の熱電変換モジュール。 The one thermoelectric conversion module to be stored in the sealed casing of the airtight structure, closed casing and at least one heat conduction properties of the bonding surface of the thermoelectric conversion module excellent material by coating or plating of claim 8 which has been subjected to coating Thermoelectric conversion module. 前記熱電変換モジュールは、その吸熱面に熱源からの放射熱を吸熱する高温側系統が設けられ、その放熱面に低温側系統が設けられ、低温側系統から外部に放熱される請求項8記載の熱電変換モジュール。 The thermoelectric conversion module, a high-temperature-side line provided for absorbs radiant heat from the heat source to the heat-absorbing surface, the low temperature-side line provided on the heat radiating surface, according to claim 8, wherein the heat is radiated to the outside from the low temperature side line Thermoelectric conversion module. 前記熱電変換モジュールは、高温側系統との接合面の少なくとも一方および低温側系統との接合面の少なくとも一方に、熱伝導特性の優れた物質の塗装あるいはメッキによる被膜を形成した請求項13記載の熱電変換モジュール。 14. The thermoelectric conversion module according to claim 13, wherein a coating film by coating or plating with a material having excellent thermal conductivity is formed on at least one of the joint surfaces with the high temperature side system and at least one of the joint surfaces with the low temperature side system. Thermoelectric conversion module. 前記熱電変換モジュールは、高温側系統との接合面および低温側系統との接合面に熱伝導特性の優れた薄板を介装させた請求項13記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 13, wherein the thermoelectric conversion module includes a thin plate having excellent heat conduction characteristics interposed between a joint surface with the high temperature side system and a joint surface with the low temperature side system. 請求項1または8に記載の熱電変換モジュールを備え、
前記熱電変換モジュールを複数個組み合わせて熱電変換ユニットを構成したことを特徴とする熱電変換装置。
The thermoelectric conversion module according to claim 1 or 8 ,
A thermoelectric conversion device comprising a plurality of thermoelectric conversion modules to form a thermoelectric conversion unit.
前記熱電変換ユニットは気密構造の密閉ケーシング内に複数個の熱電変換モジュールが格納され、
密閉ケーシングと各熱電変換モジュールとの接合面に熱伝導特性の優れた物質から被膜あるいは薄板を施した請求項16記載の熱電変換装置。
The thermoelectric conversion unit has a plurality of thermoelectric conversion modules stored in a hermetically sealed casing.
The thermoelectric conversion device according to claim 16, wherein a coating or a thin plate is applied to a joint surface between the sealed casing and each thermoelectric conversion module from a material having excellent heat conduction characteristics.
前記熱電変換ユニットは、各熱電変換モジュールの内部に露出する表面に、熱反射率の高い物質を塗布あるいはメッキにより被膜を施して熱損失防止構造に構成した請求項17記載の熱電変換装置。 18. The thermoelectric conversion device according to claim 17, wherein the thermoelectric conversion unit is configured to have a heat loss prevention structure by coating a surface exposed inside each thermoelectric conversion module with a material having high heat reflectance by coating or plating. 前記熱電変換ユニットと熱源から放出される輻射熱を受熱する高温側系統との接合面の少なくとも一方、および熱電変換ユニットと受熱した熱を廃熱する低温側系統との接合面の少なくとも一方に、熱伝導特性に優れた物質を塗装あるいはメッキすることにより被膜をそれぞれ形成した請求項17記載の熱電変換装置。 Heat is applied to at least one of the joint surface between the thermoelectric conversion unit and the high temperature side system that receives radiant heat emitted from the heat source, and at least one of the joint surface between the thermoelectric conversion unit and the low temperature side system that wastes the received heat. The thermoelectric conversion device according to claim 17, wherein the coating film is formed by painting or plating a material having excellent conduction characteristics. 前記熱電変換ユニットと高温側系統との接合面および上記熱電変換ユニットと低温側系統との接合面に熱伝導特性の優れた物質からなる薄板を介装した請求項17記載の熱電変換装置。 The thermoelectric conversion device according to claim 17, wherein a thin plate made of a material having excellent heat conduction characteristics is interposed on a joint surface between the thermoelectric conversion unit and the high temperature side system and a joint surface between the thermoelectric conversion unit and the low temperature side system. 前記熱電変換ユニットあるいは熱電変換モジュールと高温側系統との接合面に熱処理を施し接合面の接触面積を増大させた請求項17記載の熱電変換装置。 The thermoelectric conversion device according to claim 17 , wherein heat treatment is performed on a joint surface between the thermoelectric conversion unit or thermoelectric conversion module and the high-temperature side system to increase a contact area of the joint surface. 前記熱電変換ユニットあるいは熱電変換モジュールと低温側系統との接合面に熱処理を施し接合面の接触面積を増大させた請求項17または20記載の熱電変換装置。 The thermoelectric conversion device according to claim 17 or 20, wherein a heat treatment is performed on a joint surface between the thermoelectric conversion unit or thermoelectric conversion module and the low-temperature system to increase a contact area of the joint surface.
JP2003307971A 2003-08-29 2003-08-29 Thermoelectric converter Expired - Fee Related JP4481606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003307971A JP4481606B2 (en) 2003-08-29 2003-08-29 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003307971A JP4481606B2 (en) 2003-08-29 2003-08-29 Thermoelectric converter

Publications (2)

Publication Number Publication Date
JP2005079347A JP2005079347A (en) 2005-03-24
JP4481606B2 true JP4481606B2 (en) 2010-06-16

Family

ID=34410573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003307971A Expired - Fee Related JP4481606B2 (en) 2003-08-29 2003-08-29 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP4481606B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509589B2 (en) * 2004-02-02 2010-07-21 浜松ホトニクス株式会社 Peltier module
JP5087875B2 (en) * 2006-07-31 2012-12-05 株式会社Ihi Heat treatment equipment
DE102008054946A1 (en) 2008-12-19 2010-06-24 Endress + Hauser Wetzer Gmbh + Co. Kg Protective housing device for receiving e.g. field device, of process automation unit, has thermal blocking filter provided with thermally absorbent and/or thermally insulating functional material
JP5598152B2 (en) * 2010-08-09 2014-10-01 富士通株式会社 Thermoelectric conversion module and manufacturing method thereof
JP5673426B2 (en) * 2011-08-08 2015-02-18 トヨタ自動車株式会社 Thermoelectric generator
US9793462B2 (en) 2012-02-27 2017-10-17 Kelk Ltd. Thermoelectric module, thermoelectric power generating apparatus, and thermoelectric generator
JP6022927B2 (en) * 2012-12-20 2016-11-09 京セラ株式会社 Thermoelectric module
JP6473969B2 (en) * 2015-09-17 2019-02-27 パナソニックIpマネジメント株式会社 Thermoelectric converter
KR101734717B1 (en) * 2015-12-11 2017-05-24 현대자동차주식회사 Control Method Of Battery Module
WO2018042708A1 (en) * 2016-08-30 2018-03-08 国立大学法人東京工業大学 Thermoelectric conversion device and electronic device
WO2022196724A1 (en) * 2021-03-16 2022-09-22 古河電気工業株式会社 Thermoelectric conversion module
WO2023176581A1 (en) * 2022-03-16 2023-09-21 古河電気工業株式会社 Thermoelectric conversion module

Also Published As

Publication number Publication date
JP2005079347A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US7032389B2 (en) Thermoelectric heat pump with direct cold sink support
JP5065077B2 (en) Thermoelectric generator
US8110736B2 (en) Thermoelectric element device and thermoelectric module
JP4481606B2 (en) Thermoelectric converter
JP5815112B2 (en) Thermoelectric module, thermoelectric generator and thermoelectric generator
JP4296881B2 (en) Thermoelectric converter
JP2010245265A (en) Thermoelectric module
US20130269743A1 (en) Thermoelectric power generation module
JP2010027986A (en) Thermoelectric conversion module and its production process
JP2005277206A (en) Thermoelectric converter
JP2007048916A (en) Thermoelectric module
JP2006032850A (en) Thermoelectric conversion module
JP2008066459A (en) Thermoelectric element module and thermoelectric conversion device employing it
JP2006049736A (en) Thermoelectric module
JP4287262B2 (en) Thermoelectric converter
JP6069945B2 (en) Thermoelectric unit
JP2013089821A (en) Thermoelectric conversion module
WO2022196724A1 (en) Thermoelectric conversion module
KR20100003494A (en) Thermoelectric cooling device with flexible copper band wire
JP4296066B2 (en) Thermoelectric converter
JP4737436B2 (en) Thermoelectric conversion module assembly
JP2017069443A (en) Thermoelectric conversion module
WO2013002423A1 (en) Thermoelectric conversion modules
JP4288927B2 (en) Multistage thermoelectric module
JP2003179274A (en) Thermoelectric converting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4481606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees