JP6473969B2 - Thermoelectric converter - Google Patents

Thermoelectric converter Download PDF

Info

Publication number
JP6473969B2
JP6473969B2 JP2015184380A JP2015184380A JP6473969B2 JP 6473969 B2 JP6473969 B2 JP 6473969B2 JP 2015184380 A JP2015184380 A JP 2015184380A JP 2015184380 A JP2015184380 A JP 2015184380A JP 6473969 B2 JP6473969 B2 JP 6473969B2
Authority
JP
Japan
Prior art keywords
weft
warp
substrate
thermoelectric conversion
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015184380A
Other languages
Japanese (ja)
Other versions
JP2017059727A (en
Inventor
英治 奥薗
英治 奥薗
哲也 西尾
哲也 西尾
隆則 村中
隆則 村中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015184380A priority Critical patent/JP6473969B2/en
Publication of JP2017059727A publication Critical patent/JP2017059727A/en
Application granted granted Critical
Publication of JP6473969B2 publication Critical patent/JP6473969B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、複数の熱電変換素子を備えた熱電変換器に関する。   The present invention relates to a thermoelectric converter including a plurality of thermoelectric conversion elements.

近年、環境に配慮した発電システムとして、工場などで生じる排熱を電力に変換する熱電変換システムが注目されている。かかる熱電変換システムでは、たとえば、半導体を用いて熱を直接電力に変換する熱電変換器が用いられる。この種の熱電変換器は、ゼーベック効果、ペルチェ効果またはトムソン効果などの熱電効果を利用したp型熱電変換素子とn型熱電変換素子とを組み合わせて構成され得る。   In recent years, thermoelectric conversion systems that convert exhaust heat generated in factories or the like into electric power have attracted attention as environmentally friendly power generation systems. In such a thermoelectric conversion system, for example, a thermoelectric converter that directly converts heat into electric power using a semiconductor is used. This type of thermoelectric converter can be configured by combining a p-type thermoelectric conversion element and an n-type thermoelectric conversion element using a thermoelectric effect such as Seebeck effect, Peltier effect, or Thomson effect.

以下の特許文献1には、熱電変換素子を高密度に集積するための熱電変換モジュールの構成が記載されている。この構成では、複数の熱電変換素子が、絶縁性のネット部材の網孔に貫通されることにより嵌合固定される。また、熱電変換素子の一端側と他端側がそれぞれ電極で接続される。   The following Patent Document 1 describes a configuration of a thermoelectric conversion module for integrating thermoelectric conversion elements with high density. In this configuration, the plurality of thermoelectric conversion elements are fitted and fixed by penetrating through the net holes of the insulating net member. Moreover, the one end side and other end side of a thermoelectric conversion element are each connected by the electrode.

特開2005−217169号公報JP 2005-217169 A

一般に、熱電変換素子は、高さ方向の寸法が増加するほど、熱電変換素子内部の抵抗が大きくなり、変換効率が低下する。よって、熱電変換素子は、なるべく高さ方向の寸法が小さいことが好ましい。このため、複数の熱電変換素子を集積させた構成の熱電変換器では、個々の熱電変換素子の高さを低くすることが望まれる。   In general, as the dimension in the height direction of the thermoelectric conversion element increases, the resistance inside the thermoelectric conversion element increases and the conversion efficiency decreases. Therefore, the thermoelectric conversion element preferably has a dimension in the height direction as small as possible. For this reason, in the thermoelectric converter of the structure which integrated the several thermoelectric conversion element, it is desired to make the height of each thermoelectric conversion element low.

しかしながら、個々の熱電変換素子の高さを低くすると、熱電変換素子を上下に挟む2つの基板間の距離が小さくなる。このため、たとえば、一方の基板を熱源に接触させて熱を電力に変換する熱電変換器では、熱源側の基板からの熱が、輻射熱として、反対側の基板へと伝わり易くなる。その結果、熱電変換素子の両端の温度差が小さくなり、熱電変換素子の変換効率が低下するとの問題が生じる。   However, if the height of each thermoelectric conversion element is lowered, the distance between the two substrates sandwiching the thermoelectric conversion element up and down is reduced. For this reason, for example, in a thermoelectric converter that converts heat into electric power by bringing one substrate into contact with a heat source, heat from the substrate on the heat source side is easily transmitted to the opposite substrate as radiant heat. As a result, there arises a problem that the temperature difference between both ends of the thermoelectric conversion element is reduced and the conversion efficiency of the thermoelectric conversion element is lowered.

かかる課題に鑑み、本発明は、基板間の輻射熱の伝導を効果的に抑制可能な熱電変換器を提供することを目的とする。   In view of such a problem, an object of the present invention is to provide a thermoelectric converter capable of effectively suppressing conduction of radiant heat between substrates.

本発明の主たる態様に係る熱電変換器は、第1の基板と、第2の基板と、前記第1の基板と前記第2の基板との間に配置される複数の熱電変換素子と、前記第1の基板と前記第2の基板とに挟まれるように配置された枠部材と、を備える。前記熱電変換素子は、隙間を開けて縦方向および横方向に並ぶように配置される。前記枠部材には、縦方向に並ぶ前記熱電変換素子間の隙間を通るように横方向に輻射熱遮断のための横糸部材が張られるとともに、横方向に並ぶ前記熱電変換素子間の隙間を通るように縦方向に輻射熱遮断のための縦糸部材が張られている。前記枠部材は、前記横糸部材の両端が留められる一対の横支持部材の間に、前記縦糸部材の両端が留められる一対の縦支持部材が挟まれる構成となっている。前記横糸部材の方が前記縦糸部材よりも引っ張り方向のテンションが高くなるように、前記横糸部材と前記縦糸部材が、それぞれ、前記横支持部材と前記縦支持部材に張られている。 A thermoelectric converter according to a main aspect of the present invention includes a first substrate, a second substrate, a plurality of thermoelectric conversion elements disposed between the first substrate and the second substrate, A frame member disposed so as to be sandwiched between the first substrate and the second substrate. The thermoelectric conversion elements are arranged so as to be lined up in the vertical and horizontal directions with a gap. The frame member is stretched with a weft member for blocking radiant heat in the lateral direction so as to pass through the gap between the thermoelectric conversion elements arranged in the vertical direction, and through the gap between the thermoelectric conversion elements arranged in the horizontal direction. A warp member for blocking radiant heat is stretched in the longitudinal direction. The frame member is configured such that a pair of longitudinal support members to which both ends of the warp member are fastened are sandwiched between a pair of lateral support members to which both ends of the weft member are fastened. The weft member and the warp member are stretched on the transverse support member and the longitudinal support member, respectively, so that the weft member has a higher tension in the pulling direction than the warp member.

本態様に係る熱電変換器によれば、横糸部材および縦糸部材によって、基板間を伝搬する輻射熱が遮蔽される。よって、熱電変換素子の高さ寸法を縮めた場合も、熱電変換素子の変換効率を適正に維持できる。また、横糸部材の方が縦糸部材よりも引っ張り方向のテンションが高いため、縦支持部材の位置ずれを抑制でき、枠部材の形状を安定的に保つことができる。 According to the thermoelectric converter according to this aspect, the radiant heat propagating between the substrates is shielded by the weft member and the warp member . Therefore, even when the height dimension of the thermoelectric conversion element is reduced, the conversion efficiency of the thermoelectric conversion element can be properly maintained. Further, since the weft member has a higher tension in the pulling direction than the warp member, it is possible to suppress the displacement of the longitudinal support member and to keep the shape of the frame member stable.

以上のとおり、本発明によれば、基板間の輻射熱の伝導を効果的に抑制可能な熱電変換器を提供することができる。   As described above, according to the present invention, a thermoelectric converter capable of effectively suppressing conduction of radiant heat between substrates can be provided.

本発明の効果ないし意義は、以下に示す実施の形態の説明により更に明らかとなろう。ただし、以下に示す実施の形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施の形態に記載されたものに何ら制限されるものではない。   The effects and significance of the present invention will become more apparent from the following description of embodiments. However, the embodiment described below is merely an example when the present invention is implemented, and the present invention is not limited to what is described in the following embodiment.

図1(a)は、実施の形態に係る熱電変換器の構成を模式的に示す分解斜視図、図1(b)、(c)は、それぞれ、実施の形態に係る熱電変換器の組立過程を模式的に示す斜視図である。FIG. 1A is an exploded perspective view schematically showing a configuration of a thermoelectric converter according to the embodiment, and FIGS. 1B and 1C are assembly processes of the thermoelectric converter according to the embodiment, respectively. FIG. 図2(a)、(b)は、それぞれ、実施の形態に係る熱電変換器の組立過程を模式的に示す斜視図である。FIGS. 2A and 2B are perspective views schematically showing the assembly process of the thermoelectric converter according to the embodiment. 図3(a)〜(d)は、それぞれ、実施の形態に係る枠部材の組立過程を模式的に示す斜視図である。3A to 3D are perspective views schematically showing an assembly process of the frame member according to the embodiment. 図4(a)〜(d)は、それぞれ、実施の形態に係る枠部材の組立過程を模式的に示す断面図である。4A to 4D are cross-sectional views schematically showing an assembly process of the frame member according to the embodiment. 図5(a)、(b)は、それぞれ、実施の形態に係る熱電変換器における熱電変換素子と横糸部材および縦糸部材との位置関係を模式的に示す図である。FIGS. 5A and 5B are diagrams schematically showing the positional relationship between the thermoelectric conversion element, the weft member, and the warp member in the thermoelectric converter according to the embodiment. 図6(a)、(d)は、それぞれ、実施の形態に係る輻射熱の遮蔽作用を説明する図である。FIGS. 6A and 6D are diagrams for explaining the shielding action of radiant heat according to the embodiment, respectively. 図7(a)〜(c)は、実施の形態に係る熱電変換器を配管に設置した状態の熱電変換システムを、それぞれ、正面、側方および上方から見た模式図である。Drawing 7 (a)-(c) is a mimetic diagram which looked at the thermoelectric conversion system in the state where the thermoelectric converter concerning an embodiment was installed in piping, respectively from the front, the side, and the upper part. 図8(a)は、変更例に係る枠部材の構成を示す図、図8(b)は、他の変更例に係る溝の構成を示す図である。FIG. 8A is a diagram illustrating a configuration of a frame member according to a modified example, and FIG. 8B is a diagram illustrating a configuration of a groove according to another modified example.

以下、本発明の実施の形態について図を参照して説明する。便宜上、各図には、互いに直交するX、Y、Z軸が付記されている。Z軸方向が熱電変換器100の高さ方向であり、Z軸正方向が下方向である。また、本実施の形態では、Y軸方向が縦方向、X軸方向が横方向に設定されている。ただし、本実施の形態における縦方向および横方向の設定は便宜上のものであって、X軸方向が縦方向、Y軸方向が横方向と設定されてもよい。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. For convenience, the X, Y, and Z axes that are orthogonal to each other are appended to each drawing. The Z-axis direction is the height direction of the thermoelectric converter 100, and the Z-axis positive direction is the downward direction. In the present embodiment, the Y-axis direction is set to the vertical direction, and the X-axis direction is set to the horizontal direction. However, the setting of the vertical direction and the horizontal direction in the present embodiment is for convenience, and the X-axis direction may be set as the vertical direction and the Y-axis direction may be set as the horizontal direction.

図1(a)は、熱電変換器100の構成を示す分解斜視図である。図1(b)、(c)および図2(a)、(b)は、熱電変換器100の組立過程を示す斜視図である。   FIG. 1A is an exploded perspective view showing the configuration of the thermoelectric converter 100. FIGS. 1B and 1C and FIGS. 2A and 2B are perspective views showing an assembly process of the thermoelectric converter 100. FIG.

図1(a)に示すように、熱電変換器100は、第1の基板10と、枠部材20と、第2の基板30と、熱電変換素子40と、を備える。   As shown in FIG. 1A, the thermoelectric converter 100 includes a first substrate 10, a frame member 20, a second substrate 30, and a thermoelectric conversion element 40.

第1の基板10は、平面視において略正方形の形状を有する。第1の基板10は、長方形等の他の形状であってもよい。第1の基板10は、熱伝導特性に優れた材料からなっている。たとえば、第1の基板10として、銅板が用いられる。この他、第1の基板10は、アルミニウム等から形成されても良い。また、第1の基板10の下面(Z軸負側の面)には、熱電変換素子40の上側の電極と接合される第1の接続電極11が形成されている。   The first substrate 10 has a substantially square shape in plan view. The first substrate 10 may have another shape such as a rectangle. The first substrate 10 is made of a material having excellent heat conduction characteristics. For example, a copper plate is used as the first substrate 10. In addition, the first substrate 10 may be formed of aluminum or the like. A first connection electrode 11 that is joined to the upper electrode of the thermoelectric conversion element 40 is formed on the lower surface (the surface on the negative side of the Z axis) of the first substrate 10.

枠部材20は、平面視において略正方形の枠体からなっている。枠部材20は、耐熱性に優れ、且つ、熱を伝導しにくい材料からなっている。たとえば、枠部材20は、ポリプロピレンやポリカーボネート等の樹脂材料からなっている。枠部材20の構成は、追って、図3(a)〜(d)を参照して説明する。   The frame member 20 is formed of a substantially square frame in plan view. The frame member 20 is made of a material that is excellent in heat resistance and hardly conducts heat. For example, the frame member 20 is made of a resin material such as polypropylene or polycarbonate. The configuration of the frame member 20 will be described later with reference to FIGS.

第2の基板30は、第1の基板10と同様の形状および大きさを有し、また、第1の基板10と同様の材料からなっている。第1の基板10と同様、第2の基板30が長方形等の他の形状であってもよい。また、第2の基板30もまた、熱伝導特性に優れた材料からなっている。第2の基板30の上面には、熱電変換素子40の下側の電極と接合される第2の接続電極31が形成されている。   The second substrate 30 has the same shape and size as the first substrate 10 and is made of the same material as the first substrate 10. Similar to the first substrate 10, the second substrate 30 may have another shape such as a rectangle. The second substrate 30 is also made of a material having excellent heat conduction characteristics. A second connection electrode 31 is formed on the upper surface of the second substrate 30 to be joined to the lower electrode of the thermoelectric conversion element 40.

図3(a)〜(d)は、それぞれ、枠部材20の組立過程を模式的に示す斜視図である。   3A to 3D are perspective views schematically showing an assembly process of the frame member 20, respectively.

枠部材20は、一対の横支持部材21と、一対の縦支持部材22とからなっている。横支持部材21および縦支持部材22は、断面が略正方形の棒形状を有している。一対の横支持部材21は、長さおよび形状が互いに同じである。一対の縦支持部材22もまた、長さおよび形状が互いに同じである。横支持部材21の断面形状と縦支持部材22の断面形状は、互いに同じである。しかし、上記のように枠部材20の輪郭が略正方形あるため、横支持部材21の方が縦支持部材22よりも長くなっている。枠部材20の輪郭が長方形である場合、それに応じて、横支持部材21の長さと縦支持部材22の長さが調整される。   The frame member 20 includes a pair of horizontal support members 21 and a pair of vertical support members 22. The horizontal support member 21 and the vertical support member 22 have a bar shape with a substantially square cross section. The pair of lateral support members 21 have the same length and shape. The pair of vertical support members 22 are also the same in length and shape. The cross-sectional shape of the horizontal support member 21 and the cross-sectional shape of the vertical support member 22 are the same. However, since the outline of the frame member 20 is substantially square as described above, the horizontal support member 21 is longer than the vertical support member 22. When the outline of the frame member 20 is rectangular, the length of the horizontal support member 21 and the length of the vertical support member 22 are adjusted accordingly.

横支持部材21および縦支持部材22の断面形状は、種々の変更が可能である。しかし、横支持部材21の高さ方向の寸法と縦支持部材22の高さ方向の寸法は、図1(a)の第1の基板10と第2の基板30を所定の間隔で安定的に支持するために、同一であることが好ましい。   The cross-sectional shape of the horizontal support member 21 and the vertical support member 22 can be variously changed. However, the dimension in the height direction of the horizontal support member 21 and the dimension in the height direction of the vertical support member 22 are such that the first substrate 10 and the second substrate 30 in FIG. In order to support, it is preferable that they are the same.

一対の横支持部材21の上面には、横方向(X軸方向)に延びる横溝21aが縦方向(Y軸方向)に一定ピッチで形成されている。便宜上、図3(a)〜(d)には、一対の横支持部材21のそれぞれに10数個の横溝21aが図示されているが、実際には、さらに多くの横溝21aが横支持部材21の上面に形成されている。   On the upper surfaces of the pair of lateral support members 21, lateral grooves 21a extending in the lateral direction (X-axis direction) are formed at a constant pitch in the longitudinal direction (Y-axis direction). For convenience, in FIG. 3A to FIG. 3D, dozens of lateral grooves 21 a are illustrated in each of the pair of lateral support members 21, but actually, more lateral grooves 21 a are formed in the lateral support members 21. It is formed on the upper surface.

また、一対の縦支持部材22の上面には、縦方向(Y軸方向)に延びる縦溝22aが横方向(X軸方向)に一定ピッチで形成されている。便宜上、図3(a)〜(d)には、一対の縦支持部材22のそれぞれに10数個の縦溝22aが図示されているが、実際には、さらに多くの縦溝22aが縦支持部材22の上面に形成されている。   Further, vertical grooves 22a extending in the vertical direction (Y-axis direction) are formed on the upper surfaces of the pair of vertical support members 22 at a constant pitch in the horizontal direction (X-axis direction). For convenience, in FIGS. 3A to 3D, a dozen vertical grooves 22a are shown in each of the pair of vertical support members 22, but in reality, more vertical grooves 22a are vertically supported. It is formed on the upper surface of the member 22.

横溝21aの深さは、縦溝22aの深さよりも深くなっている。また、横溝21aのY軸方向の幅は、後述する横糸部材23の径(Y軸方向の幅)よりも小さく設定され、縦溝22aのX軸方向の幅は、後述する縦糸部材24の径(X軸方向の幅)よりも小さく設定されている。本実施の形態では、横溝21aのY軸方向の幅は、横溝21aの全ての深さ位置において均一に設定され、また、縦溝22aのX軸方向の幅は、縦溝22aの全ての深さ位置において均一に設定されている。   The depth of the horizontal groove 21a is deeper than the depth of the vertical groove 22a. Further, the width in the Y-axis direction of the transverse groove 21a is set smaller than the diameter of the weft member 23 (width in the Y-axis direction) described later, and the width in the X-axis direction of the longitudinal groove 22a is the diameter of the warp member 24 described later. It is set smaller than (width in the X-axis direction). In the present embodiment, the width in the Y-axis direction of the horizontal groove 21a is set uniformly at all depth positions of the horizontal groove 21a, and the width in the X-axis direction of the vertical groove 22a is set to all depths of the vertical groove 22a. It is set uniformly in the vertical position.

枠部材20の組み立て時には、まず、図3(a)に示すように一対の縦支持部材22を一対の横支持部材21の間に配置し、さらに、図3(b)に示すように、一対の横支持部材21で一対の縦支持部材22を挟み込む。このとき、横支持部材21と縦支持部材22の接合部に接着剤を介在させて、横支持部材21と縦支持部材22とを接着剤で固定してもよい。   When the frame member 20 is assembled, first, a pair of vertical support members 22 is disposed between the pair of horizontal support members 21 as shown in FIG. 3A, and further, as shown in FIG. The pair of vertical support members 22 are sandwiched between the horizontal support members 21. At this time, an adhesive may be interposed at the joint between the horizontal support member 21 and the vertical support member 22, and the horizontal support member 21 and the vertical support member 22 may be fixed with an adhesive.

その後、図3(c)に示すように、横糸部材23の両端を、X軸方向に対向する横溝21aに嵌め込んで、一対の横支持部材21に横糸部材23を張り渡す。このとき、横糸部材23は、所定のテンションで引っ張られた状態で、両端が横溝21aの最深部まで押し込まれる。上記のように、横糸部材23の径は横溝21aのY軸方向の幅よりも大きいので、横糸部材23の両端は、横溝21aによって強固に係止される。また、横糸部材23は、所定のテンションで引っ張られた状態で一対の横支持部材21間に張られるため、このテンションにより一対の横支持部材21が互いに引き寄せられる。これにより、一対の横支持部材21間に一対の縦支持部材22が強固に挟まれて固定される。   Thereafter, as shown in FIG. 3C, both ends of the weft member 23 are fitted into the weft grooves 21 a facing in the X-axis direction, and the weft member 23 is stretched between the pair of transverse support members 21. At this time, both ends of the weft member 23 are pushed to the deepest portion of the weft groove 21a while being pulled with a predetermined tension. As described above, since the diameter of the weft member 23 is larger than the width of the weft groove 21a in the Y-axis direction, both ends of the weft member 23 are firmly locked by the weft groove 21a. Further, since the weft member 23 is stretched between the pair of lateral support members 21 while being pulled with a predetermined tension, the pair of lateral support members 21 are attracted to each other by this tension. Accordingly, the pair of vertical support members 22 are firmly sandwiched and fixed between the pair of horizontal support members 21.

こうして横糸部材23の装着が完了すると、次に、図3(d)に示すように、縦糸部材24の両端を、Y軸方向に対向する縦溝22aに嵌め込んで、一対の縦支持部材22に縦糸部材24を張り渡す。このとき、縦糸部材24は、両端が縦溝22aの最深部まで押し込まれる。上記のように、縦糸部材24の径は縦溝22aのX軸方向の幅よりも大きいので、縦糸部材24の両端は、縦溝22aによって強固に係止される。これにより、枠部材20の組み立てが完了する。   When the mounting of the weft member 23 is completed in this way, next, as shown in FIG. 3 (d), both ends of the warp member 24 are fitted into the longitudinal grooves 22a opposed in the Y-axis direction, and a pair of longitudinal support members 22 is placed. The warp yarn member 24 is stretched over. At this time, both ends of the warp member 24 are pushed to the deepest portion of the longitudinal groove 22a. As described above, since the diameter of the warp member 24 is larger than the width of the longitudinal groove 22a in the X-axis direction, both ends of the warp member 24 are firmly locked by the longitudinal groove 22a. Thereby, the assembly of the frame member 20 is completed.

ここで、横糸部材23および縦糸部材24は、小径の糸状部材からなっている。横糸部材23および縦糸部材24の直径は、たとえば、0.1mm程度である。また、横糸部材23および縦糸部材24は、燃えにくく、且つ、熱により溶けにくい素材からなっている。たとえば、横糸部材23および縦糸部材24は、木綿等、耐熱コットン系の素材の糸により構成される。また、横糸部材23および縦糸部材24の色は、白など輻射熱を吸収しにくい色とすることが好ましい。   Here, the weft member 23 and the warp member 24 are small-diameter thread-like members. The diameters of the weft member 23 and the warp member 24 are, for example, about 0.1 mm. Further, the weft member 23 and the warp member 24 are made of a material that is difficult to burn and is not easily melted by heat. For example, the weft member 23 and the warp member 24 are made of yarn of heat-resistant cotton material such as cotton. Moreover, it is preferable that the color of the weft member 23 and the warp member 24 is a color that hardly absorbs radiant heat, such as white.

なお、図3(d)に示す組立状態では、横溝21aが縦溝22aよりも深くなっているため、横糸部材23の高さ位置と縦糸部材24の高さ位置が互いに相違している。すなわち、縦糸部材24は、横糸部材23から所定の距離だけ高い位置に位置付けられている。横糸部材23と縦糸部材24は、互いに接触することなく、両者の間には所定の隙間が存在している。   In the assembled state shown in FIG. 3 (d), since the lateral groove 21a is deeper than the longitudinal groove 22a, the height position of the weft member 23 and the height position of the warp member 24 are different from each other. That is, the warp member 24 is positioned at a position higher than the weft member 23 by a predetermined distance. The weft yarn member 23 and the warp yarn member 24 do not contact each other, and there is a predetermined gap between them.

次に、図1(a)〜図2(b)を参照して熱電変換器100の組立工程を説明する。   Next, an assembly process of the thermoelectric converter 100 will be described with reference to FIGS. 1 (a) to 2 (b).

まず、図1(a)に示す第2の接続電極31に半田を塗布した状態で、第2の基板30の上面に枠部材20が重ねられる。この状態を平面視すると、横糸部材23と縦糸部材24とにより網目が形成され、それぞれの網目が、第2の基板30上の第2の接続電極31に重なっている。その後、図1(b)に示すように、各網目に熱電変換素子40を通すように、ジグを用いて、熱電変換素子40が第2の基板30上に設置される。こうして、図1(c)に示すように、設置対象の全ての熱電変換素子40が第2の基板30上に設置される。この状態では、熱電変換素子40の下側の電極が、半田を介して、第2の接続電極31に載置されている。   First, the frame member 20 is overlaid on the upper surface of the second substrate 30 in a state where solder is applied to the second connection electrode 31 shown in FIG. When this state is viewed in plan, a mesh is formed by the weft member 23 and the warp member 24, and each mesh overlaps the second connection electrode 31 on the second substrate 30. Thereafter, as shown in FIG. 1B, the thermoelectric conversion element 40 is installed on the second substrate 30 using a jig so that the thermoelectric conversion element 40 is passed through each mesh. In this way, all the thermoelectric conversion elements 40 to be installed are installed on the second substrate 30 as shown in FIG. In this state, the lower electrode of the thermoelectric conversion element 40 is placed on the second connection electrode 31 via solder.

なお、図1(c)には、百数十個の熱電変換素子40が図示されているが、実際には、さらに多くの熱電変換素子40が第2の基板30の上面に配置される。   In FIG. 1C, hundreds and dozens of thermoelectric conversion elements 40 are illustrated, but actually, more thermoelectric conversion elements 40 are arranged on the upper surface of the second substrate 30.

しかる後、図2(a)に示すように、第1の基板10が枠部材20の上面に重ねられる。第1の基板10の第1の接続電極11には、予め、半田が塗布されている。したがって、第1の基板10が枠部材20の上面に重ねられると、第1の基板10の第1の接続電極11が、半田を介して、熱電変換素子40の上側の電極に載置される。その後、第1の基板10と第2の基板30とを互いに接近させる圧力が付与された状態で、半田に対するリフロー処理が行われる。これにより、熱電変換素子40の上下の電極が、それぞれ、半田により、第1の基板10の第1の接続電極11と、第2の基板30の第2の接続電極31に接合される。また、半田により、第1の基板10と第2の基板30が枠部材20の上下面に固定される。こうして、図2(b)に示すように、熱電変換器100の組み立てが完了する。   Thereafter, as shown in FIG. 2A, the first substrate 10 is overlaid on the upper surface of the frame member 20. Solder is applied to the first connection electrode 11 of the first substrate 10 in advance. Therefore, when the first substrate 10 is overlaid on the upper surface of the frame member 20, the first connection electrode 11 of the first substrate 10 is placed on the upper electrode of the thermoelectric conversion element 40 via solder. . Thereafter, a reflow process is performed on the solder in a state where a pressure is applied to bring the first substrate 10 and the second substrate 30 closer to each other. As a result, the upper and lower electrodes of the thermoelectric conversion element 40 are respectively joined to the first connection electrode 11 of the first substrate 10 and the second connection electrode 31 of the second substrate 30 by solder. Further, the first substrate 10 and the second substrate 30 are fixed to the upper and lower surfaces of the frame member 20 by solder. Thus, as shown in FIG. 2B, the assembly of the thermoelectric converter 100 is completed.

なお、図1(b)に示すように、熱電変換素子40は、直方体形状を有し、上面および下面にそれぞれ電極(図示せず)が配置されている。熱電変換素子40は、熱を直接電力に変換する半導体からなっている。熱電変換素子40は、ゼーベック係数αと比抵抗ρと熱伝導率Kによって表される性能指数Z(=α2/ρK)が大きな材料(Bi2Te3系材料、鉛・テルル系材料、シリコン・ゲルマニウム系材料等)にドーパントを添加したものである。添加するドーパントにより、p型とn型の2種類の熱電変換素子40が構成される。p型の熱電変換素子40を構成するためのドーパントとして、たとえば、Sbが添加される。また、n型の熱電変換素子40を構成するためのドーパントとして、たとえば、Seが添加される。上下の電極は、半田に対する濡れ性の高い材料(ニッケル、クロム、タングステン等)からなることが好ましい。   As shown in FIG. 1B, the thermoelectric conversion element 40 has a rectangular parallelepiped shape, and electrodes (not shown) are arranged on the upper surface and the lower surface, respectively. The thermoelectric conversion element 40 is made of a semiconductor that directly converts heat into electric power. Thermoelectric conversion element 40 is a material (Bi2Te3 material, lead / tellurium material, silicon / germanium material) having a large figure of merit Z (= α2 / ρK) represented by Seebeck coefficient α, specific resistance ρ, and thermal conductivity K. Etc.) to which a dopant is added. Two types of p-type and n-type thermoelectric conversion elements 40 are configured by the dopant to be added. For example, Sb is added as a dopant for configuring the p-type thermoelectric conversion element 40. Further, for example, Se is added as a dopant for configuring the n-type thermoelectric conversion element 40. The upper and lower electrodes are preferably made of a material having high wettability to solder (nickel, chromium, tungsten, etc.).

第2の基板30の上面には、上記のように添加するドーパントを変えることにより、p型とn型の2種類の熱電変換素子40が設置されている。たとえば、p型の熱電変換素子40とn型の熱電変換素子40が、X軸方向に交互に一定間隔で並ぶように、第2の基板30上に配置されている。また、このようにp型の熱電変換素子40とn型の熱電変換素子40が配置された列が、さらに、Y軸方向に一定間隔で複数配置されている。   Two types of p-type and n-type thermoelectric conversion elements 40 are installed on the upper surface of the second substrate 30 by changing the dopant added as described above. For example, the p-type thermoelectric conversion elements 40 and the n-type thermoelectric conversion elements 40 are arranged on the second substrate 30 so as to be alternately arranged at regular intervals in the X-axis direction. Further, a plurality of rows in which the p-type thermoelectric conversion elements 40 and the n-type thermoelectric conversion elements 40 are arranged in this manner are further arranged at regular intervals in the Y-axis direction.

第1の基板10の下面に配された第1の接続電極11と、第2の基板30の上面に配された第2の接続電極31は、第2の基板30に設置されたp型の熱電変換素子40とn型の熱電変換素子40を直列に接続するようにレイアウトされている。すなわち、上記のように熱電変換器100の組み立てが完了すると、全ての熱電変換素子40が、第1の接続電極11と第2の接続電極31によって直列に接続される。これにより、各熱電変換素子40により生じた電力が累積される。累積された電力は、図示しない端子から取出される。   The first connection electrode 11 disposed on the lower surface of the first substrate 10 and the second connection electrode 31 disposed on the upper surface of the second substrate 30 are p-type disposed on the second substrate 30. The thermoelectric conversion element 40 and the n-type thermoelectric conversion element 40 are laid out so as to be connected in series. That is, when the assembly of the thermoelectric converter 100 is completed as described above, all the thermoelectric conversion elements 40 are connected in series by the first connection electrode 11 and the second connection electrode 31. Thereby, the electric power generated by each thermoelectric conversion element 40 is accumulated. The accumulated power is taken out from a terminal (not shown).

図4(a)〜(d)は、第1の基板10を枠部材20に重ねる際の熱電変換器100の組立工程を模式的に示す断面図である。図4(a)、(b)には、それぞれ、X−Z平面に平行な面で熱電変換器100を切断したときの状態が模式的に示されている。また、図4(c)、(d)には、それぞれ、Y−Z平面に平行な面で熱電変換器100を切断したときの状態が模式的に示されている。   4A to 4D are cross-sectional views schematically showing an assembly process of the thermoelectric converter 100 when the first substrate 10 is stacked on the frame member 20. FIGS. 4A and 4B schematically show states when the thermoelectric converter 100 is cut along a plane parallel to the XZ plane. FIGS. 4C and 4D schematically show states when the thermoelectric converter 100 is cut along a plane parallel to the YZ plane.

図4(a)、(b)に示すように、第2の接続電極31の上面に半田50が塗布され、半田50の上に熱電変換素子40が載置されている。また、第1の接続電極11の下面にも半田60が塗布されている。その後、図4(c)、(d)に示すように第1の基板10を枠部材20に載置された状態でリフロー処理が行われる。これにより、熱電変換素子40の上側の電極が半田60により第1の接続電極11に接合され、熱電変換素子40の下側の電極が半田50により第2の接続電極31に接合される。   As shown in FIGS. 4A and 4B, the solder 50 is applied to the upper surface of the second connection electrode 31, and the thermoelectric conversion element 40 is placed on the solder 50. The solder 60 is also applied to the lower surface of the first connection electrode 11. Thereafter, as shown in FIGS. 4C and 4D, the reflow process is performed in a state where the first substrate 10 is placed on the frame member 20. As a result, the upper electrode of the thermoelectric conversion element 40 is joined to the first connection electrode 11 by the solder 60, and the lower electrode of the thermoelectric conversion element 40 is joined to the second connection electrode 31 by the solder 50.

図4(a)〜(d)に示すように、枠部材20の高さ方向(Z軸方向)の寸法は、熱電変換素子40の高さ方向(Z軸方向)の寸法と、第1の接続電極11および第2の接続電極31の高さ方向(Z軸方向)の寸法とを加算した寸法に略一致するように設定されている。これにより、第1の基板10下面が枠部材20の上面に接触し、第1の基板10が枠部材20によって支持されるようになる。   As shown in FIGS. 4A to 4D, the dimension of the frame member 20 in the height direction (Z-axis direction) is the same as the dimension of the thermoelectric conversion element 40 in the height direction (Z-axis direction). The connection electrode 11 and the second connection electrode 31 are set so as to substantially match the dimension obtained by adding the dimension in the height direction (Z-axis direction). Thereby, the lower surface of the first substrate 10 comes into contact with the upper surface of the frame member 20, and the first substrate 10 is supported by the frame member 20.

図5(a)、(b)は、それぞれ、熱電変換器100における熱電変換素子40と横糸部材23および縦糸部材24との位置関係を模式的に示す図である。図5(a)は、熱電変換素子40を上側(Z軸正側)から見た平面図、図5(b)は、2つの熱電変換素子40を斜め上から見た斜視図である。   5A and 5B are diagrams schematically showing the positional relationship between the thermoelectric conversion element 40, the weft member 23, and the warp member 24 in the thermoelectric converter 100, respectively. FIG. 5A is a plan view of the thermoelectric conversion element 40 viewed from the upper side (Z-axis positive side), and FIG. 5B is a perspective view of the two thermoelectric conversion elements 40 viewed obliquely from above.

図5(a)、(b)に示すように、隣り合う熱電変換素子40間の隙間を通るように、横糸部材23と縦糸部材24が配置されている。また、熱電変換素子40と横糸部材23および縦糸部材24との間には、僅かな隙間が設けられている。本実施の形態では、横糸部材23が熱電変換素子40の下部付近に位置付けられ、縦糸部材24は、熱電変換素子40の下部付近に位置付けられている。   As shown in FIGS. 5A and 5B, the weft member 23 and the warp member 24 are arranged so as to pass through the gap between the adjacent thermoelectric conversion elements 40. Further, a slight gap is provided between the thermoelectric conversion element 40 and the weft member 23 and the warp member 24. In the present embodiment, the weft member 23 is positioned near the lower part of the thermoelectric conversion element 40, and the warp member 24 is positioned near the lower part of the thermoelectric conversion element 40.

なお、熱電変換素子40の高さ方向の寸法Hは、たとえば、1mm程度である。これに対し、横糸部材23および縦糸部材24の径Dは、たとえば、0.1mm程度である。したがって、横糸部材23と縦糸部材24を、互いに接触させることなく、熱電変換素子40の高さ方向の寸法Hの範囲内に円滑に配置できる。変換効率の向上のため熱電変換素子40の高さ方向の寸法Hを0.5mm程度まで縮めても、横糸部材23と縦糸部材24を、互いに接触させることなく、熱電変換素子40の高さ方向の寸法Hの範囲内に配置できる。   The dimension H in the height direction of the thermoelectric conversion element 40 is, for example, about 1 mm. On the other hand, the diameter D of the weft member 23 and the warp member 24 is, for example, about 0.1 mm. Therefore, the weft member 23 and the warp member 24 can be smoothly arranged within the range of the dimension H in the height direction of the thermoelectric conversion element 40 without contacting each other. Even if the dimension H in the height direction of the thermoelectric conversion element 40 is reduced to about 0.5 mm in order to improve the conversion efficiency, the weft member 23 and the warp member 24 do not come into contact with each other, and the height direction of the thermoelectric conversion element 40 Can be arranged within the range of dimension H.

本実施の形態では、このように横糸部材23と縦糸部材24を配置することにより、第1の基板10と第2の基板30との間の輻射熱の伝搬を効果的に遮蔽することができる。たとえば、第1の基板10を熱源に接触させて熱を電力に変換する場合、熱源側の第1の基板10からの熱が、輻射熱として、反対側の第2の基板30へと伝わることを抑制することができる。   In the present embodiment, by disposing the weft member 23 and the warp member 24 in this manner, propagation of radiant heat between the first substrate 10 and the second substrate 30 can be effectively shielded. For example, when heat is converted into electric power by bringing the first substrate 10 into contact with a heat source, heat from the first substrate 10 on the heat source side is transferred to the second substrate 30 on the opposite side as radiant heat. Can be suppressed.

図6(a)、(d)は、それぞれ、横糸部材23および縦糸部材24による輻射熱の遮蔽作用を説明するための図である。   FIGS. 6A and 6D are diagrams for explaining the shielding action of radiant heat by the weft member 23 and the warp member 24, respectively.

熱源から第1の基板10に熱が伝導され、第1の基板10の温度が上昇すると、図6(a)、(b)に破線矢印で示すように、第1の基板10の下面から下方向に輻射熱が放射される。ここで、上記実施の形態で示した横糸部材23と縦糸部材24が配置されていない場合、第1の基板10の下面から放射された輻射熱は、隣り合う熱電変換素子40間の隙間を通って第2の基板30の上面へと到達し、この輻射熱によって第2の基板30の温度が上昇する。このため、熱電変換素子40の上端と下端の温度差が小さくなり、熱電変換素子40の変換効率が低下してしまう。特に、この問題は、熱電変換素子40の高さ方向の寸法が小さくなるに伴って顕著となる。   When heat is conducted from the heat source to the first substrate 10 and the temperature of the first substrate 10 rises, as shown by broken line arrows in FIGS. Radiant heat is emitted in the direction. Here, when the weft member 23 and the warp member 24 shown in the above embodiment are not arranged, the radiant heat radiated from the lower surface of the first substrate 10 passes through the gap between the adjacent thermoelectric conversion elements 40. The temperature reaches the upper surface of the second substrate 30, and the temperature of the second substrate 30 rises due to this radiant heat. For this reason, the temperature difference of the upper end of the thermoelectric conversion element 40 and a lower end becomes small, and the conversion efficiency of the thermoelectric conversion element 40 will fall. In particular, this problem becomes conspicuous as the dimension of the thermoelectric conversion element 40 in the height direction decreases.

これに対し、本実施の形態では、隣り合う熱電変換素子40間の隙間に横糸部材23と縦糸部材24が配置されている。これにより、第1の基板10の下面から下方向に放射された輻射熱は、横糸部材23と縦糸部材24によって遮蔽され、第2の基板30に到達しにくくなる。このため、熱源側の第1の基板10により生じた輻射熱により第2の基板30の温度が上昇することが抑制され、熱電変換素子40の上端と下端の温度差を適正に保つことができる。熱電変換素子40の変換効率を良好に維持することができる。   On the other hand, in the present embodiment, the weft member 23 and the warp member 24 are arranged in the gap between the adjacent thermoelectric conversion elements 40. Thereby, the radiant heat radiated downward from the lower surface of the first substrate 10 is shielded by the weft member 23 and the warp member 24 and hardly reaches the second substrate 30. For this reason, it is suppressed that the temperature of the 2nd board | substrate 30 raises by the radiant heat produced with the 1st board | substrate 10 by the side of a heat source, and the temperature difference of the upper end of the thermoelectric conversion element 40 and a lower end can be kept appropriate. The conversion efficiency of the thermoelectric conversion element 40 can be maintained satisfactorily.

なお、本実施の形態では、縦糸部材24が第1の基板10に接近して配置されているため、この縦糸部材24によって、第1の基板10から生じた輻射熱を効果的に抑制することができる。一般に、輻射熱は、遮蔽部材を熱源に接近させるほど、より効果的に遮蔽され得る。よって、第1の基板10からの輻射熱を第2の基板30に対して遮蔽するためには、下側の横糸部材23の配置位置を上方向に移動させて、横糸部材23を熱源側の第1の基板10に接近させることが好ましい。   In this embodiment, since the warp member 24 is disposed close to the first substrate 10, the warp member 24 effectively suppresses the radiant heat generated from the first substrate 10. it can. Generally, the radiant heat can be shielded more effectively as the shielding member is brought closer to the heat source. Therefore, in order to shield the radiant heat from the first substrate 10 from the second substrate 30, the arrangement position of the lower weft member 23 is moved upward, and the weft member 23 is moved to the first heat source side. It is preferable to approach one substrate 10.

また、図6(a)、(b)では、便宜上、隣り合う熱電変換素子40間の隙間が大きく図示されているが、実際は、熱電変換素子40間の隙間は、図6(a)、(b)に示した隙間よりも数段小さい。よって、熱電変換素子40間の隙間を通る輻射熱は、横糸部材23と縦糸部材24によって効果的に遮蔽され得る。   6A and 6B, for the sake of convenience, the gap between the adjacent thermoelectric conversion elements 40 is greatly illustrated, but in reality, the gap between the thermoelectric conversion elements 40 is as shown in FIGS. Several steps smaller than the gap shown in b). Therefore, the radiant heat passing through the gap between the thermoelectric conversion elements 40 can be effectively shielded by the weft member 23 and the warp member 24.

図7(a)〜(c)は、上記構成の熱電変換器100を、熱源となる配管500に設置した場合の熱電変換システム1の構成を、それぞれ、正面、側方および上方から見た模式図である。   7A to 7C are schematic views of the configuration of the thermoelectric conversion system 1 when the thermoelectric converter 100 having the above-described configuration is installed in a pipe 500 serving as a heat source, as viewed from the front, the side, and the upper side, respectively. FIG.

この構成では、熱電変換器100が、押さえ板200と、受け板300と、ボルト401と、ナット402とからなる取り付け具によって、配管500に取り付けられる。押さえ板200は、熱伝導性に優れ、且つ、剛性が高い材料からなっている。押さえ板200は、長方形の輪郭を有し、4隅にボルト401を通すための孔(図示せず)を有する。押さえ板200には、Z軸正側の面に、空冷のためのフィン201が一体形成されている。受け板300は、長方形の輪郭を有し、4隅にボルト401を通すための孔(図示せず)を有する。受け板300は、剛性が高い材料からなっている。   In this configuration, the thermoelectric converter 100 is attached to the pipe 500 by an attachment made up of a holding plate 200, a receiving plate 300, bolts 401, and nuts 402. The holding plate 200 is made of a material having excellent thermal conductivity and high rigidity. The holding plate 200 has a rectangular outline and has holes (not shown) for passing bolts 401 at four corners. A fin 201 for air cooling is integrally formed on the press plate 200 on the surface on the positive side of the Z-axis. The receiving plate 300 has a rectangular outline, and has holes (not shown) for passing bolts 401 at four corners. The receiving plate 300 is made of a material having high rigidity.

本実施の形態において、配管500は、略正方形の断面形状を有している。配管500は、高温の気体または液体の通路となるもので、内部を通る気体または液体によって、表面温度が高温となる。配管500は、熱伝導性が高い金属材料からなっている。   In the present embodiment, the pipe 500 has a substantially square cross-sectional shape. The pipe 500 serves as a passage for high-temperature gas or liquid, and the surface temperature becomes high due to the gas or liquid passing through the inside. The pipe 500 is made of a metal material having high thermal conductivity.

熱電変換器100は、第1の基板10が配管500の表面に接触した状態で、押さえ板200によって押さえられる。図3(c)に示すように、熱電変換器100は、配管500に対してY軸方向に略均等に位置付けられる。押さえ板200は、Y軸方向の略中央に熱電変換器100が位置付けられるよう、熱電変換器100に当てられる。この状態で、配管500の反対側に受け板300が当てられ、ボルト401が、受け板300と押さえ板200の孔(図示せず)に通される。その後、ボルト401の先端にナット402が装着され、ボルト401とナット402が締め付けられる。こうして、配管500に対する熱電変換器100の取り付けが完了する。   The thermoelectric converter 100 is pressed by the pressing plate 200 with the first substrate 10 in contact with the surface of the pipe 500. As shown in FIG. 3C, the thermoelectric converter 100 is positioned substantially uniformly in the Y axis direction with respect to the pipe 500. The holding plate 200 is applied to the thermoelectric converter 100 so that the thermoelectric converter 100 is positioned at substantially the center in the Y-axis direction. In this state, the receiving plate 300 is applied to the opposite side of the pipe 500, and the bolt 401 is passed through a hole (not shown) in the receiving plate 300 and the holding plate 200. Thereafter, a nut 402 is attached to the tip of the bolt 401, and the bolt 401 and the nut 402 are tightened. Thus, the attachment of the thermoelectric converter 100 to the pipe 500 is completed.

その後、配管500に液体または気体が通り、配管500の温度が上昇すると、熱電変換器100の第1の基板10側の温度が上昇する。これに対し、熱電変換器100の第2の基板30側は、フィン201による放熱によって、温度の上昇が抑えられる。これにより、熱電変換器100内部に設置された熱電変換素子40に温度差が生じ、この温度差により、熱電変換素子40に電力が生じる。それぞれの熱電変換素子40に生じた電力は、第1の基板10に配置された第1の接続電極11と第2の基板30に配置された第2の接続電極31を介して集められ、図示しない配線により外部に取出される。   Thereafter, when liquid or gas passes through the pipe 500 and the temperature of the pipe 500 rises, the temperature on the first substrate 10 side of the thermoelectric converter 100 rises. On the other hand, the temperature rise on the second substrate 30 side of the thermoelectric converter 100 is suppressed by heat radiation by the fins 201. Thereby, a temperature difference arises in the thermoelectric conversion element 40 installed in the thermoelectric converter 100, and electric power is produced in the thermoelectric conversion element 40 by this temperature difference. The electric power generated in each thermoelectric conversion element 40 is collected via the first connection electrode 11 disposed on the first substrate 10 and the second connection electrode 31 disposed on the second substrate 30, and is illustrated. It is taken out by the wiring that does not.

なお、図7(a)〜(c)の例では、押さえ板200に空冷式のフィン201が設けられたが、押さえ板200に冷却水を通すための流路を設けて、水冷式により、熱電変換器100の第2の基板30側を冷却する構成であってもよい。   In the example of FIGS. 7A to 7C, the air-cooled fins 201 are provided on the presser plate 200. However, a flow path for passing cooling water through the presser plate 200 is provided. The structure which cools the 2nd board | substrate 30 side of the thermoelectric converter 100 may be sufficient.

<実施形態の効果>
本実施の形態によれば、以下の効果が奏される。
<Effect of embodiment>
According to the present embodiment, the following effects are exhibited.

図6(a)、(b)を参照して説明したとおり、本実施の形態に係る熱電変換器100によれば、第1の基板10から下向きに放射された輻射熱が横糸部材23および縦糸部材24によって遮蔽される。よって、熱電変換素子40の高さ寸法を縮めた場合も、熱電変換素子40の変換効率を適正に維持できる。   As described with reference to FIGS. 6A and 6B, according to the thermoelectric converter 100 according to the present embodiment, the radiant heat radiated downward from the first substrate 10 is the weft member 23 and the warp member. 24 is shielded. Therefore, even when the height dimension of the thermoelectric conversion element 40 is reduced, the conversion efficiency of the thermoelectric conversion element 40 can be properly maintained.

図5(b)および図6(a)、(b)に示すように、横糸部材23の高さ位置と縦糸部材24の高さ位置が互いに相違するように、横糸部材23と縦糸部材24が枠部材20に張られている。これにより、横糸部材23と縦糸部材24との間に、熱伝導率の低い空気のギャップが確保される。このため、第1の基板10からの輻射熱が上側の縦糸部材24に吸収されても、さらに、この熱が縦糸部材24から横糸部材23へと伝導することが抑止される。よって、第1の基板10から下向きに放射された輻射熱により第2の基板30の温度が上昇することが、より効果的に抑制され得る。   As shown in FIG. 5B and FIGS. 6A and 6B, the weft member 23 and the warp member 24 are arranged so that the height position of the weft member 23 and the height position of the warp member 24 are different from each other. The frame member 20 is stretched. As a result, an air gap having a low thermal conductivity is secured between the weft member 23 and the warp member 24. For this reason, even if the radiant heat from the first substrate 10 is absorbed by the upper warp member 24, the heat is further prevented from conducting from the warp member 24 to the weft member 23. Therefore, it can be more effectively suppressed that the temperature of the second substrate 30 rises due to the radiant heat radiated downward from the first substrate 10.

図3(a)〜(d)に示すように、枠部材20は、横糸部材23の両端が係止される横溝21aと、縦糸部材24の両端が係止される縦溝22aとを有し、横溝21aと縦溝22aに、それぞれ、横糸部材23の端部と縦糸部材24の端部を上から押し込む構成となっている。このため、枠部材20に対する横糸部材23および縦糸部材24の装着を簡易な作業により行うことができる。   As shown in FIGS. 3A to 3D, the frame member 20 has a lateral groove 21a in which both ends of the weft member 23 are locked, and a longitudinal groove 22a in which both ends of the warp member 24 are locked. The end of the weft member 23 and the end of the warp member 24 are pushed into the weft groove 21a and the longitudinal groove 22a from above, respectively. For this reason, the weft member 23 and the warp member 24 can be attached to the frame member 20 by a simple operation.

横糸部材23と縦糸部材24は、それぞれ、両端が横溝21aと縦溝22aの最深部まで押し込まれることにより、枠部材20に張られる。この構成によれば、横糸部材23と縦糸部材24の両端を、それぞれ、横溝21aと縦溝22aの最深部まで押し込むことにより、横糸部材23と縦糸部材24の高さ位置が決まるため、別途、横糸部材23と縦糸部材24の高さ調整を行う必要がない。よって、枠部材20に対する横糸部材23および縦糸部材24の装着をより簡易な作業により行うことができる。   The weft yarn member 23 and the warp yarn member 24 are stretched on the frame member 20 when both ends are pushed to the deepest portions of the transverse groove 21a and the longitudinal groove 22a. According to this configuration, the height positions of the weft member 23 and the warp member 24 are determined by pushing both ends of the weft member 23 and the warp member 24 to the deepest portions of the weft groove 21a and the longitudinal groove 22a, respectively. There is no need to adjust the height of the weft member 23 and the warp member 24. Therefore, the weft member 23 and the warp member 24 can be attached to the frame member 20 by a simpler operation.

<変更例>
上記実施の形態では、縦糸部材24を張る際のテンション(張力)については、特に言及しなかった。しかしながら、縦糸部材24を張る際のテンション(張力)は、以下に説明するように、なるべく小さく設定する方が好ましい。
<Example of change>
In the above embodiment, no particular mention was made of the tension (tension) when the warp member 24 is stretched. However, it is preferable to set the tension (tension) at the time of tensioning the warp member 24 as small as possible, as described below.

図8(a)は、横糸部材23と縦糸部材24が張られた状態の枠部材20の平面図である。   FIG. 8A is a plan view of the frame member 20 in a state where the weft member 23 and the warp member 24 are stretched.

上記実施の形態において、横糸部材23は、所定のテンション1で引っ張られた状態で、両端が横溝21aの最深部まで押し込まれる。このように、横糸部材23がテンション1で引っ張られた状態で一対の横支持部材21間に張られると、このテンション1により一対の横支持部材21が互いに引き寄せられる。これにより、一対の横支持部材21間に一対の縦支持部材22が強固に挟まれて固定される。   In the embodiment described above, the weft member 23 is pushed to the deepest portion of the lateral groove 21a in a state where the weft member 23 is pulled with a predetermined tension 1. As described above, when the weft member 23 is stretched between the pair of lateral support members 21 in a state where the weft member 23 is pulled with the tension 1, the pair of lateral support members 21 are attracted to each other by the tension 1. Accordingly, the pair of vertical support members 22 are firmly sandwiched and fixed between the pair of horizontal support members 21.

これに対し、縦糸部材24のテンション2を高くすると、このテンション2によって、一対の縦支持部材22が互いに引き寄せられる。これにより、一対の縦支持部材22が、一対の横支持部材21の内側の面を滑って、Y軸方向に変位する惧れがある。このため、縦糸部材24のテンション2はなるべく小さく設定することが好ましい。   On the other hand, when the tension 2 of the warp member 24 is increased, the pair of longitudinal support members 22 are attracted to each other by the tension 2. As a result, the pair of vertical support members 22 may slide on the inner surfaces of the pair of horizontal support members 21 and be displaced in the Y-axis direction. For this reason, it is preferable to set the tension 2 of the warp member 24 as small as possible.

以上の理由から、横糸部材23のテンション1は、縦糸部材24のテンション2よりも高く設定することが好ましく、テンション1はなるべく高く、テンション2はなるべく低く設定することが好ましい。これにより、縦支持部材22の位置ずれを抑制でき、枠部材20の形状を安定的に保つことができる。   For the above reasons, the tension 1 of the weft member 23 is preferably set higher than the tension 2 of the warp member 24, and tension 1 is preferably set as high as possible and tension 2 is set as low as possible. Thereby, the position shift of the vertical support member 22 can be suppressed, and the shape of the frame member 20 can be maintained stably.

また、上記実施の形態において、横溝21aのY軸方向の幅は、横溝21aの全ての深さ位置において一定に設定され、また、縦溝22aのX軸方向の幅は、縦溝22aの全ての深さ位置において一定に設定された。これに対し、図8(b)、(c)に示すように、横溝21aおよび縦溝22aの形状が変更されてもよい。図8(b)、(c)は、溝の長手方向に垂直な面で横溝21a付近および縦溝22a付近を切断した断面図である。   In the above embodiment, the width of the horizontal groove 21a in the Y-axis direction is set constant at all depth positions of the horizontal groove 21a, and the width of the vertical groove 22a in the X-axis direction is the same as that of the vertical groove 22a. Was set constant at the depth position. On the other hand, as shown in FIGS. 8B and 8C, the shape of the horizontal groove 21a and the vertical groove 22a may be changed. 8B and 8C are cross-sectional views in which the vicinity of the lateral groove 21a and the vicinity of the vertical groove 22a are cut along a plane perpendicular to the longitudinal direction of the groove.

この変更例では、横溝21aおよび縦溝22aの上側の入口の幅が横糸部材23および縦糸部材24の直径(幅)よりも広く設定されている。また、横糸部材23および縦糸部材24を係止する係止部21b、22bの幅が、横糸部材23および縦糸部材24の幅よりも狭く設定されている。さらに、入口から係止部21b、22bへと横糸部材23および縦糸部材24を案内する案内面21c、22cが設けられている。   In this modified example, the width of the upper entrance of the weft groove 21a and the longitudinal groove 22a is set wider than the diameter (width) of the weft member 23 and the warp member 24. Further, the widths of the locking portions 21 b and 22 b that lock the weft member 23 and the warp member 24 are set to be narrower than the widths of the weft member 23 and the warp member 24. Furthermore, guide surfaces 21c and 22c for guiding the weft member 23 and the warp member 24 from the entrance to the locking portions 21b and 22b are provided.

この変更例によれば、図8(b)に示すように、横溝21aおよび縦溝22aの上側の入口の幅が横糸部材23および縦糸部材24の直径(幅)よりも広く設定されているため、横糸部材23および縦糸部材24の両端を、容易に横溝21aおよび縦溝22aに嵌めることができる。また、入口から係止部21b、22bへと横糸部材23および縦糸部材24を案内する案内面21c、22cが設けられているため、図8(c)に示すように、横糸部材23および縦糸部材24の両端を、容易に係止部21b、22bへと押し込むことができる。   According to this modified example, as shown in FIG. 8 (b), the width of the upper entrance of the weft groove 21a and the longitudinal groove 22a is set wider than the diameter (width) of the weft member 23 and the warp member 24. The both ends of the weft yarn member 23 and the warp yarn member 24 can be easily fitted in the weft groove 21a and the longitudinal groove 22a. Further, since the guide surfaces 21c and 22c for guiding the weft member 23 and the warp member 24 from the entrance to the engaging portions 21b and 22b are provided, as shown in FIG. 8C, the weft member 23 and the warp member Both ends of 24 can be easily pushed into the locking portions 21b and 22b.

このように、この変更例によれば、枠部材20に対する横糸部材23および縦糸部材24に装着作業をより簡易なものとすることができる。   Thus, according to this modified example, it is possible to simplify the mounting operation on the weft member 23 and the warp member 24 with respect to the frame member 20.

また、上記実施の形態では、横糸部材23と縦糸部材24の両方が、枠部材20に張られたが、何れか一方が省略されてもよい。また、横糸部材23と縦糸部材24は必ずしも同じ素材および径でなくてもよく、また、横糸部材23および縦糸部材24の断面形状が円でなくてもよい。   In the above-described embodiment, both the weft member 23 and the warp member 24 are stretched on the frame member 20, but either one may be omitted. Further, the weft member 23 and the warp member 24 do not necessarily have the same material and diameter, and the cross-sectional shapes of the weft member 23 and the warp member 24 do not have to be circular.

また、上記実施の形態では、横糸部材23の高さ位置と縦糸部材24の高さ位置が互いに相違するように、横糸部材23と縦糸部材24が枠部材20に張られたが、横糸部材23の高さ位置と縦糸部材24の高さ位置とが略同じとなるように、横糸部材23と縦糸部材24が枠部材20に張られてもよい。糸部材23と縦糸部材24が互いに接触するように枠部材20に張られてもよい。横糸部材23の高さ位置と縦糸部材24の高さ位置は、輻射熱の遮蔽に適する位置に適宜変更可能である。   In the above embodiment, the weft member 23 and the warp member 24 are stretched on the frame member 20 so that the height position of the weft member 23 and the height position of the warp member 24 are different from each other. The weft member 23 and the warp member 24 may be stretched on the frame member 20 so that the height position of the warp member and the height position of the warp member 24 are substantially the same. The thread member 23 and the warp member 24 may be stretched on the frame member 20 so as to contact each other. The height position of the weft member 23 and the height position of the warp member 24 can be appropriately changed to a position suitable for shielding radiant heat.

また、上記実施の形態では、一対の横支持部材21と一対の縦支持部材22とを組み合わせることにより枠部材20が構成されたが、枠部材20の構成方法はこれに限られるものではなく、樹脂による一体成形により枠部材20が形成されてもよい。   Moreover, in the said embodiment, although the frame member 20 was comprised by combining a pair of horizontal support member 21 and a pair of vertical support member 22, the structure method of the frame member 20 is not restricted to this, The frame member 20 may be formed by integral molding with resin.

また、上記実施の形態では、両端を横溝21aまたは縦溝22aに嵌め込むことにより横糸部材23および縦糸部材24が枠部材20に装着されたが、横糸部材23および縦糸部材24の装着方法はこれに限られるものではない。たとえば、枠部材20に設けた孔に横糸部材23および縦糸部材24の端部を通すことにより、横糸部材23および縦糸部材24が枠部材20に装着されてもよい。   In the above embodiment, the weft member 23 and the warp member 24 are attached to the frame member 20 by fitting both ends into the weft groove 21a or the longitudinal groove 22a. It is not limited to. For example, the weft member 23 and the warp member 24 may be attached to the frame member 20 by passing the ends of the weft member 23 and the warp member 24 through holes provided in the frame member 20.

また、上記実施の形態では、横糸部材23および縦糸部材24の両端を横溝21aおよび縦溝22aで係止する構成であったが、さらに、横糸部材23および縦糸部材24の両端を枠部材20に接着剤により固定してもよく、横糸部材23および縦糸部材24の両端を枠部材20により確実に固定する構成をさらに適用してもよい。   In the above embodiment, both ends of the weft member 23 and the warp member 24 are locked by the weft groove 21a and the longitudinal groove 22a, but the both ends of the weft member 23 and the warp member 24 are further connected to the frame member 20. A configuration in which both ends of the weft member 23 and the warp member 24 are securely fixed by the frame member 20 may be further applied.

また、上記実施の形態では、横溝21aの深さを縦溝22aの深さよりも深くしたが、横溝21aの深さを縦溝22aの深さよりも浅くしてもよい。また、上記実施の形態では、一対の横支持部材21で一対の縦支持部材22を挟む構成であったが、一対の縦支持部材22で一対の横支持部材21を挟む構成であってもよい。図8(a)の変更例の説明と同様、一対の縦支持部材22で一対の横支持部材21を挟む構成では、縦糸部材24のテンションを横糸部材23のテンションよりも高くすることが望ましい。   Moreover, in the said embodiment, although the depth of the horizontal groove 21a was made deeper than the depth of the vertical groove 22a, you may make the depth of the horizontal groove 21a shallower than the depth of the vertical groove 22a. Moreover, in the said embodiment, although it was the structure which pinches a pair of vertical support member 22 with a pair of horizontal support member 21, the structure which pinches a pair of horizontal support member 21 with a pair of vertical support member 22 may be sufficient. . Similarly to the description of the modified example of FIG. 8A, in the configuration in which the pair of lateral support members 21 are sandwiched between the pair of longitudinal support members 22, it is desirable that the tension of the warp member 24 is higher than the tension of the weft member 23.

なお、上記実施の形態では、説明の便宜上、Y軸方向を縦方向に設定し、X軸方向を横方向に設定したが、X軸方向を縦方向に置き換え、Y軸方向を横方向に置き換えてもよい。   In the above embodiment, for convenience of explanation, the Y-axis direction is set to the vertical direction and the X-axis direction is set to the horizontal direction. However, the X-axis direction is replaced with the vertical direction, and the Y-axis direction is replaced with the horizontal direction. May be.

また、上記実施の形態では、横溝21aおよび縦溝22aの最深部まで横糸部材23および縦糸部材24の端部を押し込む構成であったが、必ずしも、横溝21aおよび縦溝22aの最深部まで横糸部材23および縦糸部材24の端部を押し込む構成でなくてもよい。また、図8(a)、(b)の変更例では、案内面21c、22cが平坦な傾斜面に図示されているが、案内面21c、22cは必ずしも平坦でなくてもよく、曲面であってもよい。   Moreover, in the said embodiment, although it was the structure which pushes the edge part of the weft member 23 and the warp member 24 to the deepest part of the weft groove 21a and the longitudinal groove 22a, it is not necessarily the deepest part of the weft groove 21a and the longitudinal groove 22a. 23 and the end of the warp member 24 may not be pushed. 8A and 8B, the guide surfaces 21c and 22c are illustrated as flat inclined surfaces, but the guide surfaces 21c and 22c are not necessarily flat and are curved surfaces. May be.

さらに、上記実施の形態では、熱を電気に変換する熱電変換器を例に挙げて説明を行ったが、本発明は、電気を熱に変換する熱電変換器にも適用可能である。たとえば、本発明は、電圧を印加することにより第1の基板10を冷却する熱電変換器にも適用され得る。   Furthermore, in the said embodiment, although demonstrated taking the case of the thermoelectric converter which converts heat into electricity, this invention is applicable also to the thermoelectric converter which converts electricity into heat. For example, the present invention can be applied to a thermoelectric converter that cools the first substrate 10 by applying a voltage.

本発明の実施の形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。   The embodiments of the present invention can be appropriately modified in various ways within the scope of the technical idea shown in the claims.

10 … 第1の基板
20 … 枠部材
21 … 横支持部材
21a … 横溝
21b … 係止部
21c … 案内面
22 … 縦支持部材
22a … 縦溝
22b … 係止部
22c … 案内面
23 … 横糸部材
24 … 縦糸部材
30 … 第2の基板
40 … 熱電変換素子
100 … 熱電変換器
DESCRIPTION OF SYMBOLS 10 ... 1st board | substrate 20 ... Frame member 21 ... Horizontal support member 21a ... Horizontal groove 21b ... Locking part 21c ... Guide surface 22 ... Vertical support member 22a ... Vertical groove 22b ... Locking part 22c ... Guide surface 23 ... Weft thread member 24 ... Warp yarn member 30 ... Second substrate 40 ... Thermoelectric conversion element 100 ... Thermoelectric converter

Claims (5)

第1の基板と、
第2の基板と、
前記第1の基板と前記第2の基板との間に配置される複数の熱電変換素子と、
前記第1の基板と前記第2の基板とに挟まれるように配置された枠部材と、を備え、
前記熱電変換素子は、隙間を開けて縦方向および横方向に並ぶように配置され、
前記枠部材には、縦方向に並ぶ前記熱電変換素子間の隙間を通るように横方向に輻射熱遮断のための横糸部材が張られるとともに、横方向に並ぶ前記熱電変換素子間の隙間を通るように縦方向に輻射熱遮断のための縦糸部材が張られており、
前記枠部材は、前記横糸部材の両端が留められる一対の横支持部材の間に、前記縦糸部材の両端が留められる一対の縦支持部材が挟まれる構成となっており、
前記横糸部材の方が前記縦糸部材よりも引っ張り方向のテンションが高くなるように、前記横糸部材と前記縦糸部材が、それぞれ、前記横支持部材と前記縦支持部材に張られている、
ことを特徴とする熱電変換器。
A first substrate;
A second substrate;
A plurality of thermoelectric conversion elements disposed between the first substrate and the second substrate;
A frame member arranged to be sandwiched between the first substrate and the second substrate,
The thermoelectric conversion elements are arranged so as to be lined up in the vertical and horizontal directions with a gap between them,
The frame member is stretched with a weft member for blocking radiant heat in the lateral direction so as to pass through the gap between the thermoelectric conversion elements arranged in the vertical direction, and through the gap between the thermoelectric conversion elements arranged in the horizontal direction. A warp member for blocking radiant heat is stretched in the longitudinal direction.
The frame member is configured such that a pair of longitudinal support members to which both ends of the warp member are fastened are sandwiched between a pair of lateral support members to which both ends of the weft member are fastened,
The weft member and the warp member are stretched on the transverse support member and the longitudinal support member, respectively, so that the tension in the pulling direction of the weft member is higher than that of the warp member.
A thermoelectric converter characterized by that.
請求項に記載の熱電変換器において、
前記縦糸部材の高さ位置と前記横糸部材の高さ位置が互いに相違するように、前記縦糸部材と前記横糸部材が前記枠部材に張られている、
ことを特徴とする熱電変換器。
The thermoelectric converter according to claim 1 , wherein
The warp member and the weft member are stretched on the frame member such that the height position of the warp member and the height position of the weft member are different from each other;
A thermoelectric converter characterized by that.
請求項1または2に記載の熱電変換器において、
前記枠部材は、前記横糸部材の両端が係止される横溝と、前記縦糸部材の両端が係止される縦溝と、を有する、
ことを特徴とする熱電変換器。
The thermoelectric converter according to claim 1 or 2 ,
The frame member has a lateral groove in which both ends of the weft member are locked, and a vertical groove in which both ends of the warp member are locked.
A thermoelectric converter characterized by that.
請求項に記載の熱電変換器において、
前記縦溝の深さと前記横溝の深さが互いに相違し、
前記縦糸部材と前記横糸部材は、それぞれ、両端が前記縦溝と前記横溝の最深部まで押し込まれるようにして、前記枠部材に張られている、
ことを特徴とする熱電変換器。
The thermoelectric converter according to claim 3 , wherein
The depth of the vertical groove and the depth of the horizontal groove are different from each other,
The warp member and the weft member are stretched on the frame member so that both ends are pushed to the deepest part of the longitudinal groove and the transverse groove,
A thermoelectric converter characterized by that.
請求項またはに記載の熱電変換器において、
前記縦溝および前記横溝は、それぞれ、入口の幅が前記縦糸部材および前記横糸部材の幅よりも広く、前記縦糸部材および前記横糸部材を係止する係止部の幅が前記縦糸部材および前記横糸部材の幅よりも狭く、前記入口から前記係止部へと前記縦糸部材および前記横糸部材を案内する案内面を有する、
ことを特徴とする熱電変換器。
The thermoelectric converter according to claim 3 or 4 ,
The warp groove and the weft groove each have a width of an entrance wider than that of the warp member and the weft member, and a width of a locking portion for locking the warp member and the weft member is the warp member and the weft. A guide surface for guiding the warp yarn member and the weft yarn member from the entrance to the locking portion is narrower than the width of the member;
A thermoelectric converter characterized by that.
JP2015184380A 2015-09-17 2015-09-17 Thermoelectric converter Expired - Fee Related JP6473969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015184380A JP6473969B2 (en) 2015-09-17 2015-09-17 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015184380A JP6473969B2 (en) 2015-09-17 2015-09-17 Thermoelectric converter

Publications (2)

Publication Number Publication Date
JP2017059727A JP2017059727A (en) 2017-03-23
JP6473969B2 true JP6473969B2 (en) 2019-02-27

Family

ID=58390511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015184380A Expired - Fee Related JP6473969B2 (en) 2015-09-17 2015-09-17 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP6473969B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113691165B (en) * 2021-09-17 2023-11-07 东北大学 Industrial integrated thermoelectric power generation device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4481606B2 (en) * 2003-08-29 2010-06-16 株式会社東芝 Thermoelectric converter
JP2006032850A (en) * 2004-07-21 2006-02-02 Tohoku Okano Electronics:Kk Thermoelectric conversion module
JP5523985B2 (en) * 2010-08-18 2014-06-18 江藤電気株式会社 Manufacturing method of heat flow sensor and jig used in the manufacturing method

Also Published As

Publication number Publication date
JP2017059727A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
KR101605666B1 (en) Cooling apparatus and cooling apparatus-attached power module using same
JP6247090B2 (en) Liquid cooling type cooling device and manufacturing method of radiator for liquid cooling type cooling device
JP6021290B2 (en) Heat dissipation structure
US20160149064A1 (en) Solar cell module
JP6405130B2 (en) Thermoelectric generator
JP2017028040A (en) Semiconductor device
JP2016004828A (en) Liquid cooling type cooling device
JP6473969B2 (en) Thermoelectric converter
KR100232810B1 (en) Heat sink structure with corrugated wound wire heat conductive elements
JP5904006B2 (en) Semiconductor device
KR20180021145A (en) Plate type temperature equalizing device
JP6595531B2 (en) Heat sink assembly
CN210959284U (en) Radiator and electrical equipment
JP2019021825A (en) Radiator and liquid-cooling type cooling device employing the same
US11183624B2 (en) Electronic assemblies incorporating heat flux routing structures for thermoelectric generation
JP2008016598A (en) Thermoelectric module
JP2017041620A (en) Thermoelectric converter and thermoelectric conversion system
JP2013537790A (en) Device for generating current and / or voltage based on a thermoelectric module disposed in a flowing fluid
KR20180024541A (en) Thermal radiation heat body for LED module
WO2021133369A1 (en) Led element of a light-emitting array grid
JP2015216143A (en) Heat radiation structure of heating element
JP6592996B2 (en) Thermoelectric generator
US20230038693A1 (en) Light source apparatus
JP2012114466A (en) Heat pipe type cooler
RU202776U1 (en) LED element of lattice light-emitting array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190117

R151 Written notification of patent or utility model registration

Ref document number: 6473969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees