JP4288927B2 - Multistage thermoelectric module - Google Patents

Multistage thermoelectric module Download PDF

Info

Publication number
JP4288927B2
JP4288927B2 JP2002321876A JP2002321876A JP4288927B2 JP 4288927 B2 JP4288927 B2 JP 4288927B2 JP 2002321876 A JP2002321876 A JP 2002321876A JP 2002321876 A JP2002321876 A JP 2002321876A JP 4288927 B2 JP4288927 B2 JP 4288927B2
Authority
JP
Japan
Prior art keywords
thermoelectric
stage
substrate
thermoelectric element
specific substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002321876A
Other languages
Japanese (ja)
Other versions
JP2004158582A (en
Inventor
敬久 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2002321876A priority Critical patent/JP4288927B2/en
Publication of JP2004158582A publication Critical patent/JP2004158582A/en
Application granted granted Critical
Publication of JP4288927B2 publication Critical patent/JP4288927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ペルチェ効果を持つ熱電素子対を絶縁基板間に配置した熱電モジュールを、熱流が一方向になるように多段に積み重ねて構成された多段熱電モジュールに関する。
【0002】
【従来の技術】
熱エネルギーを電気エネルギーに変換したり、逆に電気エネルギーを供給することにより熱エネルギーを移動し冷却作用を及ぼしたりする熱電材料として、BiTe系の半導体が良好な熱電性能を有する熱電材料として利用されている。特に、この半導体の持つ熱電効果の1種であるペルチェ効果を利用した電子冷却素子及びゼーベック効果を利用した熱電素子は、構造が簡単で小型化及び軽量化が容易であること並びに無音及び無振動でメンテナンスも不要であることから、特殊な用途向けの小型冷蔵庫及び半導体レーザ等の半導体装置内部の温度調整器への適用等、広範囲に利用できる可能性がある。
【0003】
このようなペルチェ効果を利用した電子冷却及びゼーベック効果を利用した熱電発電に用いる熱電モジュールは、多段型のモジュール構造に組み立てられて使用されるものがある。例えば、図5に示すような2段型熱電モジュール100においては、第1段n型熱電素子101nと第1段p型熱電素子101pとが交互に隣り合わせて配置され、上部電極103d及び下部電極103eを介して直列接続され、中段絶縁基板104mと下側絶縁基板104hとで挟まれて1段目熱電変換部105を形成している。同様に、第2段n型熱電素子102nと第2段p型熱電素子102pとが交互に隣り合わせて配置され、上部電極103a及び下部電極103bを介して直列接続され、上側絶縁基板104cと中段絶縁基板104mとで挟まれて2段目熱電変換部106を形成している。また、中段絶縁基板104mの一部には貫通孔107が形成されており、この貫通孔107の内周壁には導電性被膜108が塗布されている。この導電性被膜108は、1段目熱電変換部105における第1段n型熱電素子101nに接合された上部電極103dと2段目熱電変換部106における第2段p型熱電素子102pに接合された下部電極103bとに接続され、これらの1段目熱電変換部105の第1段n型熱電素子101nと2段目熱電変換部106の第2段p型熱電素子102pとを電気的に直列接続している。このようにして構成される従来の2段型熱電モジュール100においては、これらの各段の熱電素子に通電することによって、各熱電素子が各段の吸熱側でペルチェ吸熱すると共に各段の放熱側でペルチェ放熱し、例えば、吸熱側の最外側となる上側絶縁基板104cから放熱側の最外側となる下側絶縁基板104hに向けて一方向に熱が流れる。中段絶縁基板104mは、1段目熱電変換部105の吸熱側絶縁基板であり、且つ、2段目熱電変換部106の放熱側絶縁基板でもある。
【0004】
このような従来の2段型熱電モジュール100に通電すると、例えば、1段目熱電変換部105に配置された第1段n型熱電素子101n及び第1段p型熱電素子101pに電流が流れる。これらのn型及びp型の熱電素子101n,101pは、ペルチェ効果によって、吸熱側となる中段絶縁基板104m側で吸熱すると共に、放熱側となる下側絶縁基板104hで放熱する。この電流は、更に、中段絶縁基板104mに設けられた貫通孔107内周壁に形成された導電性被膜108を介して第1段n型熱電素子101nから第2段n型熱電素子102nに流れる。そうすると、2段目熱電変換部106に配置された第2段p型熱電素子102p及び第2段n型熱電素子102nにも順次交互に電流が流れ、2段目熱電変換部106においても、1段目熱電変換部105と同様に、ペルチェ効果によって、吸熱側となる上側絶縁基板104c側で吸熱すると共に、放熱側となる中段絶縁基板104m側で放熱する。この従来の多段熱電モジュール100においては、貫通孔107内周壁に形成された導電性被膜108を介して各段の熱電素子同士を電気的に接続することによって、リード線等で各段の熱電素子同士を接続する場合と比較して、よりコンパクトで信頼性が高い多段熱電モジュールを構成している(例えば、特許文献1参照。)。
【0005】
【特許文献1】
特開平10−190071号公報(第1頁、第4図)
【0006】
【発明が解決しようとする課題】
しかしながら、このような従来の多段熱電モジュール100において、より高密度に熱電素子を設置するために、例えば、図6に示すように、1段目熱電変換部105に配置された第1段n型熱電素子101nの直上に第2段n型熱電素子102nを配置し、これらの第1段n型熱電素子101nと第2段n型熱電素子102nとの間に位置する中段絶縁基板104mに貫通孔107を設けて、この貫通孔107内周壁に形成された導電性被膜108を、第1段n型熱電素子101nとはんだ110dを介して接合された上部電極103d及び第2段n型熱電素子102nとはんだ110bを介して接合された下部電極103bと一体化させることによって、1段目熱電変換部105に配置された第1段n型熱電素子101nと2段目熱電変換部106に配置された第2段n型熱電素子102nとを電気的に接続するような場合、この貫通孔107の内部には気泡(ボイド)111が残ってしまう。このような気泡111が残留した多段熱電モジュール100においては、この多段熱電モジュール100を稼働することにより熱冷サイクルが発生するような場合、気泡111内部の圧力が温度変化に応じて変動し、この気泡111周辺に応力が発生する。このため、貫通孔107の上下に配置された第1段n型熱電素子101n及び第2段n型熱電素子102nと夫々の上部電極103d及び下部電極103bに接合するためのはんだ110d及び110bとの接合部にクラックが入り易い等、耐久性が劣化する原因となり、この多段熱電モジュールの性能劣化の要因ともなる。
【0007】
本発明はかかる問題点に鑑みてなされたものであって、各段の熱電変換部における熱電素子を高い耐久性を備えた方法により電気的に接続することによって、高い信頼性を有する多段熱電モジュールを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明に係る多段熱電モジュールは、上下に対向して配置された3個以上の基板と、前記各基板の各対向面に形成された夫々複数個の上部電極及び下部電極と、前記各基板間に配置された複数個のp型熱電素子及びn型熱電素子とを有し、前記基板間に配置された熱電素子群毎に前記p型熱電素子及びn型熱電素子が交互に直列及び/又は並列に接続されるように前記上部電極及び下部電極に夫々1対又は複数対のp型熱電素子及びn型熱電素子が接触して熱電変換部が構成され、更に前記熱電素子群が直列に接続されて前記熱電変換部が多段に構成され、一方の最外側の基板から他方の最外側の基板に向けて一方向に熱が流れる多段の熱電モジュールにおいて、
第1定基板の下部電極とそれより2段以上上方の第2特定基板の上部電極とを接続すると共に、前記第1特定基板と前記第2特定基板の間の基板から離れた接続用熱電素子が前記第1特定基板の熱電素子群の最端列に配置され、この接続用熱電素子自身が、前記第1特定基板の下部電極に接続された熱電変換部の熱電素子と前記第2特定基板の上部電極に接続された熱電変換部の熱電素子とを兼ねていることを特徴とする。
【0009】
前記接続用熱電素子は、前記第1定基と前記第2特定基板との間の基板に形成されたスルーホール間に配置されると共に、前記第1定基板の下部電極と前記第2特定基板の上部電極とを接続することができる。
【0010】
前記接続用熱電素子は、前記第1定基と前記第2特定基板との間の基板に形成された切欠間に配置されると共に、前記第1定基板の下部電極と前記第2特定基板の上部電極とを接続しても良い。
【0011】
また、前記第1定基と第2特定基板との間の基板は前記第1定基板及び前記第2特定基板よりも平面視での外形寸法が小さく、前記接続用熱電素子は前記第1定基板及び前記第2特定基板が前記第1特定基板と前記第2特定基板との間の基板より平面視において突出した部分に設けられると共に、前記突出した部分の対面に形成された前記第1定基板の下部電極と前記第2特定基板の上部電極とを接続しても良い。
【0012】
【発明の実施の形態】
以下、本発明に係る多段熱電モジュールの実施形態について、添付の図面を参照して具体的に説明する。図1は、本発明の第1の実施形態に係る多段熱電モジュールにおける接続用熱電素子を示す断面図である。本実施形態においては、放熱側基板4h上に形成された下部電極7b上にはんだ6bを介して接合された接続用熱電素子1が、中段基板4mに設けられたスルーホール5の間に配置され、吸熱側基板4c上に形成された上部電極7a上にはんだ6aを介して接合されている。接続用熱電素子1は、放熱側基板4h上の下部電極7b及び吸熱側基板4c上の上部電極7aに夫々はんだ7b及び7aを介して接続されて、1段目熱電変換部15と2段目熱電変換部16とを電気的に接続している。
【0013】
このような構成とすることによって、本実施形態に係る多段熱電モジュールにおいては、1段目熱電変換部15の下部電極7bより2段目熱電変換部16の上部電極7aに届く高さの接続用熱電素子1が、中段基板4mに設けられたスルーホール5を貫通して1段目熱電変換部15の下部電極7bと2段目熱電変換部16の上部電極7aとにはんだ6b及び6aを介して接合される。このため、多段熱電モジュールを稼働させるために通電する場合、この接続用熱電素子1自身が、1段目熱電変換部15と2段目熱電変換部16とを電気的に接続する。よって、従来のように、1段目熱電変換部の熱電素子と2段目熱電変換部の熱電素子とを電気的に接続するために、スルーホール内周壁に導電性被膜を形成する必要が無い。従って、従来の多段熱電モジュールにおいて、スルーホール内部に残存して多段熱電モジュールの耐久性を劣化させる原因となっていた気泡が形成されることがない。また、本実施形態においては、1段目熱電変換部15の熱電素子と2段目熱電変換部16の熱電素子とを電気的に接続するのではなく、接続用熱電素子1自身が、1段目熱電変換部15の熱電素子と2段目熱電変換部16の熱電素子とを兼ねている。即ち、接合箇所が少ないので、信頼性が高い構成となっている。よって、本実施形態に係る多段熱電モジュールは、耐久性及び信頼性を向上させることができる。
【0014】
次に、本発明の第2の実施形態について、図2を参照して説明する。図2(a)は第2の実施形態に係る多段熱電モジュールを示す平面図であり、図2(b)は図2(a)におけるA−A線による断面図であり、図2(c)は図2(a)におけるB−B線による断面図である。本実施形態においては、1辺が8.0mmの正方形状で厚さが0.3mmのアルミナからなる放熱側基板4h上に形成された銅電極(図示せず)上に、底面形状が1辺が0.75mmの正方形状で高さが0.90mmの立方柱状であるn型及びp型の第1段熱電素子2が交互に隣り合わせに並べられてはんだ(図示せず)を介して接合されると共に、底面形状が1辺が0.75mmの正方形状で高さが2.20mmの立方柱状である1対のn型及びp型の接続用熱電素子1が、第1段熱電素子2の最端列に配置され、全部で31対の熱電素子対が1段目に設置されている。そして、これらの熱電素子対が直列に接続されるように下面に銅電極(図示せず)のパターンが形成されると共に、接続用熱電素子1を間に配置することができる大きさの矩形の切欠25が1辺に設けられた1辺が8.0mmの正方形状で厚さが0.3mmのアルミナからなる中段基板4mが、熱電素子対とはんだ(図示せず)を介して、この下面の銅電極で接合されている。このようにして、1段目熱電変換部15が構成されている。一方、中段基板4mの上面にも銅電極(図示せず)が形成されており、この銅電極上に、底面形状が1辺が0.75mmの正方形状で高さが0.90mmの立方柱状であるn型及びp型の第2段熱電素子3が交互に隣り合わせに並べられてはんだ(図示せず)を介して接合されている。また、これらの第2段熱電素子3と、中段基板4mに設けられた切欠25を貫通して第2段熱電素子3と隣り合わせに並んだ接続用熱電素子1とが、直列に接続されるように下面に銅電極(図示せず)のパターンが形成され1辺が4.0mmの正方形状で厚さが0.3mmのアルミナからなる吸熱側基板4cが、第2段熱電素子3及び接続用熱電素子1とはんだ(図示せず)を介して、この下面の銅電極で接合されることによって、全部で8対の熱電素子対が2段目に設置されている。このようにして、2段目熱電変換部16が構成されている。
【0015】
次に、本発明の第3の実施形態について、図3を参照して説明する。図3(a)は第3の実施形態に係る多段熱電モジュールを示す平面図であり、図3(b)は図3(a)におけるC−Cによる断面図であり、図3(c)は図3(a)におけるD−Dによる断面図である。本実施形態においては、1辺が8.0mmの正方形状で厚さが0.3mmのアルミナからなる放熱側基板4h上に形成された銅電極(図示せず)上に、底面形状が1辺が0.75mmの正方形状で高さが0.90mmの立方柱状であるn型及びp型の第1段熱電素子2が交互に隣り合わせに並べられてはんだ(図示せず)を介して接合されると共に、底面形状が1辺が0.75mmの正方形状で高さが2.20mmの立方柱状である1対のn型及びp型の接続用熱電素子1が、中段基板4mから離れて第1段熱電素子2の最端列に配置されると共に、吸熱側基板4c及び放熱側基板4hが突出したモジュール外端部に配置されることによって、全部で29対の熱電素子対が1段目に設置されている。そして、これらの熱電素子対が直列に接続されるように下面に銅電極(図示せず)のパターンが形成された長辺が8.0mm、短辺が7.0mmの長方形状で厚さが0.3mmのアルミナからなる中段基板4mが、熱電素子対とはんだ(図示せず)を介して、この下面の銅電極で接合されている。このようにして、1段目熱電変換部15が構成されている。一方、中段基板4mの上面にも銅電極(図示せず)が形成されており、この銅電極上に、底面形状が1辺が0.75mmの正方形状で高さが0.90mmの立方柱状であるn型及びp型の第2段熱電素子3が交互に隣り合わせに並べられてはんだ(図示せず)を介して接合されている。また、これらの第2段熱電素子3と、中段基板4mから離れて吸熱側基板4c及び放熱側基板4hが突出したモジュール外端部に配置されて第2段熱電素子3と隣り合わせに並んだ接続用熱電素子1とが、直列に接続されるように下面に銅電極(図示せず)のパターンが形成され1辺が4.0mmの正方形状で厚さが0.3mmのアルミナからなる吸熱側基板4cが、第2段熱電素子3及び接続用熱電素子1とはんだ(図示せず)を介して、この下面の銅電極で接合されることによって、全部で7対の熱電素子対が2段目に設置されている。このようにして、2段目熱電変換部16が構成されている。
【0016】
本発明の第2及び第3の実施形態においては、1段目熱電変換部15の下部電極より2段目熱電変換部16の上部電極に届く高さの接続用熱電素子1が、中段基板4m端部に設けられた矩形の切欠25の間か又は中段基板4mから離れて吸熱側基板4c及び放熱側基板4hが突出したモジュール外端部に配置されることによって、1段目熱電変換部15の下部電極7bと2段目熱電変換部16の上部電極7aとにはんだ6b及び6aを介して接合される。このため、多段熱電モジュールを稼働させるために通電する場合、1段目熱電変換部15に配置された一部の熱電素子2を経由して流れた電流が、この1対の接続用熱電素子1のうちの1個を介して1段目熱電変換部15から2段目熱電変換部16へ流れ(上向き矢印にて図示)、2段目熱電変換部15に配置された熱電素子3を経由した後、もう1個の接続用熱電素子1を介して1段目熱電変換部15へ戻り(下向き矢印にて図示)、残りの熱電素子2に流れる。このようにして接続用熱電素子1は、1段目熱電変換部15と2段目熱電変換部16とを電気的に接続することができる。よって、従来のように、1段目熱電変換部と2段目熱電変換部とを電気的に接続するための導電性被膜等を形成する必要が無い。従って、1段目熱電変換部と2段目熱電変換部とを電気的に接続するためのスルーホール内部等に残存して多段熱電モジュールの耐久性を劣化させる原因となっていた気泡が形成されることもない。また、本発明においては、1段目熱電変換部15の熱電素子と2段目熱電変換部16の熱電素子とを電気的に接続するのではなく、接続用熱電素子1自身が、1段目熱電変換部15の熱電素子2と2段目熱電変換部16の熱電素子3とを兼ねていて接合箇所が少ないので、熱冷サイクルに対しての耐久性が高い構成となっている。よって、本発明に係る多段熱電モジュールは、耐久性を向上させることができる。なお、図2に示す第2実施形態の中段基板4mのように、切欠型の場合には、チップとの寸法マージンをとることができるという利点があり、図3に示す第3実施形態の吸熱側基板4c及び放熱側基板4hのように、突出型の場合には、基板加工が少なくてすむという利点がある。
【0017】
本実施形態においては、多段熱電モジュールとして、2段の熱電変換部で構成される熱電モジュールの例を示したが、本発明は段数を限定せずに複数の段数を有する多段熱電モジュールに適用することができる。
【0018】
【実施例】
次に、本発明の実施例について、添付の図面を参照して具体的に説明する。本実施例においては、図2に示した第2の実施形態と同一構造の多段熱電モジュールを22個製造した。また、図4(a)は比較例として製造した従来技術による多段熱電モジュールを示す平面図であり、図4(b)は図4(a)におけるE−Eによる断面図であり、図4(c)は図4(a)におけるF−Fによる断面図である。この比較例の多段熱電モジュールにおいては、第2の実施形態と同様に、1辺が8.0mmの正方形状で厚さが0.3mmのアルミナからなる放熱側基板4h上に形成された銅電極(図示せず)上に、底面形状が1辺が0.75mmの正方形状で高さが0.90mmの立方柱状であるn型及びp型の第1段熱電素子2が交互に隣り合わせに並べられてはんだ(図示せず)を介して接合され、全部で31対の熱電素子対が1段目に設置されている。そして、これらの熱電素子対が直列に接続されるように下面に銅電極(図示せず)のパターンが形成され1辺が8.0mmの正方形状で厚さが0.3mmのアルミナからなる中段基板4mが、熱電素子対とはんだ(図示せず)を介して、この下面の銅電極で接合されている。このようにして、1段目熱電変換部15が構成されている。一方、中段基板4mの上面にも銅電極(図示せず)が形成されており、この銅電極上に、底面形状が1辺が0.75mmの正方形状で高さが0.90mmの立方柱状であるn型及びp型の第2段熱電素子3が交互に隣り合わせに並べられてはんだ(図示せず)を介して接合されている。そして、これらの熱電素子対が直列に接続されるように下面に銅電極(図示せず)のパターンが形成され1辺が4.0mmの正方形状で厚さが0.3mmのアルミナからなる吸熱側基板4cが、第2段熱電素子3とはんだ(図示せず)を介して、この下面の銅電極で接合されることによって、全部で8対の熱電素子対が2段目に設置されて、2段目熱電変換部16が構成されている。また、中段基板4mの一部には2個のスルーホール112が設けられている。そして、スルーホール112の内周壁には導電性被膜(図示せず)が形成されており、このスルーホール112の上下に配置された第1段熱電素子2及び第2段熱電素子3に接合された銅電極(図示せず)と接続されて、1段目熱電変換部15と2段目熱電変換部16とを電気的に接続している。このように構成された従来技術による多段熱電モジュールを、22個製造して比較例とした。
【0019】
上述のような夫々22個の実施例及び比較例の多段熱電モジュールのサンプルに対し、これらの実施例及び比較例の全てのサンプルのAC抵抗を測定してから、−40℃で15分間及び+85℃で15分間の熱冷サイクルを1000サイクル実施した。その後、AC抵抗を再測定し、1000サイクルの熱冷サイクルの前後において、AC抵抗変化率が5%を超えたサンプルを不良品と判定した。本実施例及び比較例によるサンプルでの判定結果を下記表1に示す。
【0020】
【表1】

Figure 0004288927
【0021】
上記表1から明らかなように、従来技術による比較例の多段熱電モジュールでは、熱冷サイクル後に2個の不良品が発生した。一方、本実施例の多段熱電モジュールは、温度差が125℃の過酷な1000サイクルの熱冷サイクルによってもAC抵抗変化率が5%を超える不良品が発生することがなく、優れた耐久性を備えていることが証明された。
【0022】
【発明の効果】
以上詳述したように、本発明に係る多段熱電モジュールにおいては、第1特定基板の熱電変換部の熱電素子とそれより2段以上上方の第2特定基板の熱電変換部の熱電素子とを兼ねる接続用熱電素子が、各段の熱電変換部を分ける中段基板に設けられたスルーホール又は切欠を貫通するか若しくは下段の熱電変換部の放熱側基板及び上段の熱電変換部の吸熱側基板が突出したモジュール外端部に中段基板から離れて配置されると共に、下段の熱電変換部の下部電極と上段の熱電変換部の上部電極とにはんだ等を介して接合される。このため、多段熱電モジュールを稼働させるために通電する場合、この接続用熱電素子自身が、複数段の熱電変換部を電気的に接続することができる。よって、従来のように、複数段の熱電変換部を電気的に接続するために、スルーホール内周壁に導電性被膜を形成する必要が無い。従って、従来の多段熱電モジュールにおいて、スルーホール内部に残存して多段熱電モジュールの耐久性を劣化させる原因となっていた気泡は形成されない。また、本発明による複数段の熱電変換部を電気的に接続する方法は、接合箇所が少なく耐久性が高い構成となっている。従って、本発明に係る多段熱電モジュールは、耐久性を向上させることができる。
【図面の簡単な説明】
【図1】第1の実施形態に係る多段熱電モジュールを示す部分的断面図である。
【図2】図2(a)は第2の実施形態の平面図であり、図2(b)は図2(a)におけるA−Aによる断面図であり、図2(c)は図2(a)におけるB−Bによる断面図である。
【図3】図3(a)は第3の実施形態の平面図であり、図3(b)は図3(a)におけるC−Cによる断面図であり、図3(c)は図3(a)におけるD−Dによる断面図である。
【図4】図4(a)は比較例としての従来技術による多段熱電モジュールの平面図であり、図4(b)は図4(a)におけるE−Eによる断面図であり、図4(c)は図4(a)におけるF−Fによる断面図である。
【図5】従来の多段熱電モジュールを示す断面図である。
【図6】従来の多段熱電モジュールにおける問題点を説明するための断面図である。
【符号の説明】
1;接続用熱電素子
2;第1段熱電素子
3;第2段熱電素子
4c;吸熱側基板
4m;中段基板
4h;放熱側基板
5,112;スルーホール
6a,6b,110a,110b,110d,110e;はんだ
7a;上部電極
7b;下部電極
15,105;1段目熱電変換部
16,106;2段目熱電変換部
25;切欠
100;従来技術による2段型熱電モジュール
101n;第1段n型熱電素子
101p;第1段p型熱電素子
102n;第2段n型熱電素子
102p;第1段p型熱電素子
103a;第2段上部電極
103b;第2段下部電極
103d;第1段上部電極
103e;第1段下部電極
104c;上側絶縁基板
104m;中段絶縁基板
104h;下側絶縁基板
107;貫通孔
108;導電性被膜
111;気泡(ボイド)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multistage thermoelectric module configured by stacking thermoelectric modules in which thermoelectric element pairs having a Peltier effect are arranged between insulating substrates in multiple stages so that the heat flow is in one direction.
[0002]
[Prior art]
BiTe-based semiconductors are used as thermoelectric materials with good thermoelectric performance as thermoelectric materials that convert thermal energy into electrical energy or, conversely, supply thermal energy to move thermal energy and exert a cooling effect. ing. In particular, an electronic cooling element using the Peltier effect, which is one of the thermoelectric effects of this semiconductor, and a thermoelectric element using the Seebeck effect are simple in structure, easy to reduce in size and weight, and are silent and vibration-free. Since no maintenance is required, there is a possibility that it can be used in a wide range such as application to a temperature controller inside a semiconductor device such as a small refrigerator for special applications and a semiconductor laser.
[0003]
Some thermoelectric modules used for thermoelectric power generation using the electronic cooling using the Peltier effect and the Seebeck effect are assembled into a multi-stage module structure. For example, in the two-stage thermoelectric module 100 as shown in FIG. 5, the first-stage n-type thermoelectric elements 101n and the first-stage p-type thermoelectric elements 101p are alternately arranged adjacent to each other, and the upper electrode 103d and the lower electrode 103e. Are connected in series, and are sandwiched between the middle insulating substrate 104m and the lower insulating substrate 104h to form the first-stage thermoelectric converter 105. Similarly, the second-stage n-type thermoelectric element 102n and the second-stage p-type thermoelectric element 102p are alternately arranged adjacent to each other, connected in series via the upper electrode 103a and the lower electrode 103b, and the upper-stage insulating substrate 104c and the middle-stage insulating element. A second-stage thermoelectric conversion unit 106 is formed between the substrates 104m. A through hole 107 is formed in a part of the middle insulating substrate 104m, and a conductive coating 108 is applied to the inner peripheral wall of the through hole 107. The conductive film 108 is bonded to the upper electrode 103 d bonded to the first-stage n-type thermoelectric element 101 n in the first-stage thermoelectric conversion unit 105 and to the second-stage p-type thermoelectric element 102 p in the second-stage thermoelectric conversion unit 106. The first-stage n-type thermoelectric element 101n of the first-stage thermoelectric conversion unit 105 and the second-stage p-type thermoelectric element 102p of the second-stage thermoelectric conversion unit 106 are electrically connected in series to the lower electrode 103b. Connected. In the conventional two-stage thermoelectric module 100 configured as described above, each thermoelectric element absorbs Peltier heat at the heat absorption side of each stage and the heat dissipation side of each stage by energizing these thermoelectric elements. Peltier heat is dissipated, and, for example, heat flows in one direction from the upper insulating substrate 104c which is the outermost side on the heat absorption side toward the lower insulating substrate 104h which is the outermost side on the heat dissipation side. The middle-stage insulating substrate 104m is a heat-absorption-side insulating substrate of the first-stage thermoelectric conversion unit 105, and is also a heat-dissipation-side insulating substrate of the second-stage thermoelectric conversion unit 106.
[0004]
When such a conventional two-stage thermoelectric module 100 is energized, for example, a current flows through the first-stage n-type thermoelectric element 101n and the first-stage p-type thermoelectric element 101p arranged in the first-stage thermoelectric conversion unit 105. These n-type and p-type thermoelectric elements 101n and 101p absorb heat by the Peltier effect on the intermediate insulating substrate 104m side which is the heat absorption side and radiate heat by the lower insulating substrate 104h which is the heat dissipation side. This current further flows from the first-stage n-type thermoelectric element 101n to the second-stage n-type thermoelectric element 102n via the conductive film 108 formed on the inner peripheral wall of the through hole 107 provided in the middle-stage insulating substrate 104m. As a result, a current sequentially flows through the second-stage p-type thermoelectric element 102p and the second-stage n-type thermoelectric element 102n arranged in the second-stage thermoelectric conversion section 106, and the second-stage thermoelectric conversion section 106 also has 1 Similar to the stage thermoelectric conversion portion 105, the Peltier effect absorbs heat on the upper insulating substrate 104c side serving as the heat absorbing side and radiates heat on the middle insulating substrate 104m side serving as the heat radiating side. In this conventional multistage thermoelectric module 100, the thermoelectric elements at each stage are electrically connected to each other through lead wires or the like through the conductive film 108 formed on the inner peripheral wall of the through hole 107. Compared with the case where they are connected to each other, a multistage thermoelectric module that is more compact and highly reliable is configured (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
JP-A-10-190071 (first page, FIG. 4)
[0006]
[Problems to be solved by the invention]
However, in such a conventional multi-stage thermoelectric module 100, in order to install thermoelectric elements at a higher density, for example, as shown in FIG. 6, the first-stage n-type disposed in the first-stage thermoelectric conversion unit 105 is used. A second-stage n-type thermoelectric element 102n is disposed immediately above the thermoelectric element 101n, and a through-hole is formed in the middle-stage insulating substrate 104m located between the first-stage n-type thermoelectric element 101n and the second-stage n-type thermoelectric element 102n. The upper electrode 103d and the second stage n-type thermoelectric element 102n joined to the first stage n-type thermoelectric element 101n via the solder 110d are provided with the conductive film 108 formed on the inner peripheral wall of the through-hole 107. 1st n-type thermoelectric element 101n arranged in the first-stage thermoelectric converter 105 and second-stage thermoelectric conversion If a second-stage n-type thermoelectric elements 102n arranged in part 106 so as to electrically connect, it leaves a bubble (void) 111 inside the through hole 107. In such a multistage thermoelectric module 100 in which bubbles 111 remain, when a thermal cooling cycle is generated by operating the multistage thermoelectric module 100, the pressure inside the bubbles 111 fluctuates according to the temperature change. Stress is generated around the bubble 111. Therefore, the first-stage n-type thermoelectric element 101n and the second-stage n-type thermoelectric element 102n arranged above and below the through-hole 107 and the solders 110d and 110b for joining to the upper electrode 103d and the lower electrode 103b, respectively. It becomes a cause of deterioration of durability, such as a crack is likely to occur in the joint portion, and a factor of performance deterioration of the multistage thermoelectric module.
[0007]
The present invention has been made in view of such problems, and is a multi-stage thermoelectric module having high reliability by electrically connecting thermoelectric elements in thermoelectric conversion sections of each stage by a method having high durability. The purpose is to provide.
[0008]
[Means for Solving the Problems]
A multi-stage thermoelectric module according to the present invention includes three or more substrates arranged vertically opposite to each other, a plurality of upper electrodes and lower electrodes formed on each facing surface of each substrate, and between the substrates. A plurality of p-type thermoelectric elements and n-type thermoelectric elements, and the p-type thermoelectric elements and the n-type thermoelectric elements are alternately arranged in series and / or for each thermoelectric element group arranged between the substrates. One or more pairs of p-type and n-type thermoelectric elements are in contact with the upper electrode and the lower electrode so as to be connected in parallel to form a thermoelectric conversion unit , and the thermoelectric element groups are connected in series. In the multi-stage thermoelectric module in which the thermoelectric converter is configured in multiple stages, and heat flows in one direction from one outermost substrate to the other outermost substrate,
With connecting the upper electrode of the lower electrode and it than two or more stages above the second specific substrate of the first Japanese Sadamoto plate, for connection away from the substrate between the said first specific substrate second specific substrate A thermoelectric element is arranged in the outermost row of the thermoelectric element group of the first specific substrate, and the thermoelectric element for connection itself is connected to the thermoelectric element of the thermoelectric conversion unit connected to the lower electrode of the first specific substrate and the second It also serves as a thermoelectric element of a thermoelectric conversion unit connected to the upper electrode of the specific substrate .
[0009]
The connecting thermoelectric elements, said while being disposed between the formed through hole on the substrate between the first Japanese Sadamoto plate and the second specific substrate, wherein the lower electrode of the first Japanese Sadamoto plate second The upper electrode of the specific substrate can be connected.
[0010]
The connecting thermoelectric elements, said while being disposed between formed notches in the substrate between the first Japanese Sadamoto plate and the second specific substrate, said second identification and the lower electrode of the first Japanese Sadamoto plate You may connect with the upper electrode of a board | substrate.
[0011]
Further, the substrate between the first Japanese Sadamoto plate and the second specific substrate has a small external dimensions in plan view than the first Japanese Sadamoto plate and the second specific substrate, wherein the connecting thermoelectric element and the second 1 with Japanese Sadamoto plate and the second specific substrate is provided in the protruding portion in the plan view from the substrate between the second specific substrate and the first specific substrate, it is formed in pairs facing surfaces of the projecting portion and it may be connected to the upper electrode of the second specific substrate and the lower electrode of the first Japanese Sadamoto plate.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a multistage thermoelectric module according to the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a connecting thermoelectric element in a multistage thermoelectric module according to a first embodiment of the present invention. In the present embodiment, the connecting thermoelectric element 1 joined via the solder 6b on the lower electrode 7b formed on the heat radiation side substrate 4h is disposed between the through holes 5 provided in the middle stage substrate 4m. The upper electrode 7a formed on the heat absorption side substrate 4c is joined via the solder 6a. The connecting thermoelectric element 1 is connected to the lower electrode 7b on the heat radiation side substrate 4h and the upper electrode 7a on the heat absorption side substrate 4c via solders 7b and 7a, respectively, and the first stage thermoelectric conversion unit 15 and the second stage The thermoelectric converter 16 is electrically connected.
[0013]
By adopting such a configuration, in the multistage thermoelectric module according to the present embodiment, the height of the connection reaches from the lower electrode 7b of the first stage thermoelectric converter 15 to the upper electrode 7a of the second stage thermoelectric converter 16. The thermoelectric element 1 passes through the through-hole 5 provided in the middle stage substrate 4m, and passes through the lower electrode 7b of the first stage thermoelectric conversion part 15 and the upper electrode 7a of the second stage thermoelectric conversion part 16 via solders 6b and 6a. Are joined. For this reason, when energizing to operate the multi-stage thermoelectric module, the connecting thermoelectric element 1 itself electrically connects the first-stage thermoelectric converter 15 and the second-stage thermoelectric converter 16. Therefore, unlike the prior art, in order to electrically connect the thermoelectric element of the first stage thermoelectric conversion part and the thermoelectric element of the second stage thermoelectric conversion part, there is no need to form a conductive film on the inner peripheral wall of the through hole. . Therefore, in the conventional multistage thermoelectric module, bubbles that remain inside the through hole and cause deterioration of the durability of the multistage thermoelectric module are not formed. In the present embodiment, the thermoelectric element of the first-stage thermoelectric conversion unit 15 and the thermoelectric element of the second-stage thermoelectric conversion unit 16 are not electrically connected, but the connecting thermoelectric element 1 itself is one-stage. The thermoelectric element of the eye thermoelectric conversion unit 15 also serves as the thermoelectric element of the second stage thermoelectric conversion unit 16. That is, since there are few joints, it has a highly reliable configuration. Therefore, the multistage thermoelectric module according to this embodiment can improve durability and reliability.
[0014]
Next, a second embodiment of the present invention will be described with reference to FIG. 2A is a plan view showing a multistage thermoelectric module according to the second embodiment, and FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A, and FIG. These are sectional drawings by the BB line in Drawing 2 (a). In the present embodiment, the shape of the bottom surface is one side on a copper electrode (not shown) formed on the heat radiation side substrate 4h made of alumina having a square shape with a side of 8.0 mm and a thickness of 0.3 mm. N-type and p-type first stage thermoelectric elements 2 each having a square shape of 0.75 mm and a cubic column shape having a height of 0.90 mm are alternately arranged next to each other and joined via solder (not shown). In addition, a pair of n-type and p-type connection thermoelectric elements 1 having a bottom face shape of a square shape with a side of 0.75 mm and a height of 2.20 mm are connected to the first stage thermoelectric element 2. Arranged in the endmost row, a total of 31 thermoelectric element pairs are installed in the first stage. Then, a pattern of copper electrodes (not shown) is formed on the lower surface so that these thermoelectric element pairs are connected in series, and a rectangular shape having a size capable of arranging the connecting thermoelectric element 1 therebetween. A middle substrate 4m made of alumina having a square shape with a side of 8.0 mm and a thickness of 0.3 mm with a notch 25 provided on one side is connected to the bottom surface via a thermoelectric element pair and solder (not shown). Are joined by copper electrodes. In this way, the first-stage thermoelectric conversion unit 15 is configured. On the other hand, a copper electrode (not shown) is also formed on the upper surface of the middle stage substrate 4m, and on this copper electrode, the bottom shape is a square shape with a side of 0.75 mm and a cubic column shape with a height of 0.90 mm. N-type and p-type second-stage thermoelectric elements 3 are alternately arranged next to each other and joined via solder (not shown). Further, these second-stage thermoelectric elements 3 and the connecting thermoelectric elements 1 that pass through the notches 25 provided in the middle-stage substrate 4m and are arranged adjacent to the second-stage thermoelectric elements 3 are connected in series. A heat absorption side substrate 4c made of alumina with a pattern of copper electrodes (not shown) formed on the lower surface and a square shape with a side of 4.0 mm and a thickness of 0.3 mm is connected to the second stage thermoelectric element 3 and the connection. The thermoelectric element 1 and solder (not shown) are joined by the copper electrodes on the lower surface, so that a total of eight thermoelectric element pairs are installed in the second stage. In this way, the second-stage thermoelectric conversion unit 16 is configured.
[0015]
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 3A is a plan view showing a multistage thermoelectric module according to the third embodiment, FIG. 3B is a cross-sectional view taken along the line CC in FIG. 3A, and FIG. It is sectional drawing by DD in Fig.3 (a). In the present embodiment, the shape of the bottom surface is one side on a copper electrode (not shown) formed on the heat radiation side substrate 4h made of alumina having a square shape with a side of 8.0 mm and a thickness of 0.3 mm. N-type and p-type first stage thermoelectric elements 2 each having a square shape of 0.75 mm and a cubic column shape having a height of 0.90 mm are alternately arranged next to each other and joined via solder (not shown). In addition, a pair of n-type and p-type connecting thermoelectric elements 1 whose bottom shape is a square shape having a side of 0.75 mm and a height of 2.20 mm is separated from the middle substrate 4m. Arranged at the outermost end row of the first stage thermoelectric element 2 and at the outer end of the module from which the heat absorption side substrate 4c and the heat radiation side substrate 4h protrude, there are a total of 29 thermoelectric element pairs in the first stage. Is installed. Then, a copper electrode (not shown) pattern formed on the lower surface so that these thermoelectric element pairs are connected in series is a rectangular shape having a long side of 8.0 mm and a short side of 7.0 mm. A middle stage substrate 4m made of 0.3 mm alumina is bonded to the lower surface copper electrode via a thermoelectric element pair and solder (not shown). In this way, the first-stage thermoelectric conversion unit 15 is configured. On the other hand, a copper electrode (not shown) is also formed on the upper surface of the middle stage substrate 4m, and on this copper electrode, the bottom shape is a square shape with a side of 0.75 mm and a cubic column shape with a height of 0.90 mm. N-type and p-type second-stage thermoelectric elements 3 are alternately arranged next to each other and joined via solder (not shown). Further, these second-stage thermoelectric elements 3 are connected to the second-stage thermoelectric elements 3 so as to be arranged adjacent to the second-stage thermoelectric elements 3 at the outer end of the module where the heat absorption side substrate 4c and the heat dissipation side substrate 4h are separated from the middle substrate 4m. A heat absorption side made of alumina having a square shape with a side of 4.0 mm and a thickness of 0.3 mm with a copper electrode pattern (not shown) formed on the lower surface so that the thermoelectric element 1 is connected in series The substrate 4c is joined to the second stage thermoelectric element 3 and the connecting thermoelectric element 1 via the solder (not shown) with the copper electrode on the lower surface, so that a total of seven thermoelectric element pairs are in two stages. It is installed in the eye. In this way, the second-stage thermoelectric conversion unit 16 is configured.
[0016]
In the second and third embodiments of the present invention, the connecting thermoelectric element 1 having a height that reaches the upper electrode of the second-stage thermoelectric conversion unit 16 from the lower electrode of the first-stage thermoelectric conversion unit 15 is the middle substrate 4m. The first-stage thermoelectric conversion unit 15 is arranged between the rectangular cutouts 25 provided at the end portions or at the module outer end portion where the heat-absorbing side substrate 4c and the heat-dissipation side substrate 4h protrude away from the middle-stage substrate 4m. The lower electrode 7b of the second stage and the upper electrode 7a of the second stage thermoelectric converter 16 are joined via solders 6b and 6a. For this reason, when energizing in order to operate a multistage thermoelectric module, the current that has flowed through a part of the thermoelectric elements 2 arranged in the first-stage thermoelectric conversion section 15 is converted into this pair of connection thermoelectric elements 1. The first-stage thermoelectric conversion unit 15 flows to the second-stage thermoelectric conversion unit 16 through one of them (shown by an upward arrow), and passes through the thermoelectric element 3 arranged in the second-stage thermoelectric conversion unit 15. Thereafter, the flow returns to the first-stage thermoelectric conversion unit 15 via another connecting thermoelectric element 1 (shown by a downward arrow) and flows to the remaining thermoelectric elements 2. In this way, the connecting thermoelectric element 1 can electrically connect the first-stage thermoelectric converter 15 and the second-stage thermoelectric converter 16. Therefore, unlike the conventional case, there is no need to form a conductive film or the like for electrically connecting the first-stage thermoelectric conversion section and the second-stage thermoelectric conversion section. Accordingly, bubbles are formed that remain in the through hole for electrically connecting the first-stage thermoelectric conversion section and the second-stage thermoelectric conversion section and cause deterioration of the durability of the multistage thermoelectric module. It never happens. In the present invention, the thermoelectric element of the first stage thermoelectric conversion section 15 and the thermoelectric element of the second stage thermoelectric conversion section 16 are not electrically connected, but the connecting thermoelectric element 1 itself is the first stage. Since the thermoelectric element 2 of the thermoelectric conversion part 15 and the thermoelectric element 3 of the second stage thermoelectric conversion part 16 are combined and there are few junctions, it has the structure with high durability with respect to a heat-cooling cycle. Therefore, the multistage thermoelectric module according to the present invention can improve durability. In the case of a notch type like the middle substrate 4m of the second embodiment shown in FIG. 2, there is an advantage that a dimensional margin with the chip can be taken, and the heat absorption of the third embodiment shown in FIG. In the case of the protruding type, such as the side substrate 4c and the heat radiation side substrate 4h, there is an advantage that substrate processing is reduced.
[0017]
In the present embodiment, an example of a thermoelectric module including a two-stage thermoelectric conversion unit is shown as a multistage thermoelectric module. However, the present invention is applied to a multistage thermoelectric module having a plurality of stages without limiting the number of stages. be able to.
[0018]
【Example】
Next, embodiments of the present invention will be specifically described with reference to the accompanying drawings. In this example, 22 multistage thermoelectric modules having the same structure as that of the second embodiment shown in FIG. 2 were manufactured. FIG. 4A is a plan view showing a conventional multi-stage thermoelectric module manufactured as a comparative example, and FIG. 4B is a cross-sectional view taken along line EE in FIG. (c) is sectional drawing by FF in Fig.4 (a). In the multi-stage thermoelectric module of this comparative example, as in the second embodiment, a copper electrode formed on a heat radiation side substrate 4h made of alumina having a square shape with sides of 8.0 mm and a thickness of 0.3 mm. The n-type and p-type first-stage thermoelectric elements 2 having a square bottom shape with a side of 0.75 mm and a cubic column shape with a height of 0.90 mm are alternately arranged next to each other (not shown). In total, 31 thermoelectric element pairs are installed in the first stage through solder (not shown). Then, a pattern of copper electrodes (not shown) is formed on the lower surface so that these thermoelectric element pairs are connected in series, and a middle stage made of alumina having a square shape of 8.0 mm on one side and a thickness of 0.3 mm. The substrate 4m is bonded to the lower surface copper electrode via a thermoelectric element pair and solder (not shown). In this way, the first-stage thermoelectric conversion unit 15 is configured. On the other hand, a copper electrode (not shown) is also formed on the upper surface of the middle stage substrate 4m, and on this copper electrode, the bottom shape is a square shape with a side of 0.75 mm and a cubic column shape with a height of 0.90 mm. N-type and p-type second-stage thermoelectric elements 3 are alternately arranged next to each other and joined via solder (not shown). Then, a pattern of copper electrodes (not shown) is formed on the lower surface so that these thermoelectric element pairs are connected in series, and the heat absorption is made of alumina having a square shape of 4.0 mm on one side and a thickness of 0.3 mm. The side substrate 4c is joined to the second stage thermoelectric element 3 and the copper electrode on the lower surface via solder (not shown), so that a total of eight thermoelectric element pairs are installed in the second stage. A second-stage thermoelectric conversion unit 16 is configured. In addition, two through holes 112 are provided in a part of the middle substrate 4m. A conductive film (not shown) is formed on the inner peripheral wall of the through hole 112 and is joined to the first stage thermoelectric element 2 and the second stage thermoelectric element 3 disposed above and below the through hole 112. The first-stage thermoelectric conversion unit 15 and the second-stage thermoelectric conversion unit 16 are electrically connected to each other with a copper electrode (not shown). Twenty-two conventional multi-stage thermoelectric modules configured as described above were manufactured as comparative examples.
[0019]
For each of the 22 example and comparative multi-stage thermoelectric module samples as described above, the AC resistance of all the examples and comparative examples was measured, and then at −40 ° C. for 15 minutes and +85 1000 cycles of thermal cooling at 15 ° C. for 15 minutes were performed. Thereafter, the AC resistance was measured again, and a sample having an AC resistance change rate of more than 5% before and after 1000 thermal cooling cycles was determined as a defective product. Table 1 below shows the determination results of the samples according to this example and the comparative example.
[0020]
[Table 1]
Figure 0004288927
[0021]
As is clear from Table 1 above, in the multi-stage thermoelectric module of the comparative example according to the prior art, two defective products occurred after the thermal cooling cycle. On the other hand, the multi-stage thermoelectric module of this example does not generate a defective product with an AC resistance change rate exceeding 5% even with a severe 1000 cycles of thermal cooling with a temperature difference of 125 ° C., and has excellent durability. Proven to have.
[0022]
【The invention's effect】
As described above in detail, in the multistage thermoelectric module according to the present invention, the thermoelectric element of the thermoelectric conversion part of the first specific substrate serves as the thermoelectric element of the thermoelectric conversion part of the second specific substrate two or more stages above it. The connecting thermoelectric element passes through a through hole or notch provided in the middle stage substrate that divides the thermoelectric conversion part of each stage, or the heat dissipation side board of the lower thermoelectric conversion part and the heat absorption side board of the upper thermoelectric conversion part protrude. while being located away from the middle substrate modules outer end, is engaged against through solder or the like to the upper electrode of the lower electrode and the upper thermoelectric conversion portion of the lower thermoelectric conversion unit. For this reason, when it supplies with electricity in order to operate a multistage thermoelectric module, this thermoelectric element for connection itself can electrically connect the multistage thermoelectric conversion part. Therefore, unlike the prior art, it is not necessary to form a conductive coating on the inner peripheral wall of the through hole in order to electrically connect a plurality of thermoelectric conversion portions. Therefore, in the conventional multistage thermoelectric module, bubbles that remain in the through hole and cause deterioration of the durability of the multistage thermoelectric module are not formed. Moreover, the method of electrically connecting the multi-stage thermoelectric converters according to the present invention has a configuration with few joints and high durability. Therefore, the multistage thermoelectric module according to the present invention can improve durability.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing a multistage thermoelectric module according to a first embodiment.
2A is a plan view of the second embodiment, FIG. 2B is a cross-sectional view taken along line AA in FIG. 2A, and FIG. 2C is FIG. It is sectional drawing by BB in (a).
3A is a plan view of the third embodiment, FIG. 3B is a cross-sectional view taken along the line C-C in FIG. 3A, and FIG. 3C is FIG. It is sectional drawing by DD in (a).
4 (a) is a plan view of a conventional multi-stage thermoelectric module as a comparative example, FIG. 4 (b) is a cross-sectional view taken along line EE in FIG. 4 (a), and FIG. (c) is sectional drawing by FF in Fig.4 (a).
FIG. 5 is a cross-sectional view showing a conventional multistage thermoelectric module.
FIG. 6 is a cross-sectional view for explaining a problem in a conventional multistage thermoelectric module.
[Explanation of symbols]
1; connection thermoelectric element 2; first-stage thermoelectric element 3; second-stage thermoelectric element 4c; heat-absorption side substrate 4m; middle-stage substrate 4h; heat-dissipation side substrate 5, 112; through holes 6a, 6b, 110a, 110b, 110d, 110e; Solder 7a; Upper electrode 7b; Lower electrodes 15, 105; First stage thermoelectric converter 16, 106; Second stage thermoelectric converter 25; Notch 100; Two-stage thermoelectric module 101n according to the prior art; First stage n Type thermoelectric element 101p; first stage p type thermoelectric element 102n; second stage n type thermoelectric element 102p; first stage p type thermoelectric element 103a; second stage upper electrode 103b; second stage lower electrode 103d; Electrode 103e; first stage lower electrode 104c; upper insulating substrate 104m; middle insulating substrate 104h; lower insulating substrate 107; through-hole 108; conductive coating 111;

Claims (4)

上下に対向して配置された3個以上の基板と、前記各基板の各対向面に形成された夫々複数個の上部電極及び下部電極と、前記各基板間に配置された複数個のp型熱電素子及びn型熱電素子とを有し、前記基板間に配置された熱電素子群毎に前記p型熱電素子及びn型熱電素子が交互に直列及び/又は並列に接続されるように前記上部電極及び下部電極に夫々1対又は複数対のp型熱電素子及びn型熱電素子が接触して熱電変換部が構成され、更に前記熱電素子群が直列に接続されて前記熱電変換部が多段に構成され、一方の最外側の基板から他方の最外側の基板に向けて一方向に熱が流れる多段の熱電モジュールにおいて、
第1定基板の下部電極とそれより2段以上上方の第2特定基板の上部電極とを接続すると共に、前記第1特定基板と前記第2特定基板の間の基板から離れた接続用熱電素子が前記第1特定基板の熱電素子群の最端列に配置され、この接続用熱電素子自身が、前記第1特定基板の下部電極に接続された熱電変換部の熱電素子と前記第2特定基板の上部電極に接続された熱電変換部の熱電素子とを兼ねていることを特徴とする多段熱電モジュール。
Three or more substrates disposed vertically opposite to each other, a plurality of upper electrodes and lower electrodes formed on each opposed surface of each substrate, and a plurality of p-type disposed between the substrates. The upper part has a thermoelectric element and an n-type thermoelectric element, and the p-type thermoelectric element and the n-type thermoelectric element are alternately connected in series and / or in parallel for each thermoelectric element group disposed between the substrates. One or more pairs of p-type and n-type thermoelectric elements are in contact with the electrode and the lower electrode to form a thermoelectric conversion unit, and the thermoelectric element group is connected in series so that the thermoelectric conversion unit is multistaged. In a multi-stage thermoelectric module that is configured and heat flows in one direction from one outermost substrate to the other outermost substrate,
With connecting the upper electrode of the lower electrode and it than two or more stages above the second specific substrate of the first Japanese Sadamoto plate, for connection away from the substrate between the said first specific substrate second specific substrate A thermoelectric element is arranged in the outermost row of the thermoelectric element group of the first specific substrate, and the thermoelectric element for connection itself is connected to the thermoelectric element of the thermoelectric conversion unit connected to the lower electrode of the first specific substrate and the second A multi-stage thermoelectric module characterized by also serving as a thermoelectric element of a thermoelectric conversion unit connected to an upper electrode of a specific substrate .
前記接続用熱電素子は、前記第1定基と前記第2特定基板との間の基板に形成されたスルーホール間に配置されると共に、前記第1定基板の下部電極と前記第2特定基板の上部電極とを接続することを特徴とする請求項1に記載の多段熱電モジュール。The connecting thermoelectric elements, said while being disposed between the formed through hole on the substrate between the first Japanese Sadamoto plate and the second specific substrate, wherein the lower electrode of the first Japanese Sadamoto plate second The multistage thermoelectric module according to claim 1, wherein an upper electrode of a specific substrate is connected. 前記接続用熱電素子は、前記第1定基と前記第2特定基板との間の基板に形成された切欠間に配置されると共に、前記第1定基板の下部電極と前記第2特定基板の上部電極とを接続することを特徴とする請求項1に記載の多段熱電モジュール。The connecting thermoelectric elements, said while being disposed between formed notches in the substrate between the first Japanese Sadamoto plate and the second specific substrate, said second identification and the lower electrode of the first Japanese Sadamoto plate The multistage thermoelectric module according to claim 1, wherein the multistage thermoelectric module is connected to an upper electrode of the substrate. 前記第1定基と第2特定基板との間の基板は前記第1定基板及び前記第2特定基板よりも平面視での外形寸法が小さく、前記接続用熱電素子は前記第1定基板及び前記第2特定基板が前記第1特定基板と前記第2特定基板との間の基板より平面視において突出した部分に設けられると共に、前記突出した部分の対面に形成された前記第1定基板の下部電極と前記第2特定基板の上部電極とを接続することを特徴とする請求項1に記載の多段熱電モジュール。Substrate between the first Japanese Sadamoto plate and the second specific substrate has a small external dimensions in plan view than the first Japanese Sadamoto plate and the second specific substrate, wherein the connecting thermoelectric element and the first Japanese with Sadamoto plate and the second specific substrate is provided in the protruding portion in the plan view from the substrate between the second specific substrate and the first specific substrate, are formed in pairs facing surfaces of the projecting portion wherein multistage thermoelectric module according to claim 1, characterized in that for connecting the upper electrode of the second specific substrate and the lower electrode of the first Japanese Sadamoto plate.
JP2002321876A 2002-11-05 2002-11-05 Multistage thermoelectric module Expired - Lifetime JP4288927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321876A JP4288927B2 (en) 2002-11-05 2002-11-05 Multistage thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321876A JP4288927B2 (en) 2002-11-05 2002-11-05 Multistage thermoelectric module

Publications (2)

Publication Number Publication Date
JP2004158582A JP2004158582A (en) 2004-06-03
JP4288927B2 true JP4288927B2 (en) 2009-07-01

Family

ID=32802224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321876A Expired - Lifetime JP4288927B2 (en) 2002-11-05 2002-11-05 Multistage thermoelectric module

Country Status (1)

Country Link
JP (1) JP4288927B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371522A (en) * 2014-08-29 2016-03-02 陈树山 Multistage semiconductor thermoelectric cooling assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102652928B1 (en) * 2017-02-06 2024-03-29 엘지이노텍 주식회사 Thermo electric element
CN113300634B (en) * 2021-05-08 2022-06-21 江苏大学 Two-stage thermoelectric power generation waste heat recovery device based on heat pipe heat transfer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371522A (en) * 2014-08-29 2016-03-02 陈树山 Multistage semiconductor thermoelectric cooling assembly

Also Published As

Publication number Publication date
JP2004158582A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP4768961B2 (en) Thermoelectric module having thin film substrate
US5724818A (en) Thermoelectric cooling module and method for manufacturing the same
JP5065077B2 (en) Thermoelectric generator
JP2005507157A5 (en)
US20050121065A1 (en) Thermoelectric module with directly bonded heat exchanger
RU2546830C2 (en) Thermoelectric element
US6521991B1 (en) Thermoelectric module
US20160315242A1 (en) Thermoelectric conversion module
JP2007048916A (en) Thermoelectric module
JP4481606B2 (en) Thermoelectric converter
WO2012140652A1 (en) Anodized aluminum substrate
KR100663117B1 (en) Thermoelectric module
JP4288927B2 (en) Multistage thermoelectric module
JP6069945B2 (en) Thermoelectric unit
JPH08335722A (en) Thermoelectric conversion module
KR20100003494A (en) Thermoelectric cooling device with flexible copper band wire
WO2018021173A1 (en) Thermoelectric conversion module
JP2003179274A (en) Thermoelectric converting device
JP2000091648A (en) Peltier module
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP2011253945A (en) Peltier module arrangement device and inside of housing cooling device using the same
KR101068647B1 (en) Thermoelectric energy conversion module having spring structure
JP2004281451A (en) Thermoelectric conversion element
JPH07176796A (en) Thermoelectric converter
JP2005057124A (en) Module and device for thermoelectric conversion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Ref document number: 4288927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5