WO2005117154A1 - High-density integrated type thin-layer thermoelectric module and hybrid power generating system - Google Patents

High-density integrated type thin-layer thermoelectric module and hybrid power generating system Download PDF

Info

Publication number
WO2005117154A1
WO2005117154A1 PCT/JP2005/009864 JP2005009864W WO2005117154A1 WO 2005117154 A1 WO2005117154 A1 WO 2005117154A1 JP 2005009864 W JP2005009864 W JP 2005009864W WO 2005117154 A1 WO2005117154 A1 WO 2005117154A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thermoelectric
thin
semiconductor element
thermoelectric semiconductor
Prior art date
Application number
PCT/JP2005/009864
Other languages
French (fr)
Japanese (ja)
Other versions
WO2005117154B1 (en
Inventor
Kazukiyo Yamada
Kiyoshi Ineizumi
Naohisa Taguchi
Original Assignee
Kazukiyo Yamada
Kiyoshi Ineizumi
Naohisa Taguchi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazukiyo Yamada, Kiyoshi Ineizumi, Naohisa Taguchi filed Critical Kazukiyo Yamada
Priority to JP2006513983A priority Critical patent/JPWO2005117154A1/en
Publication of WO2005117154A1 publication Critical patent/WO2005117154A1/en
Publication of WO2005117154B1 publication Critical patent/WO2005117154B1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • thermoelectric module High-density integrated thin-layer thermoelectric module and hybrid power generation system
  • the present invention relates to a thin-layer thermoelectric module that uses thermoelectric effects in a range from a relatively low temperature (normal temperature range) to a high temperature close to about 800 ° C, and a thin-film thermoelectric module using such a module. ) Regarding power generation system.
  • the thermoelectric effect is a general term for the Seebeck effect, the Pelch effect, or the Thomson effect of thermoelectric semiconductors. Therefore, the present invention belongs to the technical field of thermoelectric semiconductors or power generation devices or cooling Z heating devices using the same.
  • thermoelectric device has, as a basic type, a “ ⁇ structure” including a P-type thermoelectric semiconductor element, an N-type thermoelectric semiconductor element, and an electrode for joining them.
  • a thermoelectric semiconductor module having a “ ⁇ structure” generates a thermoelectric power by the Seebeck effect when a temperature difference ( ⁇ ) is taken between the electrodes at both ends of the thermoelectric semiconductor module, and generates a Peltier effect when a current flows through the thermoelectric semiconductor element. The electrons move, creating an endothermic side and a radiating side.
  • the " ⁇ structure” is a type II thermoelectric semiconductor element, a type II thermoelectric semiconductor element, and a plurality of electrodes connected alternately in multiple pairs and electrically in series. And are formed in parallel.
  • thermal energy (temperature difference ⁇ ⁇ ) is supplied to the low-temperature side and the high-temperature side, a power generation device is obtained by the Seebeck effect as shown in Fig. 13 (a). If power is supplied to an electrically serial circuit, the circuit becomes a cooling device or a heating device by the Peltier effect as shown in FIG. 13 (b).
  • thermoelectric element In the Seebeck effect model of a thermoelectric element, when a temperature difference is given between two points in the element, many carriers diffuse to the low-temperature side, and a directional electric field is generated from the high-temperature side to the low-temperature side as shown in FIG. As the carrier moves, the balance is maintained and a potential difference is created across the element.
  • a load is connected between the thermoelectric semiconductors, a current flows to the load, and a potential difference is generated between both ends of the load.
  • thermoelectric semiconductor element the heat that enters the high-temperature side connection point escapes through the lead wire, and by connecting the lead wire to the low-temperature side, the thermal start-up power of the ⁇ -type thermoelectric semiconductor element can be reduced by the multiple carriers of the ⁇ -type thermoelectric semiconductor element.
  • ⁇ -type and ⁇ -type thermoelectric semiconductors have a ⁇ -type structure With such a configuration, it is possible to connect them electrically in series and thermally in parallel.
  • thermoelectric device a rigid structure.
  • thermoelectric semiconductor elements 127 pairs are arranged as a ⁇ structure unit between 4 cm square plates.
  • thermoelectric device is an ingot or a sintered thermoelectric element module in which chips sliced into a predetermined size are aligned on predetermined electrodes, and integrated through a soldering process.
  • the rigid structure of the thermoelectric module was inferior in mass productivity, and its life was varied due to thermal strain, which caused problems in reliability, and the performance improvement was sluggish.
  • thermoelectric element has to be improved only by increasing the ⁇ value, which is a characteristic factor of a thermoelectric material that becomes less powerful.
  • ⁇ value is proportional to electrical conductivity and inversely proportional to thermal conductivity.
  • a material having a high electric conductivity has a property having a high heat conductivity. This makes it difficult to set the ⁇ value to the desired value, and no significant improvement has been seen to date.
  • Patent Document 1 relates to a thermoelectric material having a high ⁇ value.
  • Patent Document 2 relates to a highly integrated thermoelectric array power generation module.
  • Patent Document 3 is a technology for applying a hot water tank and a Peltier II heating element unit to a solar cell.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-223392
  • Patent Document 2 JP-A-2002-171775
  • Patent Document 3 JP-A-10-295953
  • An object of the present invention is to provide an integrated thin-layer thermoelectric module that can be used from a relatively low temperature range to a high temperature range close to 1000 ° C.
  • durability which is currently a difficult problem, and the life of strain rupture due to thermal expansion
  • Another object is to solve the problem of variation. More specifically, to improve the efficiency of the thermoelectric effect while energizing the characteristics of the thermoelectric semiconductor, first, the total power generation should be improved by integration, and second, the thin-layer thermoelectric semiconductor It is necessary to increase the current density by increasing the contact area with the electrodes, and thirdly, to provide a structure that prevents heat dissipation and loss of heat flow.
  • thermoelectric module In order to maximize the power generation efficiency of the element size (length and width) of the ⁇ structure, it is conceivable to set the internal resistance of the module low. If the internal resistance of the module is set to a low value, it seems that the amount of power generation appears to increase, but at the same time, losses due to Joule heat and heat conduction must be considered. Joule heat is generated when an electric current is applied to a substance having electrical resistance, and heat conduction is generated through a thermoelectric element when there is a temperature gradient in the thermoelectric element. Seebeck effect, Peltier effect and Thomson effect are reversible phenomena Force Joule heat and heat conduction are irreversible phenomena. The heat balance of a thin-layer thermoelectric module is a combined effect of reversible and irreversible phenomena, and the irreversible phenomena are likely to be factors that reduce the Seebeck effect and Peltier effect.
  • thermoelectric semiconductors In a circuit in which ⁇ -type and ⁇ -type thermoelectric semiconductors are joined as a pair, the electric resistance is low and the thermal conductivity is high.
  • ⁇ ⁇ When forming a ⁇ structure through a dissimilar metal (copper electrode), On the other hand, the direction of movement of a large number of carriers generated in the ⁇ -type and ⁇ -type thermoelectric semiconductors, which are equal to the junction of the thermoelectric semiconductor element, is the same. This means that when the ⁇ structure is formed to be electrically in series and thermally in parallel, the transfer of heat related to Joule heat and heat conduction is minimized, and there is no loss due to heat dissipation. Means This is a necessary condition for increasing the amount of power generation in a large number of integrated vehicles.
  • the main problem of the present invention is to improve the total power generation by integrating a large number of thin-layer thermoelectric semiconductor units based on the ⁇ structure, and to solve the problem of thermal distortion and its variation. It is to provide a means to minimize.
  • a second main problem of the present invention is to propose specific means for increasing the contact area between a thermoelectric semiconductor element and an electrode. Therefore, it is an object of the present invention to provide an improved electrode configuration and a thermoelectric semiconductor device configuration, and a contact relationship with the electrode.
  • a third object of the present invention is to provide a shape and structure of a ⁇ -structure with less loss due to heat dissipation and heat flow. It is to propose a structure. Means for solving the problem
  • thermoelectric element having a ⁇ structure which is the main problem, as a thin-layer base that is not a conventional rigid structure (a “thin layer” includes a so-called thin film or thick film).
  • a thin layer includes a so-called thin film or thick film.
  • It achieves the flexibility, mass production and low cost that are characteristic of thin layers. That is, a large number of ⁇ -type and ⁇ -type thermoelectric semiconductor element pairs and electrodes for joining them are formed in one or more rows as a thin layer pattern on a flexible heat insulating and electrically insulating sheet. The sheet is folded in a zigzag or spirally wound to form a large number of ⁇ -structures in a three-dimensional structure, forming a high-density integrated thin-layer thermoelectric module.
  • the form of the electrode is widened from the end face of the thermoelectric semiconductor element to the side face of the element.
  • the electrode area is substantially increased, and a free carrier corresponding to the electrode area is formed by the Seebeck effect, thereby generating a thermoelectromotive force.
  • the substantial contact area between the thermoelectric semiconductor element and the electrode can be further increased.
  • the high-density integrated thin-layer thermoelectric module of the present invention has a structure having a dot hole at an arbitrary position of the thermoelectric semiconductor element, so that the contact area between the thermoelectric semiconductor element unit and the electrode is positively increased. In addition, it is desirable that the resistance of the thermoelectric semiconductor element unit can be adjusted.
  • thermoelectric module In a high-density integrated thin-layer thermoelectric module, a gap is created between adjacent thermoelectric element units even if the thermoelectric element units are to be brought into close contact with each other.
  • the air gap formed between the adjacent thermoelectric element units is positively used as a layer of a thermal insulator, and such an air layer is interposed. This provided thermal insulation between the internal units and solved the problem of heat dissipation and heat flow.
  • the layer of the thermal insulator includes vacuum, air, and other materials having low thermal conductivity.
  • thermoelectric semiconductor element is made non-planar at the joint surface between the thermoelectric semiconductor element and the thin-layer electrode.
  • the contact area can be substantially increased and the current density can be increased.
  • the resistance value of the thermoelectric semiconductor element can be arbitrarily adjusted by changing a non-planar shape such as a dot hole or a slit in a manufacturing process.
  • thermoelectric semiconductor element has a constricted structure.
  • thermoelectric module of the present invention a part or all of the surroundings can be sealed with a sheet-like film to also serve as moisture proof and dust proof.
  • thermoelectric module pattern By forming a thermoelectric module pattern on a flexible sheet and then forming a three-dimensional structure, it is possible to perform various three-dimensional processing based on a thermoelectric semiconductor element module having both flexibility and adaptability. Thus, a thin-layer thermoelectric module in which thermoelectric semiconductor elements are integrated at a high density can be configured.
  • thermoelectric module of the present invention which is integrated by the spiral structure and the zigzag structure, is because a large number of thermoelectric semiconductor units are efficiently assembled and integrated, and the efficiency per unit area is improved. And a small device provides high Seebeck effect and Peltier effect.
  • thermoelectric module of the present invention An even greater effect of the high-density integrated thin-layer thermoelectric module of the present invention is that the material of the base sheet is flexible, and a thermoelectric semiconductor or a thin-layer electrode is formed on the spiral structure. As a result of accumulating due to the zigzag and zigzag structures, it is possible to provide flexibility even in a three-dimensional structure. Therefore, the problems of durability and strain destruction due to thermal expansion that the rigid structure has were solved.
  • thermoelectric semiconductor element and the electrode are formed into thin layers to achieve a flexible structure
  • the size, shape, and number of the module are appropriately selected. It can be well adapted for use in various devices. Use Even if the device has various shapes and shapes such as irregularities, a large number and various sizes of modules can be prepared and arranged in combination so as to match the device to be used.
  • the high-density integrated thin-layer thermoelectric element utilizes patterning technology in its manufacture, and achieves low cost by mass production.
  • FIG. 1 Embodiment 1 in which a spiral is three-dimensionally processed (a) A single-sided electrode pattern (b) A thermoelectric semiconductor element and a single-sided electrode pattern
  • thermoelectric semiconductor elements are joined by a double-sided electrode.
  • (d) is a schematic diagram in which a spiral is drawn.
  • (e) is a diagram in which a spiral is processed.
  • Example 2 Example of the present invention in which three-dimensional processing is performed in a single-row zigzag pattern (a) is a single-sided electrode pattern (b) is a thermoelectric semiconductor element and a single-sided electrode pattern
  • thermoelectric semiconductor elements are joined by double-sided electrodes.
  • (d) is a cross-sectional view.
  • FIG. 3 Embodiment 3 Embodiment of the present invention in which three-dimensional processing is performed into a plurality of rows of zigzags.
  • FIG. 3c Example 3 in which a zigzag sheet pattern, its cross section, and a zigzag processed portion are enlarged.
  • FIG. 4 (Example 4) A cross-sectional view parallel to the thickness of the thin layer of the thin-layer thermoelectric semiconductor element of the embodiment in which the contact area between the thin-layer thermoelectric semiconductor element and the thin-layer electrode is increased.
  • thermoelectric semiconductor element is sandwiched or surrounded by electrodes (b), (c): An example in which the surface of the thermoelectric semiconductor element is non-planar; (d): An example in which the thermoelectric semiconductor element is provided with a dot hole structure ( e) Example in which a slit is provided in the thermoelectric semiconductor element
  • FIG. 5 shows a method of mass-producing an embodiment for performing spiral processing.
  • FIG. 6 (Embodiment 6) Methods (a) and (b) of mass-producing an embodiment of zigzag processing are shown.
  • FIG. 7 An embodiment in which the resistance value of a thermoelectric semiconductor element is adjusted to thermally shut off the high-temperature side and the low-temperature side.
  • Example (b) is an example in which the thermoelectric semiconductor element has a constricted shape.
  • thermoelectric semiconductor element is formed into a constricted shape in the embodiment shown in FIG.
  • thermoelectric semiconductor element is formed into a constricted shape by applying to the embodiments 2 and 3 in which the zigzag three-dimensional processing is performed in FIGS.
  • FIG. 10 (Embodiment 10) An embodiment of the present invention in which a solar cell power generation device and a thin layer thermoelectric module are combined (a) is a schematic diagram of a solar cell power generation device (b) is a schematic diagram of a thin layer thermoelectric module (c) Is an embodiment of the present invention in which a solar cell power generation device and a thin-layer thermoelectric module are combined.
  • FIG. 11 A schematic rear view (a) and a cross-sectional view (b) of a combined power generation system of the present invention in which a solar cell power generation device and a thin-layer thermoelectric module are combined.
  • FIG. 12 shows an embodiment of the present invention in which thin-layer thermoelectric modules having different temperature ranges are combined in multiple stages (a) and a schematic diagram of temperature characteristics of a thermoelectric semiconductor element (b)
  • thermoelectric device (b) Principle diagram of heating / cooling device with ⁇ structure (a) Principle diagram of power generation by ⁇ structure
  • FIG. 14 is an explanatory view of electron transfer in a thermoelectric semiconductor element of an existing thermoelectric device
  • thermoelectric semiconductor device 1 Type I or type II thermoelectric semiconductor device
  • a thin layer of a P-type thermoelectric semiconductor element and a thin layer of an N-type thermoelectric semiconductor element are alternately arranged in a longitudinal direction on a flexible vertically elongated thin sheet having thermal insulation and electrical insulation.
  • a thin-layer electrode for joining thermoelectric semiconductor elements from P-type to N-type is provided on the edge, and a thin-layer electrode for joining thermoelectric semiconductor elements from N-type to P-type is provided on the opposite edge of the sheet.
  • a ⁇ -structured thermoelectric unit is formed on a sheet, and the sheet is rolled into a snoral (swirl) to form a columnar or prismatic solid.
  • High-density integrated thin-layer thermoelectric module characterized by a high-temperature side.
  • a thin layer of a ⁇ ⁇ -type thermoelectric semiconductor element, a ⁇ -type thin layer of a thermoelectric semiconductor element, and an electrode for joining each thermoelectric semiconductor element are vertically arranged on a thin sheet that is thermally and electrically insulative and flexible.
  • Each thin layer is arranged in one or more rows, and a large number of ⁇ -structured thermoelectric units are cascaded in a three-dimensional manner by bending the approximate center of the electrode in a zigzag (bellows, wavy) along a horizontal line.
  • a high-density integrated thin-layer thermoelectric module characterized in that two surfaces formed and assembled with three-dimensional lateral bending lines are a low-temperature side and a high-temperature side, respectively.
  • the electrode sandwiches or surrounds the thermoelectric semiconductor element from the end face to the side face of the thermoelectric semiconductor element, and / or has a non-contact surface with the electrode of the thermoelectric semiconductor element.
  • the spiral or zigzag-type high-density integrated thin-layer thermoelectric module wherein the current density is increased by making the contact area between the electrode and the thermoelectric semiconductor element wider by making it flat.
  • the thin layer of each thermoelectric semiconductor element has a constricted shape, a slit, a Z or a dot hole at an intermediate portion between the low-temperature side and the high-temperature side, and a part or all of the surroundings is heat-insulated as necessary.
  • the above-described high-density integrated thin-layer thermoelectric module which is sealed with an electrically insulating and moisture-proof material (including air or vacuum) to reduce heat transmission loss.
  • FIG. 1 shows Example 1 of the present invention in which a high-density integrated thin-layer thermoelectric module is spirally three-dimensionally processed.
  • 1 is a P-type and N-type thermoelectric semiconductor element
  • 2 is a thin-layer electrode
  • 3 is a thermally insulating and electrically insulating flexible film sheet, which is vertically long in this example.
  • Numeral 4 denotes a plate-shaped heat radiation section or heat reception section 4, which may be provided with a thin electric insulating layer.
  • the thin-layer electrode 2 forms a pattern on the film sheet 3 by printing, vapor deposition, or the like.
  • a thin layer of a P-type thermoelectric semiconductor element and a thin layer of an N-type thermoelectric semiconductor element 2 is placed on a vertically elongated thin sheet 3 that is thermally and electrically insulative. It is formed by printing or vapor deposition as a pattern that is alternately continuous.
  • the electrodes 2 are also patterned on the left and right edges of the sheet by printing, vapor deposition, etc., as shown in bold type in FIG.
  • the electrode pattern on one edge of the sheet joins the thermoelectric semiconductor elements 2 from the P-type to the N-type, and the electrode pattern on the opposite edge of the sheet joins the thermoelectric semiconductor elements 2 from the N-type to the P-type.
  • Fig. 1 (c) a large number of ⁇ -structure thermoelectric units are continuously formed on the plane of the vertically long sheet 3.
  • Fig. 1 (d) is a schematic diagram in which (c) is spirally wound, and (e) is a side view of (d), which is smaller than the above figures.
  • Fig. 1 (f) shows the sheet rolled into a round spiral and curled into a cylindrical shape. It may be a solid prism (square, hexagon, etc.) joined by cylinders.
  • This three-dimensional structure is a high-density integrated thin-layer thermoelectric module, and the upper and lower surfaces of the figure where the electrodes are gathered are the low-temperature side and the high-temperature side, respectively.
  • the low-temperature side and high-temperature side of the high-density integrated thin-layer thermoelectric module are sandwiched between a pair of heat transfer plates 4 (radiator, heat receiver), and the heat transfer plates 4 are sandwiched as shown in FIG. And install it on the equipment to be used and operate it as a power generator, cooling or heating device.
  • the module transmits and receives thermal energy via the plate unit 4. With such a pattern, a thermoelectric element having hundreds to thousands of pairs can be obtained.
  • a power generator Is electrically connected to the device that uses the power that is stored in the battery from the electrode that also draws both ends.
  • thermoelectric semiconductor element 2 used in Example 1 is BiTePb (low temperature to 200 ° C.) / Iron silicide (300 to 700 ° C.).
  • the sheet 3 serving as a base has electrical insulation, heat insulation, and moisture resistance, and includes polyimide resin, aramide resin, fluorine resin, and sheet ceramic.
  • the electrode is preferably made of a material having high conductivity such as copper. The same material can be used in the following examples.
  • FIG. 2 shows Example 2 of the present invention, in which a high-density integrated thin-layer thermoelectric module is formed by processing a vertically long sheet 3 in a zigzag (bellows, wavy) three-dimensionally. Is the same as in Example 1, but the film sheet 3 is preferably provided with a number of parts 6 and 7 which can be folded in the horizontal direction as required.
  • Example 2 as shown in FIG. 2 (b), a P-type thermoelectric semiconductor element, an electrode, an N-type thermoelectric semiconductor element, The thin layers are arranged in a line as in. Further, the electrodes are joined from the P-type thermoelectric semiconductor element on both sides to the N-type thermoelectric semiconductor element or from the N-type thermoelectric semiconductor element to the P-type thermoelectric semiconductor element.
  • thermoelectric units are formed as a three-dimensional structure by bending the center of the electrode in a zigzag manner along the dashed lines 6 and 7 in the horizontal direction.
  • bend at the arrow the figure is exaggerated in thickness, but the electrodes are thin layers.
  • the bent portions 6 and 7 of the alternate long and short dash line gather on the upper surface and the opposite lower surface, respectively, to become the low-temperature side and the high-temperature side, respectively.
  • the heat transfer plate 4 is mounted as needed and mounted on the equipment to be used.
  • thermoelectric semiconductor a force vj and a hole are drilled at equal intervals between the electrodes on the film sheet, and the electrodes are deposited from the front and back of the sheet to form a thermoelectric semiconductor.
  • the element may be fixed so as to sandwich the element.
  • a P-type thermoelectric semiconductor element similarly to the embodiment of Fig. 2, thin layers of a P-type thermoelectric semiconductor element, an electrode, an N-type thermoelectric semiconductor element, and an electrode are arranged in a row to form a three-dimensional zigzag.
  • the row is a plurality of rows, and electrodes for turning the current direction at both ends of the row are provided. I am.
  • the base sheet shall be spread in two dimensions such as a square.
  • the electrodes are used to join the P-type thermoelectric semiconductor elements on both sides of the same row to the N-type thermoelectric semiconductor elements or from the N-type thermoelectric semiconductor elements to the P-type thermoelectric semiconductor elements. It is the same.
  • the high-temperature side and low-temperature side are positioned above the dashed-dotted lines 6 and 7 across the row. It must be formed alternately (up and down) side by side. Therefore, in the pattern of FIG. 3A, the current is alternately turned on the left end and the right end. At the beginning and end of each row, a pattern is deposited so that it can be connected to the next row. When such a pattern is formed and bent in a zigzag (bellows or wavy shape) along the horizontal broken line in FIG.
  • thermoelectric units a large number of ⁇ -structure thermoelectric units are formed as a three-dimensional structure vertically and horizontally, and the low-temperature side is formed, for example.
  • the high temperature side can be aligned with the upper surface where the bent curves are gathered, and the lower surface where the opposite bent lines are gathered.
  • the module shown in FIG. 3 is also provided with the heat transfer plate 4 and sandwiched from both sides, and is set in the insulating casing with both ends of the electrode side being slightly spaced. Then, lead wires are drawn out from the electrodes at both ends to form a high-density integrated thin-layer thermoelectric module.
  • Figure 3c shows the sheet pattern before zig-zag shading (left in the figure), its cross section (lower left in the figure), and the dimensions (mm) of the enlarged zig-zag processed part (right in the figure). It is described.
  • Embodiment 4 of the present invention in Fig. 4 further enhances the effect of accumulation. That is, the embodiment of the present invention, in which the current density is increased by substantially increasing the contact area between the electrode and the thermoelectric semiconductor element, is sliced along the thickness of the thin layer of the thermoelectric semiconductor element. I'm drawing. In the embodiment of FIG. 4 (a), when joining the thin-layer electrodes to the thermoelectric semiconductor element, the end face force of the thermoelectric semiconductor element is also applied to the side surfaces by the electrodes that are simply joined at both ends so that the thermoelectric semiconductor element is sandwiched or surrounded. To
  • Example 4 of FIGS. 4 (b), (c), (d) and (e) when the thin-layer electrode is joined to the thermoelectric semiconductor element, the surface of the portion in contact with the electrode of the thermoelectric semiconductor element is made non-planar. Then, the current density was increased by substantially increasing the contact area between the thermoelectric semiconductor element and the electrode. That is, as shown in Figs. 4 (b), (c), and (e), the shape of the junction of the thermoelectric The electrodes have a shape or a structure with holes (dot holes) as shown in (d), and the electrodes are joined in conformity with the non-planar surfaces.
  • the embodiments of (b) to (e) of FIG. 4 can be arbitrarily combined. It can also be combined with the seventh embodiment (FIGS. 7, 8, and 9) described later.
  • the integrated thin-layer thermoelectric module of the first embodiment shown in FIG. 1 is patterned as a square sheet as in the fifth embodiment shown in FIG. 5 and cut along a dashed line 8 in FIG. By doing so, it can be mass-produced.
  • Example 2 in FIG. 2 for mass production, as in Example 6 in FIGS. 6 (a) and 6 (b), a plurality of rows are arranged on a square sheet, before or after zigzag processing.
  • the dash-dot line 6 can be cut at the point 8.
  • Example 3 The same manufacturing procedure is possible in Example 3.
  • thermoelectric module has a total cross-sectional area that is at least 1.2 times larger than that of conventional rigid-structured devices compared to conventional rigid-structured products of almost the same size, and the thermoelectric semiconductor device
  • the contact area between the electrode and the electrode can be about 4 to 6 times larger than before.
  • thermoelectric semiconductor element in the thermoelectric unit In order to extract power efficiently, the resistance of the thermoelectric semiconductor element in the thermoelectric unit must be optimized. Therefore, as in Embodiment 7 (a) of FIG. 7, a slit 71 or a dot hole 72 can be provided at an arbitrary position of the thermoelectric semiconductor element to adjust the resistance value to a desired value.
  • each thermoelectric semiconductor element needs to insulate the low-temperature side and the high-temperature side. Therefore, as shown in FIG. 7 (b), the middle of both sides can be formed into a constricted shape 73 like a thread winding.
  • FIG. 8 is a view similar to Embodiment 7 (b) in Examples 1 and 5 in which a three-dimensional spiral is formed in a spiral. This is a reduction of the heat loss between the side and the low-temperature side.
  • FIG. 9 also shows a constricted shape between the electrodes of the thermoelectric semiconductor element 1 in Example 2 or Examples 3 and 6 in which zigzag solidification is performed similarly to Example 7 (b). As 73, the heat loss between the hot side and the cold side is reduced.
  • thermoelectric semiconductor elements that are adjacent to each other by being processed into a three-dimensional shape. Therefore, it is necessary to enhance the thermal insulation inside the solid.
  • a layer with high thermal insulation that shuts off heat between internal cuts a layer of air or a layer of heat-blocking material with the best vacuum is provided. Is also good.
  • the gap between the units can be naturally formed during ordinary three-dimensional shading, and is rather inevitable. In the present invention, this force is actively used for heat insulation. can do.
  • the high-density integrated thin-layer thermoelectric module of the present invention can have a heat insulating property and an electric insulating property by sealing or coating a part or the entire periphery. At the same time, it has both moisture and dust proof effects.
  • the high-density integrated thin-layer thermoelectric module has a moisture- and dust-proof coating layer that has electrical insulation, heat insulation, and moisture-proof properties, such as POM (polyacetal), TPX (poly 4-methylpentene), and PP. (Polypropylene), PC (polycarbonate), PPO (polyoxide), closed cell urethane, organic nanofoam resin, etc. are suitable. These materials can be used in any of the above and below examples.
  • the high-density integrated thin-layer thermoelectric module of the present invention can be generally applied as a power generator using waste heat.
  • FIG. 10 also serves as a description and an application to a solar cell power generation device according to an embodiment described below.
  • 10A is a schematic diagram 100 of a known solar cell
  • FIG. 10B is a schematic diagram of a thin-layer thermoelectric module
  • FIG. 10C is a diagram in which the solar cell power generation device 100 and the thin-layer thermoelectric module 10 are combined. The details of the combination with the solar cell are described below. I will describe.
  • FIG. 11 is a schematic rear view (a) and a cross-sectional view (b) of a combined power generation system of the present invention in which the high-density integrated thin-layer thermoelectric module 10 of the present invention is attached to the back of a solar cell power generator 100.
  • the solar cell power generation device has a PN junction 103 on a bottom base 105, which receives sunlight energy via a strengthened glass 101 and a transparent electrode 102, and a transparent electrode 102 and the other electrode.
  • An electromotive force is generated between 104.
  • the heat collecting part generally generates heat by solar energy, which reduces the efficiency of the solar power generation.
  • the high-density integrated thin-layer thermoelectric module 10 of the present invention generates electromotive force by receiving thermal energy via the high-temperature base 106 and the electrically insulating thermal conductor 107.
  • thermoelectric modules 10-power solar cells for example, residential roof building materials called “solar tiles”. Then, heat is collected from a heat source of around 70 ° C generated by the heat of the sun, and power is generated by the Seebeck effect. At the same time, it also plays a role in helping the power generation efficiency of the solar cell system itself.
  • thermoelectric element 10 of the present invention When the above-described high-density integrated thin-layer thermoelectric element 10 of the present invention is attached to a heat-generating portion of a solar cell power generation system (solar tile) 100, the high-density integrated thin-layer thermoelectric module responds to the temperature difference ⁇ by the Seebeck effect. A considerable part of the heat generated by solar power generation is transmitted through the high-density integrated thin-layer thermoelectric module, and is radiated from the electric energy generated by the module, the heat radiation part 4 of the module, and the low-temperature base 108. The heat escapes as heat energy, and as a result, the temperature of the solar cell 100 decreases. This is equivalent to adding efficient and small heat dissipating means to the solar cell.
  • the decrease in efficiency due to the heat generated by the solar cell can be prevented by a considerable amount of heat generated by the high-density integrated thin-film thermoelectric element of the present invention, and the power generation operation can be performed more stably even when there is fluctuation in sunlight.
  • a solar cell system in which heating water is supplied to a heat-generating portion of the solar cell system or cooling is performed using a fan to improve efficiency. Constructing an effective system that solves heat generation and power generation at once by utilizing the heat generation effect that cannot be avoided in a solar power generation system To do.
  • thermoelectric tile in which a solar cell is applied to a roof material of a house, and a low-cost high-density integrated thin-layer thermoelectric module according to the present invention are combined with a solar power generation system to improve the efficiency and the total power generation.
  • Power generation system can be improved. It is said that the introduction cost advantage of the solar-one power generation system is 2.5 million yen / per house.
  • the combined use of the thermoelectric power generation proposed by the present invention improves the power generation amount by the synergistic effect of the high-density integrated thermoelectric semiconductor element based on the flexible film sheet.
  • the high-density integrated thin-layer thermoelectric element module of the present invention is set on the back side of the solar cell as shown in Fig. 11 to reduce the power generation efficiency of the solar cell. Is used to generate power by the heat receiving Seebeck effect.
  • This high-density integrated thin-layer thermoelectric element module can be manufactured integrally with the solar cell power generation system. However, even if it is used in addition to the existing solar power generation system, significant improvement in efficiency can be achieved. Can be obtained.
  • the present invention can also be applied to a system in which the temperature changes over a wide range.
  • Figure 12 shows an example. As described above, there are various relations between the power generation amount and the temperature depending on the thermoelectric material.
  • the present invention has a multi-stage configuration using a plurality of thermoelectric materials having different temperature ranges, and can be used in a wide temperature range.
  • the high-density integrated thin-layer thermoelectric element module 10A is used at about 800 to 600 ° C
  • the SiGe compound is used as the thermoelectric semiconductor element
  • the thermoelectric semiconductor element is used at about 600 to 200 ° C for module 10B.
  • modules 10C is about 200 ⁇ 25 ° C
  • BiTe compounds can be used respectively.
  • Each module has a stepped structure through 107 of electrically insulating heat conduction, and a casing can be constituted by the moisture-proof, electric insulating, and heat insulating layers 5.
  • the high-density integrated thin-layer thermoelectric element module of the present invention can be manufactured in various shapes and sizes. A variety of shapes and sizes can be prepared, combined, and adapted to various applications.
  • the high-density integrated thin-layer thermoelectric module of the present invention can also be used as an efficient Peltier effect cooling device. Even if the Z value of the thermoelectric semiconductor element remains at the current capacity, the power generation capacity by the Seebeck effect per unit area or the cooling capacity by the Peltier effect is improved.
  • the high-density integrated thin-layer thermoelectric module of the present invention can be added to a power generation system using waste heat, and can perform environmentally friendly thermoelectric generation using the Seebeck effect.
  • the present invention relates to a thin-layer thermoelectric element module using an integrated technology.
  • By improving applicability by a flexible structure it is possible to utilize only the Seebeck effect or Peltier effect to generate electricity. It will be possible to combine modules that meet the conditions of the user, even in applications such as cooling and heating. Functionally, changing the thin layer pattern can easily contribute to customization and expand the range of use. Of course, if a technology to improve the Z value is developed, it can be expected to improve efficiency by applying it.
  • thermoelectric semiconductor element and the electrode are formed into thin layers to realize a flexible structure. Therefore, when this is added to various devices, the size, shape, and number of modules are appropriately selected. It could be well adapted to various equipment applications. Regardless of the size and unevenness of the device, the number of high-density integrated thin-layer thermoelectric modules of the present invention is manufactured and prepared in various sizes. Can be arranged in combination so as to meet the requirements.
  • the present invention greatly contributes to the global environment not only as a measure against power demand.
  • the Seebeck effect takes advantage of the improved adaptability of the present invention to application equipment and further enhances the manufacturing method. If it is changed appropriately, it can contribute greatly to the field of waste heat utilization of furnace heat. Peltier effects will not only greatly contribute to the deadlock of technology to improve efficiency, but also improve the difficulty of manufacturing and can provide significant cost benefits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A thin-layer thermoelectric element pair unit is modularized into a high-density integrated type to thereby improve its adaptability to various applications. Many P-type and N-type thin-layer thermoelectric semiconductor element pair units and thin-layer electrodes are formed on a flexible heat-insulating/electricity-insulating sheet, electrodes are formed so as to hold the thermoelectric semiconductor element pair units from the opposite sides and allow the low-temperature side to overlap the high-temperature side in order to improve a thermoelectric effect and to provide a broader contact area between electrodes and thermoelectric semiconductor pair units, and the sheet is bent or coiled to effect three-dimensional working, whereby a high-density integrated type thin-layer thermoelectric module is produced. An air layer or a heat-insulating element layer may be interposed between adjacent thermoelectric element units, or a sheet-form film may be used to seal the surrounding against moisture and stain.

Description

明 細 書  Specification
高密度集積型薄層熱電モジュール及びハイブリッド発電システム 技術分野  High-density integrated thin-layer thermoelectric module and hybrid power generation system
[0001] 本発明は、比較的低温(常温域)から約 800°C近い高温までの範囲において熱電効 果を利用する薄層熱電モジュールと、そのようなモジュールを用いたノ、イブリツド (複 合)発電システムに関する。熱電効果とは、熱電半導体のゼーベック効果、ペルチ 効果、またはトムソン効果の総称であり、したがって、本発明は、熱電半導体又はそ れを用いた発電装置もしくは冷却 Z加熱装置の技術分野に属する。  [0001] The present invention relates to a thin-layer thermoelectric module that uses thermoelectric effects in a range from a relatively low temperature (normal temperature range) to a high temperature close to about 800 ° C, and a thin-film thermoelectric module using such a module. ) Regarding power generation system. The thermoelectric effect is a general term for the Seebeck effect, the Pelch effect, or the Thomson effect of thermoelectric semiconductors. Therefore, the present invention belongs to the technical field of thermoelectric semiconductors or power generation devices or cooling Z heating devices using the same.
背景技術  Background art
[0002] 熱電装置は、図 13に示すように、基本型として、 P型熱電半導体素子と N型熱電半 導体素子とそれらを接合する電極とからなる「 π構造」を有する。「 π構造」を有する 熱電半導体モジュールは、その両端の電極に挟まれた間に温度差( ΔΤ)をとると、 ゼーベック効果により熱発電をし、熱電半導体素子のに電流を流すとペルチェ効果 により電子が移動し、吸熱サイドと放熱サイドができる。「π構造」は、 Ρ型熱電半導体 素子と Ν型熱電半導体素子と電極とが、 1対又は交互に複数、電気的には直列に接 続され、熱的には低温サイドと高温サイドが上下に別れて並列に形成される。低温サ イドと高温サイドに熱エネルギー (温度差 Δ Τ)を供給すればゼーベック効果によって 図 13 (a)のように発電装置となる。又電気的に直列な回路に電源を供給すれば図 1 3 (b)のようにペルチェ効果によって冷却装置又は加熱装置になる。  As shown in FIG. 13, a thermoelectric device has, as a basic type, a “π structure” including a P-type thermoelectric semiconductor element, an N-type thermoelectric semiconductor element, and an electrode for joining them. A thermoelectric semiconductor module having a “π structure” generates a thermoelectric power by the Seebeck effect when a temperature difference (ΔΤ) is taken between the electrodes at both ends of the thermoelectric semiconductor module, and generates a Peltier effect when a current flows through the thermoelectric semiconductor element. The electrons move, creating an endothermic side and a radiating side. The "π structure" is a type II thermoelectric semiconductor element, a type II thermoelectric semiconductor element, and a plurality of electrodes connected alternately in multiple pairs and electrically in series. And are formed in parallel. If thermal energy (temperature difference Δ Τ) is supplied to the low-temperature side and the high-temperature side, a power generation device is obtained by the Seebeck effect as shown in Fig. 13 (a). If power is supplied to an electrically serial circuit, the circuit becomes a cooling device or a heating device by the Peltier effect as shown in FIG. 13 (b).
[0003] 基本的事項として、 π構造が必要であることを説明する。熱電素子のゼーベック効果 モデルにおいて、素子中の 2点間に温度差が与えられた場合、多数キヤリャは低温 側に拡散し、図 14のように、高温サイドから低温サイドに向力 電界が生じる。キヤリ ャが移動すると、平衡が保たれ、素子両端に電位差が生じる。ここで両熱電半導体 間に負荷を接続すると、電流が負荷に流れ、負荷の両端に電位差ができる。一方、 高温側接続点へ入ってきた熱はリード線を伝わって逃げるので、リード線を低温側へ 接続することにより、 Ρ型熱電半導体素子の熱起動電力は Ν型熱電半導体素子の多 数キヤリャの移動とは逆であるため、 π型構造をとるように、 Ρ型, Ν型熱電半導体を 構成することによって、電気的には直列に、熱的には並列に、接続することができる。 [0003] As a basic matter, the fact that a π structure is required will be described. In the Seebeck effect model of a thermoelectric element, when a temperature difference is given between two points in the element, many carriers diffuse to the low-temperature side, and a directional electric field is generated from the high-temperature side to the low-temperature side as shown in FIG. As the carrier moves, the balance is maintained and a potential difference is created across the element. Here, when a load is connected between the thermoelectric semiconductors, a current flows to the load, and a potential difference is generated between both ends of the load. On the other hand, the heat that enters the high-temperature side connection point escapes through the lead wire, and by connecting the lead wire to the low-temperature side, the thermal start-up power of the Ρ-type thermoelectric semiconductor element can be reduced by the multiple carriers of the Ν-type thermoelectric semiconductor element.移動 -type and Ν-type thermoelectric semiconductors have a π-type structure With such a configuration, it is possible to connect them electrically in series and thermally in parallel.
[0004] これまで、熱電装置を構成する π構造は、剛構造とすることが当然という認識の中で 、研究されてきた。スタンダードな製品としては、 4cm角の板の間に ΡΖΝ熱電半導 体素子ペア 127個を π構造ユニットとして整列させたものがある。 [0004] Until now, it has been studied that the π structure constituting the thermoelectric device must be a rigid structure. As a standard product, 127 pairs of thermoelectric semiconductor elements are arranged as a π structure unit between 4 cm square plates.
[0005] 従来の熱電装置は、インゴット又は焼結されたもの力 所定のサイズにスライス加工し たチップを所定の電極上に整列させ、半田工程を経て一体化された熱電素子モジュ ールとされるのが一般的であった。剛構造の熱電モジュールは、量産性が劣り、また 熱歪みによって寿命にばらつきが生じ、信頼性に問題ができ、性能向上は、低迷状 態であった。 [0005] A conventional thermoelectric device is an ingot or a sintered thermoelectric element module in which chips sliced into a predetermined size are aligned on predetermined electrodes, and integrated through a soldering process. Was common. The rigid structure of the thermoelectric module was inferior in mass productivity, and its life was varied due to thermal strain, which caused problems in reliability, and the performance improvement was sluggish.
[0006] 熱電素子の性能向上ははかば力しくなぐ熱電材料の特徴を表す因子である Ζ値を 向上させるしかないとまで言われており、事実、熱電半導体材料に関する提案もなさ れている(特許文献 1)。しかし、 Ζ値は電気伝導率に比例しかつ熱伝導率に逆比例 する値である。ふつう、電気伝導率の高い材料は熱伝導率も高い性質を持つ。このこ とが、 Ζ値を所望の値にすることを難しくし、現在に至るも大きな改善が見られない。  [0006] It has been said that the improvement of the performance of a thermoelectric element has to be improved only by increasing the Ζ value, which is a characteristic factor of a thermoelectric material that becomes less powerful. In fact, proposals regarding thermoelectric semiconductor materials have been made. (Patent Document 1). However, the Ζ value is proportional to electrical conductivity and inversely proportional to thermal conductivity. Generally, a material having a high electric conductivity has a property having a high heat conductivity. This makes it difficult to set the Ζ value to the desired value, and no significant improvement has been seen to date.
[0007] また、現状では、ゼーベック熱電発電装置として、低温領域向けのものは少ない。製 鉄所や発電所の炉熱に向けて、非常な高熱下の利用が研究されているものが多い。  [0007] At present, there are few Seebeck thermoelectric generators for low-temperature regions. In many cases, the use of extremely high heat for furnace heat in steelworks and power plants has been studied.
[0008] 本発明以前の、又は参考となる先行技術を挙げる。特許文献 1は、 Ζ値の高い熱電 材料に関する。特許文献 2は、高集積熱電アレー発電モジュールに関する。特許文 献 3は、太陽電池に温水タンクおよびペルチヱ発熱素子ユニットを適用する技術であ る。  [0008] Prior art prior to or according to the present invention will be listed. Patent Document 1 relates to a thermoelectric material having a high Ζ value. Patent Document 2 relates to a highly integrated thermoelectric array power generation module. Patent Document 3 is a technology for applying a hot water tank and a Peltier II heating element unit to a solar cell.
特許文献 1:特開 2001— 223392号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2001-223392
特許文献 2 :特開 2002— 171775号公報  Patent Document 2: JP-A-2002-171775
特許文献 3:特開平 10— 292953号公報  Patent Document 3: JP-A-10-295953
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明の課題は、比較的低温領域から 1000° C近い高温域まで使用できる集積型 薄層熱発電モジュールを提供することにある。また、ペルチェ効果による冷却 Ζ加熱 手段として利用する場合、現在難問題とされる耐久性、熱膨張による歪破壊寿命や にばらつきの問題を解消することをも課題とする。より具体的には、熱電半導体の特 性を生力しつつ熱電効果の効率を向上させるには、第 1に、集積化によってトータル 発電量を向上させること、第 2に、薄層熱電半導体の電極との接触面積を広くして電 流密度を大きくすること、そして第 3に、熱放散、熱貫流のロスを防ぐ構造を提供する 必要がある。 An object of the present invention is to provide an integrated thin-layer thermoelectric module that can be used from a relatively low temperature range to a high temperature range close to 1000 ° C. In addition, when used as a cooling / heating means by the Peltier effect, durability, which is currently a difficult problem, and the life of strain rupture due to thermal expansion, Another object is to solve the problem of variation. More specifically, to improve the efficiency of the thermoelectric effect while energizing the characteristics of the thermoelectric semiconductor, first, the total power generation should be improved by integration, and second, the thin-layer thermoelectric semiconductor It is necessary to increase the current density by increasing the contact area with the electrodes, and thirdly, to provide a structure that prevents heat dissipation and loss of heat flow.
[0010] π構造の素子サイズ (長さ、幅)を、発電効率が最大となるようにするには、モジユー ルの内部抵抗を低く設定することが考えられる。モジュールの内部抵抗を低く設定す ると、見かけ上発電量が向上するようにみえるが、同時に、ジュール熱と熱伝導による ロスを考慮しなければならない。ジュール熱は、電気抵抗のある物質に電流を流すと き発生し、熱伝導は、熱電素子内の温度勾配があると素子を伝わって熱の流れを生 じるものである。ゼーベック効果、ペルチェ効果およびトムソン効果は可逆現象である 力 ジュール熱と熱伝導は非可逆現象である。薄層熱電モジュールとしての熱の収 支関係は、可逆現象と非可逆現象との複合作用であり、非可逆現象の部分がゼー ベック効果、ペルチェ効果の能力を低下させる要因になりやすい。  [0010] In order to maximize the power generation efficiency of the element size (length and width) of the π structure, it is conceivable to set the internal resistance of the module low. If the internal resistance of the module is set to a low value, it seems that the amount of power generation appears to increase, but at the same time, losses due to Joule heat and heat conduction must be considered. Joule heat is generated when an electric current is applied to a substance having electrical resistance, and heat conduction is generated through a thermoelectric element when there is a temperature gradient in the thermoelectric element. Seebeck effect, Peltier effect and Thomson effect are reversible phenomena Force Joule heat and heat conduction are irreversible phenomena. The heat balance of a thin-layer thermoelectric module is a combined effect of reversible and irreversible phenomena, and the irreversible phenomena are likely to be factors that reduce the Seebeck effect and Peltier effect.
[0011] Ρ型及び Ν型熱電半導体を対にして接合した回路では、電気抵抗が低く熱伝導率が 高 ヽ異種金属 (銅の電極)を介して π構造を形成するとき、電極の温度は、熱電半導 体素子接合部と等しぐ Ρ型と Ν型の熱電半導体に発生する多数キヤリャの移動方向 は同じになる。このことは、電気的には直列に、熱的には並列になるように π構造を 形成したとき、ジュール熱および熱伝導に関する熱の移動が最小となって、熱の放散 による損失がなくなることを意味する。これは、多数集積ィ匕における発電量向上に必 要な条件となる。  [0011] In a circuit in which Ρ-type and Ν-type thermoelectric semiconductors are joined as a pair, the electric resistance is low and the thermal conductivity is high. と き When forming a π structure through a dissimilar metal (copper electrode), On the other hand, the direction of movement of a large number of carriers generated in the Ρ-type and Ν-type thermoelectric semiconductors, which are equal to the junction of the thermoelectric semiconductor element, is the same. This means that when the π structure is formed to be electrically in series and thermally in parallel, the transfer of heat related to Joule heat and heat conduction is minimized, and there is no loss due to heat dissipation. Means This is a necessary condition for increasing the amount of power generation in a large number of integrated vehicles.
[0012] したがって、本発明の主要な課題は、 π構造を基本として、多数の薄層熱電半導体 ユニットを集積することによって、トータルの発電量を向上させるとともに、熱歪みやそ のばらつきの問題を最小にする手段を提供することである。  [0012] Therefore, the main problem of the present invention is to improve the total power generation by integrating a large number of thin-layer thermoelectric semiconductor units based on the π structure, and to solve the problem of thermal distortion and its variation. It is to provide a means to minimize.
[0013] 本発明の第 2の主要な課題は、熱電半導体素子と電極との接触面積を広くする具体 的手段を提案することである。そのために、改良された電極の形態および熱電半導 体素子の形態、電極との接触関係を提供することである。 [0013] A second main problem of the present invention is to propose specific means for increasing the contact area between a thermoelectric semiconductor element and an electrode. Therefore, it is an object of the present invention to provide an improved electrode configuration and a thermoelectric semiconductor device configuration, and a contact relationship with the electrode.
[0014] 更に本発明の第 3の課題は、熱放散、熱貫流によるロスの少ない π構造の形状、構 造を提案することである。 課題を解決するための手段 [0014] Further, a third object of the present invention is to provide a shape and structure of a π-structure with less loss due to heat dissipation and heat flow. It is to propose a structure. Means for solving the problem
[0015] 本発明は、前記主要な課題である π構造の熱電素子を、従来の剛構造ではなぐ薄 層ベースとする(「薄層」は、いわゆる薄膜又は厚膜を含む)ことによって解決する。薄 層の特徴であるフレキシビリティ、量産、ローコストを達成するものである。すなわち、 柔軟な熱絶縁性で電気絶縁性のシート上に、多数の Ρ型、 Ν型熱電半導体素子の 対およびそれらを接合する電極を、薄い層のパターンとして、 1列又は複数列形成し 、そのシートを適宜ジグザグに折曲げ又はスパイラル (渦巻)に巻き込んで、立体構 造に加工した中に多数の π構造を形成し、高密度集積型薄層熱電モジュールとする ものである。 [0015] The present invention solves the above problem by using a thermoelectric element having a π structure, which is the main problem, as a thin-layer base that is not a conventional rigid structure (a “thin layer” includes a so-called thin film or thick film). . It achieves the flexibility, mass production and low cost that are characteristic of thin layers. That is, a large number of で -type and Ν-type thermoelectric semiconductor element pairs and electrodes for joining them are formed in one or more rows as a thin layer pattern on a flexible heat insulating and electrically insulating sheet. The sheet is folded in a zigzag or spirally wound to form a large number of π-structures in a three-dimensional structure, forming a high-density integrated thin-layer thermoelectric module.
[0016] 本発明においては、主要な課題である熱電半導体素子と電極との接触面積を広くす る具体的手段として、電極の形態を、熱電半導体素子端面から素子の側面にまで広 げて挟むように、あるいは囲むように設けることにより、電極面積を実質的に大きくし、 電極面積に応じた自由キヤリャがゼーベック効果によって形成され、熱起電力を生じ る。また、電極が接合される熱電半導体の表面を平面でなぐ波型ゃ孔あき構造とす ることで、熱電半導体素子と電極との実質的な接触面積は、さらに広くすることができ る。  In the present invention, as a specific means for increasing the contact area between the thermoelectric semiconductor element and the electrode, which is a major problem, the form of the electrode is widened from the end face of the thermoelectric semiconductor element to the side face of the element. In such a manner, the electrode area is substantially increased, and a free carrier corresponding to the electrode area is formed by the Seebeck effect, thereby generating a thermoelectromotive force. Further, by forming a corrugated perforated structure in which the surface of the thermoelectric semiconductor to which the electrode is joined is connected in a plane, the substantial contact area between the thermoelectric semiconductor element and the electrode can be further increased.
[0017] 本発明の高密度集積型薄層熱電モジュールは、また、熱電半導体素子の任意の位 置において、ドットホールを有する構造とし、熱電半導体素子ユニットと電極との接触 面積を積極的に大きくすると共に、熱電半導体素子ユニットの抵抗調整が出来ること が望ましい。  The high-density integrated thin-layer thermoelectric module of the present invention has a structure having a dot hole at an arbitrary position of the thermoelectric semiconductor element, so that the contact area between the thermoelectric semiconductor element unit and the electrode is positively increased. In addition, it is desirable that the resistance of the thermoelectric semiconductor element unit can be adjusted.
[0018] 高密度集積型薄層熱電モジュールにおいては、隣接する熱電素子ユニットを完全に 密着させようとしても、ユニット間に空隙ができるものである。しかし、本発明の高密度 集積型薄層熱電モジュールにおいては、隣接する熱電素子ユニット間にできてしまう 空隙を、積極的に熱絶縁体の層として利用し、このような空気層等を介在させること によって、内部ユニット間に熱絶縁性をもたせ、熱放散、熱貫流の問題を解決した。 熱絶縁体の層としては、真空、空気、その他熱伝導率の低い材料がある。 [0019] 本発明の高密度集積型薄層熱電モジュールのさらに別の大きい特徴は、熱電半導 体素子と薄層電極との接合面において、熱電半導体素子の表面を非平面に、すな わち波型、櫛型、あるいはドットホール構造とすることによって、接触面積を実質的に 拡大して、電流密度を大きくすることができたことである。さらに、製造工程において 非平面の形状、たとえばドットホールやスリットを変更することによって、熱電半導体 素子の抵抗値を任意に調整することができるようにしたことである。 In a high-density integrated thin-layer thermoelectric module, a gap is created between adjacent thermoelectric element units even if the thermoelectric element units are to be brought into close contact with each other. However, in the high-density integrated-type thin-layer thermoelectric module of the present invention, the air gap formed between the adjacent thermoelectric element units is positively used as a layer of a thermal insulator, and such an air layer is interposed. This provided thermal insulation between the internal units and solved the problem of heat dissipation and heat flow. The layer of the thermal insulator includes vacuum, air, and other materials having low thermal conductivity. [0019] Still another great feature of the high-density integrated thin-layer thermoelectric module of the present invention is that the surface of the thermoelectric semiconductor element is made non-planar at the joint surface between the thermoelectric semiconductor element and the thin-layer electrode. By using a wave-shaped, comb-shaped, or dot-hole structure, the contact area can be substantially increased and the current density can be increased. Furthermore, the resistance value of the thermoelectric semiconductor element can be arbitrarily adjusted by changing a non-planar shape such as a dot hole or a slit in a manufacturing process.
[0020] 本発明の高密度集積型薄層熱電モジュールにおいて、高温側と低温側との熱貫流 の問題を解決する手段として、熱電半導体素子をくびれ構造とすることを提案する。  In the high-density integrated thin-layer thermoelectric module of the present invention, as a means for solving the problem of heat flow between the high-temperature side and the low-temperature side, it is proposed that the thermoelectric semiconductor element has a constricted structure.
[0021] 本発明の高密度集積型薄層熱電モジュールにおいて、シート状フィルムで周囲の一 部又は全部をシールして、防湿防塵を兼ねることができる。  [0021] In the high-density integrated thin-layer thermoelectric module of the present invention, a part or all of the surroundings can be sealed with a sheet-like film to also serve as moisture proof and dust proof.
[0022] 柔軟なシートの上に熱電モジュールパターンを形成したうえで立体構造とすることに より、柔軟性と適応性を併せ持った熱電半導体素子モジュールをベースとし、種々の 立体的加工をする事によって、熱電半導体素子を高密度に集積させた薄層熱電素 子モジュールを構成することができる。  [0022] By forming a thermoelectric module pattern on a flexible sheet and then forming a three-dimensional structure, it is possible to perform various three-dimensional processing based on a thermoelectric semiconductor element module having both flexibility and adaptability. Thus, a thin-layer thermoelectric module in which thermoelectric semiconductor elements are integrated at a high density can be configured.
発明の効果 The invention's effect
[0023] 本発明の高密度集積型薄層熱電モジュールのスパイラル構造やジグザグの構造に より集積化した大きい効果は、多数の熱電半導体ユニットを効率的に集合集積させ たので、単位面積あたりの効率を上げることができ、小型のデバイスによって高いゼ 一ベック効果及びペルチヱ効果が得られることである。  The large effect of the high density integrated thin-layer thermoelectric module of the present invention, which is integrated by the spiral structure and the zigzag structure, is because a large number of thermoelectric semiconductor units are efficiently assembled and integrated, and the efficiency per unit area is improved. And a small device provides high Seebeck effect and Peltier effect.
[0024] 本発明の高密度集積型薄層熱電モジュールのさらに大きい効果は、ベースであるシ ートの素材が柔軟であるとともに、その上に熱電半導体や薄層電極力 なる構造をス パイラル構造やジグザグの構造によって集積した結果、立体構造とした状態にお ヽ ても猶、柔軟性を有するものとすることができたことである。そのため、剛構造が持つ ていた耐久性や、熱膨張による歪破壊の問題が解消される。  [0024] An even greater effect of the high-density integrated thin-layer thermoelectric module of the present invention is that the material of the base sheet is flexible, and a thermoelectric semiconductor or a thin-layer electrode is formed on the spiral structure. As a result of accumulating due to the zigzag and zigzag structures, it is possible to provide flexibility even in a three-dimensional structure. Therefore, the problems of durability and strain destruction due to thermal expansion that the rigid structure has were solved.
[0025] 本発明においては、熱電半導体素子及び電極を薄い層とし、柔軟な構造を実現した ので、これを種々の機器に付加する場合、モジュールのサイズや形状、数を適宜選 ぶことによって、種々の機器への用途に対しても、うまく適応させることができる。用途 である機器が種々のサイズや凹凸などの形状構造を持って 、ても、モジュールを多 数、種々のサイズ準備し、用途である利用機器に合うように、組み合わせて配置する ことができる。 In the present invention, since the thermoelectric semiconductor element and the electrode are formed into thin layers to achieve a flexible structure, when adding the thermoelectric semiconductor element and various electrodes to various devices, the size, shape, and number of the module are appropriately selected. It can be well adapted for use in various devices. Use Even if the device has various shapes and shapes such as irregularities, a large number and various sizes of modules can be prepared and arranged in combination so as to match the device to be used.
[0026] 高密度集積型薄層熱電素子は、その製造において、パターンィ匕技術を利用しており 、量産によりローコストを達成する。  [0026] The high-density integrated thin-layer thermoelectric element utilizes patterning technology in its manufacture, and achieves low cost by mass production.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1] (実施例 1)スパイラルに立体加工する本発明実施例 (a)は片面の電 極のパターン (b)は熱電半導体素子および片面の電極のパターン  [FIG. 1] (Embodiment 1) Embodiment of the present invention in which a spiral is three-dimensionally processed (a) A single-sided electrode pattern (b) A thermoelectric semiconductor element and a single-sided electrode pattern
(c)は両面電極により熱電半導体素子を接合した図 (d)はスパイラルにカロ ェした略図 (e)はスパイラルに加工した実体図  (c) is a diagram in which thermoelectric semiconductor elements are joined by a double-sided electrode. (d) is a schematic diagram in which a spiral is drawn. (e) is a diagram in which a spiral is processed.
[図 2] (実施例 2) 1列ジグザグに立体加工する本発明実施例 (a)は片面の 電極のパターン (b)は熱電半導体素子および片面の電極のパターン  [FIG. 2] (Example 2) Example of the present invention in which three-dimensional processing is performed in a single-row zigzag pattern (a) is a single-sided electrode pattern (b) is a thermoelectric semiconductor element and a single-sided electrode pattern
(c)は両面電極により熱電半導体素子を接合した図 (d)は断面図 (c) is a view in which thermoelectric semiconductor elements are joined by double-sided electrodes. (d) is a cross-sectional view.
(e)はジグザクに加工した略図 (e) Schematic processed into zigzag
[図 3] (実施例 3)横複数列ジグザグに立体加工する本発明実施例 (a)は複 数列の両面電極により熱電半導体素子を接合した図 (b)はジグザグにカロ ェした略図  [FIG. 3] (Embodiment 3) Embodiment of the present invention in which three-dimensional processing is performed into a plurality of rows of zigzags.
[図 3c]ジグザグカ卩ェするシートパターンとその断面、及びジグザグ加工した部分を拡 大した実施例 3  [FIG. 3c] Example 3 in which a zigzag sheet pattern, its cross section, and a zigzag processed portion are enlarged.
[図 4] (実施例 4)薄層熱電半導体素子と薄層電極との接触面積を広くする実施例の 薄層熱電半導体素子の薄層の厚みに平行な断面の図 (a)は薄層電極によ つて熱電半導体素子を挟み又は囲む実施例 (b) , (c)は熱電半導体素子 の表面を非平面とする実施例 (d)は熱電半導体素子をドットホール構造を 設けた実施例 (e)は熱電半導体素子にスリットを設けた実施例  FIG. 4 (Example 4) A cross-sectional view parallel to the thickness of the thin layer of the thin-layer thermoelectric semiconductor element of the embodiment in which the contact area between the thin-layer thermoelectric semiconductor element and the thin-layer electrode is increased. Examples in which the thermoelectric semiconductor element is sandwiched or surrounded by electrodes (b), (c): An example in which the surface of the thermoelectric semiconductor element is non-planar; (d): An example in which the thermoelectric semiconductor element is provided with a dot hole structure ( e) Example in which a slit is provided in the thermoelectric semiconductor element
[図 5] (実施例 5)スパイラル加工する実施例を量産する手法を示す。  FIG. 5 (Embodiment 5) shows a method of mass-producing an embodiment for performing spiral processing.
[図 6] (実施例 6)ジグザグ加工する実施例を量産する手法 (a) (b)を示す。  [FIG. 6] (Embodiment 6) Methods (a) and (b) of mass-producing an embodiment of zigzag processing are shown.
[図 7] (実施例 7)熱電半導体素子の抵抗値を調整し、高温サイドと低温サイドとを熱 遮断する実施例 (a)は熱電半導体素子にスリット又はドットホールを設ける 実施例 (b)は熱電半導体素子をくびれ形状にした実施例 [FIG. 7] (Embodiment 7) An embodiment in which the resistance value of a thermoelectric semiconductor element is adjusted to thermally shut off the high-temperature side and the low-temperature side. Example (b) is an example in which the thermoelectric semiconductor element has a constricted shape.
[図 8] (実施例 8)図 1のスパイラルに立体加工する実施例において熱電半導体素子 をくびれ形状にした例  [FIG. 8] (Embodiment 8) An example in which the thermoelectric semiconductor element is formed into a constricted shape in the embodiment shown in FIG.
[図 9] (実施例 9)図 2,図 3のジグザグに立体加工する実施例 2, 3に適用して熱電半 導体素子をくびれ形状にした例  [FIG. 9] (Embodiment 9) An example in which the thermoelectric semiconductor element is formed into a constricted shape by applying to the embodiments 2 and 3 in which the zigzag three-dimensional processing is performed in FIGS.
[図 10] (実施例 10)ソーラーセル発電装置と薄層熱電モジュールとを組み合わせた 本発明実施例 (a)はソーラーセル発電装置の略図 (b)は薄層熱 電モジュールの略図 (c)はソーラーセル発電装置と薄層熱電モジュールと を組み合わせた本発明実施例  (FIG. 10) (Embodiment 10) An embodiment of the present invention in which a solar cell power generation device and a thin layer thermoelectric module are combined (a) is a schematic diagram of a solar cell power generation device (b) is a schematic diagram of a thin layer thermoelectric module (c) Is an embodiment of the present invention in which a solar cell power generation device and a thin-layer thermoelectric module are combined.
[図 11] (実施例 11)ソーラーセル発電装置と薄層熱電モジュールとを組み合わせた 本発明複合発電システムの裏面略図 (a)および横断面図 (b)  FIG. 11 (Example 11) A schematic rear view (a) and a cross-sectional view (b) of a combined power generation system of the present invention in which a solar cell power generation device and a thin-layer thermoelectric module are combined.
[図 12]温度範囲の異なる薄層熱電モジュールを多段に組み合わせた本発明実施例 (a)および熱電半導体素子の温度特性略図 (b) FIG. 12 shows an embodiment of the present invention in which thin-layer thermoelectric modules having different temperature ranges are combined in multiple stages (a) and a schematic diagram of temperature characteristics of a thermoelectric semiconductor element (b)
[図 13]既存の熱電装置の説明図 (b)は π構造による加熱 Ζ冷却装置の原 理図 (a)は π構造による発電の原理図  [Figure 13] Illustration of existing thermoelectric device (b) Principle diagram of heating / cooling device with π structure (a) Principle diagram of power generation by π structure
[図 14]既存の熱電装置の熱電半導体素子における電子移動の説明図  FIG. 14 is an explanatory view of electron transfer in a thermoelectric semiconductor element of an existing thermoelectric device
符号の説明 Explanation of symbols
1 Ρ型又は Ν型熱電半導体素子  1 Type I or type II thermoelectric semiconductor device
2 薄膜電極  2 Thin-film electrodes
3 シート  3 sheets
4 伝熱板 (放熱部、集熱部)  4 Heat transfer plate (radiator, heat collector)
5 防湿、電気絶縁、断熱層  5 Moisture proof, electrical insulation, heat insulation layer
6, 7 折曲線  6, 7-fold curve
8 切断線  8 Cutting line
10, 10A, 10B, 10C 薄層熱電モジュール  10, 10A, 10B, 10C Thin layer thermoelectric module
71 スリット  71 slit
72 孔あき(ドットホール)構造  72 Perforated (dot hole) structure
73 くびれ形状 100 ソーラーセノレ(ソーラー瓦) 73 Constriction shape 100 Solar Senor (Solar Roof)
101 強化ガラス  101 tempered glass
102 透明電極  102 Transparent electrode
103 PN接合  103 PN junction
104 ソーラーセルの電極  104 Solar cell electrodes
105 ボトムベース  105 Bottom base
106 高温側ベース  106 Hot side base
107 電気絶縁性熱良導体  107 Electrically insulating thermal conductor
108 低温側ベース  108 Low temperature base
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 熱絶縁性且つ電気絶縁性で柔軟な縦長の薄いシートの上に、 P型熱電半導体素子 の薄層及び N型熱電半導体素子の薄層を縦方向に交互に配し、シートの片方縁部 に P型から N型へ熱電半導体素子を接合する薄層電極を、シートの反対側縁部に N 型から P型へ熱電半導体素子を接合する薄層電極を夫々設けて、多数縦続する π 構造熱電ユニットをシート上に形成し、シートをスノィラル (渦巻)に巻き込むことによ つて、円柱状ないし角柱状の立体にカ卩ェし、立体の電極の集まる 2面を夫々低温サ イド及び高温サイドとしたことを特徴とする高密度集積型薄層熱電モジュール。  [0029] A thin layer of a P-type thermoelectric semiconductor element and a thin layer of an N-type thermoelectric semiconductor element are alternately arranged in a longitudinal direction on a flexible vertically elongated thin sheet having thermal insulation and electrical insulation. A thin-layer electrode for joining thermoelectric semiconductor elements from P-type to N-type is provided on the edge, and a thin-layer electrode for joining thermoelectric semiconductor elements from N-type to P-type is provided on the opposite edge of the sheet. A π-structured thermoelectric unit is formed on a sheet, and the sheet is rolled into a snoral (swirl) to form a columnar or prismatic solid. High-density integrated thin-layer thermoelectric module characterized by a high-temperature side.
[0030] 熱絶縁性且つ電気絶縁性で柔軟な薄いシートの上に、縦方向に、 Ρ型熱電半導体 素子の薄層、 Ν型熱電半導体素子の薄層および各熱電半導体素子を接合する電極 の各薄層を一列又は複数列に配置し、電極のほぼ中央部を横方向の線に沿ってジ グザグ (蛇腹、波状)に折曲げることにより多数の π構造熱電ユニットを立体として縦 続させて形成し、立体の横方向折曲げ線の集合する 2面が夫々低温サイド及び高温 サイドとなるようにしたことを特徴とする高密度集積型薄層熱電モジュール。  [0030] A thin layer of a 絶 縁 -type thermoelectric semiconductor element, a 層 -type thin layer of a thermoelectric semiconductor element, and an electrode for joining each thermoelectric semiconductor element are vertically arranged on a thin sheet that is thermally and electrically insulative and flexible. Each thin layer is arranged in one or more rows, and a large number of π-structured thermoelectric units are cascaded in a three-dimensional manner by bending the approximate center of the electrode in a zigzag (bellows, wavy) along a horizontal line. A high-density integrated thin-layer thermoelectric module characterized in that two surfaces formed and assembled with three-dimensional lateral bending lines are a low-temperature side and a high-temperature side, respectively.
[0031] 熱電半導体素子に薄層電極を接合する際、電極は熱電半導体素子の端面から側面 にかけて熱電半導体素子を挟み又は囲むようにし、かつ又は熱電半導体素子の電 極と接する部分の面を非平面にして、電極と熱電半導体素子との接触面積を広くす ることにより、電流密度が大きくなるようにしたことを特徴とする前記スパイラル又はジ グザグ型の高密度集積型薄層熱電モジュール。 [0032] さらに、各熱電半導体素子の薄層は低温サイドと高温サイドの中間部にくびれた形 状、スリット及び Z又はドットホールを持たせ、必要に応じて周囲の一部又は全部を 断熱性 (空気又は真空を含む)、電気絶縁性、防湿性の材料によってシールし、熱貫 流ロスを少なくした上記の高密度集積型薄層熱電モジュール。 [0031] When a thin-layer electrode is joined to the thermoelectric semiconductor element, the electrode sandwiches or surrounds the thermoelectric semiconductor element from the end face to the side face of the thermoelectric semiconductor element, and / or has a non-contact surface with the electrode of the thermoelectric semiconductor element. The spiral or zigzag-type high-density integrated thin-layer thermoelectric module, wherein the current density is increased by making the contact area between the electrode and the thermoelectric semiconductor element wider by making it flat. [0032] Further, the thin layer of each thermoelectric semiconductor element has a constricted shape, a slit, a Z or a dot hole at an intermediate portion between the low-temperature side and the high-temperature side, and a part or all of the surroundings is heat-insulated as necessary. The above-described high-density integrated thin-layer thermoelectric module, which is sealed with an electrically insulating and moisture-proof material (including air or vacuum) to reduce heat transmission loss.
実施例 1 Example 1
[0033] 図 1は、高密度集積型薄層熱電モジュールを、スパイラルに立体化加工する本発明 の実施例 1である。 1は P型および N型熱電半導体素子、 2は薄層の電極、 3は熱絶 縁性で電気絶縁性の柔軟なフィルムシートで、この例では縦長である。 4は板状の放 熱部又は受熱部 4であり、薄層の電気絶縁層を介してもよい。薄層電極 2は、フィル ムシート 3に印刷、蒸着等の方法でパターンを形成する。  FIG. 1 shows Example 1 of the present invention in which a high-density integrated thin-layer thermoelectric module is spirally three-dimensionally processed. 1 is a P-type and N-type thermoelectric semiconductor element, 2 is a thin-layer electrode, 3 is a thermally insulating and electrically insulating flexible film sheet, which is vertically long in this example. Numeral 4 denotes a plate-shaped heat radiation section or heat reception section 4, which may be provided with a thin electric insulating layer. The thin-layer electrode 2 forms a pattern on the film sheet 3 by printing, vapor deposition, or the like.
[0034] 熱絶縁性且つ電気絶縁性で柔軟な縦長の薄いシート 3の上に、図 1 (b)のように、 P 型熱電半導体素子及び N型熱電半導体素子 2の薄層を、縦方向に交互に連続する パターンとして印刷又は蒸着によって形成する。電極 2は、図 1 (a)の太字のように、 シートの左右両縁部にやはり印刷、蒸着等によってパターン形成する。シートの片側 縁部の電極パターンは、 P型から N型へ熱電半導体素子 2を接合し、シートの反対側 縁部の電極パターンは、 N型から P型へ熱電半導体素子 2を接合する。こうして、図 1 (c)のように、縦長のシート 3の平面上に多数連続して π構造熱電ユニットが形成さ れる。図 1 (d)は(c)をスパイラルに巻き込んだ略図、(e)は(d)の側面であるが、上の 各図より小さく記載している。次に、シートを図 1 (f)は丸型スパイラルに巻き込みカロェ することによって、円柱状にカ卩ェしたものである。円柱でなぐ角柱(四角、六角など) の立体でもよい。この立体が高密度集積型薄層熱電モジュールであり、電極が集ま つた図の上面と下面とが夫々低温サイド及び高温サイドとなる。高密度集積型薄層 熱電モジュールの低温サイド及び高温サイドは、 1対の伝熱板 4 (放熱部、受熱部)に よってサンドイッチ状に挟み、後述する図 10のように、伝熱板 4を介して、利用機器に 装着し、発電装置、冷却あるいは加熱装置として動作させる。  [0034] As shown in FIG. 1 (b), a thin layer of a P-type thermoelectric semiconductor element and a thin layer of an N-type thermoelectric semiconductor element 2 is placed on a vertically elongated thin sheet 3 that is thermally and electrically insulative. It is formed by printing or vapor deposition as a pattern that is alternately continuous. The electrodes 2 are also patterned on the left and right edges of the sheet by printing, vapor deposition, etc., as shown in bold type in FIG. The electrode pattern on one edge of the sheet joins the thermoelectric semiconductor elements 2 from the P-type to the N-type, and the electrode pattern on the opposite edge of the sheet joins the thermoelectric semiconductor elements 2 from the N-type to the P-type. Thus, as shown in FIG. 1 (c), a large number of π-structure thermoelectric units are continuously formed on the plane of the vertically long sheet 3. Fig. 1 (d) is a schematic diagram in which (c) is spirally wound, and (e) is a side view of (d), which is smaller than the above figures. Next, Fig. 1 (f) shows the sheet rolled into a round spiral and curled into a cylindrical shape. It may be a solid prism (square, hexagon, etc.) joined by cylinders. This three-dimensional structure is a high-density integrated thin-layer thermoelectric module, and the upper and lower surfaces of the figure where the electrodes are gathered are the low-temperature side and the high-temperature side, respectively. The low-temperature side and high-temperature side of the high-density integrated thin-layer thermoelectric module are sandwiched between a pair of heat transfer plates 4 (radiator, heat receiver), and the heat transfer plates 4 are sandwiched as shown in FIG. And install it on the equipment to be used and operate it as a power generator, cooling or heating device.
[0035] モジュールは、板部 4を介して熱エネルギーの授受を行う。このようなパターンにより、 数百から数千の対を持った熱電素子とすることもできる。発電装置として利用するとき は、両端力も引き出した電極から、バッテリーに蓄電する力 利用機器へ電気的に接 続する。 The module transmits and receives thermal energy via the plate unit 4. With such a pattern, a thermoelectric element having hundreds to thousands of pairs can be obtained. When using as a power generator Is electrically connected to the device that uses the power that is stored in the battery from the electrode that also draws both ends.
[0036] 実施例 1で用いる熱電半導体素子 2の材料は、 BiTePb (低温〜 200°C)ゃ鉄シリサ イド(300〜700°C)等である。ベースとなるシート 3は、電気絶縁性、断熱性、防湿性 のもので、ポリイミド榭脂、ァラミド榭脂、ふつ素榭脂、シート状セラミックなどがある。 電極は銅など導電率の高い材料がよい。なお、以下の実施例でも同じ材料を用いる ことができる。  The material of the thermoelectric semiconductor element 2 used in Example 1 is BiTePb (low temperature to 200 ° C.) / Iron silicide (300 to 700 ° C.). The sheet 3 serving as a base has electrical insulation, heat insulation, and moisture resistance, and includes polyimide resin, aramide resin, fluorine resin, and sheet ceramic. The electrode is preferably made of a material having high conductivity such as copper. The same material can be used in the following examples.
実施例 2  Example 2
[0037] 図 2は、本発明の実施例 2であり、高密度集積型薄層熱電モジュールを、縦長のシー ト 3をジグザグ (蛇腹、波状)に立体に加工する、説明のため付した番号は実施例 1と 同じであるが、フィルムシート 3は必要に応じて多数の横方向に折曲げカ卩ェ可能な部 分 6, 7を持もたせるとよい。この実施例 2では、熱絶縁性且つ電気絶縁性で柔軟な 縦長の薄いシートの縦方向に、図 2 (b)のように、 P型熱電半導体素子、電極、 N型熱 電半導体素子、電極のように薄層を一列に配置する。更に電極を、その両隣の P型 熱電半導体素子から N型熱電半導体素子へ、又は N型熱電半導体素子から P型熱 電半導体素子へ接合する。電極のほぼ中心部を横方向の一点鎖線 6, 7に沿ってジ グザグに折曲げることにより、多数の π構造熱電ユニットが立体として形成される。断 面図(d)では矢印のところで折曲げる(図は厚みを誇張して描いてあるが、電極は薄 い層である)。この立体加工してなる高密度集積型薄層熱電モジュールは、一点鎖 線の折り曲げ部分 6, 7は一つおきに上面及び反対の下面に集まり、夫々低温サイド 及び高温サイドになる。伝熱板 4については、先の実施例 1同様、必要に応じて取り 付け、利用機器に装着する。なお、図示していないが、フィルムシートの電極を設け る箇所に、等間隔に電極よりわず力 vj、さい穴をあけておき、シートの表と裏とから電極 を蒸着させて、熱電半導体素子を挟むように固定してもよい。 (^ ? )  FIG. 2 shows Example 2 of the present invention, in which a high-density integrated thin-layer thermoelectric module is formed by processing a vertically long sheet 3 in a zigzag (bellows, wavy) three-dimensionally. Is the same as in Example 1, but the film sheet 3 is preferably provided with a number of parts 6 and 7 which can be folded in the horizontal direction as required. In Example 2, as shown in FIG. 2 (b), a P-type thermoelectric semiconductor element, an electrode, an N-type thermoelectric semiconductor element, The thin layers are arranged in a line as in. Further, the electrodes are joined from the P-type thermoelectric semiconductor element on both sides to the N-type thermoelectric semiconductor element or from the N-type thermoelectric semiconductor element to the P-type thermoelectric semiconductor element. A large number of π-structure thermoelectric units are formed as a three-dimensional structure by bending the center of the electrode in a zigzag manner along the dashed lines 6 and 7 in the horizontal direction. In the sectional view (d), bend at the arrow (the figure is exaggerated in thickness, but the electrodes are thin layers). In this high-density integrated thin-layer thermoelectric module formed by three-dimensional processing, the bent portions 6 and 7 of the alternate long and short dash line gather on the upper surface and the opposite lower surface, respectively, to become the low-temperature side and the high-temperature side, respectively. As in the first embodiment, the heat transfer plate 4 is mounted as needed and mounted on the equipment to be used. Although not shown, a force vj and a hole are drilled at equal intervals between the electrodes on the film sheet, and the electrodes are deposited from the front and back of the sheet to form a thermoelectric semiconductor. The element may be fixed so as to sandwich the element. (^?)
実施例 3  Example 3
[0038] 図 3の本発明実施例 3は、図 2の実施例同様、 P型熱電半導体素子、電極、 N型熱電 半導体素子、電極の薄層を列に配してジグザグに立体化カ卩ェするものである力 こ の実施例では前記列は、複数列とし、列の両端で電流方向をターンさせる電極を設 けている。ベースのシートは、方形など 2次元に広がったものとする。電極は、同じ列 上の両側にある P型熱電半導体素子力 N型熱電半導体素子に、又は N型熱電半 導体素子から P型熱電半導体素子に、接合をするものであることも実施例 2と同じで ある。ただし、熱電半導体素子の P型、 N型の配置順および利用時印加する電源の 極性方向を考えて、高温サイドおよび低温サイドが、列を横断する横方向の一点鎖 線 6, 7の上に交互に(上下に)揃って並んで形成されるようにしなければならない。そ のため、図 3 (a)のパターンでは、左端および右端を交互に電流をターンさせている。 各列の最初と末尾とは、次の列と接続できるように、パターンの蒸着を施す。このよう なパターンを形成して、図 3の横方向の破線に沿ってジグザク(蛇腹又は波状)に折 曲げると、多数の π構造熱電ユニットが立体として縦横に形成され、かつ低温サイド を例えばその折曲線の集まった上面に、また高温サイドを逆の折曲線が集まった下 面に、揃えることができる。 [0038] In the third embodiment of the present invention shown in Fig. 3, similarly to the embodiment of Fig. 2, thin layers of a P-type thermoelectric semiconductor element, an electrode, an N-type thermoelectric semiconductor element, and an electrode are arranged in a row to form a three-dimensional zigzag. In this embodiment, the row is a plurality of rows, and electrodes for turning the current direction at both ends of the row are provided. I am. The base sheet shall be spread in two dimensions such as a square. The electrodes are used to join the P-type thermoelectric semiconductor elements on both sides of the same row to the N-type thermoelectric semiconductor elements or from the N-type thermoelectric semiconductor elements to the P-type thermoelectric semiconductor elements. It is the same. However, considering the arrangement order of the P-type and N-type thermoelectric semiconductor elements and the polarity direction of the power supply applied during use, the high-temperature side and low-temperature side are positioned above the dashed-dotted lines 6 and 7 across the row. It must be formed alternately (up and down) side by side. Therefore, in the pattern of FIG. 3A, the current is alternately turned on the left end and the right end. At the beginning and end of each row, a pattern is deposited so that it can be connected to the next row. When such a pattern is formed and bent in a zigzag (bellows or wavy shape) along the horizontal broken line in FIG. 3, a large number of π-structure thermoelectric units are formed as a three-dimensional structure vertically and horizontally, and the low-temperature side is formed, for example. The high temperature side can be aligned with the upper surface where the bent curves are gathered, and the lower surface where the opposite bent lines are gathered.
[0039] 図 3のモジュールも、熱伝板 4を設けて両側から挟み、絶縁筐体の中に両端電極側 を多少空けてセットする。そして、両端電極からリード線を引き出して、高密度集積薄 層熱電モジュールとする。図 3cは、ジグザグカ卩ェする前のシートパターン(図の左)と その断面(図の左下)、ジグザグ加工した部分を拡大したもの(図の右)を実施した寸 法 (mm)も入れて記載したものである。 The module shown in FIG. 3 is also provided with the heat transfer plate 4 and sandwiched from both sides, and is set in the insulating casing with both ends of the electrode side being slightly spaced. Then, lead wires are drawn out from the electrodes at both ends to form a high-density integrated thin-layer thermoelectric module. Figure 3c shows the sheet pattern before zig-zag shading (left in the figure), its cross section (lower left in the figure), and the dimensions (mm) of the enlarged zig-zag processed part (right in the figure). It is described.
実施例 4  Example 4
[0040] 図 4の本発明実施例 4は、集積ィ匕による効果をさらに有効にする。すなわち、電極と 熱電半導体素子との接触面積を実質的に広くすることにより、電流密度が大きくなる ようにした本発明の実施例を、熱電半導体素子の薄層の厚みに沿ってスライスする 断面として描いている。図 4 (a)の実施例では、熱電半導体素子に薄層電極を接合 する際、単に両端部でそれらを接合させるのでなぐ電極によって熱電半導体素子の 端面力も側面にかけて熱電半導体素子を挟み又は囲むようにする。  [0040] Embodiment 4 of the present invention in Fig. 4 further enhances the effect of accumulation. That is, the embodiment of the present invention, in which the current density is increased by substantially increasing the contact area between the electrode and the thermoelectric semiconductor element, is sliced along the thickness of the thin layer of the thermoelectric semiconductor element. I'm drawing. In the embodiment of FIG. 4 (a), when joining the thin-layer electrodes to the thermoelectric semiconductor element, the end face force of the thermoelectric semiconductor element is also applied to the side surfaces by the electrodes that are simply joined at both ends so that the thermoelectric semiconductor element is sandwiched or surrounded. To
[0041] 図 4 (b) (c) (d) (e)の実施例 4では、さらに、熱電半導体素子に薄層電極を接合する 際、熱電半導体素子の電極と接する部分の面を非平面にして、熱電半導体素子と電 極との接触面積を実質的に広くすることにより、電流密度が大きくなるようにした。す なわち、熱電半導体素子の接合部の形状を、図 4 (b) (c) (e)のように凹凸、櫛形、波 形、あるいは(d)のように孔あき(ドットホール)などの構造とし、電極はそれら非平面 に合わせて接合する。図 4の (b)〜(e)の実施例は、任意に組み合わせることができ る。又、後に述べる実施例 7 (図 7, 8, 9)とも組合せることができる。 In Example 4 of FIGS. 4 (b), (c), (d) and (e), when the thin-layer electrode is joined to the thermoelectric semiconductor element, the surface of the portion in contact with the electrode of the thermoelectric semiconductor element is made non-planar. Then, the current density was increased by substantially increasing the contact area between the thermoelectric semiconductor element and the electrode. That is, as shown in Figs. 4 (b), (c), and (e), the shape of the junction of the thermoelectric The electrodes have a shape or a structure with holes (dot holes) as shown in (d), and the electrodes are joined in conformity with the non-planar surfaces. The embodiments of (b) to (e) of FIG. 4 can be arbitrarily combined. It can also be combined with the seventh embodiment (FIGS. 7, 8, and 9) described later.
実施例 5  Example 5
[0042] 前記図 1の実施例 1の集積された薄層熱電モジュールは、製造手順として、図 5の実 施例 5のように方形のシートにパターン形成し、図 5の一点鎖線 8で切断することによ つて、量産することができる。  The integrated thin-layer thermoelectric module of the first embodiment shown in FIG. 1 is patterned as a square sheet as in the fifth embodiment shown in FIG. 5 and cut along a dashed line 8 in FIG. By doing so, it can be mass-produced.
実施例 6  Example 6
[0043] 前記図 2の実施例 2も、量産のために、図 6 (a) (b)の実施例 6のように、方形のシート に複数列配置し、ジグザグ加工の前又は後、図 6の一点鎖線 8の部分を切断すること 力 Sできる。同じ製造手順は実施例 3においても可能である。  In Example 2 in FIG. 2 as well, for mass production, as in Example 6 in FIGS. 6 (a) and 6 (b), a plurality of rows are arranged on a square sheet, before or after zigzag processing. The dash-dot line 6 can be cut at the point 8. The same manufacturing procedure is possible in Example 3.
[0044] 以上図 1〜3、 5又は 6のように集積ィ匕し、又図 4のように熱電半導体素子と電極との 接触面積を拡大することにより、本発明の高密度集積型薄層熱電モジュールでは、 ほぼ同サイズの従来力 あるスタンダードな剛構造製品と比較して、総断面積で従来 の剛構造装置の熱電半導体素子の 1. 2倍以上とすることができ、さらに熱電半導体 素子と電極の接触面積で従来の約 4〜6倍以上にもできる。これらの改良により、熱 電半導体素子中を流れる電流密度が高くなり、効率の良い熱電装置を得ることがで きる。  As described above, by integrating as shown in FIGS. 1 to 3, 5 and 6, and by enlarging the contact area between the thermoelectric semiconductor element and the electrode as shown in FIG. The thermoelectric module has a total cross-sectional area that is at least 1.2 times larger than that of conventional rigid-structured devices compared to conventional rigid-structured products of almost the same size, and the thermoelectric semiconductor device The contact area between the electrode and the electrode can be about 4 to 6 times larger than before. With these improvements, the density of current flowing through the thermoelectric semiconductor element increases, and an efficient thermoelectric device can be obtained.
実施例 7  Example 7
[0045] 高密度集積型薄層熱電モジュール力 効率的に電力を取り出すために、熱電ュニッ トにおける熱電半導体素子の抵抗値を最適の値にしなければならない。そのため、 図 7の実施例 7 (a)のように、熱電半導体素子の任意の場所にスリット 71又はドットホ ール 72を設け抵抗値を所望の値に調整することができる。  [0045] High-density integrated thin-layer thermoelectric module power In order to extract power efficiently, the resistance of the thermoelectric semiconductor element in the thermoelectric unit must be optimized. Therefore, as in Embodiment 7 (a) of FIG. 7, a slit 71 or a dot hole 72 can be provided at an arbitrary position of the thermoelectric semiconductor element to adjust the resistance value to a desired value.
[0046] 高密度集積型薄層熱電モジュールにおいて、各熱電半導体素子は低温サイドと高 温サイドとを断熱する必要がある。そのため、図 7 (b)のように、両サイドの中間を糸卷 きのようなくびれた形状 73とすることができる。  In the high-density integrated thin-layer thermoelectric module, each thermoelectric semiconductor element needs to insulate the low-temperature side and the high-temperature side. Therefore, as shown in FIG. 7 (b), the middle of both sides can be formed into a constricted shape 73 like a thread winding.
実施例 8 [0047] 図 8は、実施例 7 (b)と同様、スパイラルに立体カ卩ェする実施例 1、 5において、各熱 電半導体素子 1の電極と電極との中間をくびれ形状 73として、高温サイドと低温サイ ド間の熱貫流ロスを減じたものである。 Example 8 [0047] FIG. 8 is a view similar to Embodiment 7 (b) in Examples 1 and 5 in which a three-dimensional spiral is formed in a spiral. This is a reduction of the heat loss between the side and the low-temperature side.
実施例 9  Example 9
[0048] 図 9も、実施例 7 (b)と同様、ジグザグに立体カ卩ェする実施例 2又は実施例 3、 6にお いて、熱電半導体素子 1の電極と電極との中間をくびれ形状 73として、高温サイドと 低温サイド間の熱貫流ロスを減じたものである。  [0048] FIG. 9 also shows a constricted shape between the electrodes of the thermoelectric semiconductor element 1 in Example 2 or Examples 3 and 6 in which zigzag solidification is performed similarly to Example 7 (b). As 73, the heat loss between the hot side and the cold side is reduced.
[0049] 断熱性を持たせることは、立体に加工することによって、隣接した位置にくる熱電半 導体素子間においても重要である。そのため、立体の内部において、熱絶縁性を高 くすることが必要になる。高密度集積型薄層熱電モジュールにおいて、内部のュ-ッ ト間を熱遮断する熱絶縁性の高い層としては、真空が最も優れている力 空気の層 又は熱遮断性材料の層を設けてもよい。なお、ユニット間の空隙は、通常の立体ィ匕 加工の際、自然にできるものであり、むしろ避けられないものである力 これを、本発 明では、積極的に、熱遮断のために利用することができる。  [0049] It is important to impart heat insulation between thermoelectric semiconductor elements that are adjacent to each other by being processed into a three-dimensional shape. Therefore, it is necessary to enhance the thermal insulation inside the solid. In a high-density integrated thin-layer thermoelectric module, as a layer with high thermal insulation that shuts off heat between internal cuts, a layer of air or a layer of heat-blocking material with the best vacuum is provided. Is also good. In addition, the gap between the units can be naturally formed during ordinary three-dimensional shading, and is rather inevitable. In the present invention, this force is actively used for heat insulation. can do.
[0050] 本発明の高密度集積型薄層熱電モジュールは、周囲の一部又は全部をシール又は コーティングして、断熱性、電気絶縁性、を持たせることができる。併せて、防湿、防 塵を兼ねる作用がある。  [0050] The high-density integrated thin-layer thermoelectric module of the present invention can have a heat insulating property and an electric insulating property by sealing or coating a part or the entire periphery. At the same time, it has both moisture and dust proof effects.
[0051] 高密度集積型薄層熱電モジュールは、防湿、防塵のためのコーティング層は、電気 絶縁性、断熱性、防湿性をもった、 POM (ポリアセタール)、 TPX (ポリ 4メチルペンテ ン)、 PP (ポリプロピレン)、 PC (ポリカーボネイト)、 PPO (ポリフエ-ルオキサイド)、独 立気泡性ウレタン、有機ナノ発泡榭脂などが適している。これらの材料は、以上およ び以下のどの実施例でも用いることができる。  [0051] The high-density integrated thin-layer thermoelectric module has a moisture- and dust-proof coating layer that has electrical insulation, heat insulation, and moisture-proof properties, such as POM (polyacetal), TPX (poly 4-methylpentene), and PP. (Polypropylene), PC (polycarbonate), PPO (polyoxide), closed cell urethane, organic nanofoam resin, etc. are suitable. These materials can be used in any of the above and below examples.
実施例 10  Example 10
[0052] 本発明の高密度集積型薄層熱電モジュールは、一般に廃熱を利用する発電装置と して適用することができる。特に、図 10は、次に述べる実施例であるソーラーセル発 電装置への応用と説明を兼ねた。図 10 (a)は既知のソーラーセルの略図 100、 (b) は薄層熱電モジュール 10の略図、(c)はソーラーセル発電装置 100と薄層熱電モジ ユール 10とを組み合わせた図である。ソーラーセルとの組合せについては以下に詳 述する。 [0052] The high-density integrated thin-layer thermoelectric module of the present invention can be generally applied as a power generator using waste heat. In particular, FIG. 10 also serves as a description and an application to a solar cell power generation device according to an embodiment described below. 10A is a schematic diagram 100 of a known solar cell, FIG. 10B is a schematic diagram of a thin-layer thermoelectric module 10, and FIG. 10C is a diagram in which the solar cell power generation device 100 and the thin-layer thermoelectric module 10 are combined. The details of the combination with the solar cell are described below. I will describe.
実施例 11  Example 11
[0053] 図 11は、ソーラーセル発電装置 100の背面に本発明の高密度集積型薄層熱電モジ ユール 10を取り付けた、本発明の複合発電システムの裏面略図(a)および横断面図 (b)である。ソーラーセル発電装置は、図 10 (a)に示すように、ボトムベース 105上に 、 PN接合 103が強化ガラス 101、透明電極 102を介して太陽光エネルギーを受け、 透明電極 102およびもう一方の電極 104間で発電起電力を生じる。ソーラー発電装 置では、一般に、集熱部分が太陽光エネルギーによって発熱し、それ力 Sソーラー発 電の効率を低下させていた。なお、本発明の高密度集積型薄層熱電モジュール 10 は、高温側ベース 106、電気絶縁性熱良導体 107を介して、熱エネルギーを受けて 起電力を生じるものである。  FIG. 11 is a schematic rear view (a) and a cross-sectional view (b) of a combined power generation system of the present invention in which the high-density integrated thin-layer thermoelectric module 10 of the present invention is attached to the back of a solar cell power generator 100. ). As shown in FIG. 10 (a), the solar cell power generation device has a PN junction 103 on a bottom base 105, which receives sunlight energy via a strengthened glass 101 and a transparent electrode 102, and a transparent electrode 102 and the other electrode. An electromotive force is generated between 104. In a solar power generation device, the heat collecting part generally generates heat by solar energy, which reduces the efficiency of the solar power generation. The high-density integrated thin-layer thermoelectric module 10 of the present invention generates electromotive force by receiving thermal energy via the high-temperature base 106 and the electrically insulating thermal conductor 107.
[0054] 図 10 (c)および図 11の本発明の実施例 11では、 1つ又は多数の高密度集積型薄 層熱電モジュール 10力 ソーラーセル(例えば、「ソーラー瓦」と呼ばれる住宅用屋根 建材)と組み合わせられる。そして、太陽の熱により発生する 70°C前後の熱源を集熱 し、ゼーベック効果により発電する。同時に、ソーラーセルシステムそのものの発電効 率を助ける役目をも果たす。ソーラーセル発電システム(ソーラー瓦) 100の発熱部 分に上記本発明の高密度集積型薄層熱電素子 10を取り付けると、高密度集積型薄 層熱電モジュールは、ゼーベック効果により、温度差 ΔΤに応じて発電するが、ソー ラー発電における発熱の相当部分は、高密度集積型薄層熱電モジュールを伝わつ て、モジュールが発電する電気エネルギーおよびモジュールの放熱部 4、低温側べ ース 108から放熱される熱エネルギーとなって逃げてゆき、その結果、ソーラセル 10 0は温度が低下する。このことは、ソーラーセルに効率のよい小型の放熱手段を付カロ したことと等しい。ソーラーセルの発熱による能率低下は、本発明の高密度集積型薄 層熱電素子の働きにより、発熱が相当量防がれ、太陽光の変動があっても、より安定 に発電動作をする。これまでも、ソーラーセルシステムの発熱部分には、水道水を流 したり、ファンを利用して冷却し、効率を向上させようとしてきたものが知られていたが 、本発明実施例では、このソーラー発電システムにおいて避けられない発熱作用を 逆に利用して、発熱解消と発電量の向上とを一度に解決する有効なシステムを構築 する。 In the eleventh embodiment of the present invention shown in FIG. 10 (c) and FIG. 11, one or a plurality of high-density integrated thin-layer thermoelectric modules 10-power solar cells (for example, residential roof building materials called “solar tiles”) ). Then, heat is collected from a heat source of around 70 ° C generated by the heat of the sun, and power is generated by the Seebeck effect. At the same time, it also plays a role in helping the power generation efficiency of the solar cell system itself. When the above-described high-density integrated thin-layer thermoelectric element 10 of the present invention is attached to a heat-generating portion of a solar cell power generation system (solar tile) 100, the high-density integrated thin-layer thermoelectric module responds to the temperature difference ΔΤ by the Seebeck effect. A considerable part of the heat generated by solar power generation is transmitted through the high-density integrated thin-layer thermoelectric module, and is radiated from the electric energy generated by the module, the heat radiation part 4 of the module, and the low-temperature base 108. The heat escapes as heat energy, and as a result, the temperature of the solar cell 100 decreases. This is equivalent to adding efficient and small heat dissipating means to the solar cell. The decrease in efficiency due to the heat generated by the solar cell can be prevented by a considerable amount of heat generated by the high-density integrated thin-film thermoelectric element of the present invention, and the power generation operation can be performed more stably even when there is fluctuation in sunlight. Up to now, there has been known a solar cell system in which heating water is supplied to a heat-generating portion of the solar cell system or cooling is performed using a fan to improve efficiency. Constructing an effective system that solves heat generation and power generation at once by utilizing the heat generation effect that cannot be avoided in a solar power generation system To do.
[0055] ソーラー発電システムに、ソーラーセルを住宅の屋根材に適用した、いわゆる「ソーラ 一瓦」と、本発明によるローコストの高密度集積薄層熱電モジュールを組み合わせ、 効率改善と、トータルの発電量を向上させる発電システムとすることができる。ソーラ 一発電システムの導入コストメリットは、 250万円 /1軒当たりが分岐点と言われてい る。本発明が提案する熱電発電の併用によって、フレキシブルなフィルムシートを基 にした高密度集積熱電半導体素子の相乗効果により、発電量を向上させる。ソーラ 一発電の効率向上のために、本発明の高密度集積型薄層熱電素子モジュールを、 図 11のようにソーラーセルの裏側にセットし、ソーラーセルの発電効率を低下させて いる輻射発熱源を逆に利用して受熱ゼ一ベック効果による発電をする。この高密度 集積型薄層熱電素子モジュールは、ソーラーセル発電システムと一体構造で製造す る事も可能であるが、既設で使用中のソーラー発電に追加して併用しても、大きな効 率改善を得ることができる。  [0055] A so-called "solar tile" in which a solar cell is applied to a roof material of a house, and a low-cost high-density integrated thin-layer thermoelectric module according to the present invention are combined with a solar power generation system to improve the efficiency and the total power generation. Power generation system can be improved. It is said that the introduction cost advantage of the solar-one power generation system is 2.5 million yen / per house. The combined use of the thermoelectric power generation proposed by the present invention improves the power generation amount by the synergistic effect of the high-density integrated thermoelectric semiconductor element based on the flexible film sheet. To improve the efficiency of solar power generation, the high-density integrated thin-layer thermoelectric element module of the present invention is set on the back side of the solar cell as shown in Fig. 11 to reduce the power generation efficiency of the solar cell. Is used to generate power by the heat receiving Seebeck effect. This high-density integrated thin-layer thermoelectric element module can be manufactured integrally with the solar cell power generation system. However, even if it is used in addition to the existing solar power generation system, significant improvement in efficiency can be achieved. Can be obtained.
[0056] 本発明のソーラー発電への応用の期待は、これからますます増える。民間需要の早 期達成に大きな意味を持ち、京都議定書の達成にも大きく貢献すると考えられる。離 島や無電源地帯の 20億人の人々に未来をもたらす大きな財産となる。新しいパーツ の開発や多機能化や提案も、本発明の産業上の利用を多く助ける。  [0056] Expectations for the application of the present invention to solar power generation will increase more and more. It is significant for the early achievement of private demand and is expected to greatly contribute to the achievement of the Kyoto Protocol. It will be a great asset to bring the future to 2 billion people on remote islands and powerless areas. The development of new parts, multi-functionality and proposals will also greatly assist the industrial use of the present invention.
[0057] 店舎や乗り物内の冷房装置向けのソーラーや宇宙開発の電力部品、さらに住宅の 前記「ソーラー瓦」や無人販売機の電力、遠隔地の無人情報機器の増幅器や遠隔 地のケーブル監視装置などの電源など、数知れな 、応用がある。  [0057] Solar and space development power components for air conditioners in stores and vehicles, power for the "solar roof tiles" and unmanned vending machines in houses, amplifiers for unmanned information equipment in remote locations, and cable monitoring for remote locations. There are numerous applications, such as power supplies for equipment.
実施例 12  Example 12
[0058] 本発明は、広範囲に温度が変化するようなシステムに適用することもできる。図 12に 一例を示す。先述したように、熱電材料により、発電量と温度の関係は種々のものが ある。図 12 (a)の実施例は、本発明を複数の温度範囲の異なる熱電材料を用いて多 段構成にして、広い温度範囲に使用可能にしたものである。図 12の例では、高密度 集積型薄層熱電素子モジュール 10Aは約 800〜600°Cで使用し、熱電半導体素子 としては SiGe化合物を、モジュール 10Bは約 600〜200°Cで熱電半導体素子は Pb Te化合物、あるいは FeSiィ匕合物を、そしてモジュール 10Cは約 200〜25°Cの範囲 で BiTe化合物を、夫々用いることができる。各モジュールは電気絶縁熱良導の 107 を介して段構造にし、防湿、電気絶縁、断熱層 5によってケーシングを構成することが できる。 The present invention can also be applied to a system in which the temperature changes over a wide range. Figure 12 shows an example. As described above, there are various relations between the power generation amount and the temperature depending on the thermoelectric material. In the embodiment shown in FIG. 12 (a), the present invention has a multi-stage configuration using a plurality of thermoelectric materials having different temperature ranges, and can be used in a wide temperature range. In the example of Fig. 12, the high-density integrated thin-layer thermoelectric element module 10A is used at about 800 to 600 ° C, the SiGe compound is used as the thermoelectric semiconductor element, and the thermoelectric semiconductor element is used at about 600 to 200 ° C for module 10B. Pb Te compound or FeSi conjugate, and module 10C is about 200 ~ 25 ° C , BiTe compounds can be used respectively. Each module has a stepped structure through 107 of electrically insulating heat conduction, and a casing can be constituted by the moisture-proof, electric insulating, and heat insulating layers 5.
[0059] 上の実施例の他にも、本発明の高密度集積型薄層熱電素子モジュールは、種々の 形状やサイズで製造することが可能である。複数の形状やサイズのものを準備し、組 み合わせて、種々の利用機器に適応させることができる。  In addition to the above embodiments, the high-density integrated thin-layer thermoelectric element module of the present invention can be manufactured in various shapes and sizes. A variety of shapes and sizes can be prepared, combined, and adapted to various applications.
産業上の利用可能性 Industrial applicability
[0060] 本発明の高密度集積型薄層熱電モジュールは、効率の良いペルチェ効果冷却装置 としても利用可能である。熱電半導体素子の Z値は現状の能力のままでも、単位面積 あたりのゼーベック効果による発電能力又はペルチェ効果による冷却能力が向上す る。 The high-density integrated thin-layer thermoelectric module of the present invention can also be used as an efficient Peltier effect cooling device. Even if the Z value of the thermoelectric semiconductor element remains at the current capacity, the power generation capacity by the Seebeck effect per unit area or the cooling capacity by the Peltier effect is improved.
[0061] 本発明の高密度集積型薄層熱電モジュールは、廃熱利用の発電システムへ付加し 、ゼーベック効果を利用して環境にやさしい熱電発電をさせることができる。  [0061] The high-density integrated thin-layer thermoelectric module of the present invention can be added to a power generation system using waste heat, and can perform environmentally friendly thermoelectric generation using the Seebeck effect.
[0062] 本発明は、集積技術を利用した薄層熱電素子モジュールであって、柔軟性を持つ構 造によって応用性を向上させることにより、ゼーベック効果やペルチヱ効果の利用と して、発電だけでなぐ冷却や加熱の用途においても、利用先の諸条件に合わせた モジュールの組み合わせを可能とする。機能的には、薄層パターンを変更すれば、 カスタム化に容易に貢献対応でき、利用範囲も広がる。もちろん、上記 Z値を向上さ せる技術が開発されれば、応用して効率改善が期待できる。  [0062] The present invention relates to a thin-layer thermoelectric element module using an integrated technology. By improving applicability by a flexible structure, it is possible to utilize only the Seebeck effect or Peltier effect to generate electricity. It will be possible to combine modules that meet the conditions of the user, even in applications such as cooling and heating. Functionally, changing the thin layer pattern can easily contribute to customization and expand the range of use. Of course, if a technology to improve the Z value is developed, it can be expected to improve efficiency by applying it.
[0063] 本発明は、熱電半導体素子及び電極を薄い層とし、柔軟な構造を実現したので、こ れを種々の機器に付加する場合、モジュールのサイズや形状、数を適宜選ぶこと〖こ よって、種々の機器への用途に対しても、うまく適応させることができた。用途である 機器がどのようなサイズや凹凸などの形状構造を持っていても、本発明の高密度集 積型薄層熱電モジュールを多数、種々のサイズに製造して準備し、用途である機器 に合うように、組み合わせて配置することができる。  According to the present invention, the thermoelectric semiconductor element and the electrode are formed into thin layers to realize a flexible structure. Therefore, when this is added to various devices, the size, shape, and number of modules are appropriately selected. It could be well adapted to various equipment applications. Regardless of the size and unevenness of the device, the number of high-density integrated thin-layer thermoelectric modules of the present invention is manufactured and prepared in various sizes. Can be arranged in combination so as to meet the requirements.
[0064] 本発明は電力需要対策としてだけでなぐ地球環境にも大きく貢献する。ゼーベック 効果では、用途機器に対する本発明の向上した適応性を生かし、さらに製造方法を 適宜変更させれば、炉熱ゃ車の廃棄熱利用の分野にも大きく貢献できる。ペルチエ 効果を利用する分野への効果としても効率の改善技術の行き詰まりに大きく貢献す るばかりでなぐ製造の困難さの問題をも改善し、大きなコストメリットを生み出すこと ができる。 [0064] The present invention greatly contributes to the global environment not only as a measure against power demand. The Seebeck effect takes advantage of the improved adaptability of the present invention to application equipment and further enhances the manufacturing method. If it is changed appropriately, it can contribute greatly to the field of waste heat utilization of furnace heat. Peltier effects will not only greatly contribute to the deadlock of technology to improve efficiency, but also improve the difficulty of manufacturing and can provide significant cost benefits.

Claims

請求の範囲 The scope of the claims
[1] 熱絶縁性且つ電気絶縁性で柔軟な薄 、シートの上に、 P型熱電半導体素子の薄層 及び N型熱電半導体素子の薄層を縦方向に交互に配し、シートの片方縁部に P型 から N型へ熱電半導体素子を接合する薄層電極を、シートの反対側縁部に N型から P型へ熱電半導体素子を接合する薄層電極を夫々設けて、多数縦続する π構造熱 電ユニットをシート上に形成し、シートを巻き込むことによって、円柱状ないし角柱状 の立体に加工し、立体における電極の集まる 2面を夫々低温サイド及び高温サイドと したことを特徴とする高密度集積型薄層熱電モジュール  [1] A thin layer of a P-type thermoelectric semiconductor element and a thin layer of an N-type thermoelectric semiconductor element are alternately arranged in the longitudinal direction on a sheet, which is thermally and electrically insulating and flexible. A thin-layer electrode for joining the thermoelectric semiconductor element from P-type to N-type is provided in the section, and a thin-layer electrode for joining the thermoelectric semiconductor element from N-type to P-type is provided on the opposite edge of the sheet. Structural thermoelectric unit is formed on a sheet, and the sheet is rolled up to be processed into a columnar or prismatic three-dimensional body, and the two surfaces on which the electrodes are gathered in the three-dimensional body are used as a low-temperature side and a high-temperature side, respectively. Density integrated thin layer thermoelectric module
[2] 熱絶縁性且つ電気絶縁性で柔軟な薄 、シートの上に、縦方向に、 Ρ型熱電半導体 素子の薄層、 Ν型熱電半導体素子および各熱電半導体素子を接合する電極の各薄 層を一列又は複数列に配置し、電極のほぼ中央部を横方向の折曲線に沿ってジグ ザグに折曲げることにより多数の π構造熱電ユニットを立体として縦続させて形成し、 立体の横方向前記折曲線の集まる 2面が夫々低温サイド及び高温サイドとなるように したことを特徴とする高密度集積型薄層熱電モジュール  [2] Thermally and electrically insulative and flexible thin, vertically on a sheet, a thin layer of type II thermoelectric semiconductor element, a type of thermoelectric semiconductor element and a thin layer of electrode for joining each thermoelectric semiconductor element. The layers are arranged in one or more rows, and a large number of π-structured thermoelectric units are cascaded as a solid by bending the approximate center of the electrode in a zigzag manner along a horizontal folding curve. A high-density integrated thin-layer thermoelectric module, characterized in that the two surfaces on which the bent curves are gathered are the low-temperature side and the high-temperature side, respectively.
[3] 熱電半導体素子の薄層に薄層電極を接合する際、電極は熱電半導体素子の端面 力も側面にかけて熱電半導体素子を挟み又は囲むようにして、電極と熱電半導体素 子との接触面積を広くすることにより、電流密度が大きくなるようにしたことを特徴とす る請求項 1又は請求項 2の高密度集積型薄層熱電モジュール  [3] When joining a thin-layer electrode to a thin layer of a thermoelectric semiconductor element, the electrode applies the end face force of the thermoelectric semiconductor element to the side surface so as to sandwich or surround the thermoelectric semiconductor element, thereby increasing the contact area between the electrode and the thermoelectric semiconductor element. 3. The high-density integrated thin-layer thermoelectric module according to claim 1 or 2, wherein the current density is increased.
[4] 熱電半導体素子の薄層に薄層電極を接合する際、熱電半導体素子の電極と接する 部分の面を非平面にして、熱電半導体素子の薄層と電極との接触面積を実質的に 広くすることにより、電流密度が大きくなるようにしたことを特徴とする請求項 1ないし 請求項 3の高密度集積型薄層熱電モジュール  [4] When joining a thin layer electrode to a thin layer of a thermoelectric semiconductor element, the surface of the portion in contact with the electrode of the thermoelectric semiconductor element is made non-planar to substantially reduce the contact area between the thin layer of the thermoelectric semiconductor element and the electrode. 4. The high-density integrated thin-layer thermoelectric module according to claim 1, wherein the current density is increased by widening the module.
[5] 各熱電半導体素子の薄層は低温サイドと高温サイドの中間部にドットホール、スリット 及び Ζ又はくびれた形状を持たせて熱貫流を小さくするとともに、熱電半導体素子の 薄層の抵抗値を調整することを特徴とする請求項 1ないし請求項 4の高密度集積型 薄層熱電モジュール  [5] The thin layer of each thermoelectric semiconductor device has dot holes, slits, and Ζ or constricted shapes in the middle part between the low-temperature side and the high-temperature side to reduce the heat flow and the resistance of the thin layer of the thermoelectric semiconductor device. 5. The high-density integrated thin-layer thermoelectric module according to claim 1, wherein
[6] 高密度集積型薄層熱電モジュールを形成する部分間又は全体に、真空、空気層及 び Ζ又は熱絶縁性且つ電気絶縁性の高 、層を有する請求項 1な!、し請求項 5の高 密度集積型薄層熱電モジュール [6] Claims 1 and 2, wherein a vacuum, an air layer, and a heat-insulating and electrically-insulating layer are provided between or over the portions forming the high-density integrated thin-layer thermoelectric module. 5 high Density integrated thin layer thermoelectric module
ソーラーセル発電装置とその背面に取り付けた 1以上の高密度集積型薄層熱電モジ ユールとを含み、高密度集積型薄層熱電モジュールは前記請求項 1な!、し請求項 6 の構成であることを特徴とするハイブリッド発電システム The high-density integrated thin-layer thermoelectric module includes a solar cell power generation device and one or more high-density integrated thin-layer thermoelectric modules attached to the back surface thereof. Hybrid power generation system characterized by the following:
PCT/JP2005/009864 2004-05-31 2005-05-30 High-density integrated type thin-layer thermoelectric module and hybrid power generating system WO2005117154A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006513983A JPWO2005117154A1 (en) 2004-05-31 2005-05-30 High density integrated thin layer thermoelectric module and hybrid power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004160886 2004-05-31
JP2004-160886 2004-05-31

Publications (2)

Publication Number Publication Date
WO2005117154A1 true WO2005117154A1 (en) 2005-12-08
WO2005117154B1 WO2005117154B1 (en) 2006-02-16

Family

ID=35451171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009864 WO2005117154A1 (en) 2004-05-31 2005-05-30 High-density integrated type thin-layer thermoelectric module and hybrid power generating system

Country Status (2)

Country Link
JP (1) JPWO2005117154A1 (en)
WO (1) WO2005117154A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103879A (en) * 2005-10-07 2007-04-19 Univ Kanagawa Thermoelectric element
JP2008130594A (en) * 2006-11-16 2008-06-05 Tokai Rika Co Ltd Thermoelectric conversion device and manufacturing method thereof
WO2009045862A2 (en) * 2007-09-28 2009-04-09 Battelle Memorial Institute Thermoelectric devices
US7834263B2 (en) 2003-12-02 2010-11-16 Battelle Memorial Institute Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting
US7851691B2 (en) 2003-12-02 2010-12-14 Battelle Memorial Institute Thermoelectric devices and applications for the same
JP2011520252A (en) * 2008-04-28 2011-07-14 ビーエーエスエフ ソシエタス・ヨーロピア Thermomagnetic generator
JP2013062370A (en) * 2011-09-13 2013-04-04 Daikin Ind Ltd Planar thin-film thermoelectric module
US8455751B2 (en) 2003-12-02 2013-06-04 Battelle Memorial Institute Thermoelectric devices and applications for the same
WO2013185903A1 (en) 2012-06-13 2013-12-19 Karlsruher Institut für Technologie Wound and folded thermoelectric systems and method for producing same
JP2014209840A (en) * 2013-03-22 2014-11-06 独立行政法人国立高等専門学校機構 Hollow tube, and power generator
US9281461B2 (en) 2003-12-02 2016-03-08 Battelle Memorial Institute Thermoelectric devices and applications for the same
WO2016203939A1 (en) * 2015-06-17 2016-12-22 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
WO2019082986A1 (en) * 2017-10-26 2019-05-02 株式会社デンソー Thermoelectric conversion device and method for manufacturing same
JPWO2018042708A1 (en) * 2016-08-30 2019-06-24 国立大学法人東京工業大学 Thermoelectric conversion device and electronic device
JP2020140985A (en) * 2019-02-26 2020-09-03 日本ゼオン株式会社 Thermoelectric conversion module
WO2021149770A1 (en) * 2020-01-24 2021-07-29 国立大学法人筑波大学 Semiconductor element and manufacturing method thereof, thermoelectric conversion device and manufacturing method thereof
US11374533B2 (en) 2018-05-31 2022-06-28 Mitsubishi Electric Corporation Solar power generation paddle, method of manufacturing the same, and space structure
US11832518B2 (en) 2021-02-04 2023-11-28 Purdue Research Foundation Woven thermoelectric ribbon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430586A (en) * 1990-05-28 1992-02-03 Matsushita Electric Ind Co Ltd Thermoelectric device
JPH08153898A (en) * 1994-11-28 1996-06-11 Matsushita Electric Ind Co Ltd Thermoelectric element
JP2001053322A (en) * 1999-05-31 2001-02-23 Sony Corp Power generator and information processing equipment
JP2004104041A (en) * 2002-09-13 2004-04-02 Sony Corp Thermoelectric converting device and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430586A (en) * 1990-05-28 1992-02-03 Matsushita Electric Ind Co Ltd Thermoelectric device
JPH08153898A (en) * 1994-11-28 1996-06-11 Matsushita Electric Ind Co Ltd Thermoelectric element
JP2001053322A (en) * 1999-05-31 2001-02-23 Sony Corp Power generator and information processing equipment
JP2004104041A (en) * 2002-09-13 2004-04-02 Sony Corp Thermoelectric converting device and method for manufacturing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455751B2 (en) 2003-12-02 2013-06-04 Battelle Memorial Institute Thermoelectric devices and applications for the same
US7834263B2 (en) 2003-12-02 2010-11-16 Battelle Memorial Institute Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting
US7851691B2 (en) 2003-12-02 2010-12-14 Battelle Memorial Institute Thermoelectric devices and applications for the same
US9281461B2 (en) 2003-12-02 2016-03-08 Battelle Memorial Institute Thermoelectric devices and applications for the same
JP2007103879A (en) * 2005-10-07 2007-04-19 Univ Kanagawa Thermoelectric element
JP2008130594A (en) * 2006-11-16 2008-06-05 Tokai Rika Co Ltd Thermoelectric conversion device and manufacturing method thereof
WO2009045862A2 (en) * 2007-09-28 2009-04-09 Battelle Memorial Institute Thermoelectric devices
WO2009045862A3 (en) * 2007-09-28 2009-11-05 Battelle Memorial Institute Thermoelectric devices
JP2011520252A (en) * 2008-04-28 2011-07-14 ビーエーエスエフ ソシエタス・ヨーロピア Thermomagnetic generator
JP2013062370A (en) * 2011-09-13 2013-04-04 Daikin Ind Ltd Planar thin-film thermoelectric module
WO2013185903A1 (en) 2012-06-13 2013-12-19 Karlsruher Institut für Technologie Wound and folded thermoelectric systems and method for producing same
DE102012105086A1 (en) * 2012-06-13 2013-12-19 Karlsruher Institut für Technologie Wound and folded thermoelectric system and method of making the same
DE102012105086B4 (en) * 2012-06-13 2014-02-13 Karlsruher Institut für Technologie Wound and folded thermoelectric system and method of making the same
US9660167B2 (en) 2012-06-13 2017-05-23 Karlsruher Institut Fuer Technologie Wound and folded thermoelectric systems and method for producing same
JP2014209840A (en) * 2013-03-22 2014-11-06 独立行政法人国立高等専門学校機構 Hollow tube, and power generator
WO2016203939A1 (en) * 2015-06-17 2016-12-22 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
JPWO2016203939A1 (en) * 2015-06-17 2018-04-19 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
JPWO2018042708A1 (en) * 2016-08-30 2019-06-24 国立大学法人東京工業大学 Thermoelectric conversion device and electronic device
WO2019082986A1 (en) * 2017-10-26 2019-05-02 株式会社デンソー Thermoelectric conversion device and method for manufacturing same
JP2019079991A (en) * 2017-10-26 2019-05-23 株式会社デンソー Thermoelectric conversion device and method for manufacturing the same
US11374533B2 (en) 2018-05-31 2022-06-28 Mitsubishi Electric Corporation Solar power generation paddle, method of manufacturing the same, and space structure
JP2020140985A (en) * 2019-02-26 2020-09-03 日本ゼオン株式会社 Thermoelectric conversion module
WO2021149770A1 (en) * 2020-01-24 2021-07-29 国立大学法人筑波大学 Semiconductor element and manufacturing method thereof, thermoelectric conversion device and manufacturing method thereof
US11832518B2 (en) 2021-02-04 2023-11-28 Purdue Research Foundation Woven thermoelectric ribbon

Also Published As

Publication number Publication date
JPWO2005117154A1 (en) 2008-04-03
WO2005117154B1 (en) 2006-02-16

Similar Documents

Publication Publication Date Title
WO2005117154A1 (en) High-density integrated type thin-layer thermoelectric module and hybrid power generating system
EP1780807B1 (en) Thermoelectric conversion module
US20050087222A1 (en) Device for producing electric energy
JP5087757B2 (en) Thermoelectric conversion module and power generator using the same
JP2006294935A (en) High efficiency and low loss thermoelectric module
US7985918B2 (en) Thermoelectric module
US20120103379A1 (en) Thermoelectric generator including a thermoelectric module having a meandering p-n system
KR101237235B1 (en) Manufacturing Method of Thermoelectric Film
JP7104684B2 (en) Thermoelectric conversion module with photothermal conversion board
JP5067352B2 (en) Thermoelectric conversion module and power generator using the same
KR20110077492A (en) Thermoelectric module for generation and method for manufacturing the same
Ahadi et al. Using of thermoelectric devices in photovoltaic cells in order to increase efficiency
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
JP5776700B2 (en) Thermoelectric conversion module
JP5146290B2 (en) Thermoelectric conversion module and power generator using the same
AU2018220031A1 (en) Thermoelectric device
Bhuiyan et al. Opportunities for thermoelectric generators in supporting a low carbon economy
JPS60127770A (en) Thermoelectric generating element
US20170025594A1 (en) Thermoelectric devices
US8763680B2 (en) Heat exchange for a thermoelectric thin film element
EP3373348A1 (en) Thermoelectric device
CN107846157B (en) Thermoelectric power generation device
Suzumura et al. Solar thermal cogeneration system using a cylindrical thermoelectric module
JP2609019B2 (en) Thermoelectric module
CA2910958A1 (en) Thermoelectric device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
B Later publication of amended claims

Effective date: 20051107

WWE Wipo information: entry into national phase

Ref document number: 2006513983

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase