JPH0555639A - Thermoelectric device - Google Patents

Thermoelectric device

Info

Publication number
JPH0555639A
JPH0555639A JP3210656A JP21065691A JPH0555639A JP H0555639 A JPH0555639 A JP H0555639A JP 3210656 A JP3210656 A JP 3210656A JP 21065691 A JP21065691 A JP 21065691A JP H0555639 A JPH0555639 A JP H0555639A
Authority
JP
Japan
Prior art keywords
type semiconductor
conductor
substrate
heat
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3210656A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamamoto
義明 山本
Hisaaki Gyoten
久朗 行天
Fumitoshi Nishiwaki
文俊 西脇
Yasushi Nakagiri
康司 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3210656A priority Critical patent/JPH0555639A/en
Publication of JPH0555639A publication Critical patent/JPH0555639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To prevent an aging change due to the crack or the peeling of a semiconductor to be used for an electronic thermoelectric device and to suppress decreases in heat exchange capacity and efficiency due to a heat flow in a board. CONSTITUTION:A P-type semiconductor 12, a conductor 13, an N-type semiconductor 14 and a conductor 15 are formed on one side surface of an insulation film board 11. Corrugated fins 16 are disposed at the upper side of the board 11 in contact with the conductor 13. Corrugated fins 17 are arranged at the opposite side of the board 11 to the fins 16. The fins 17 are disposed under the conductor 15, and thermally connected through the film 11. The wedge- shaped P-type semiconductor 12, the conductor 14 and the conductors 13, 15 are laminated at the ends. With the structure, a heat flow flowing in the board is suppressed or shut OFF to improve heat exchange capacity and efficiency, and a thermoelectric device having a small aging change can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はペルチェ効果を利用し、
電気的に冷房もしくは暖房を行う空調装置、もしくはゼ
ーベック効果により温度差を用いて発電を行う発電装置
に有用な熱電装置に関する。
The present invention utilizes the Peltier effect,
The present invention relates to a thermoelectric device useful for an air conditioner that electrically cools or heats, or a power generator that uses the temperature difference due to the Seebeck effect to generate electricity.

【0002】[0002]

【従来の技術】従来、熱を電気に変換し、もしくは電気
を熱に変換する熱電装置は、図4に示すように、熱電素
子の両側に放熱用のコルゲートフィンを有し、両側のコ
ルゲートフィンの温度差により発電を行うか、もしくは
電流を通ずることにより冷却を行うものである。以下に
ペルチェ効果による冷却について説明する。
2. Description of the Related Art Conventionally, as shown in FIG. 4, a thermoelectric device for converting heat into electricity or converting electricity into heat has corrugated fins for heat radiation on both sides of a thermoelectric element and has corrugated fins on both sides. Power is generated according to the temperature difference between the two, or cooling is performed by passing an electric current. The cooling by the Peltier effect will be described below.

【0003】絶縁性フィルム基板41の片面にN型半導
体42、導電体43、P型半導体44、導電体43が順
に成膜されている。2つのコルゲートフィン45はフィ
ルム基板41の両側に位置し、導電体43を1つおき
に、かつ、それぞれ異なる導電体43に接するように設
置されている。N型半導体42、導電体43、P型半導
体44は、各々の端部が重なり合う構造になっており、
熱電装置に流れ込んだ電流は、N型半導体42、P型半
導体44と導電体43の界面でペルチェ効果により発熱
もしくは吸熱する。このとき、N型半導体42とP型半
導体44は交互に並んでいることから、導電体43は交
互に発熱部または吸熱部となり、上記のように導電体4
3の1つおきに接するコルゲートフィン45は、一方が
発熱フィン他方が吸熱フィンとなる。したがって、フィ
ルム41上部の空気から熱を吸収(もしくは空気への熱
の発散)、フィルム41の下部の空気への熱の発散(も
しくは空気からの熱の吸収)となる。
An N-type semiconductor 42, a conductor 43, a P-type semiconductor 44, and a conductor 43 are sequentially formed on one surface of an insulating film substrate 41. The two corrugated fins 45 are located on both sides of the film substrate 41, and are arranged such that every other conductor 43 is in contact with a different conductor 43. The N-type semiconductor 42, the conductor 43, and the P-type semiconductor 44 have a structure in which their respective end portions are overlapped with each other.
The current flowing into the thermoelectric device generates or absorbs heat at the interface between the N-type semiconductor 42, the P-type semiconductor 44 and the conductor 43 due to the Peltier effect. At this time, since the N-type semiconductors 42 and the P-type semiconductors 44 are alternately arranged, the conductors 43 alternately serve as heat generating portions or heat absorbing portions, and as described above, the conductors 4 are used.
One of the corrugated fins 45 that comes into contact with every other three of the corrugated fins 3 serves as a heat-producing fin and the other serves as a heat-absorbing fin. Therefore, the heat is absorbed from the air above the film 41 (or the heat is dissipated into the air), and the heat is dissipated into the air below the film 41 (or the heat is absorbed from the air).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の熱電装置では、 (1)N型半導体とP型半導体の両端に生ずる温度差に
より、フィルム基板41を通して吸熱側に熱が流れ、吸
熱能力および変換効率が低下する。 (2)N型半導体およびP型半導体の膜厚は、成膜方法
にも依存するが一般的には導電体部よりも薄く、熱電材
料は比較的脆いので、N型半導体とP型半導体の機械的
強度および導電体との付着強度が不十分で、生産過程お
よび使用過程において、半導体部にクラックまたは導電
体部との間で剥離が生じ、抵抗が増加し性能劣化が生じ
るなどの問題があった。
However, in such a conventional thermoelectric device, (1) due to the temperature difference between both ends of the N-type semiconductor and the P-type semiconductor, heat flows through the film substrate 41 to the heat absorbing side, Capacity and conversion efficiency are reduced. (2) The film thickness of the N-type semiconductor and the P-type semiconductor depends on the film formation method, but is generally thinner than the conductor portion, and the thermoelectric material is relatively fragile. Insufficient mechanical strength and adhesion strength with the conductor, such as cracks in the semiconductor part or peeling between the conductor part during the production process and use process, increased resistance and performance deterioration. there were.

【0005】本発明はこのような課題を解決するもの
で、変換能力および変換効率を向上させるとともに、経
年変化の少ない熱電装置を提供することを目的とするも
のである。
The present invention is intended to solve such problems, and an object thereof is to provide a thermoelectric device having improved conversion capability and conversion efficiency and having little secular change.

【0006】[0006]

【課題を解決するための手段】この目的を達成するため
に本発明は、絶縁性フィルム基板と、この絶縁性フィル
ム基板上の面方向で端部が熱的に接触する複数組のN型
半導体、第1の導電体、P型半導体、および第2の導電
体と、前記フィルム基板の一方に位置し前記第1の導電
体と熱的に接触する第1の熱交換手段と、前記フイルム
基板の他方に位置し前記第2の導電体と熱的に接触する
第2の熱交換手段とを備え、前記半導体の面方向の形状
をくさび形または凹凸形状としたものである。
To achieve this object, the present invention provides an insulating film substrate and a plurality of sets of N-type semiconductors whose ends are in thermal contact with each other in the plane direction on the insulating film substrate. A first conductor, a P-type semiconductor, and a second conductor, first heat exchange means located on one side of the film substrate and in thermal contact with the first conductor, and the film substrate. A second heat exchanging means which is located on the other side of the semiconductor and is in thermal contact with the second conductor, and the shape of the semiconductor in the plane direction is a wedge shape or an uneven shape.

【0007】また、絶縁性基板と、この面方向で一定間
隔を有し熱伝導率の小さい台形断面形状の複数個の絶縁
物と、前記絶縁物の両端周辺におのおの位置するN型半
導体、P型半導体と、同一絶縁物上のN型半導体、P型
半導体を電気的に接触する第1の導電体と、隣り合う絶
縁物のN型半導体、P型半導体を電気的に接触する第2
の導電体と、前記第1の導電体と熱的に接触する第2の
絶縁性基板と、前記絶縁性基板と熱的に接触する第1の
熱交換手段と、前記第2の絶縁性基板と熱的に接触する
第2の熱交換手段を備えたものである。
Further, an insulating substrate, a plurality of insulators having a trapezoidal cross-section having a small thermal conductivity and having a constant interval in the plane direction, and N-type semiconductors P each located around both ends of the insulator, P Type semiconductor, an N-type semiconductor on the same insulator, a first conductor that makes electrical contact with a P-type semiconductor, and a second conductor that makes electrical contact between N-type semiconductor and a P-type semiconductor of adjacent insulators
Of the conductor, a second insulating substrate that is in thermal contact with the first conductor, a first heat exchange unit that is in thermal contact with the insulating substrate, and the second insulating substrate. It is provided with a second heat exchange means that is in thermal contact with.

【0008】また、第1の絶縁性基板と、この面方向で
一定間隔を有する第1の導電体と、前記第1の導電体の
端部におのおの位置するN型半導体、P型半導体と、端
部が前記第1の絶縁性基板の異なる第1の導電体のN型
半導体とP型半導体の上部に位置する複数個の第2の導
電体を備えた第2の絶縁性基板と、前記第1の絶縁性基
板と熱的に接触する第1の熱交換手段と、前記第2の絶
縁性基板と熱的に接触する第2の熱交換手段を備えたも
のである。
Further, a first insulating substrate, a first conductor having a constant distance in the plane direction, and an N-type semiconductor and a P-type semiconductor located at the end of the first conductor, respectively. A second insulating substrate having a plurality of second conductors whose end portions are located above the N-type semiconductor and the P-type semiconductor of the different first conductors of the first insulating substrate; The first heat exchanging means is in thermal contact with the first insulating substrate, and the second heat exchanging means is in thermal contact with the second insulating substrate.

【0009】[0009]

【作用】従来の熱電装置では、半導体部に加わる力が半
導体部と絶縁基板により支えられる構造となっている。
したがって、機械的強度を増すためにはどちらかの厚み
を増加させる必要がある。しかし、半導体薄膜の厚さを
増加させると成膜に要する時間が増大しコスト高とな
る。一方、基板の厚さを増加させると、半導体両端に生
じる温度差により基板を通じて冷却側に流れる熱流が増
加し冷却能力が低下する。
In the conventional thermoelectric device, the force applied to the semiconductor portion is supported by the semiconductor portion and the insulating substrate.
Therefore, it is necessary to increase either thickness in order to increase the mechanical strength. However, if the thickness of the semiconductor thin film is increased, the time required for film formation increases and the cost increases. On the other hand, when the thickness of the substrate is increased, the temperature difference generated at both ends of the semiconductor increases the heat flow flowing to the cooling side through the substrate and reduces the cooling capacity.

【0010】半導体部のクラックや剥離は、曲げモーメ
ントによって生じる場合が多いので、熱流の増加を抑制
しながら機械的強度を増加させるには、導電体の面方向
の形状を変えることによって、剛性を高めることができ
る。また、基板部材よりも熱伝導率が小さい絶縁物を用
いて、強度を向上させることができる。さらに曲げモー
メントを薄膜の厚みではなく、面で支えることにより強
度を向上することができる。
Since cracks and peeling of the semiconductor portion are often caused by a bending moment, in order to increase the mechanical strength while suppressing an increase in heat flow, the rigidity can be improved by changing the shape of the conductor in the plane direction. Can be increased. Further, strength can be improved by using an insulator having a thermal conductivity smaller than that of the substrate member. Further, strength can be improved by supporting the bending moment not by the thickness of the thin film but by the surface.

【0011】この構成により、熱電装置の能力および効
率を向上させるとともに、経年変化を少なくすることが
できる。
With this configuration, it is possible to improve the capacity and efficiency of the thermoelectric device and reduce the secular change.

【0012】[0012]

【実施例】以下に本発明の実施例を図面を参照しながら
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】(実施例1)図1に本発明の実施例1の熱
電装置の構成を示す。図に示すように絶縁性フィルム基
板11の片面にはP型半導体12、導電体13、N型半
導体14、導電体15が順に成膜されている。コルゲー
トフィン16はフィルム基板11の上側に位置し、導電
体13に接するように設置されている。一方、絶縁性フ
ィルム基板11に対し、コルゲートフィン16の反対側
には、コルゲートフィン17が位置している。コルゲー
トフィン17は導電体15の下方に位置しフィルム基板
11を介して熱的に接するように設置されている。P型
半導体12、N型半導体14と導電体13、15は、各
々の端部が重なり合う構造になっており、接触部の電気
抵抗および熱抵抗が大きくならない構造となっている。
P型半導体12およびN型半導体14は奥行き方向にく
さび形構造を有している。したがって、曲げに対する剛
性が向上する。
(Embodiment 1) FIG. 1 shows the configuration of a thermoelectric device according to Embodiment 1 of the present invention. As shown in the figure, a P-type semiconductor 12, a conductor 13, an N-type semiconductor 14, and a conductor 15 are sequentially formed on one surface of the insulating film substrate 11. The corrugated fin 16 is located on the upper side of the film substrate 11 and is installed so as to be in contact with the conductor 13. On the other hand, the corrugated fins 17 are located on the opposite side of the corrugated fins 16 with respect to the insulating film substrate 11. The corrugated fin 17 is located below the conductor 15 and is installed so as to be in thermal contact with the film substrate 11. The P-type semiconductor 12 and the N-type semiconductor 14 and the conductors 13 and 15 have a structure in which their respective end portions are overlapped with each other, and the electric resistance and thermal resistance of the contact portion do not increase.
The P-type semiconductor 12 and the N-type semiconductor 14 have a wedge-shaped structure in the depth direction. Therefore, the rigidity against bending is improved.

【0014】冷却装置として使用する場合には、絶縁性
フィルム基板11と平行にP型半導体12、N型半導体
14および導電体13、15に電流を流す。これによ
り、P型半導体12、N型半導体14と導電体13、1
5の界面でペルチェ効果により発熱もしくは吸熱を生じ
る。このとき、P型半導体12、N型半導体14の端面
に生ずる温度差により、フィルム基板11内に熱流が生
じ、冷却能力が減少する。 しかし、本実施例では、P
型半導体12およびN型半導体14をくさび形構造とし
ていることから、半導体部の剛性が向上し、従来よりも
フィルム基板11を薄くすることができる。したがっ
て、フィルム基板11内の熱流が減少し吸熱量が増加す
る。電流が図1に示す方向に流れる場合には、P型半導
体12の右界面は吸熱、左界面は発熱となる。したがっ
て、導電体13に接するコルゲートフィン16は吸熱部
となる。一方、コルゲートフィン17は、発熱部とな
る。したがって、絶縁性フィルム基板11の下部の空気
へ熱を発散し、上部の空気を冷却するヒートポンプを形
成する。
When used as a cooling device, a current is passed through the P-type semiconductor 12, the N-type semiconductor 14 and the conductors 13 and 15 in parallel with the insulating film substrate 11. As a result, the P-type semiconductor 12, the N-type semiconductor 14 and the conductors 13, 1
At the interface of No. 5, heat generation or heat absorption occurs due to the Peltier effect. At this time, due to the temperature difference between the end faces of the P-type semiconductor 12 and the N-type semiconductor 14, a heat flow is generated in the film substrate 11, and the cooling capacity is reduced. However, in this embodiment, P
Since the type semiconductor 12 and the N-type semiconductor 14 have the wedge-shaped structure, the rigidity of the semiconductor portion is improved, and the film substrate 11 can be made thinner than before. Therefore, the heat flow in the film substrate 11 decreases and the amount of heat absorption increases. When the current flows in the direction shown in FIG. 1, the right interface of the P-type semiconductor 12 absorbs heat and the left interface thereof generates heat. Therefore, the corrugated fins 16 in contact with the conductor 13 serve as a heat absorbing portion. On the other hand, the corrugated fin 17 serves as a heat generating portion. Therefore, a heat pump is formed that radiates heat to the air below the insulating film substrate 11 and cools the air above.

【0015】発電装置として使用する場合には、コルゲ
ートフィン16および17に接する空気に温度差をつけ
る。これにより、P型半導体12、N型半導体14の両
端は高温と低温となり、ゼーベック効果により起電力を
生ずることができる。
When used as a power generator, the air contacting the corrugated fins 16 and 17 has a temperature difference. As a result, both ends of the P-type semiconductor 12 and the N-type semiconductor 14 are at high temperature and low temperature, and electromotive force can be generated by the Seebeck effect.

【0016】なお、本実施例では、P型半導体12およ
びN型半導体14の形状をくさび形としているが、剛性
を増す構造であればどのような形でもよい。例えば、凹
凸形状や波形形状でも同様の効果が得られる。
Although the P-type semiconductor 12 and the N-type semiconductor 14 are wedge-shaped in this embodiment, any shape may be used as long as the structure increases rigidity. For example, the same effect can be obtained with an uneven shape or a wavy shape.

【0017】以上のように本実施例によれば、基板の熱
流による能力および効率の減少を抑制するとともに、経
年変化の少ない熱電装置を提供することができる。
As described above, according to the present embodiment, it is possible to provide a thermoelectric device which suppresses the reduction in performance and efficiency due to the heat flow of the substrate and has little secular change.

【0018】(実施例2)図2に本発明の実施例2の熱
電装置の構成を示す。絶縁性基板21の片面には熱伝導
率が小さい絶縁体22が一定間隔で配設されている。絶
縁体22は台形断面を有しておりその両側テーパー部に
は、P型半導体23およびN型半導体24が成膜されて
いる。さらに、P型半導体23とN型半導体24の間に
は、導電体25、26が成膜されている。P型半導体2
3、N型半導体24と導電体25、26は、各々の端部
が接する構造になっており、接触部の電気抵抗および熱
抵抗が大きくならない構造となっている。また、導電体
26の上部には、絶縁性基板27が位置し、導電体26
と熱的に接触している。
(Embodiment 2) FIG. 2 shows the configuration of a thermoelectric device according to Embodiment 2 of the present invention. On one surface of the insulating substrate 21, insulators 22 having a low thermal conductivity are arranged at regular intervals. The insulator 22 has a trapezoidal cross section, and a P-type semiconductor 23 and an N-type semiconductor 24 are formed on the tapered portions on both sides of the insulator 22. Further, conductors 25 and 26 are formed between the P-type semiconductor 23 and the N-type semiconductor 24. P-type semiconductor 2
3. The N-type semiconductor 24 and the conductors 25 and 26 have a structure in which their end portions are in contact with each other, and the electric resistance and thermal resistance of the contact portion do not increase. In addition, an insulating substrate 27 is located above the conductor 26,
Is in thermal contact with.

【0019】冷却装置として使用する場合には、絶縁性
基板21に沿って半導体、導電体に電流を流す。この電
流により、P型半導体23、N型半導体24と導電体2
5、26の界面でペルチェ効果により発熱もしくは吸熱
を生じる。このとき、導電体25、26で生じた発熱ま
たは吸熱効果は、導電体25、26から直接、または、
P型半導体23、N型半導体24を介して絶縁性基板2
1および27にそれぞれ伝えられる。導電体25、26
の膜厚は小さいので、ほとんど熱抵抗はなく絶縁性基板
21または27に熱が伝えられる。また、絶縁体22は
熱伝導率がきわめて小さいので絶縁体22を流れる熱流
は小さい。なお、絶縁体22には熱絶縁性をよくするた
め、例えばポーラスな構造を有する材料が用いられる。
When used as a cooling device, an electric current is applied to the semiconductor and the conductor along the insulating substrate 21. Due to this current, the P-type semiconductor 23, the N-type semiconductor 24 and the conductor 2
At the interface between 5 and 26, heat generation or heat absorption occurs due to the Peltier effect. At this time, the heat generation or heat absorption effect generated in the conductors 25 and 26 is directly generated from the conductors 25 and 26, or
Insulating substrate 2 via P-type semiconductor 23 and N-type semiconductor 24
1 and 27 respectively. Conductors 25, 26
Since the film thickness is small, there is almost no thermal resistance and heat is transferred to the insulating substrate 21 or 27. Further, since the insulator 22 has extremely low thermal conductivity, the heat flow flowing through the insulator 22 is small. Note that the insulator 22 is made of, for example, a material having a porous structure in order to improve thermal insulation.

【0020】また、本実施例では、絶縁性基板21は導
電体26と接していないことから、絶縁性基板21内の
温度はほぼ均一であり、熱流による吸熱量の低下は生じ
ない。したがって、機械的強度を増加させるために絶縁
性基板21および27を厚くしても吸熱量は減少しな
い。また、絶縁性基板21、27は、絶縁体22と面で
固定されているため上下方向の機械的強度も大きい。
Further, in this embodiment, since the insulating substrate 21 is not in contact with the conductor 26, the temperature inside the insulating substrate 21 is substantially uniform, and the heat absorption does not decrease due to the heat flow. Therefore, even if the insulating substrates 21 and 27 are made thick to increase the mechanical strength, the amount of heat absorption does not decrease. Further, since the insulating substrates 21 and 27 are fixed to the insulator 22 by a surface, the mechanical strength in the vertical direction is large.

【0021】図2には示していないが、絶縁性基板2
1、27の両側におのおの任意形状の熱交換手段を設け
ることにより、一方の流体から吸熱し他方の流体へ熱を
汲み上げるヒートポンプを形成することができる。
Although not shown in FIG. 2, the insulating substrate 2
By providing heat exchange means of arbitrary shape on both sides of 1, 27, it is possible to form a heat pump that absorbs heat from one fluid and pumps heat to the other fluid.

【0022】発電装置として使用する場合には、絶縁性
基板21、27に温度差をつけることにより、P型半導
体23、N型半導体24の両端は高温と低温となり、ゼ
ーベック効果により起電力を生ずることができる。
When used as a power generator, the insulating substrates 21 and 27 are provided with a temperature difference so that both ends of the P-type semiconductor 23 and the N-type semiconductor 24 become high temperature and low temperature, and an electromotive force is generated by the Seebeck effect. be able to.

【0023】以上のように本実施例によれば、絶縁性基
板ないを流れる熱流が抑制されるので、熱交換能力およ
び効率の減少を抑制するとともに、経年変化の少ない熱
電装置を提供することができる。
As described above, according to this embodiment, since the heat flow flowing through the insulating substrate is suppressed, it is possible to suppress a decrease in heat exchange capacity and efficiency, and to provide a thermoelectric device with little secular change. it can.

【0024】(実施例3)図3に本発明の実施例3の熱
電装置の構成を示す。図に示すように絶縁性基板31の
片面には導電体32が一定間隔で設置されている。導電
体32は台形断面を有しておりその両側テーパー部付近
には、P型半導体33およびN型半導体34が成膜され
ている。一方、絶縁性基板31および導電体32とそれ
ぞれ同様の構造を有する絶縁性基板35および導電体3
6は、P型半導体33およびN型半導体34の上方に位
置し、導電体36の両端は隣合う導電体32の両端に位
置するP型半導体33とN型半導体34と面接触する形
で固定されている。
(Embodiment 3) FIG. 3 shows the configuration of a thermoelectric device according to Embodiment 3 of the present invention. As shown in the figure, the conductors 32 are provided on one surface of the insulating substrate 31 at regular intervals. The conductor 32 has a trapezoidal cross section, and a P-type semiconductor 33 and an N-type semiconductor 34 are formed in the vicinity of the tapered portions on both sides of the conductor 32. On the other hand, the insulating substrate 35 and the conductor 3 having the same structures as the insulating substrate 31 and the conductor 32, respectively.
6 is positioned above the P-type semiconductor 33 and the N-type semiconductor 34, and both ends of the conductor 36 are fixed in a surface contact manner with the P-type semiconductor 33 and the N-type semiconductor 34 located at both ends of the adjacent conductor 32. Has been done.

【0025】冷却装置として使用する場合には、絶縁性
基板31に沿って半導体と導電体に電流を流す。このと
き、電流は導電体32、P型半導体33、導電体36、
N型半導体34の順に流れ、各界面でペルチェ効果によ
り発熱もしくは吸熱を生じ、導電体32、36を介して
それぞれ絶縁性基板31および35に熱が伝えられる。
導電体32、35の膜厚は小さいことからほとんど熱抵
抗はなく絶縁性基板31または35に熱が伝えられる。
本発明による熱電装置では、絶縁性基板31および35
はそれぞれ一方の導電体32または36のみと接触して
いることから、絶縁性基板31および35内の温度はほ
ぼ均一であり、熱流による吸熱量の低下は生じない。し
たがって、機械的強度を増加させるために絶縁性基板3
1および35を厚くしも吸熱量は減少しない。また、絶
縁性基板31と35とは、P型半導体33およびN型半
導体34とにそれぞれ面で固定されているので上下方向
の機械的強度も大きい。図3には示していないが、絶縁
性基板31、35の両側にそれぞれ任意形状の熱交換手
段を設けることにより、一方の流体から吸熱し他方の流
体へ熱を汲み上げるヒートポンプを形成することができ
る。
When used as a cooling device, an electric current is applied to the semiconductor and the conductor along the insulating substrate 31. At this time, the current is the conductor 32, the P-type semiconductor 33, the conductor 36,
The N-type semiconductor 34 flows in this order, and heat or heat is generated at each interface by the Peltier effect, and the heat is transferred to the insulating substrates 31 and 35 via the conductors 32 and 36, respectively.
Since the conductors 32 and 35 have small film thicknesses, they have almost no thermal resistance and heat is transferred to the insulating substrate 31 or 35.
In the thermoelectric device according to the present invention, insulating substrates 31 and 35 are used.
Are in contact with only one of the conductors 32 or 36, the temperatures in the insulating substrates 31 and 35 are substantially uniform, and the heat absorption does not decrease. Therefore, in order to increase the mechanical strength, the insulating substrate 3
Even if 1 and 35 are thickened, the endothermic amount does not decrease. Further, since the insulating substrates 31 and 35 are fixed to the P-type semiconductor 33 and the N-type semiconductor 34 on their respective surfaces, the mechanical strength in the vertical direction is large. Although not shown in FIG. 3, by providing heat exchange means of arbitrary shape on both sides of the insulating substrates 31 and 35, it is possible to form a heat pump that absorbs heat from one fluid and pumps heat to the other fluid. ..

【0026】本装置を発電装置として使用する場合に
は、絶縁性基板31と35に温度差をつけることによ
り、半導体33、34の両端は高温と低温となり、ゼー
ベック効果により起電力を生ずることができる。
When this device is used as a power generator, a temperature difference is created between the insulating substrates 31 and 35, so that both ends of the semiconductors 33 and 34 become high temperature and low temperature, and electromotive force is generated by the Seebeck effect. it can.

【0027】以上のように本実施例によれば、基板の熱
流による熱交換能力および効率の減少を抑制するととも
に、経年変化の少ない熱電装置を提供することができ
る。
As described above, according to the present embodiment, it is possible to provide a thermoelectric device which suppresses a decrease in heat exchange capacity and efficiency due to the heat flow of the substrate and has little secular change.

【0028】[0028]

【発明の効果】以上の実施例の説明からも明らかなよう
に本発明の熱電装置では、第1の手段として、絶縁性フ
ィルム基板と、この絶縁性フィルム基板上の面方向でお
のおのの端部が熱的に接触する複数組のN型半導体、第
1の導電体、P型半導体および第2の導電体と、フィル
ム基板の一方に位置し第1の導電体と熱的に接触する第
1の熱交換手段と、フイルム基板の他方に位置し第2の
導電体と熱的に接触する第2の熱交換手段とを備え、前
記半導体の面方向の形状をくさび状または凹凸形状とす
る。
As is apparent from the above description of the embodiments, in the thermoelectric device of the present invention, as a first means, an insulating film substrate and end portions of the insulating film substrate in the plane direction are formed. A plurality of sets of N-type semiconductor, a first conductor, a P-type semiconductor and a second conductor that are in thermal contact with the first conductor, which is located on one of the film substrates and is in thermal contact with the first conductor. And a second heat exchange means located on the other side of the film substrate and in thermal contact with the second conductor, and the semiconductor has a wedge shape or an uneven shape in the surface direction.

【0029】また、第2の手段として、絶縁性基板と、
絶縁性基板の面方向に一定間隔を有して配設された熱伝
導率の小さい台形断面形状の複数個の絶縁物と、絶縁物
の両側端周辺に位置するN型半導体、P型半導体と、同
一絶縁物上のN型半導体、P型半導体を電気的に接触す
る第1の導電体と、隣り合う絶縁物のN型半導体、P型
半導体を電気的に接触する第2の導電体と、第1の導電
体と熱的に接触する第2の絶縁性基板と、絶縁性基板と
熱的に接触する第1の熱交換手段と、第2の絶縁性基板
と熱的に接触する第2の熱交換手段とを備える。
As a second means, an insulating substrate,
A plurality of trapezoidal cross-sectional insulators having a small thermal conductivity and arranged at regular intervals in the surface direction of the insulating substrate, and N-type semiconductors and P-type semiconductors located around both ends of the insulators. A first conductor that electrically contacts the N-type semiconductor and the P-type semiconductor on the same insulator, and a second conductor that electrically contacts the N-type semiconductor and the P-type semiconductor on the adjacent insulator. A second insulating substrate in thermal contact with the first conductor, a first heat exchanging means in thermal contact with the insulating substrate, and a second insulative substrate in thermal contact with the second insulating substrate. 2 heat exchange means.

【0030】また、第3の手段として、第1の絶縁性基
板と、第1の絶縁性基板の面方向に一定間隔を有して配
設された第1の導電体と、第1の導電体の端部におのお
の位置するN型半導体、P型半導体と、端部が第1の絶
縁性基板の異なる第1の導電体のN型半導体とP型半導
体の上部に位置する複数個の第2の導電体とを備えた第
2の絶縁性基板と、第1の絶縁性基板と熱的に接触する
第1の熱交換手段と、第2の絶縁性基板と熱的に接触す
る第2の熱交換手段とを備える。
As a third means, the first insulative substrate, the first conductor disposed at a constant distance in the surface direction of the first insulative substrate, and the first electrically conductive substrate. N-type semiconductors and P-type semiconductors respectively located at the ends of the body, and a plurality of first-type N-type semiconductors and P-type semiconductors whose ends are different from the first conductor of the first insulating substrate. A second insulating substrate having a second conductor, first heat exchanging means that makes thermal contact with the first insulating substrate, and second heat exchanging member that makes thermal contact with the second insulating substrate. Heat exchange means.

【0031】この構成により、基板内を流れる熱流を抑
制または遮断し、熱交換能力および効率を向上させると
ともに、経年変化の少ない熱電装置を提供することがで
きる。
With this configuration, it is possible to suppress or block the heat flow flowing through the substrate, improve the heat exchange capacity and efficiency, and provide a thermoelectric device with little secular change.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の熱電装置の斜視図FIG. 1 is a perspective view of a thermoelectric device according to a first embodiment of the present invention.

【図2】実施例2の熱電装置の要部断面図FIG. 2 is a cross-sectional view of essential parts of a thermoelectric device according to a second embodiment.

【図3】実施例3の熱電装置の要部断面図FIG. 3 is a sectional view of essential parts of a thermoelectric device according to a third embodiment.

【図4】従来の熱電装置の斜視図FIG. 4 is a perspective view of a conventional thermoelectric device.

【符号の説明】[Explanation of symbols]

12、23、33、42 P型半導体 14、24、34、44 N型半導体 11、41 絶縁性フィルム基板 21、27、31、35 絶縁性基板 13、15、25、26、32、35 導電体 22 絶縁体 12, 23, 33, 42 P-type semiconductor 14, 24, 34, 44 N-type semiconductor 11, 41 Insulating film substrate 21, 27, 31, 35 Insulating substrate 13, 15, 25, 26, 32, 35 Conductor 22 Insulator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中桐 康司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Nakagiri 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性フィルム基板と、前記絶縁性フィ
ルム基板上の面方向に端部が熱的に接触する複数組のN
型半導体、第1の導電体、P型半導体および第2の導電
体と、前記フィルム基板の一方に位置し前記第1の導電
体と熱的に接触する第1の熱交換手段と、前記フイルム
基板の他方に位置し前記第2の導電体と熱的に接触する
第2の熱交換手段とを備え、前記半導体の面方向の形状
をくさび形または凹凸形状とした熱電装置。
1. An insulating film substrate, and a plurality of sets of N whose ends are in thermal contact with each other in a plane direction on the insulating film substrate.
-Type semiconductor, a first conductor, a P-type semiconductor and a second conductor, a first heat exchange means located on one side of the film substrate and in thermal contact with the first conductor, and the film. A thermoelectric device comprising a second heat exchange unit located on the other side of the substrate and in thermal contact with the second conductor, wherein the shape of the semiconductor in the surface direction is a wedge shape or an uneven shape.
【請求項2】 絶縁性基板と、前記絶縁性基盤の面方向
に一定間隔で配設した熱伝導率の小さい断面形状が台形
の複数個の絶縁物と、前記絶縁物の両端周辺に位置する
N型半導体、P型半導体と、同一絶縁物上のN型半導
体、P型半導体を電気的に接触する第1の導電体と、隣
り合う絶縁物のN型半導体、P型半導体を電気的に接触
する第2の導電体と、前記第1の導電体と熱的に接触す
る第2の絶縁性基板と、前記絶縁性基板と熱的に接触す
る第1の熱交換手段と、前記第2の絶縁性基板と熱的に
接触する第2の熱交換手段を備えた熱電装置。
2. An insulating substrate, a plurality of insulators having a trapezoidal cross section having a small thermal conductivity, which are arranged at regular intervals in the surface direction of the insulating substrate, and are located around both ends of the insulator. The N-type semiconductor and the P-type semiconductor are electrically connected to the N-type semiconductor on the same insulator, the first conductor electrically contacting the P-type semiconductor, and the N-type semiconductor and the P-type semiconductor of the adjacent insulator. A second conductor in contact, a second insulating substrate in thermal contact with the first conductor, a first heat exchange means in thermal contact with the insulative substrate, and the second A thermoelectric device comprising a second heat exchange means which is in thermal contact with the insulating substrate.
【請求項3】 第1の絶縁性基板と、前記第1の絶縁性
基板の面方向に一定間隔で配設した第1の導電体と、前
記第1の導電体の端部におのおの位置するN型半導体、
P型半導体と、端部が前記第1の絶縁性基板の異なる第
1の導電体のN型半導体とP型半導体の上部に位置する
複数個の第2の導電体を備えた第2の絶縁性基板と、前
記第1の絶縁性基板と熱的に接触する第1の熱交換手段
と、前記第2の絶縁性基板と熱的に接触する第2の熱交
換手段を備えた熱電装置。
3. A first insulative substrate, a first conductor disposed at a constant interval in the surface direction of the first insulative substrate, and each of which is located at an end of the first conductor. N-type semiconductor,
A second insulation comprising a P-type semiconductor and a plurality of second conductors located on top of the N-type semiconductor and the P-type semiconductor of the first conductor whose ends are different from each other on the first insulating substrate. A thermoelectric device comprising a conductive substrate, a first heat exchange unit that is in thermal contact with the first insulating substrate, and a second heat exchange unit that is in thermal contact with the second insulating substrate.
JP3210656A 1991-08-22 1991-08-22 Thermoelectric device Pending JPH0555639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3210656A JPH0555639A (en) 1991-08-22 1991-08-22 Thermoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3210656A JPH0555639A (en) 1991-08-22 1991-08-22 Thermoelectric device

Publications (1)

Publication Number Publication Date
JPH0555639A true JPH0555639A (en) 1993-03-05

Family

ID=16592926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3210656A Pending JPH0555639A (en) 1991-08-22 1991-08-22 Thermoelectric device

Country Status (1)

Country Link
JP (1) JPH0555639A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420054C (en) * 2004-11-30 2008-09-17 株式会社电装 Thermoelectric transducer and method of manufacturing same and method for forming corrugated fin used for the same
JP2013524498A (en) * 2010-03-30 2013-06-17 ベール ゲーエムベーハー ウント コー カーゲー Temperature adjustment element and temperature adjustment device for vehicle
JPWO2015098574A1 (en) * 2013-12-27 2017-03-23 富士フイルム株式会社 Thermoelectric conversion element and method for manufacturing thermoelectric conversion element
JP2018537848A (en) * 2015-10-23 2018-12-20 コンソルツィオ デルタ ティ リサーチ Thermoelectric generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420054C (en) * 2004-11-30 2008-09-17 株式会社电装 Thermoelectric transducer and method of manufacturing same and method for forming corrugated fin used for the same
JP2013524498A (en) * 2010-03-30 2013-06-17 ベール ゲーエムベーハー ウント コー カーゲー Temperature adjustment element and temperature adjustment device for vehicle
JPWO2015098574A1 (en) * 2013-12-27 2017-03-23 富士フイルム株式会社 Thermoelectric conversion element and method for manufacturing thermoelectric conversion element
JP2018537848A (en) * 2015-10-23 2018-12-20 コンソルツィオ デルタ ティ リサーチ Thermoelectric generator

Similar Documents

Publication Publication Date Title
US8536439B2 (en) Thermoelectric device
JP2003124531A (en) Thermoelectric module
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP2006294935A (en) High efficiency and low loss thermoelectric module
US20120023970A1 (en) Cooling and heating water system using thermoelectric module and method for manufacturing the same
KR20110119334A (en) Thermoelectric module and method for manufacturing the same
KR101998697B1 (en) Thermoelectric cooling module and manufacturing method thereof
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
JPH06151979A (en) Thermoelectric device
JPH0555639A (en) Thermoelectric device
JPH0430586A (en) Thermoelectric device
JP3506199B2 (en) Thermoelectric converter
JP2563524B2 (en) Thermoelectric device
JP2003179274A (en) Thermoelectric converting device
JPH04101472A (en) Cooler
JPH08153898A (en) Thermoelectric element
JP3404841B2 (en) Thermoelectric converter
EP1981095A2 (en) A peltier module
JPH0714029B2 (en) Power semiconductor device
JP2566330B2 (en) Thermoelectric power generation method and apparatus
JPH02288378A (en) Thermoelectric device
JPH08236819A (en) Thermal electronic element
JP2598257B2 (en) Thermoelectric generator
JPH02271683A (en) Thermoelectric element and manufacture thereof
JPH02130878A (en) Thermoelectric device