JP2566330B2 - Thermoelectric power generation method and apparatus - Google Patents

Thermoelectric power generation method and apparatus

Info

Publication number
JP2566330B2
JP2566330B2 JP2061078A JP6107890A JP2566330B2 JP 2566330 B2 JP2566330 B2 JP 2566330B2 JP 2061078 A JP2061078 A JP 2061078A JP 6107890 A JP6107890 A JP 6107890A JP 2566330 B2 JP2566330 B2 JP 2566330B2
Authority
JP
Japan
Prior art keywords
generator
liquid metal
high temperature
thermoelectric
thermoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2061078A
Other languages
Japanese (ja)
Other versions
JPH03263881A (en
Inventor
武士 野垣内
吉之助 河村
信隆 和智
一彦 岸岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GENSHIRYOKU HATSUDEN
Original Assignee
NIPPON GENSHIRYOKU HATSUDEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GENSHIRYOKU HATSUDEN filed Critical NIPPON GENSHIRYOKU HATSUDEN
Priority to JP2061078A priority Critical patent/JP2566330B2/en
Publication of JPH03263881A publication Critical patent/JPH03263881A/en
Application granted granted Critical
Publication of JP2566330B2 publication Critical patent/JP2566330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱電発電方法とその装置に関するもので、
詳しくは、熱電素子が平板状のP型熱電素材と平板状の
N型熱電素材とを対向させたものからなり、その対向す
る面の間に発電器加熱用高温熱媒体を流し、その対向す
る面の反対側に発電器冷却用低温熱媒体を流して、発電
させる熱電発電方法のその装置に関するものである。
The present invention relates to a thermoelectric power generation method and an apparatus thereof, and
Specifically, the thermoelectric element is composed of a flat P-type thermoelectric material and a flat N-type thermoelectric material opposed to each other, and a high temperature heating medium for heating a generator is caused to flow between the opposed surfaces to oppose each other. The present invention relates to a device for a thermoelectric generation method in which a low-temperature heat medium for cooling a generator is caused to flow on the side opposite to the surface to generate electricity.

〔従来の技術〕[Conventional technology]

従来から、熱電発電装置については、種々の型式のも
のが知られているが、発電の原理は、公知の温度測定用
の熱電対と同様に、P型熱電素材とN型熱電素材の対に
よる熱電素子の高温側と低温側の温度差によって起電力
を発生するものである。
Conventionally, various types of thermoelectric power generators are known, but the principle of power generation is based on a pair of P-type thermoelectric material and N-type thermoelectric material, similar to the known thermocouple for temperature measurement. The electromotive force is generated by the temperature difference between the high temperature side and the low temperature side of the thermoelectric element.

いま、本出願人が平成元年5月30日に出願した特願平
1−134748号の平板型の熱電発電器の構成の概略につい
て、第14図により説明する。
Now, an outline of the configuration of the flat plate type thermoelectric generator of Japanese Patent Application No. 1-134748 filed by the applicant on May 30, 1989 will be described with reference to FIG.

第14図において、40は平板型の熱電発電器でP型熱電
素材41とN型熱電素材42が対をなして電気的にも熱的に
も不良導体である絶縁物43を介して平板状に形成されて
いて、その一方の側であるNa流路54側が高温側になって
いるとともに、他方の側である冷却水流路55側が低温側
になっている熱電素子44の多数を、電気的にも熱的にも
不良導体である絶縁物45を挟んで配列した熱電素子集合
体46を有している。しかも、熱電素子集合体46の熱電素
子44の各P型熱電素材41と各N型熱電素材42が高温側と
低温側と交互に順に電気的にも熱的にも良導体である導
体47,48によって接続されて全体として直列に接続され
ている。
In FIG. 14, reference numeral 40 denotes a flat plate-type thermoelectric generator, in which a P-type thermoelectric material 41 and an N-type thermoelectric material 42 form a pair, and a flat plate shape is provided through an insulator 43 which is a poor conductor both electrically and thermally. Is formed on one side, the Na flow path 54 side which is one side thereof is the high temperature side, and the cooling water flow path 55 side which is the other side is a low temperature side. Further, it has a thermoelectric element assembly 46 arranged with an insulator 45, which is a poor conductor in terms of heat, sandwiched therebetween. Moreover, each of the P-type thermoelectric material 41 and each N-type thermoelectric material 42 of the thermoelectric element 44 of the thermoelectric element assembly 46 is a conductor 47, 48 which is a high temperature side and a low temperature side alternately and electrically and thermally. And are connected in series as a whole.

その他、49は酸化ベリリウムまたはダイヤモンド薄膜
などからなる電気的には不良導体で熱的には良導体であ
る層、50は高温流路壁、51は低温側流路壁、52は絶縁
壁、53は電力取出し用導線である。
In addition, 49 is a layer made of beryllium oxide or a diamond thin film which is an electrically poor conductor and is a good thermal conductor, 50 is a high temperature channel wall, 51 is a low temperature side channel wall, 52 is an insulating wall, and 53 is It is a lead wire for extracting electric power.

すなわち、一般的に、熱電素子44で発生する電圧が小
さいので、各熱電素子44を直列に接続して、熱電素子集
合体46にして熱電発電器40の出力電圧を上げている。
That is, since the voltage generated in the thermoelectric elements 44 is generally small, the thermoelectric elements 44 are connected in series to form the thermoelectric element aggregate 46, and the output voltage of the thermoelectric generator 40 is increased.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、第14図に示した熱電発電器40において
は、比較的小電力の場合は、あまり問題はないが、大電
力を発生させるためには、次のような問題点がある。
However, in the thermoelectric generator 40 shown in FIG. 14, there is not much problem in the case of relatively small electric power, but there are the following problems in order to generate large electric power.

第1に、熱電発電器40の出力を上げると、電流が増加
し、大電流を流すために、導体47,48の厚さを増して断
面積を増大させる必要があり、また電気絶縁に必要な層
49の厚さも大きくなる。このため、熱電発電器40にかか
る温度差が、これら発電に寄与しない部分で低下してし
まい、熱電素材41,42に正味にかかる温度差が小さくな
り、発生電圧および発生電力を減じ発電効率を大きく低
下させる。
First, when the output of the thermoelectric generator 40 is increased, the current increases, and in order to pass a large current, it is necessary to increase the thickness of the conductors 47 and 48 to increase the cross-sectional area, and also for electrical insulation. Layer
The thickness of 49 also becomes large. Therefore, the temperature difference applied to the thermoelectric generator 40 is reduced in the portions that do not contribute to power generation, the temperature difference applied to the thermoelectric materials 41 and 42 is reduced, and the generated voltage and generated power are reduced to improve the power generation efficiency. Greatly reduce.

第2に、導体47,48、導線53を接続している電極部、
層49、流路壁50,51および熱電素材41,42のそれぞれの接
合部で、圧着不足により、その間の気層や不純物によっ
て熱的抵抗が著しく増大する。このために、その空間部
において大きな温度ギャップが生じ、これも出力と効率
を大きく低下させる。また前記接合部に圧着不足による
空隙や不純物があると、その部分の電気抵抗が増加し、
出力および効率を低下させる。
Secondly, the electrode portion connecting the conductors 47, 48 and the conductor wire 53,
At the joints of the layer 49, the flow path walls 50 and 51, and the thermoelectric materials 41 and 42, due to insufficient pressure bonding, the thermal resistance is significantly increased due to the air layer and impurities between them. This creates a large temperature gap in that space, which also greatly reduces power and efficiency. Also, if there are voids or impurities due to insufficient crimping at the joint, the electrical resistance of that portion increases,
Reduces power and efficiency.

第3に、導体47,48、導線53を接続している電極部、
層49、流路壁50,51および熱電素材41,42等には、大きな
温度差と温度こう配がかかるため、大きな熱応力が生じ
やすい。このため、厚い構成品では、それ自身の破損が
生じやすく、また構成品が多い場合には、その接合部が
剥離しやすくなるばかりでなく、大型になってしまっ
て、スペースを多く必要とし、かつ、複雑になって製造
コストが増大する。また熱電素子44を外部で接続用導体
を用いて直列接続する場合には、大電流が流れるため、
その接続用導体を太くする必要があり、大きなスペース
を必要とし、かつ、複雑化してコスト高となる。
Thirdly, an electrode portion connecting the conductors 47, 48 and the conductor wire 53,
Since a large temperature difference and a temperature gradient are applied to the layer 49, the flow path walls 50 and 51, the thermoelectric materials 41 and 42, large thermal stress is likely to occur. Therefore, a thick component is liable to be damaged by itself, and when there are many components, not only is the joint easily peeled off, but it also becomes large and requires a lot of space, In addition, it becomes complicated and the manufacturing cost increases. Further, when the thermoelectric element 44 is connected externally in series using a connecting conductor, a large current flows,
It is necessary to make the connecting conductor thick, which requires a large space, and becomes complicated and costly.

本発明は、上記のような問題点を解決しようとするも
のである。すなわち、本発明は、温度差を有効に発電に
利用できて、その損失および内部電気抵抗が著しく小さ
くなって、出力低下がきわめて小さく、かつ、各熱電素
子を接続するための太い導体等の必要がなく、単純化さ
れて、省スペースおよび製作費の低減を図ることができ
る熱電発電方法とその装置を提供することを目的とする
ものである。
The present invention is intended to solve the above problems. That is, according to the present invention, the temperature difference can be effectively utilized for power generation, the loss and the internal electric resistance are significantly reduced, the output reduction is extremely small, and a thick conductor or the like for connecting the thermoelectric elements is required. It is an object of the present invention to provide a thermoelectric power generation method and a device thereof which can be simplified and can save space and reduce manufacturing cost.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明の熱電発電方法
は、熱電素子が平板状のP型熱電素材と平板状のN型熱
電素材とを対向させたものからなり、その対向する面の
間に発電器加熱用高温熱媒体を流し、その対向する面の
反対側に発電器冷却用低温熱媒体を流して、発電させる
熱電発電装置において、前記発電器加熱用高温熱媒体お
よび発電器冷却用低温熱媒体を、ともに電気的にも熱的
にも良導体である液体金属とし、かつ、発電器加熱用高
温液体金属ループと発電器冷却用低温液体金属ループを
独立させて電気的に絶縁するとともに、該各ループが前
記P型熱電素材とN型熱電素材を順に介してのみ電気的
に導通するようにし、しかも、前記発電器加熱用高温液
体金属ループを各々独立に電気的に絶縁してそのループ
の液体金属を熱源で加熱し、前記発電器冷却用低温液体
金属ループを各々独立に電気的に絶縁してそのループの
液体金属の熱を放熱するようにした。
In order to achieve the above object, the thermoelectric power generation method of the present invention comprises a thermoelectric element in which a flat plate-shaped P-type thermoelectric material and a flat-plate-shaped N-type thermoelectric material are opposed to each other, and between the opposed surfaces. In a thermoelectric power generation device, in which a high-temperature heat medium for heating a generator is caused to flow, and a low-temperature heat medium for cooling a generator is caused to flow on the side opposite to the facing surface thereof to generate electric power, The heat medium is a liquid metal, which is a good conductor both electrically and thermally, and the high-temperature liquid metal loop for heating the generator and the low-temperature liquid metal loop for cooling the generator are independently electrically insulated, The loops are electrically connected only through the P-type thermoelectric material and the N-type thermoelectric material in order, and the high-temperature liquid metal loops for heating the generator are electrically insulated independently from each other. Of liquid metal with a heat source And it was adapted to dissipate liquid metal heat the loop electrically insulates each independently the generator cooling cryogenic liquid metal loop.

また本発明の熱電発電装置は、熱電素子が平板状のP
型熱電素材と平板状のN型熱電素材とを対向させたもの
からなり、その対向する面の間に電気的にも熱的にも良
導体である発電器加熱用高温液体金属を流す高温側流路
を有し、その対向する面の反対側に電気的にも熱的にも
良導体である発電器冷却用低温液体金属を流す低温側流
路を有し、前記高温側流路を通る高温側液体金属ループ
のすべてと前記低温側流路を通る低温側液体金属ループ
のすべてが互いに電気的に絶縁されていて、該各ループ
が前記P型熱電素材とN型熱電素材とを順に介してのみ
電気的に導通されるようになっている熱電発電器を備
え、かつ、前記各高温側液体金属ループの発電器加熱用
高温液体金属を電気的に絶縁して加熱する熱源を備え、
しかも、前記各低温側液体金属ループの発電器冷却用液
体金属を電気的に絶縁して冷却する冷却装置を備えてい
るものとした。
Further, in the thermoelectric generator of the present invention, the thermoelectric element has a flat plate shape.
High temperature sidestream of a high temperature liquid metal for heating a generator, which is composed of a type thermoelectric material and a flat plate N type thermoelectric material facing each other, and is a good conductor electrically and thermally between the facing surfaces. A high temperature side which has a low temperature side flow path through which a low temperature liquid metal for cooling a generator, which is a good conductor electrically and thermally, flows All of the liquid metal loops and all of the low temperature side liquid metal loops passing through the low temperature side flow path are electrically insulated from each other, and each of the loops passes through the P type thermoelectric material and the N type thermoelectric material in order. A thermoelectric generator adapted to be electrically conducted, and a heat source for electrically insulating and heating the high temperature liquid metal for heating the generator of each of the high temperature side liquid metal loops,
Moreover, the cooling device for electrically insulating and cooling the generator cooling liquid metal of each of the low temperature side liquid metal loops is provided.

〔作 用〕[Work]

本発明によれば、発電気加熱用高温熱媒体および発電
器冷却用低温熱媒体が、ともに電気的にも熱的にも良導
体である液体金属であり、かつ、前記液体金属はP型熱
電素材とN型熱電素材とを順に介してのみ電気的に導通
されるので、熱電発電器の内部で発電に寄与しない絶縁
物や導体等を設ける必要がなくなり、その電気抵抗およ
び熱抵抗がきわめて小さいものとなり、温度差を発電に
有効に利用することができるとともに、出力損失がきわ
めて小さくなり、発電効率および出力が著しく向上し、
しかも、構成が簡単になって、コストダウンを図ること
ができる。また各高温側液体金属ループ間および各低温
側液体金属ループ間が電気的に絶縁されているので、そ
れらループ間での電気的短絡はない。
According to the present invention, both the high-temperature heat medium for electric heating and the low-temperature heat medium for cooling the generator are liquid metals that are good conductors both electrically and thermally, and the liquid metal is a P-type thermoelectric material. And the N-type thermoelectric material are electrically connected only in order, so that it is not necessary to provide an insulator or conductor that does not contribute to power generation inside the thermoelectric generator, and the electric resistance and thermal resistance are extremely small. The temperature difference can be effectively used for power generation, output loss is extremely small, and power generation efficiency and output are significantly improved.
Moreover, the structure is simplified and the cost can be reduced. Further, since the high temperature side liquid metal loops and the low temperature side liquid metal loops are electrically insulated from each other, there is no electrical short circuit between the loops.

〔実施例〕〔Example〕

第1図は本発明の熱電発電装置の第1実施例を示した
説明図である。
FIG. 1 is an explanatory view showing a first embodiment of the thermoelectric generator of the present invention.

第1図において、1は後述する熱電発電器、2は高温
ガス炉、ボイラの火炉またはごみ焼却炉などの熱源とし
ての加熱炉、3はファン28を有して大気に放熱する乾式
冷却塔、4と5は電気導線、6は該熱電発電器1で発生
した直流電力を交流電力に変換するインバータ、7と8
は電力送電用ラインである。
In FIG. 1, 1 is a thermoelectric generator described later, 2 is a heating furnace as a heat source such as a high temperature gas furnace, a boiler furnace or a refuse incinerator, 3 is a dry cooling tower that has a fan 28 and radiates heat to the atmosphere, Reference numerals 4 and 5 are electric leads, 6 is an inverter for converting DC power generated in the thermoelectric generator 1 into AC power, and 7 and 8
Is a power transmission line.

第2図は第1図の熱電発電器1を拡大して示した断面
立面図である。
FIG. 2 is an enlarged sectional elevational view showing the thermoelectric generator 1 of FIG.

第2図において、11は電気的にも熱的にも不良導体か
らなる絶縁物で構成されている収納容器、12は平板状の
P型アモムフアスFeSi2半導体熱電素材、13はN型アモ
ルフアスFeSi2半導体熱電素材、14は該熱電素材12,13を
対とする熱電素子、15は電気的にも熱的にも良導体であ
る発電器加熱用高温液体金属Naを流す高温側流路、16は
電気的もに熱的にも良導体である発電器冷却用低温液体
金属NaKを流す低温側流路、17は平板状の集電用の正の
電極、18は平板状の集電用の負の電極である。
In FIG. 2, 11 is a storage container made of an insulator made of a poor conductor both electrically and thermally, 12 is a flat P-type Amorphous FeSi 2 semiconductor thermoelectric material, and 13 is an N-type Amorphous FeSi 2 A semiconductor thermoelectric material, 14 is a thermoelectric element paired with the thermoelectric materials 12 and 13, 15 is a high temperature side flow path for flowing a high temperature liquid metal Na for generator heating, which is a good conductor both electrically and thermally, and 16 is electric The low temperature side flow path for the low temperature liquid metal NaK for cooling the generator, which is a good conductor both thermally and thermally, 17 is a positive electrode for collecting current in a flat plate, 18 is a negative electrode for collecting current in a flat plate Is.

また第1図および第2図において、19,20,21,22は後
述する高温側液体金属Naループ、23,24,25,26,27は後述
する低温側液体金属NaKループである。
Further, in FIG. 1 and FIG. 2, 19, 20, 21, 22 are high temperature side liquid metal Na loops, which will be described later, and 23, 24, 25, 26, 27 are low temperature liquid metal NaK loops, which will be described later.

すなわち、熱電発電器1は、低温側流路16、P型アモ
ルフアスFeSi2半導体熱電素材12、高温側流路15、N型
アモルフアスFeSi2半導体熱電素材13、低温側流路16、
P型アモルフアスFeSi2半導体熱電素材12、高温側流路1
5、N型アモルフアスFeSi2半導体熱電素材13、低温側流
路16、・・・の順の繰返しからなっていて、最外側に低
温側流路を有し、その一方の最外側のほうに電極17が設
けられ、他方の最外側のほうに電極18が設けられてい
る。
That is, the thermoelectric generator 1 includes a low temperature side flow path 16, a P-type amorphous FeSi 2 semiconductor thermoelectric material 12, a high temperature side flow path 15, an N-type amorphous FeSi 2 semiconductor thermoelectric material 13, a low temperature side flow path 16,
P-type amorphous FeSi 2 semiconductor thermoelectric material 12, high temperature side flow path 1
5, N-type amorphous FeSi 2 semiconductor thermoelectric material 13, low temperature side flow path 16, and so on are repeated in order, and a low temperature side flow path is provided on the outermost side, and one of the electrodes is on the outermost side. 17 is provided, and the electrode 18 is provided on the other outermost side.

また各高温側流路15を通る高温側液体金属Naループ1
9,20,21,22のすべてと、低温側流路16を通る低温側液体
金属NaKループ23,24,25,26,27のすべてが互いに電気的
に絶縁されていて、該各ループ19〜22、23〜27が、前記
熱電素材12,13を順に介してのみ電気的に導通されるよ
うになっている。そして、第2図の矢印で示すように、
高温側液体金属Naループ19〜22の流れ方向と、低温側液
体金属NaKループ23〜27の流れ方向とは、対向流になっ
ている。
Further, the high temperature side liquid metal Na loop 1 passing through each high temperature side flow path 15
All of 9,20,21,22 and all of the low temperature side liquid metal NaK loops 23,24,25,26,27 passing through the low temperature side flow path 16 are electrically insulated from each other, and each of the loops 19- 22 and 23 to 27 are electrically connected only through the thermoelectric materials 12 and 13 in order. Then, as shown by the arrow in FIG.
The flow directions of the high temperature side liquid metal Na loops 19 to 22 and the flow directions of the low temperature side liquid metal NaK loops 23 to 27 are counter flows.

第1図および第2図に示した熱電発電器1において
は、各高温側流路15に高温液体金属Naが流れ、各低温側
流路16に低温液体金属NaKが流れることにより、各熱電
素材14の高温側がその液体金属Naによって加熱され、各
熱電素材14の低温側がその液体金属NaKによって冷却さ
れるので、その温度差(300℃〜700℃)により、各熱電
素子14には起電力が発生し、しかも、前記液体金属Naと
液体金属NaKが太い電気導体の役目をするので、各熱電
素子14は順に電気的に接続されることになり、その起電
力の総和の直流電力が連続して得られる。これをインバ
ータ6で交流電力に変換して電力送電ライン7,8に給電
される。
In the thermoelectric generator 1 shown in FIG. 1 and FIG. 2, the high temperature liquid metal Na flows in each high temperature side flow path 15 and the low temperature liquid metal NaK flows in each low temperature side flow path 16 to generate each thermoelectric material. Since the high temperature side of 14 is heated by the liquid metal Na and the low temperature side of each thermoelectric material 14 is cooled by the liquid metal NaK, an electromotive force is generated in each thermoelectric element 14 due to the temperature difference (300 ° C to 700 ° C). Occurrence, moreover, since the liquid metal Na and the liquid metal NaK serve as a thick electric conductor, each thermoelectric element 14 will be electrically connected in order, and the total direct current power of the electromotive force is continuous. Obtained. This is converted into AC power by the inverter 6 and fed to the power transmission lines 7 and 8.

また熱電発電器1で熱を失った高温側液体金属Naはそ
のループの途中で加熱炉2で加熱されて循環し、熱電発
電器1で熱を得た低温側液体金属NaKはそのループの途
中で乾式冷却塔3で大気放熱されて循環する。
Further, the high temperature side liquid metal Na that has lost heat in the thermoelectric generator 1 is heated and circulated in the heating furnace 2 in the middle of the loop, and the low temperature side liquid metal NaK that has obtained heat in the thermoelectric generator 1 is in the middle of the loop. The heat is radiated to the atmosphere in the dry cooling tower 3 and circulates.

このように、低温側液体金属ループの冷却は乾式冷却
塔で行うため、冷却水系の必要がなくなって安全であ
り、山間部や内陸部への建設も可能となり、立地上の制
約がないものとなる。
In this way, the cooling of the liquid metal loop on the low temperature side is performed by the dry cooling tower, so there is no need for a cooling water system and it is safe, and construction in mountainous areas and inland areas is possible, and there are no restrictions on location. Become.

第3図は本発明の熱電発電装置の第2実施例を示した
説明図であり、この第2実施例が第1図の場合と異なる
のは、加熱源が高速増殖炉29である点のみであり、すな
わち、高温側液体金属Naループ19〜22の液体金属Naは、
高速増殖炉29内の炉心30の一次系Naと熱交換するため、
前記各ループ19〜22はセラミックス伝熱管等を用いて絶
縁する。その他は第1図と同様である。
FIG. 3 is an explanatory view showing a second embodiment of the thermoelectric generator of the present invention. The second embodiment differs from the case of FIG. 1 only in that the heating source is the fast breeder reactor 29. That is, the liquid metal Na of the high temperature side liquid metal Na loops 19 to 22 is,
To exchange heat with the primary system Na in the core 30 in the fast breeder reactor 29,
The loops 19 to 22 are insulated by using a ceramic heat transfer tube or the like. Others are the same as FIG.

第4図は第2図のP型アモルフアスFeSi2半導体熱電
素材12の1つの例を示した斜視図であり、同図の31は平
板状の金属製構造材で、たとえば、9Cr−1Mo低合金鋼か
らなり、この片面に前記熱電素材12が付着されているも
ので、絶縁物や電極などは上につけず、単純な構成とな
っている。
FIG. 4 is a perspective view showing an example of the P-type amorphous FeSi 2 semiconductor thermoelectric material 12 of FIG. 2, and 31 in the figure is a flat metal structural material, for example, 9Cr-1Mo low alloy. It is made of steel, and the thermoelectric material 12 is attached to one surface of the steel. It has a simple structure without an insulator or electrodes attached on top.

第5図は第2図のN型アモルフアスFeSi2半導体熱電
素材13の1つの例を示した斜視図であり、この場合も、
第4図の場合と同様に、平板状の金属製構造材31の片面
に前記熱電素材13が付着されている単純な構成となって
いる。
FIG. 5 is a perspective view showing one example of the N-type amorphous FeSi 2 semiconductor thermoelectric material 13 of FIG. 2, and in this case also,
Similar to the case of FIG. 4, it has a simple structure in which the thermoelectric material 13 is attached to one surface of a flat metal structural material 31.

第6図は第2図のP型アモルフアスFeSi2半導体熱電
素材12のもう1つの例を示した立面図であり、この場合
は、平板状の金属製構造材31の両面に前記熱電素材12が
付着されている。
FIG. 6 is an elevational view showing another example of the P-type amorphous FeSi 2 semiconductor thermoelectric material 12 of FIG. 2, and in this case, the thermoelectric material 12 is provided on both sides of a flat metal structural material 31. Is attached.

第7図は第2図のN型アモルフアスFeSi2半導体熱電
素材13のもう1つの例を示した立面図であり、この場合
も、第6図と同様に、平板状の金属製構造材31の両面に
前記熱電素材13が付着されている。
FIG. 7 is an elevational view showing another example of the N-type amorphous FeSi 2 semiconductor thermoelectric material 13 of FIG. 2, and in this case also, as in FIG. 6, a flat metal structural material 31. The thermoelectric material 13 is attached to both surfaces of the.

第8図および第9図は本発明の熱電発電装置の第3実
施例の熱電発電器1を示したもので、第4図および第5
図に示した熱電素材12,13を用いている。
FIG. 8 and FIG. 9 show a thermoelectric generator 1 of a third embodiment of the thermoelectric generator of the present invention.
The thermoelectric materials 12 and 13 shown in the figure are used.

なお第9図の32は高温側液体金属入口ノズル、33は同
じく出口ノズル、34は低温側液体金属入口ノズル、35は
同じく出口ノズルである。
In FIG. 9, 32 is a high temperature side liquid metal inlet nozzle, 33 is also an outlet nozzle, 34 is a low temperature side liquid metal inlet nozzle, and 35 is an outlet nozzle.

この第3実施例においては、熱電素子14を、電気的に
も熱的にも良導体である金属製構造材31にP型アモルフ
アスFeSi2半導体熱電素材12を付着し、同様な金属製構
造材31にN型アモルフアスFeSi2半導体熱電素材13を付
着しただけの単純な構成としたため、発電に寄与しない
で、むしろ、電気内部抵抗を増加させるとともに熱的に
も抵抗となり、かつ温度差をロスするような電極や絶縁
物を取除くことができる。したがって、熱電素材14が直
接熱媒体の液体金属Naと液体金属NaKと接するため、温
度差をロスすることがなく、高効率が得られる。また電
気の導体として液体金属Naおよび液体金属NaKを使用
し、集電用の電極17,18としては、熱的に邪魔にならな
い部分に1対だけ設けている。このため、発生電力を低
下させる内部抵抗を著しく低下させることができ、しか
も、熱電素子14と電極17,18や絶縁材との接合ギャップ
がないため、その部分の熱的抵抗がなく、温度差を有効
に利用することができて、高効率が得られる。同様に、
熱電素子14が前記液体金属を介して電気的に接続される
ので、内部電気抵抗が小さく、出力低下が小さい。また
前記熱電素材12,13と金属構造物だけの2層構造である
ため、熱応力の問題が緩和されるばかりでなく、単純な
構成であるため、製造プロセスが簡単で、かつ、コスト
が低減される。また液体金属Naと液体金属NaKを導電体
として導線のかわりとするため、大電流であっても、太
い導線などの必要がなく、素子相互の直列接続のための
配線も不要である。
In the third embodiment, the P-type amorphous FeSi 2 semiconductor thermoelectric material 12 is attached to the metal structural material 31 which is a good conductor both electrically and thermally in the thermoelectric element 14, and the same metal structural material 31 is used. Since it has a simple structure in which N-type amorphous FeSi 2 semiconductor thermoelectric material 13 is simply attached to the above, it does not contribute to power generation, but rather increases the internal electrical resistance and also becomes a thermal resistance and loses the temperature difference. It is possible to remove unnecessary electrodes and insulators. Therefore, since the thermoelectric material 14 is in direct contact with the liquid metal Na and the liquid metal NaK of the heat medium, the temperature difference is not lost and high efficiency is obtained. Also, liquid metal Na and liquid metal NaK are used as electric conductors, and only one pair of current collecting electrodes 17 and 18 is provided in a portion that does not interfere with heat. Therefore, it is possible to significantly reduce the internal resistance that lowers the generated power, and since there is no junction gap between the thermoelectric element 14 and the electrodes 17 and 18 or the insulating material, there is no thermal resistance at that portion and there is no temperature difference. Can be effectively used and high efficiency can be obtained. Similarly,
Since the thermoelectric element 14 is electrically connected via the liquid metal, the internal electric resistance is small and the output reduction is small. In addition, since the thermoelectric materials 12 and 13 and the metal structure are the two-layer structure, not only the problem of thermal stress is alleviated but also the simple structure simplifies the manufacturing process and reduces the cost. To be done. Further, since liquid metal Na and liquid metal NaK are used as conductors instead of conductors, there is no need for thick conductors even for large currents, and wiring for series connection of elements is also unnecessary.

第10図は本発明の熱電発電装置の第4実施例の熱電素
子部を示した分解斜視図であり、第11図はその多数を組
付けて熱電発電器を構成している斜視図である。
FIG. 10 is an exploded perspective view showing a thermoelectric element portion of a fourth embodiment of the thermoelectric generator of the present invention, and FIG. 11 is a perspective view showing a thermoelectric generator which is assembled with a large number of them. .

この第4実施例では、第4図と第5図に示した熱電素
材12,13を使用し、その間に流路を形成するための両側
面が開放している絶縁物の枠体36を使用している。
In the fourth embodiment, the thermoelectric materials 12 and 13 shown in FIGS. 4 and 5 are used, and an insulating frame body 36 having open side surfaces for forming a flow path therebetween is used. are doing.

なお第11図にみられる17a,18aは電極端子、37は素子
締付け用絶縁ねじである。
Note that 17a and 18a shown in FIG. 11 are electrode terminals, and 37 is an insulating screw for fastening the element.

この第4実施例のようにすることにより、前述の第3
実施例の効果を有するほか、熱媒体である液体金属Naお
よび液体金属Nakの流路形成が容易である。
By using the fourth embodiment, the third
In addition to the effects of the embodiment, it is easy to form the flow paths of the liquid metal Na and the liquid metal Nak that are the heat medium.

第12図および第13図は、それぞれ、第10図および第11
図に対応させて、本発明の第5実施例の熱電発電装置の
熱電素子部および熱電発電器を示している。
Figures 12 and 13 show Figures 10 and 11 respectively.
The thermoelectric element part and the thermoelectric generator of the thermoelectric generator of the 5th Example of this invention are shown correspondingly to a figure.

この第5実施例では、前記第4実施例の枠体36を箱体
38に代えたものに相当する。
In the fifth embodiment, the frame body 36 of the fourth embodiment is used as a box body.
Equivalent to 38.

すなわち、第12図にみられる箱体38の両側面板39を電
気的にも熱的にも良導体である金属の薄板で構成する。
そして、構造上の強度は両熱電素材12,13の金属製構造
材31で受けもたせるため、流路形成用の該箱体38は薄く
して電気抵抗および熱抵抗をへらすことができる。
That is, the both side plates 39 of the box body 38 shown in FIG. 12 are made of thin metal plates which are good conductors both electrically and thermally.
Since the structural strength is received by the metallic structural material 31 of both thermoelectric materials 12 and 13, the box 38 for forming the flow path can be thinned to reduce electric resistance and thermal resistance.

この第5実施例のようにすることにより、前述の第4
実施例の効果と同様な効果を奏するようになり、かつ、
箱体38を使用することで、構造および組立てが、一そう
容易になる。
By carrying out this fifth embodiment, the fourth
The same effects as the effects of the embodiment are obtained, and
The use of box 38 makes construction and assembly much easier.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、発電器加熱用
高温熱媒体および発電器冷却用低温熱媒体が、ともに電
気的にも熱的にも良導体である液体金属であり、かつ、
前記液体金属はP型熱電素材とN型熱電素材とを順に介
してのみ電気的に導通されるので、熱電発電器の内部で
発電に寄与しない絶縁物や導体等を設ける必要がなくな
り、その電気抵抗および熱抵抗がきわめて小さいものと
なり、温度差を有効に発電に利用することができるとと
もに、電気出力損失がきわめて小さくなり、発電効率お
よび出力が著しく向上し、しかも、構成が簡単になっ
て、コストダウンを図ることができるうえ、高い温度差
による熱応力の問題も緩和される。また各高温側液体金
属ループ間および低温側液体金属ループ間が電気的に絶
縁されているので、それらループ間での電気的短絡がな
く、発生電圧、つまり、発生電力を安全に、かつ、有効
に取出すことができる。
As described above, according to the present invention, the high temperature heat medium for heating the generator and the low temperature heat medium for cooling the generator are both liquid metals that are both electrically and thermally good conductors, and
Since the liquid metal is electrically conducted only through the P-type thermoelectric material and the N-type thermoelectric material in order, it is not necessary to provide an insulator or a conductor that does not contribute to power generation inside the thermoelectric generator, and the Resistance and thermal resistance are extremely small, temperature difference can be effectively used for power generation, electric output loss is extremely small, power generation efficiency and output are significantly improved, and the configuration is simple. The cost can be reduced and the problem of thermal stress due to a high temperature difference can be alleviated. Also, since the high temperature side liquid metal loops and the low temperature side liquid metal loops are electrically insulated, there is no electrical short circuit between the loops, and the generated voltage, that is, the generated power is safe and effective. Can be taken out.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の熱電発電装置の第1実施例を示した説
明図、第2図は第1図の熱電発電器を拡大して示した断
面立面図、第3図は本発明の熱電発電装置の第2実施例
を示した説明図、第4図は第2図のP型熱電素材の1つ
の例を示した斜視図、第5図は同じくN型熱電素材の1
つの例を示した斜視図、第6図は第2図のP型熱電素材
のもう1つの例を示した立面図、第7図は同じくN型熱
電素材のもう1つの例を示した立面図、第8図は本発明
の熱電発電装置の第3実施例の熱電発電器を示した断面
立面図、第9図は第8図の断面平面図、第10図は同じく
第4実施例の熱電素子部の分解斜視図、第11図は第10図
の熱電素子の多数を組立てた熱電発電器の斜視図、第12
図は同じく第5実施例の熱電素子部の分解斜視図、第13
図は第12図の熱電素子の多数を組立てた熱電発電器の斜
視図、第14図は先行技術の一例を示した断面立面図であ
る。 1……熱電発電器、2……加熱炉、 3……乾式冷却塔、11……収納容器、 12……P型熱電素材、 13……N型熱電素材、 14……熱電素子、 15……高温側流路、 16……低温側流路、17,18……電極、 19〜22……高温側液体金属ループ、 23〜27……低温側液体金属ループ、 29……高速増殖炉、30……炉心、 31……金属製構造材、 36……枠体、38……箱体。
FIG. 1 is an explanatory view showing a first embodiment of a thermoelectric generator of the present invention, FIG. 2 is an enlarged sectional elevational view showing the thermoelectric generator of FIG. 1, and FIG. FIG. 4 is an explanatory view showing a second embodiment of the thermoelectric generator, FIG. 4 is a perspective view showing one example of the P-type thermoelectric material of FIG. 2, and FIG.
6 is a perspective view showing one example, FIG. 6 is an elevation view showing another example of the P-type thermoelectric material of FIG. 2, and FIG. 7 is an elevation view showing another example of the N-type thermoelectric material. FIG. 8 is a sectional elevation view showing a thermoelectric generator of a third embodiment of the thermoelectric generator of the present invention, FIG. 9 is a sectional plan view of FIG. 8, and FIG. FIG. 11 is an exploded perspective view of an example thermoelectric element part, FIG. 11 is a perspective view of a thermoelectric generator in which many thermoelectric elements of FIG. 10 are assembled, and FIG.
Similarly, FIG. 13 is an exploded perspective view of the thermoelectric element portion of the fifth embodiment,
FIG. 14 is a perspective view of a thermoelectric generator in which many thermoelectric elements of FIG. 12 are assembled, and FIG. 14 is a sectional elevation view showing an example of the prior art. 1 ... Thermoelectric generator, 2 ... Heating furnace, 3 ... Dry cooling tower, 11 ... Storage container, 12 ... P-type thermoelectric material, 13 ... N-type thermoelectric material, 14 ... Thermoelectric element, 15 ... … High temperature side channel, 16 …… Low temperature side channel, 17,18 …… Electrode, 19〜22 …… High temperature side liquid metal loop, 23〜27 …… Low temperature side liquid metal loop, 29 …… Fast breeder reactor, 30: core, 31: metal structural material, 36: frame, 38: box.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸岡 一彦 東京都千代田区大手町1丁目6番1号 日本原子力発電株式会社内 (56)参考文献 特開 平3−3682(JP,A) 特開 昭63−42181(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiko Kishioka 1-6-1, Otemachi, Chiyoda-ku, Tokyo Within Japan Atomic Power Company (56) Reference JP-A-3-3682 (JP, A) JP Sho 63-42181 (JP, A)

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱電素子が平板状のP型熱電素材と平板状
のN型熱電素材とを対向させたものからなり、その対向
する面の間に発電器加熱用高温熱媒体を流し、その対向
する面の反対側に発電器冷却用低温熱媒体を流して、発
電させる熱電発電装置において、前記発電器加熱用高温
熱媒体および発電器冷却用低温熱媒体を、ともに電気的
にも熱的にも良導体である液体金属とし、かつ、発電器
加熱用高温液体金属ループと発電器冷却用低温液体金属
ループを独立させて電気的に絶縁するとともに、該各ル
ープが前記P型熱電素材とN型熱電素材を順に介しての
み電気的に導通するようにし、しかも、前記発電器加熱
用高温液体金属ループを各々独立に電気的に絶縁してそ
のループの液体金属を熱源で加熱し、前記発電器冷却用
低温液体金属ループを各々独立に電気的に絶縁してその
ループの液体金属の熱を放熱することを特徴とする熱電
発電方法。
1. A thermoelectric element comprises a flat P-type thermoelectric material and a flat N-type thermoelectric material opposed to each other, and a high temperature heating medium for heating a generator is caused to flow between the opposed surfaces. In a thermoelectric generator in which a low-temperature heat medium for cooling a generator is caused to flow on the opposite side of an opposing surface to generate electricity, the high-temperature heat medium for heating the generator and the low-temperature heat medium for cooling the generator are both electrically and thermally Is a good conductor of liquid metal, and the high temperature liquid metal loop for heating the generator and the low temperature liquid metal loop for cooling the generator are electrically insulated independently of each other, and each loop is connected to the P-type thermoelectric material and N The thermoelectric material is electrically connected only in order, and the high temperature liquid metal loops for heating the generator are independently electrically insulated and the liquid metal of the loops is heated by a heat source to generate electricity. Low temperature liquid metal roux for cooling Thermoelectric power generation method characterized by dissipating liquid metal heat of the loop each electrically insulated independently.
【請求項2】発電器加熱用高温液体金属にNaを用い、発
電器冷却用低温液体金属にNaKを用いる請求項1記載の
熱電発電方法。
2. The thermoelectric power generation method according to claim 1, wherein Na is used as the high-temperature liquid metal for heating the power generator, and NaK is used as the low-temperature liquid metal for cooling the power generator.
【請求項3】発電器加熱用高温液体金属を、高温ガスで
加熱する請求項1または2記載の熱電発電方法。
3. The thermoelectric power generation method according to claim 1, wherein the high temperature liquid metal for heating the generator is heated with a high temperature gas.
【請求項4】発電器加熱用高温液体金属を、加熱された
高温Heで加熱する請求項1または2記載の熱電発電方
法。
4. The thermoelectric power generation method according to claim 1, wherein the high temperature liquid metal for heating the generator is heated with heated high temperature He.
【請求項5】発電器加熱用高温液体金属を、高温燃焼ガ
スで加熱する請求項1または2記載の熱電発電方法。
5. The thermoelectric power generation method according to claim 1, wherein the high temperature liquid metal for heating the power generator is heated with a high temperature combustion gas.
【請求項6】発電器加熱用高温液体金属を、高温排ガス
で加熱する請求項1または2記載の熱電発電方法。
6. The thermoelectric power generation method according to claim 1, wherein the high temperature liquid metal for heating the generator is heated with high temperature exhaust gas.
【請求項7】発電器加熱用高温液体金属を高速増殖炉の
一次系Naと電気的に絶縁して加熱する請求項1または2
記載の熱電発電方法。
7. The high temperature liquid metal for heating a generator is heated while being electrically insulated from the primary system Na of the fast breeder reactor.
The thermoelectric power generation method described.
【請求項8】発電器冷却用液体金属を、乾式冷却装置へ
導いてその熱を放熱する請求項1、2、3、4、5、6
または7記載の熱電発電方法。
8. A liquid metal for cooling a generator is introduced into a dry cooling device to radiate the heat thereof.
Or the thermoelectric power generation method according to 7.
【請求項9】熱電素子が平板状のP型熱電素材と平板状
のN型熱電素材とを対向させたものからなり、その対向
する面の間に電気的にも熱的にも良導体である発電器加
熱用高温液体金属を流す高温側流路を有し、その対向す
る面の反対側に電気的にも熱的にも良導体である発電器
冷却用低温液体金属を流す低温側流路を有し、前記高温
側流路を通る高温側液体金属ループのすべてと前記低温
側流路を通る低温側液体金属ループのすべてが互いに電
気的に絶縁されていて、該各ループが前記P型熱電素材
とN型熱電素材とを順に介してのみ電気的に導通される
ようになっている熱電発電器を備え、かつ、前記各高温
側液体金属ループの発電器加熱用高温液体金属を電気的
に絶縁して加熱する熱源を備え、しかも、前記各低温側
液体金属ループの発電器冷却用液体金属を電気的に絶縁
して冷却する冷却装置を備えていることを特徴とする熱
電発電装置。
9. A thermoelectric element comprises a flat P-type thermoelectric material and a flat N-type thermoelectric material opposed to each other, and is a good conductor both electrically and thermally between the opposed surfaces. There is a high temperature side flow path for flowing the high temperature liquid metal for heating the generator, and a low temperature side flow path for flowing the low temperature liquid metal for cooling the generator, which is a good conductor both electrically and thermally, on the opposite side of the facing surface. All of the high temperature side liquid metal loops passing through the high temperature side flow path and the low temperature side liquid metal loops passing through the low temperature side flow path are electrically insulated from each other, and each of the loops includes the P-type thermoelectric A thermoelectric generator is provided which is electrically connected only through the material and the N-type thermoelectric material in order, and the high temperature liquid metal for heating the generator of each of the high temperature side liquid metal loops is electrically connected. Equipped with a heat source to insulate and heat, moreover, each of the low temperature side liquid metal loop Thermoelectric generator, characterized in that it comprises a cooling device for electrically insulating cooling apparatus cooling a liquid metal.
【請求項10】熱電発電器が、低温側流路、P型熱電素
材、高温側流路、N型熱電素材、低温側流路、P型熱電
素材、高温側流路、N型熱電素材、低温側流路の順の繰
返しからなっていて、最外側に低温側流路を有し、その
最外側の低温側流路のほうに集電用の電極が設けられて
いる請求項9記載の熱電発電装置。
10. A thermoelectric generator comprising a low temperature side flow passage, a P-type thermoelectric material, a high temperature side passage, an N type thermoelectric material, a low temperature side passage, a P type thermoelectric material, a high temperature side passage, an N type thermoelectric material, 10. The low temperature side flow path is formed by repeating the order in this order, the low temperature side flow path is provided on the outermost side, and the current collecting electrode is provided on the outermost low temperature side flow path. Thermoelectric generator.
【請求項11】P型熱電素材が電気的にも熱的にも良導
体である平板状の一方の金属製構造材に付着され、N型
熱電素材が電気的にも熱的にも良導体である平板状の他
方の金属製構造材に付着されている請求項9または10記
載の熱電発電装置。
11. A P-type thermoelectric material is attached to one flat metal structural material that is a good conductor both electrically and thermally, and an N-type thermoelectric material is a good conductor electrically and thermally. The thermoelectric generator according to claim 9 or 10, wherein the thermoelectric generator is attached to the other flat metal structural member.
【請求項12】P型熱電素材とN型熱電素材が、P型熱
電素材側とN型熱電素材側とに開放部を有する枠体を介
して機械的に結合され、前記P型熱電素材とN型熱電素
材の対向面と前記枠体とで液体金属流路を形成している
請求項9、10または11記載の熱電発電装置。
12. A P-type thermoelectric material and an N-type thermoelectric material are mechanically coupled to each other through a frame body having an opening on the P-type thermoelectric material side and the N-type thermoelectric material side, and the P-type thermoelectric material and the P-type thermoelectric material are connected. The thermoelectric generator according to claim 9, 10 or 11, wherein a liquid metal flow path is formed by the facing surface of the N-type thermoelectric material and the frame.
【請求項13】P型熱電素材とN型熱電素材が、P型熱
電素材側とN型熱電素材側とに電気的にも熱的にも良導
体である金属薄板の側面板を有して液体金属流路を形成
している箱体を介して機械的に結合されている請求項
9、10または11記載の熱電発電装置。
13. The P-type thermoelectric material and the N-type thermoelectric material are liquids having a side plate of a thin metal plate which is a good conductor both electrically and thermally on the P-type thermoelectric material side and the N-type thermoelectric material side. The thermoelectric generator according to claim 9, 10 or 11, wherein the thermoelectric generators are mechanically coupled via a box forming a metal flow path.
【請求項14】熱電発電器内の高温側流路を流れる高温
側液体金属の流れ方向と、低温側流路を流れる低温側金
属の流れ方向が、対向流になっている請求項9、10、1
1、12または13記載の熱電発電装置。
14. The counter flow direction of the high temperature side liquid metal flowing in the high temperature side flow path in the thermoelectric generator and the flow direction of the low temperature side metal flow in the low temperature side flow path. , 1
Thermoelectric generator according to 1, 12 or 13.
JP2061078A 1990-03-14 1990-03-14 Thermoelectric power generation method and apparatus Expired - Fee Related JP2566330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2061078A JP2566330B2 (en) 1990-03-14 1990-03-14 Thermoelectric power generation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2061078A JP2566330B2 (en) 1990-03-14 1990-03-14 Thermoelectric power generation method and apparatus

Publications (2)

Publication Number Publication Date
JPH03263881A JPH03263881A (en) 1991-11-25
JP2566330B2 true JP2566330B2 (en) 1996-12-25

Family

ID=13160734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2061078A Expired - Fee Related JP2566330B2 (en) 1990-03-14 1990-03-14 Thermoelectric power generation method and apparatus

Country Status (1)

Country Link
JP (1) JP2566330B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006302483B2 (en) * 2005-10-05 2012-07-05 Thomas Beretich Thermally enhanced solid-state generator
JP2007311719A (en) * 2006-05-22 2007-11-29 Toshiba Corp Thermoelectric generator
US10707400B1 (en) * 2016-10-27 2020-07-07 Jack Morgan Solar power cell

Also Published As

Publication number Publication date
JPH03263881A (en) 1991-11-25

Similar Documents

Publication Publication Date Title
US6385976B1 (en) Thermoelectric module with integrated heat exchanger and method of use
JP3676504B2 (en) Thermoelectric module
US4463214A (en) Thermoelectric generator apparatus and operation method
JP2775410B2 (en) Thermoelectric module
JP2011526141A (en) Device for generating electric energy, heat exchange tube bundle provided with this device, and heat exchanger provided with this tube bundle
JP2566330B2 (en) Thermoelectric power generation method and apparatus
US3183121A (en) Thermoelectric generator with heat transfer and thermal expansion adaptor
JP3442862B2 (en) Thermoelectric generation unit
JP2996305B2 (en) High thermal resistance thermoelectric generator
CN208589485U (en) The cooling structure of vehicle, battery pack and battery pack tab
JP3350705B2 (en) Heat transfer control thermoelectric generator
JPH05327033A (en) Thermoelectric conversion element and thermoelectric power generation device
JPH0714029B2 (en) Power semiconductor device
JPH0555639A (en) Thermoelectric device
JP3585565B2 (en) Thermoelectric element using porous metal
JPH04280482A (en) Cooling device utilizing solar light
JPH02271683A (en) Thermoelectric element and manufacture thereof
JPH08254468A (en) Thermoelectric generating element and temperature sensor combining metal materials as thermocouple
JP2639479B2 (en) Thermoelectric generator
RU2158988C1 (en) Thermoelectric module
JPH11261117A (en) Thermoelectric conversion module and waste heat power generating device
JPH07335945A (en) Thermocouple array
JPH0320909B2 (en)
JPS62213691A (en) Heat exchanging fin
JPH0430585A (en) Thermoelectric device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees