JPH0320909B2 - - Google Patents
Info
- Publication number
- JPH0320909B2 JPH0320909B2 JP56134110A JP13411081A JPH0320909B2 JP H0320909 B2 JPH0320909 B2 JP H0320909B2 JP 56134110 A JP56134110 A JP 56134110A JP 13411081 A JP13411081 A JP 13411081A JP H0320909 B2 JPH0320909 B2 JP H0320909B2
- Authority
- JP
- Japan
- Prior art keywords
- conductor
- type semiconductor
- type
- heat
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims description 43
- 239000004020 conductor Substances 0.000 claims description 15
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 230000005678 Seebeck effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/81—Structural details of the junction
- H10N10/817—Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Description
【発明の詳細な説明】
本発明は高密度熱電素子、特に温度差を与える
ことにより起電力を発生したりあるいは電流を流
すことによつて熱の発生または吸収を起したりす
る高密度熱電素子に関する。Detailed Description of the Invention The present invention relates to a high-density thermoelectric element, particularly a high-density thermoelectric element that generates an electromotive force by applying a temperature difference or generates or absorbs heat by passing an electric current. Regarding.
異質金属を結線したループ(熱電対とよぶ)の
一端を高温に、他端を低温にするとゼーベツク効
果により起電力を生ずる。反対に熱電対に電流を
流すとペチルエ効果により、一端は吸熱し他端は
発熱する。この異質金属の代りにN形半導体とP
形半導体を用いれば、更に起電力や吸熱(冷却・
発熱(加熱)が大きくなる。 When one end of a loop (called a thermocouple) made of wires of dissimilar metals is made hot and the other end is made cold, an electromotive force is generated due to the Seebeck effect. Conversely, when a current is passed through a thermocouple, one end absorbs heat and the other end generates heat due to the Pétilé effect. Instead of this different metal, N-type semiconductor and P
If a shaped semiconductor is used, electromotive force and heat absorption (cooling and
Heat generation (heating) increases.
第1図において、N形半導体2とP形半導体3
を導体1で結び、他端に導体4を取付け、負荷5
を接続してループを作る。導体1を高温に、導体
4を低温にすると負荷5に電流が流れる。しか
し、一対(P形半導体とN形半導体の一組)当り
の起電力は小さい。このため、大きな起電力を得
るためには複数対を直列に結ぶとよい。第2図
は、3対直列に結線した図を示す。 In FIG. 1, an N-type semiconductor 2 and a P-type semiconductor 3
Connect with conductor 1, attach conductor 4 to the other end, and load 5
Connect to make a loop. When the conductor 1 is brought to a high temperature and the conductor 4 is brought to a low temperature, a current flows through the load 5. However, the electromotive force per pair (a pair of P-type semiconductor and N-type semiconductor) is small. Therefore, in order to obtain a large electromotive force, it is recommended to connect multiple pairs in series. FIG. 2 shows a diagram of three pairs connected in series.
第3図において、第2図の負荷5のかわりに、
電源6を設け電流を流すと、導体4は吸熱し導体
1は発熱する。 In Figure 3, instead of the load 5 in Figure 2,
When a power source 6 is provided and a current is applied, the conductor 4 absorbs heat and the conductor 1 generates heat.
第4図は従来の熱電素子構造の概略を示す。N
形半導体2、P形半導体3を導体1,4にハンダ
付し直列に結合する。端末にリード線9,10を
取付け電気の取出・供給口とする。起動力発生の
ためには熱伝導板7,8に高温・低温の温度差が
与えられ、また電流を流すと熱伝導板7,8は吸
熱・発熱する。 FIG. 4 schematically shows a conventional thermoelectric element structure. N
A type semiconductor 2 and a P type semiconductor 3 are soldered to conductors 1 and 4 and connected in series. Lead wires 9 and 10 are attached to the terminals to serve as electricity extraction and supply ports. In order to generate the starting force, a temperature difference between high and low temperatures is applied to the heat conductive plates 7 and 8, and when an electric current is passed, the heat conductive plates 7 and 8 absorb heat and generate heat.
従来の熱電素子の欠点は、次の通りである。 The disadvantages of conventional thermoelectric elements are as follows.
(1) N形半導体P形半導体を、直列に複数対接続
し製作するのがむずかしい。(1) N-type semiconductors It is difficult to manufacture multiple pairs of P-type semiconductors connected in series.
(2) 起電力が小さい。(2) Low electromotive force.
(3) 熱ポンプとしたとき、低電圧大電流である。(3) Low voltage and large current when used as a heat pump.
(4) 大きな温度差を得ることが困難である。(4) It is difficult to obtain a large temperature difference.
(5) 熱と電気の変換効率が悪い。(5) Poor heat and electricity conversion efficiency.
(6) 面積当りのN形半導体とP形半導体の対を高
密度にできない。(6) It is not possible to increase the density of N-type and P-type semiconductor pairs per area.
(7) 大出力の発電機・熱ポンプができない。(7) Large-output generators and heat pumps are not possible.
(8) 大量生産に向かない。(8) Not suitable for mass production.
(9) 高価格である。(9) It is expensive.
(10) 小形化できない。(10) Cannot be made smaller.
本発明の目的は、かかる問題点を解決するのに
適した高密度熱電素子を提供することにある。 An object of the present invention is to provide a high-density thermoelectric element suitable for solving such problems.
本発明の特徴は、半導体薄板と、該半導体の一
面に間隔をおいて平面状に形成された複数のP形
半導体と、前記半導体薄板の他面に間隔をおいて
平面状に形成された複数のN形半導体と、前記複
数のP形半導体および前記複数のN形半導体を交
互に直列接続するための導体とを備えた高密度熱
電素子にある。 The present invention is characterized by a semiconductor thin plate, a plurality of P-type semiconductors formed in a planar shape at intervals on one surface of the semiconductor, and a plurality of P-type semiconductors formed in a planar shape at intervals on the other surface of the semiconductor thin plate. and a conductor for alternately connecting the plurality of P-type semiconductors and the plurality of N-type semiconductors in series.
第5〜7図は本発明にもとづく高密度熱電素子
の一実施例を示す。同図において、半導体薄板1
1の一面には複数のP形半導体12が間隔をおい
て平面状に斜めに形成され、他面には複数のN形
半導体13が間隔をおいて平面状に形成されてい
る。N形半導体13はP形半導体12とは逆の方
向に斜めにされ、そしてこれらのP形およびN形
半導体は導体14を介して一種のねじ状に交互に
直列接続されている。14′はN形半導体、導体
およびP形半導体の直列接続体の一端に蒸着など
により形成された端子導体で、これには端子線1
5がスポツト溶接により接合されている。直列接
続体の他端も同様であるが、図ではその部分は省
略されている。 Figures 5-7 show one embodiment of a high density thermoelectric element according to the present invention. In the same figure, semiconductor thin plate 1
1, a plurality of P-type semiconductors 12 are formed diagonally in a planar manner at intervals, and on the other surface, a plurality of N-type semiconductors 13 are formed in a planar shape at intervals. The N-type semiconductor 13 is tilted in the opposite direction to the P-type semiconductor 12, and these P-type and N-type semiconductors are connected in series via conductors 14 in a kind of screw-like fashion. 14' is a terminal conductor formed by vapor deposition at one end of a series connection body of an N-type semiconductor, a conductor, and a P-type semiconductor;
5 are joined by spot welding. The same goes for the other end of the series connection body, but that part is omitted in the figure.
第5〜7図に示す熱電素子は次のようにして簡
単に製造することができる。すなわち、まず第8
図Aのように半導体薄板11を用意する。次に、
半導体薄板11の一面には全面に亘つて第8図B
のようにイオン注入法または不純物拡散法により
P形半導体12を層状に形成し、他面には全面に
亘つて第8図Bのように同様にイオン注入法また
は不純物拡散法によりN形半導体13を形成す
る。その後第8図Cのように半導体薄板11の両
端面にP形およびN形半導体12および13にま
たがるように導体14を蒸着により層状に形成す
る。最後に、写真蝕刻法や電子線描画法により第
5図のようにP形半導体12およびN形半導体1
3を導体14を介してねじ状に直列接続するよう
に形成する。 The thermoelectric elements shown in FIGS. 5-7 can be easily manufactured as follows. In other words, first the 8th
A semiconductor thin plate 11 is prepared as shown in FIG. next,
One surface of the semiconductor thin plate 11 is covered with the markings shown in FIG. 8B.
A P-type semiconductor 12 is formed in a layered manner by ion implantation or impurity diffusion as shown in FIG. form. Thereafter, as shown in FIG. 8C, a layered conductor 14 is formed on both end faces of the semiconductor thin plate 11 so as to span the P-type and N-type semiconductors 12 and 13 by vapor deposition. Finally, as shown in FIG. 5, the P-type semiconductor 12 and the N-type semiconductor 1 are
3 are connected in series through a conductor 14 in a threaded manner.
以上説明したところからわかるように、本発明
によれば、次のような作用効果が奏せられる。 As can be seen from the above explanation, the present invention provides the following effects.
(1) 高密度熱電素子が得られる。したがつて、こ
れを起電力発生用として用いるときは小温度差
により大起電力を得ることができる。また、熱
ポンプとして利用する場合は大電圧小電流で
吸・発熱効果が得られる。(1) High-density thermoelectric elements can be obtained. Therefore, when this is used for generating electromotive force, a large electromotive force can be obtained with a small temperature difference. Additionally, when used as a heat pump, it can absorb and generate heat with large voltage and small current.
(2) 小形高密度熱電素子を簡単に製造することが
できる。(2) Small high-density thermoelectric elements can be easily manufactured.
第1図は温度差発電の原理図、第2図はもう一
つの温度差発電の原理図、第3図は熱ポンプの原
理図、第4図は従来の熱電素子の正面図、第5図
は本発明にもとづく一実施例を示す高密度熱電素
子の正面図、第6図は第5図の側面図、第7図は
第5図の下面図、第8図は第5図に示される高密
度熱電素子の製造工程を説明する図である。
11……半導体、12……P形半導体、13…
…N形半導体、14……導体、15……端子線。
Figure 1 is a diagram of the principle of temperature difference power generation, Figure 2 is another diagram of the principle of temperature difference power generation, Figure 3 is a diagram of the principle of a heat pump, Figure 4 is a front view of a conventional thermoelectric element, and Figure 5 is a front view of a high-density thermoelectric element showing one embodiment based on the present invention, FIG. 6 is a side view of FIG. 5, FIG. 7 is a bottom view of FIG. 5, and FIG. 8 is shown in FIG. It is a figure explaining the manufacturing process of a high-density thermoelectric element. 11...Semiconductor, 12...P-type semiconductor, 13...
...N-type semiconductor, 14...Conductor, 15...Terminal wire.
Claims (1)
おいて平面状に形成された複数のP形半導体と、
前記半導体薄板の他面に間隔をおいて平面状に形
成された複数のN形半導体と、前記複数のP形半
導体および前記複数のN形半導体を交互に直列接
続するための導体とを備えている高密度熱電素
子。1. A semiconductor thin plate, a plurality of P-type semiconductors formed in a planar shape at intervals on one surface of the semiconductor thin plate,
A plurality of N-type semiconductors formed in a planar shape at intervals on the other surface of the semiconductor thin plate, and a conductor for alternately connecting the plurality of P-type semiconductors and the plurality of N-type semiconductors in series. A high-density thermoelectric element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56134110A JPS5835991A (en) | 1981-08-28 | 1981-08-28 | High-density thermoelectric element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56134110A JPS5835991A (en) | 1981-08-28 | 1981-08-28 | High-density thermoelectric element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5835991A JPS5835991A (en) | 1983-03-02 |
JPH0320909B2 true JPH0320909B2 (en) | 1991-03-20 |
Family
ID=15120683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56134110A Granted JPS5835991A (en) | 1981-08-28 | 1981-08-28 | High-density thermoelectric element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5835991A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5837929A (en) * | 1994-07-05 | 1998-11-17 | Mantron, Inc. | Microelectronic thermoelectric device and systems incorporating such device |
JPH09321354A (en) * | 1996-05-28 | 1997-12-12 | Matsushita Electric Works Ltd | Metal pattern plate |
JP3956405B2 (en) * | 1996-05-28 | 2007-08-08 | 松下電工株式会社 | Thermoelectric module manufacturing method |
JP7503311B2 (en) * | 2018-12-19 | 2024-06-20 | 国立研究開発法人産業技術総合研究所 | Combined power generation device having solar cells and thermoelectric conversion elements |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS493235A (en) * | 1972-04-22 | 1974-01-12 | ||
JPS5092091A (en) * | 1973-12-13 | 1975-07-23 |
-
1981
- 1981-08-28 JP JP56134110A patent/JPS5835991A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS493235A (en) * | 1972-04-22 | 1974-01-12 | ||
JPS5092091A (en) * | 1973-12-13 | 1975-07-23 |
Also Published As
Publication number | Publication date |
---|---|
JPS5835991A (en) | 1983-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6563039B2 (en) | Thermoelectric unicouple used for power generation | |
US4039352A (en) | High efficiency thermoelectric generator for the direct conversion of heat into electrical energy | |
JP3862179B2 (en) | Manufacture and production of thermoelectric modules | |
JP4881919B2 (en) | Thermoelectric generator with thermoelectric element | |
US20040177876A1 (en) | Spatially optimized thermoelectric module | |
US20090133734A1 (en) | Thermoelectric Conversion Module | |
WO2004061982A1 (en) | Cooling device for electronic component using thermo-electric conversion material | |
JP2670366B2 (en) | Thermoelectric generator | |
JP2006294935A (en) | High efficiency and low loss thermoelectric module | |
US20040177877A1 (en) | Geometrically optimized thermoelectric module | |
KR20120080820A (en) | Thermoelectric module | |
US3969149A (en) | Thermoelectric microgenerator | |
US4049469A (en) | Film thermoelement | |
US4251290A (en) | Thermopile formed of conductors | |
JPS60130177A (en) | Thermopower generation composite-functional device | |
US2992539A (en) | Thermoelectric devices | |
US3411955A (en) | Thermoelectric device | |
JPH0320909B2 (en) | ||
US5824947A (en) | Thermoelectric device | |
JPH0529667A (en) | Thermoelectric conversion module | |
US3441449A (en) | Thermoelectric system | |
JP2000050661A (en) | Power generator | |
JPH05315657A (en) | Thermoelectric converting element and thermoelectric converter | |
CN207885048U (en) | Cover sheet | |
JP2609019B2 (en) | Thermoelectric module |