JPS5835991A - High-density thermoelectric element - Google Patents

High-density thermoelectric element

Info

Publication number
JPS5835991A
JPS5835991A JP56134110A JP13411081A JPS5835991A JP S5835991 A JPS5835991 A JP S5835991A JP 56134110 A JP56134110 A JP 56134110A JP 13411081 A JP13411081 A JP 13411081A JP S5835991 A JPS5835991 A JP S5835991A
Authority
JP
Japan
Prior art keywords
thermoelectric element
density
temperature difference
heat
semiconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56134110A
Other languages
Japanese (ja)
Other versions
JPH0320909B2 (en
Inventor
Akira Omori
晃 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56134110A priority Critical patent/JPS5835991A/en
Publication of JPS5835991A publication Critical patent/JPS5835991A/en
Publication of JPH0320909B2 publication Critical patent/JPH0320909B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To conduct direct electric power generation and the direct heating and cooling of a solid, a liquid and a gas efficiently by integrating a thermocouple with high density. CONSTITUTION:A semiconductor sheet 11 is machined in form shown in the figure. P type semiconductors 12 are formed in predetermined width at regular intervals by using a photoetching method or an electron-beam lithographic method. N type semiconductors 13 are shaped in prescribed width at intervals, through which the semiconductors 13 are not mutually connected, among the semiconductors 12 in the same manner as the semiconductors 12. Conductors 14 are evaporated onto the whole plane, and the semiconductors 12, 13 are left so as to be connected in series through photoetching or electron-beam lithography. Terminal wires 15, 16 are connected, and a thermoelectric element piece is obtained. The thermoelectric element pieces formed in this manner are integrated and unified, and the high-density thermoelectric element is shaped.

Description

【発明の詳細な説明】 本発明は、高密度熱電素子の製法と応用に係り、特に固
体・液体・気体の温度差を利用した可動部無しの発電機
と熱ポンプ等に使用するに好適な高密度熱電素子の、製
法と応用に関する。
[Detailed Description of the Invention] The present invention relates to the manufacturing method and application of high-density thermoelectric elements, and is particularly suitable for use in generators and heat pumps without moving parts that utilize temperature differences between solids, liquids, and gases. Concerning the manufacturing method and application of high-density thermoelectric elements.

発電や熱ポンプには、機械的方法・電子的方法・化学的
方法等色々あるが、電子的方法は、可動部が無く直接発
電や熱ポンプとして加熱・冷却が可能である。。
There are various methods for power generation and heat pumps, such as mechanical, electronic, and chemical methods, but electronic methods have no moving parts and can directly generate power or heat and cool as a heat pump. .

異質金属と結線したループ(熱電対とよぶ)の一端を高
温に、他端を低温にするとゼーベック効果により起電力
を生ずる。反対に熱電対に電流を流すとベルチェ効果に
より、一端は吸熱し他端は発熱する。この異質金属をN
形半導体とP形半導体にすれば、更に起電力や吸熱(冷
却)・発熱(加熱)が大きくなる。
When one end of a loop (called a thermocouple) connected to a different metal is made hot and the other end is made cold, an electromotive force is generated due to the Seebeck effect. Conversely, when a current is passed through a thermocouple, one end absorbs heat and the other end generates heat due to the Beltier effect. This foreign metal is N
If a P-type semiconductor and a P-type semiconductor are used, the electromotive force, heat absorption (cooling), and heat generation (heating) will further increase.

第1図において、N形半導体2とP形半導体3を、導体
1で結び、他端に導体4を取付は負荷5をもってループ
を作る。。導体1を高温に、導体4を低温にすると負荷
5に電流が流れる。しかし、一対(P形半導体とN形半
導体の一組)当りの起電力が小さいため、複数対を直列
に結ぶと起電力は大きくなる。第2図は、3対直列に結
線した図を示す。
In FIG. 1, an N-type semiconductor 2 and a P-type semiconductor 3 are connected by a conductor 1, and a conductor 4 is attached to the other end to form a loop with a load 5. . When the conductor 1 is brought to a high temperature and the conductor 4 is brought to a low temperature, a current flows through the load 5. However, since the electromotive force per pair (a pair of a P-type semiconductor and an N-type semiconductor) is small, the electromotive force increases when multiple pairs are connected in series. FIG. 2 shows a diagram of three pairs connected in series.

第3図において、第2図の負荷5のかわシに、電源6を
設は電流を流すと、導体4は吸熱し導体1は発熱する。
In FIG. 3, when a power source 6 is connected to the load 5 shown in FIG. 2 and a current is applied, the conductor 4 absorbs heat and the conductor 1 generates heat.

第4図に従来の熱電素子構造の概略を示す。N形半導体
2、P形半導体3を導体1,4にハンダ付し直列に結合
する。端末にリード線9,10が取付き電気の取出・供
給口となる。熱伝導板7゜8は、高温・低温の温度差を
与えたり、吸熱・発熱する。
FIG. 4 shows an outline of a conventional thermoelectric element structure. An N-type semiconductor 2 and a P-type semiconductor 3 are soldered to conductors 1 and 4 and connected in series. Lead wires 9 and 10 are attached to the terminals and serve as an outlet for taking out and supplying electricity. The heat conduction plate 7°8 provides a temperature difference between high and low temperatures, and absorbs and generates heat.

従来の熱電素子の欠点は、次の通υである。The disadvantages of conventional thermoelectric elements are as follows.

(1)N形半導体とP形半導体を、直列に複数対接続し
製作するのがむずかしい。
(1) It is difficult to manufacture multiple pairs of N-type semiconductors and P-type semiconductors connected in series.

(2)起電力が小さい。(2) The electromotive force is small.

(3)熱ポンプとしたとき、低電圧大電流である。(3) When used as a heat pump, it has low voltage and large current.

(4)温度差を大きくできない。(4) The temperature difference cannot be increased.

(5)熱と電気の変換効率が悪い。(5) Poor heat and electricity conversion efficiency.

(6)面積当りのN形半導体とP形半導体の対を高密度
にできない。
(6) The number of pairs of N-type and P-type semiconductors per area cannot be increased to a high density.

(力 大出力の発電機・熱ポンプができない。(Power: Large-output generators and heat pumps are not possible.

(8)大量生産に向かない。(8) Not suitable for mass production.

(9)高価格である。(9) It is expensive.

00)小形化できない。00) Cannot be made smaller.

本発明の目的は、前述した従来技術の欠点をなりシ、可
動部がなく固体・液体・気体の温度差を利用して、効率
よく直接発電および直接固体・液体・気体の加熱・冷却
をできる高密度熱電素子を提供するにある。また、高密
度熱電素子を複数個組合せて応用することにより、固体
・液体・気体の温度差のみを利用し、更に固体・液体・
気体の温度差を大きくできることを提供する。
The purpose of the present invention is to overcome the drawbacks of the prior art described above, and to efficiently generate electricity directly and directly heat and cool solids, liquids, and gases by using temperature differences between solids, liquids, and gases without moving parts. The purpose of the present invention is to provide a high-density thermoelectric element. In addition, by applying multiple high-density thermoelectric elements in combination, we can utilize only the temperature difference between solids, liquids, and gases.
Provides the ability to increase the temperature difference between gases.

熱エネルギー利用に関して、温度差が少ないと従来技術
では、電気や機械エネルギーに変換しずらく殆んど利用
されない。
Regarding the use of thermal energy, if there is a small temperature difference, it is difficult to convert it into electrical or mechanical energy using conventional technology, so it is hardly used.

そこで、 (1)温度差が少ないときは、熱電対1個当りの起電力
が小さいため、直列に熱電対を複数対高密度に接続し、
効率よく電気エネルギーに変換する。
Therefore, (1) When the temperature difference is small, the electromotive force per thermocouple is small, so connect multiple thermocouples in series with high density.
Efficiently converts into electrical energy.

(2)製法は、「写真蝕刻法」または、「電子線描画法
」により簡単に製造できる。
(2) The manufacturing method can be easily manufactured by "photo-etching method" or "electron beam drawing method".

(3)固体・液体・気体の温度差を利用し、高密度熱電
素子を複数組合せることにより、外部からの機械・電気
エネルギーの補給なしに、高温側よシ更に高温に、低温
側よシ更に低温にする。
(3) By utilizing temperature differences between solids, liquids, and gases and combining multiple high-density thermoelectric elements, the high temperature side can be heated to even higher temperatures, and the low temperature side can be heated to higher temperatures without external mechanical or electrical energy supply. Lower the temperature further.

本発明の実施例を、第5図以降で説明する。Examples of the present invention will be described with reference to FIG. 5 and subsequent figures.

第1図から第4図と同一機能の部品は、第5図以降でも
そのまま適用する。
Components having the same functions as those in FIGS. 1 to 4 are also applied to FIGS. 5 and onward.

本発明は、高密度熱電素子の製法が4種類、応用範囲が
3稽類ある。
The present invention has four types of manufacturing methods and three types of application ranges for high-density thermoelectric elements.

製法(1)は、第5図から第8図までに、製造工程を示
す。
Manufacturing method (1) shows the manufacturing steps from FIG. 5 to FIG. 8.

製法(2)は、第9図から第12図までに製造工程を示
す。
Manufacturing method (2) shows the manufacturing steps from FIG. 9 to FIG. 12.

製法(1)、製法(2)において完成した熱電素子片を
、高密度熱電素子に完成させる工程を、第13図から第
18図までに示す。
The steps of completing the thermoelectric element pieces completed in manufacturing method (1) and manufacturing method (2) into a high-density thermoelectric element are shown in FIGS. 13 to 18.

製法(3)は、第19図から第27図までに製造工程を
示す。
Manufacturing method (3) shows the manufacturing steps from FIG. 19 to FIG. 27.

製法(4)は、第28図から第35図までに製造工程を
示す。
Manufacturing method (4) shows the manufacturing steps from FIG. 28 to FIG. 35.

製法(3)、m法(4)において完成した熱電素子片を
まとめた高密度熱電素子完成図を、第36図、第37図
に示す。
FIGS. 36 and 37 show diagrams of a completed high-density thermoelectric element that summarizes the thermoelectric element pieces completed in manufacturing method (3) and m-method (4).

温度差直接発電機を、第38図から第43図までに示す
A temperature difference direct generator is shown in FIGS. 38 to 43.

直接熱ポンプを、第44図から第49図に示す。Direct heat pumps are shown in Figures 44-49.

温度差直接冷却加熱器を、第50図、第51図に示す。A temperature difference direct cooling heater is shown in FIGS. 50 and 51.

実際の応用例を、第52図から第54図に示す。Actual application examples are shown in FIGS. 52 to 54.

製法(1) 半導体薄板に、平面的にP形半導体とN形半導体を交互
に並べて、導体で接続するものである。
Manufacturing method (1) P-type semiconductors and N-type semiconductors are alternately arranged in a plane on a semiconductor thin plate and connected with conductors.

裏面にも同様に作る。第8図は、一平面に一段のP形半
導体とN形半導体の直列接続図であるが、多段にするこ
ともできる。
Do the same on the back side. Although FIG. 8 is a series connection diagram of a P-type semiconductor and an N-type semiconductor in one plane, it is also possible to have multiple stages.

次に製造工程を説明する。Next, the manufacturing process will be explained.

工程1、半導体薄板11を、第5図のような形状に加工
する。
Step 1: Process the semiconductor thin plate 11 into a shape as shown in FIG.

工程2、第6図のP形半導体12を、酸化、拡散、イオ
ン注入、写真蝕刻、蒸着などの技術を駆使して、一定間
隔に一定幅をもって形成する。
Step 2: P-type semiconductors 12 shown in FIG. 6 are formed at regular intervals and with a constant width using techniques such as oxidation, diffusion, ion implantation, photolithography, and vapor deposition.

工程3、第7図に示すように、工程2と同様にして、N
形半導体13を、P形半導体12の中間に、お互に接触
しない間隔で一定幅に形成する。
Step 3, as shown in FIG. 7, in the same manner as step 2, N
A type semiconductor 13 is formed at a constant width in the middle of the P type semiconductor 12 at intervals that do not touch each other.

工程4、第8図は、平面全体に導体14を蒸着し、写真
蝕刻や電子線描画によシP形半導体12とN形半導体1
3を直列に接続するように残す。
In step 4, FIG. 8, a conductor 14 is deposited on the entire plane, and a P-type semiconductor 12 and an N-type semiconductor 1 are formed by photolithography or electron beam lithography.
Leave 3 connected in series.

端子線15.16をスポット溶接して完了する。Finish by spot welding the terminal wires 15 and 16.

製法(2) 半導体薄板に、ねじ状にP形半導体とN形半導体を巻き
つけた形式となる。この製造工程を次に  ・示す。
Manufacturing method (2) A P-type semiconductor and an N-type semiconductor are wound around a thin semiconductor plate in a screw shape. This manufacturing process is shown below.

工程1、第9図は、第5図と同一形状の半導体薄板11
に、第10図の片面をP形半導体12と、他の面にN形
半導体工3を、不純物拡散法またはイオン注入法により
形成する。
Step 1, FIG. 9, shows a semiconductor thin plate 11 having the same shape as that in FIG.
10, a P-type semiconductor 12 is formed on one side and an N-type semiconductor layer 3 is formed on the other side by impurity diffusion or ion implantation.

工程2、第11図の導体14を両端面に蒸着して、P形
半導体12とN形半導体13を結合する。
Step 2: The conductor 14 shown in FIG. 11 is deposited on both end faces to couple the P-type semiconductor 12 and the N-type semiconductor 13.

工程3、第12図の如くねじ状にP形半導体とN形半導
体が、直列交互に接続するように、写真蝕刻法や電子線
描画法により形成する。端子線15をスポット溶接し完
了する。
Step 3: As shown in FIG. 12, P-type semiconductors and N-type semiconductors are formed by photolithography or electron beam lithography so as to be connected alternately in series in a screw shape. Spot welding of the terminal wire 15 is completed.

製法(1)、製法(2)により完成した熱電素子片を、
第13図の如く絶縁板18と熱電素子片17を交互に並
べる。絶縁板18の代用として、熱電素子片の表面を、
絶縁塗料や酸化被膜によシ絶縁表面処理を施こしてもよ
い。
The thermoelectric element pieces completed by manufacturing method (1) and manufacturing method (2) are
As shown in FIG. 13, insulating plates 18 and thermoelectric element pieces 17 are arranged alternately. As a substitute for the insulating plate 18, the surface of the thermoelectric element piece is
Insulating surface treatment may be performed using an insulating paint or an oxide film.

第13図において熱電素子片の組合されたものを、第1
4図のように形わく19により押え、端子台20に端子
線15.16およびリード線910をスポット溶接やロ
ー付する。
In FIG. 13, the assembled thermoelectric element pieces are shown in the first
As shown in Figure 4, the terminal wires 15, 16 and lead wires 910 are spot welded or brazed to the terminal block 20 while being held down by the frame 19.

絶縁性のある熱伝導板7,8を接着剤により接着すれば
高密度熱電素子が完成する。ただし、熱電素子片17の
接続法は、第16図から第18図までのように、直列・
並′列・直並列と使い方によシ配線を選択する。
A high-density thermoelectric element is completed by bonding the insulating heat conductive plates 7 and 8 with an adhesive. However, the connection method of the thermoelectric element piece 17 is as shown in FIG. 16 to FIG.
Select parallel or series/parallel wiring depending on the usage.

製法(3) 半導体薄板に、P形半導体とN形半導体を、基盤の目の
ように交互に植えつけて、両面で直列に導通接続するも
のである。
Manufacturing method (3) P-type semiconductors and N-type semiconductors are alternately planted on a semiconductor thin plate like the eyes of a substrate, and are electrically connected in series on both sides.

工程1、第19図のP形半導体23とN形半導体24の
薄板を複数何件る。
Step 1: A plurality of thin plates of the P-type semiconductor 23 and the N-type semiconductor 24 shown in FIG. 19 are prepared.

工程2、第20図のように、P形半導体23、N形半導
体24のそれぞれの表面を、酸化被膜や絶縁塗料を塗布
して絶縁表面処理をする。
Step 2: As shown in FIG. 20, the surfaces of the P-type semiconductor 23 and N-type semiconductor 24 are subjected to insulating surface treatment by applying an oxide film or an insulating paint.

工程3.絶縁表面処理した半導体薄板26゜27を、第
21図のように交互に並べ、焼結や接着剤によシ一体に
固める。
Step 3. Semiconductor thin plates 26 and 27, which have been subjected to insulating surface treatment, are arranged alternately as shown in FIG. 21 and solidified into one piece by sintering or adhesive.

工程4、工程3により一体化したものを、第22図のよ
うに貼シ合せた方向と直角に切断し、P形半導体とN形
半導体が、交互に縞模様となった半導体薄板28を作る
The product integrated in Steps 4 and 3 is cut perpendicular to the bonding direction as shown in FIG. 22 to produce a semiconductor thin plate 28 in which P-type semiconductors and N-type semiconductors are alternately striped. .

工程5、ユ程4によりでき上った半導体薄板を工程2・
工程3を再び繰り返して、第23図のように再び一体化
する。
The semiconductor thin plate completed in Step 5 and Step 4 is transferred to Step 2.
Repeat step 3 again to integrate again as shown in FIG.

工程6、第23図のものを、第24図のように平面に対
し平行に切断すると、第25図のような基盤目状に、P
形半導体とN形半導体が、交互に酸化被膜や絶縁塗料に
より、絶縁孤立した状態の板29ができる。
Step 6: If the material shown in Fig. 23 is cut parallel to the plane as shown in Fig. 24, it will have a base pattern as shown in Fig. 25.
A plate 29 is formed in which the type semiconductor and the N type semiconductor are alternately coated with an oxide film or an insulating paint, so that they are insulated and isolated.

工程7、第26図のように両面に導体14を蒸着する。Step 7: As shown in FIG. 26, conductors 14 are deposited on both sides.

工程8、第27図のように、N形半導体とP形半導体を
直列に接続するように、写真蝕刻法や電子線描画法によ
ム導体14を残して他の部分を除去する。
Step 8: As shown in FIG. 27, the conductor 14 is left and other parts are removed by photolithography or electron beam lithography so that the N-type semiconductor and the P-type semiconductor are connected in series.

製法(4) 製法(3)と形式は同じであるが、P形半導体とN形半
導体の絶縁境界を作る方法が異なる。
Manufacturing method (4) The format is the same as manufacturing method (3), but the method of creating an insulating boundary between the P-type semiconductor and the N-type semiconductor is different.

工程1、第28図の半導体薄板11に、第29図のよう
に両面に導体14を蒸着する。
Step 1: Conductors 14 are deposited on both sides of the semiconductor thin plate 11 shown in FIG. 28 as shown in FIG. 29.

工程2、第30図のように両面から、基盤の目状に写真
蝕刻法や電子線描画法によシみぞを入れる。第31図に
その断面を示す。
Step 2: As shown in Figure 30, grooves are made in the pattern of the base plate from both sides using photoetching or electron beam lithography. FIG. 31 shows its cross section.

工程3、第31図の□ようなみそから、酸化被膜の結晶
30を成長させ、第32図のように半導体を両面から絶
縁孤立させる。
Step 3: An oxide film crystal 30 is grown from the base as shown in □ in FIG. 31, and the semiconductor is insulated and isolated from both sides as shown in FIG. 32.

工程4、絶縁孤立した半導体を、第33図に示すように
、交互にN形半導体12とP形半導体13に不純物拡散
法やイオン注入法を繰り返すことにより形成する。
Step 4: As shown in FIG. 33, isolated semiconductors are formed by alternately repeating impurity diffusion and ion implantation on the N-type semiconductor 12 and the P-type semiconductor 13.

工程5、第34図、第35図に示すように、N形半導体
12とP形半導体13が直列に接続されるように、導体
14を蒸着後、写真蝕刻法または電子線描画法によシ導
体14の一部を残して、熱電素子片ができあがる。
Step 5: As shown in FIGS. 34 and 35, after the conductor 14 is vapor-deposited so that the N-type semiconductor 12 and the P-type semiconductor 13 are connected in series, the conductor 14 is patterned by photolithography or electron beam lithography. A thermoelectric element piece is completed, leaving a portion of the conductor 14.

製法(3)、製法(4)によシ完成した熱電素子片29
゜31を、第36図に示すように端子線15,16をス
ポット溶接後、絶縁性のある熱伝導板7,8を接着し、
端子台20にリード線9,10とともにスポット溶接や
ロー付けにて固定する。第37図に、完成した高密度熱
電素子の概略を示す。
Thermoelectric element piece 29 completed by manufacturing method (3) and manufacturing method (4)
゜31, as shown in Fig. 36, after spot welding the terminal wires 15 and 16, insulating heat conductive plates 7 and 8 are glued,
It is fixed to the terminal block 20 together with the lead wires 9 and 10 by spot welding or brazing. FIG. 37 shows an outline of the completed high-density thermoelectric element.

温度差直接発電機 製法(1)から(4)までにおいて完成した高密度熱電
素子を、温度差直接発電機として応用する。第38図は
、温度差直接発電機の概略を示す。熱伝導部33を、固
体・液体・気体などにより加熱し、熱伝導部34を、1
固体・液体・気体などにょシ冷却すれば、高密度熱電素
子32により、出力端子21.22に直流電気を発電す
る。加熱、冷却を反対にすると出力端子21.22は、
極性が逆になる。
The high-density thermoelectric elements completed in the temperature difference direct generator manufacturing methods (1) to (4) are applied as a temperature difference direct generator. FIG. 38 schematically shows a temperature difference direct generator. The heat conduction part 33 is heated with solid, liquid, gas, etc., and the heat conduction part 34 is
When solid, liquid, gas, etc. are cooled, the high-density thermoelectric element 32 generates DC electricity at the output terminals 21 and 22. If the heating and cooling are reversed, the output terminals 21 and 22 will be
The polarity is reversed.

出力電圧値を高くしたい場合は、複数個を直列に接続す
る。第39図は、高密度熱電素子32を3個直列に接続
した図を示す。
If you want to increase the output voltage value, connect multiple units in series. FIG. 39 shows a diagram in which three high-density thermoelectric elements 32 are connected in series.

出力電流値を大きくしたい場合は、複数個を並列に接続
する。第40図は、3個並列に接続した図を示す。
If you want to increase the output current value, connect multiple units in parallel. FIG. 40 shows a diagram in which three devices are connected in parallel.

温度差が大きく、1個当シの高密度熱電素子の出力が飽
和してしまうときは、複数個を一多重にし、1個当シの
温度差を小さくし効率を良くする。第43図に概略を示
す。
When the temperature difference is large and the output of each high-density thermoelectric element becomes saturated, a plurality of thermoelectric elements are multiplexed to reduce the temperature difference between each element and improve efficiency. An outline is shown in FIG.

大電力形温度差直接発電機は、前述した直列・並列およ
び多重に複数個組合せ接続することにより達せられる。
A high-power type temperature difference direct generator can be achieved by connecting a plurality of generators in series, parallel, and multiplex as described above.

第41図:第42図に高密度熱電素子32を9個接続し
た温度差直接発電機の図を示す。第43図は、n個接続
した場合である。
FIG. 41: FIG. 42 shows a diagram of a temperature difference direct generator in which nine high-density thermoelectric elements 32 are connected. FIG. 43 shows the case where n pieces are connected.

直接熱ポンプ 高密度熱電素子を、直接熱ポンプとして応用する。婁4
4図は、直接熱ポンプの概略を示す。直流電源35から
高密度熱電素子32に、電気エネルギーを供給すると、
熱伝導部34は吸熱し、熱伝導部33は発熱する。電源
の極性を反対にすると、発熱・吸熱も反対になる。
Direct heat pump High-density thermoelectric elements are applied as a direct heat pump. Lou 4
Figure 4 shows a schematic of a direct heat pump. When electrical energy is supplied from the DC power supply 35 to the high-density thermoelectric element 32,
The heat conduction section 34 absorbs heat, and the heat conduction section 33 generates heat. If the polarity of the power supply is reversed, heat generation and heat absorption will also be reversed.

電源が高電圧小電流のときは、複数個の高密度熱電素子
を直列に接続する。第45図は、3個直列に接続した図
を示す。
When the power source is high voltage and low current, multiple high-density thermoelectric elements are connected in series. FIG. 45 shows a diagram in which three devices are connected in series.

電源が低電圧大電流のときは、複数個の高密度熱電素子
を並列に接続する。第46図は、3個並列に接続した図
を示す。
When the power source is low voltage and high current, connect multiple high-density thermoelectric elements in parallel. FIG. 46 shows a diagram in which three devices are connected in parallel.

温度差を大きくしたいときは、1個当りの高密度熱電素
子の温度差が飽和してしまうため、複数個を多重にし、
1個当りの温度差を小さくする。
If you want to increase the temperature difference, the temperature difference of each high-density thermoelectric element will become saturated, so multiple thermoelectric elements should be multiplexed.
Reduce the temperature difference per piece.

第49図に概略を示す。An outline is shown in FIG.

大形直接熱ポンプは、前述した直列・並列および多重に
複数個を組合せ接続することによシ達せられる。第47
図、第48図に高密度熱電素子を、9個接続した直接熱
ポンプの図を示す。
A large-sized direct heat pump can be achieved by connecting a plurality of heat pumps in series, parallel, or multiplex as described above. 47th
Figure 48 shows a diagram of a direct heat pump in which nine high-density thermoelectric elements are connected.

温度差直接冷却加熱器 高密度熱電素子を複数個組合せることにより、温度差を
更に大きくする温度差直接冷却加熱器に応用する。
Temperature difference direct cooling heater By combining multiple high-density thermoelectric elements, it is applied to a temperature difference direct cooling heater that further increases the temperature difference.

第50図は、温度差直接加熱器の概略図である。FIG. 50 is a schematic diagram of a temperature difference direct heater.

高温熱伝導部33より低温熱伝導部34に、高密度熱電
素子32を介して熱が流れる。このとき、高密度熱電素
子32は発電する。この電気エネルギーを、高密度熱電
素子36に供給すると、高温熱伝導部33から吸熱し、
加熱部37に発熱する。
Heat flows from the high temperature heat conduction section 33 to the low temperature heat conduction section 34 via the high density thermoelectric element 32 . At this time, the high-density thermoelectric element 32 generates electricity. When this electrical energy is supplied to the high-density thermoelectric element 36, heat is absorbed from the high-temperature heat conduction part 33,
Heat is generated in the heating section 37.

ゆえに、加熱部37は、高温熱伝導部33よシ更に温度
が高くなシ、温度差を利用して加熱することができる。
Therefore, the heating section 37 has a higher temperature than the high-temperature heat conducting section 33, and can be heated using the temperature difference.

第51図は、温度差直接冷却器の概略図である。FIG. 51 is a schematic diagram of a temperature difference direct cooler.

高温熱伝導部33よシ低温熱伝導部34に、高密度熱電
素子32を介して熱が流れる。このとき、高密度熱電素
子32は【発電する。この電気エネルギーを、高密度熱
電素子36に供給すると、冷却部38から吸熱し、低温
熱伝導部34に放熱する。ゆえに、冷却部38は、低温
熱伝導部34より更に温度が低くなり、温度差を利用し
て冷却することができる。
Heat flows from the high temperature heat conduction section 33 to the low temperature heat conduction section 34 via the high density thermoelectric element 32. At this time, the high-density thermoelectric element 32 generates power. When this electrical energy is supplied to the high-density thermoelectric element 36, it absorbs heat from the cooling section 38 and radiates the heat to the low-temperature heat conduction section 34. Therefore, the temperature of the cooling part 38 is lower than that of the low-temperature heat conducting part 34, and the cooling part 38 can be cooled by utilizing the temperature difference.

以上、温度差を利用して、冷却・加熱が可能となり、温
度差直接冷却加熱器が完成する。
As described above, cooling and heating are possible using the temperature difference, and a temperature difference direct cooling/heating device is completed.

第52図は、太陽熱を利用した温度差直接発電器を示す
FIG. 52 shows a temperature difference direct generator using solar heat.

集光鏡40の中心に加熱導体41がある。更に加熱導体
41と冷却導体39により、高密度熱電素子32がはさ
む格好に取付いている。
A heating conductor 41 is located at the center of the condenser mirror 40 . Furthermore, a high-density thermoelectric element 32 is attached to be sandwiched between the heating conductor 41 and the cooling conductor 39.

集光鏡40により、太陽光線を集光し加熱導体41が加
熱される。冷却導体39が、空冷や液冷されると加熱導
体41と冷却導体39の間に温度差を生ずる。この温度
差によシ、高密度熱電素子32に起電力を生じ発電子る
。出力端子21゜22から直流電気として取出せる。
The condensing mirror 40 condenses sunlight and heats the heating conductor 41 . When the cooling conductor 39 is air-cooled or liquid-cooled, a temperature difference is generated between the heating conductor 41 and the cooling conductor 39. This temperature difference generates an electromotive force in the high-density thermoelectric element 32 to generate electricity. Direct current electricity can be extracted from the output terminals 21 and 22.

第53図は、鉱泉を利用した温度差直接加熱器を示す。FIG. 53 shows a temperature difference direct heater using mineral springs.

温水器44と冷却器42の間に高密度熱電素子32があ
る。また、反対側に温水器44と加熱器43の間に高密
度熱電素子36が多重にある。高密度熱電素子32.3
6間は各々配線され電気的に結合している。
There is a high density thermoelectric element 32 between the water heater 44 and the cooler 42 . Further, on the opposite side, there are multiple high-density thermoelectric elements 36 between the water heater 44 and the heater 43. High density thermoelectric element 32.3
6 are wired and electrically coupled.

INIから300の鉱泉水が入り、温水器44と加熱器
43に分流して、0UTI、0UT3から流出する。I
N2からは、10Cの冷却水が冷却器42を流れ0UT
2から流出する。
300 mineral spring water enters from INI, is divided into water heater 44 and heater 43, and flows out from 0UTI and 0UT3. I
From N2, 10C cooling water flows through the cooler 42 to 0UT.
It flows out from 2.

温水器44は、鉱泉水30Cによりほぼ30Cであり、
冷却器42は、冷却水10Cによりほぼ10Cである。
The water heater 44 is approximately 30C with mineral spring water of 30C,
The temperature of the cooler 42 is approximately 10C due to the cooling water 10C.

この温度差により熱は、温水器44から高密度熱電素子
32を介して冷却器42に流れる。このとき高密度熱電
素子32は発電し、高密度熱電素子36に供給する。高
密度熱電素子36は、温水器44から吸熱し加熱器43
に放熱する。加熱器43内の鉱泉水301m”は加熱さ
れ更に温度は上昇する。0UT3からの流出量を絞るこ
とによシ、最高昇温能力、まで適当々温度の温泉水が得
られる。
This temperature difference causes heat to flow from the water heater 44 through the high density thermoelectric element 32 to the cooler 42 . At this time, the high-density thermoelectric element 32 generates electricity and supplies it to the high-density thermoelectric element 36. The high-density thermoelectric element 36 absorbs heat from the water heater 44 and
radiates heat. The mineral spring water 301m'' in the heater 43 is heated and its temperature further rises. By restricting the flow rate from 0UT3, hot spring water at an appropriate temperature up to the maximum heating capacity can be obtained.

ゆえに、この温度差直接加熱器は、燃料やヒータなしに
温度差のみで昇温できる。
Therefore, this temperature difference direct heater can raise the temperature only by temperature difference without using fuel or heater.

第54図は、外気温を利用した温度差直接冷却器を示す
FIG. 54 shows a temperature difference direct cooler using outside air temperature.

外気吸熱体45と冷却体49の間に、高密度熱電素子3
2がある。内気吸熱体47は、室内48にあり、冷却体
46の間に高密度熱電素子36がある。冷却体46.4
9は、地下水によシ冷却している。高密度熱電素子32
.36間は配線され電気的に結合している。
A high-density thermoelectric element 3 is placed between the outside air heat absorbing body 45 and the cooling body 49.
There are 2. The inside air heat absorber 47 is located in the room 48 and the high density thermoelectric elements 36 are located between the cooling bodies 46 . Cooling body 46.4
9 is cooled by groundwater. High density thermoelectric element 32
.. 36 are wired and electrically coupled.

外気温が、30Cあシ地下水が1−20ならば、1ここ
に温度差を生ずる。
If the outside temperature is 30C and the groundwater is 1-20C, there will be a temperature difference of 1.

外気吸熱体45は、約30tZ’であり、冷却体49は
、約120である。この温度差によシ高密度熱電素子は
、発電し高密度熱電素子36に電力を供給する。
The outside air heat absorbing body 45 has a power of about 30 tZ', and the cooling body 49 has a power of about 120 tZ'. Due to this temperature difference, the high-density thermoelectric element generates electricity and supplies power to the high-density thermoelectric element 36.

高密度熱電素子36は、室内吸熱体47から吸熱し冷却
体46に放熱する。室内48は、冷却体47により冷房
される。
The high-density thermoelectric element 36 absorbs heat from the indoor heat absorbing body 47 and radiates heat to the cooling body 46 . The interior of the room 48 is cooled by a cooling body 47 .

ゆえに、温度差直接冷却器は、温度差のみで冷却するこ
とができる。
Therefore, a temperature difference direct cooler can cool only by temperature difference.

(1)本発明によれば、高密度熱電素子の製作が可能と
なシ、温度差を利用して効率よく直接発電できる効果が
ある。
(1) According to the present invention, it is possible to manufacture high-density thermoelectric elements, and there is an effect that electric power can be generated directly and efficiently using temperature differences.

(2)本発明によれば、製作が簡単にできるので機械化
しやすく、大量生産が可能となり、原価低減の効果があ
る。
(2) According to the present invention, it is easy to manufacture, so it is easy to mechanize, mass production is possible, and the cost is reduced.

(3)本発明によれば、可動部がないため、摩耗・振動
・騒音がなく長寿命の′効果がある。
(3) According to the present invention, since there are no moving parts, there is no wear, vibration, or noise, resulting in a long life.

(4)本発明によれば、温度差を利用して、更に冷却し
たシ加熱したりできるので、エネルギー節約の効果があ
る。
(4) According to the present invention, the temperature difference can be used to further heat the cooled material, resulting in an energy saving effect.

(5)本発明によれば、高密度化できるので、小形軽量
にできる効果がある。
(5) According to the present invention, it is possible to increase the density, so there is an effect that it can be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、温度差発電の原理図である。第2図は、温度
差発電の直列接続図である。第3図は、直接熱ポンプの
原理図である。第4図は、従来の熱電素子の構造図であ
る。第5図も1ら第8図までは、熱電素子片の製法(1
)の工程図である。第9図から第12図までは、熱電素
子片の製法(2)の工程図である。第13図から第18
図までは、製法(1)。 製法(2)によシ完成した熱電素子片を、高密度熱電素
子に完成させる工程図である。第19図から第27図ま
では、熱電素子片の製法(3)の工程図である。第28
図から第35図までは、熱電素子片の製法(4)の工程
図である。第36図は、製法(3)、(4)により完成
した熱電素子片を、高密度熱電素子にまとめた完成断面
図である。第37図は、同上の見取図である。第38図
から第43図までは、温度差直接発電機の高密度熱酸素
子接続配線図である。第44図から第49図までは、直
接熱ポンプの高密度熱電素子接続配線図である。第50
図は、温度差直接加熱器の概略図である1、第51図は
、温度差直接冷却器の概略図である。第52図は、太陽
熱を利用した温度差直接発電機の概略図である。第53
図は、鉱泉を温泉にする温度差直接加熱器の概略図であ
る。第54図は、外気温を利用して冷房する温度差直接
冷却器の概略図である。 1・・・導体、2・・・N形半導体、3・・・P形半導
体、4・・・導体、5・・・負荷、6・・・電源、7・
・・熱伝導板、8・・・熱伝導板、9・・・リード線、
10・・・リード線、11・・・半導体薄板、12・・
・P形半導体、13・・・N形半導体、14・・・導体
、15・・・端子線、16・・・端子線、17・・・熱
電素子片、18・・・絶縁板、19・・・形わく、20
・・・端子台、21・・・端子、22・・・端子、23
・・・P形半導体゛薄板、24・・・N形半導体薄板、
25・・・絶縁被rL 26・・・絶縁被膜付N形半導
体薄板、27・・・絶縁被膜付N形半導体薄板、28・
・・PN形半導体薄板、29・・・PN基盤目半導体薄
板、30・・・酸化被膜結晶、31・・・PN基盤目半
導体薄板、32・・・高密度熱電素子、33・・・熱伝
導部、34・・・熱伝導部、35・・・直流電源、36
・・・高密度熱電素子、37・・・加熱部、38・・・
冷却部、39・・・冷却導体、40・・・集光鏡、41
・・・加熱導体、42・・・冷却器、43・・・加熱器
、44・・・温水器、45・・・外気吸熱体、46・・
・冷却体、47・・・内気吸熱体、1″1    躬2
om 茗2tm       $zz6jJ ’$ 34/XJ 7 スJ7の デ       −0 第38図 3 第39図 蛤  40   図 3 禎 4I 図 j 第  42 図 93 第 44 図 第  45 図 姑  47  図 に$48  図 第 50  図 7 $  522 第  53  図 第 s4tb
FIG. 1 is a diagram showing the principle of temperature difference power generation. FIG. 2 is a series connection diagram of temperature difference power generation. FIG. 3 is a principle diagram of a direct heat pump. FIG. 4 is a structural diagram of a conventional thermoelectric element. Figure 5 also shows the method for manufacturing thermoelectric element pieces (1 to 8).
) is a process diagram. FIG. 9 to FIG. 12 are process diagrams of the method (2) for manufacturing a thermoelectric element piece. Figures 13 to 18
The figures up to the figure are manufacturing method (1). It is a process diagram of completing a thermoelectric element piece completed by manufacturing method (2) into a high-density thermoelectric element. FIG. 19 to FIG. 27 are process diagrams of the method (3) for manufacturing a thermoelectric element piece. 28th
The drawings to FIG. 35 are process diagrams of the method (4) for manufacturing a thermoelectric element piece. FIG. 36 is a completed cross-sectional view of thermoelectric element pieces completed by manufacturing methods (3) and (4) assembled into a high-density thermoelectric element. FIG. 37 is a sketch of the same as above. FIGS. 38 to 43 are high-density thermal oxygen element connection wiring diagrams of the temperature difference direct generator. 44 to 49 are high-density thermoelectric element connection wiring diagrams of a direct heat pump. 50th
Figure 1 is a schematic diagram of a temperature difference direct heater, and Figure 51 is a schematic diagram of a temperature difference direct cooler. FIG. 52 is a schematic diagram of a temperature difference direct generator using solar heat. 53rd
The figure is a schematic diagram of a temperature difference direct heater that turns mineral springs into hot springs. FIG. 54 is a schematic diagram of a temperature difference direct cooler that uses outside air temperature for cooling. DESCRIPTION OF SYMBOLS 1... Conductor, 2... N-type semiconductor, 3... P-type semiconductor, 4... Conductor, 5... Load, 6... Power supply, 7...
... Heat conduction plate, 8 ... Heat conduction plate, 9 ... Lead wire,
10...Lead wire, 11...Semiconductor thin plate, 12...
- P type semiconductor, 13... N type semiconductor, 14... Conductor, 15... Terminal wire, 16... Terminal wire, 17... Thermoelectric element piece, 18... Insulating plate, 19.・Shape, 20
... terminal block, 21 ... terminal, 22 ... terminal, 23
... P-type semiconductor thin plate, 24... N-type semiconductor thin plate,
25... Insulating coating rL 26... N-type semiconductor thin plate with insulating coating, 27... N-type semiconductor thin plate with insulating coating, 28.
... PN type semiconductor thin plate, 29... PN base semiconductor thin plate, 30... Oxide film crystal, 31... PN base semiconductor thin plate, 32... High-density thermoelectric element, 33... Thermal conduction Part, 34... Heat conduction part, 35... DC power supply, 36
...High-density thermoelectric element, 37... Heating section, 38...
Cooling unit, 39... Cooling conductor, 40... Condensing mirror, 41
... Heating conductor, 42 ... Cooler, 43 ... Heater, 44 ... Water heater, 45 ... Outside air heat absorber, 46 ...
・Cooling body, 47...Inside air heat absorbing body, 1"1 2
om 茗2tm $zz6jJ '$ 34/XJ 7 SuJ7's de -0 Fig. 38 Fig. 39 Fig. 40 Fig. 3 Tei 4I Fig. j Fig. 42 Fig. 93 Fig. 44 Fig. 45 Fig. 47 Fig. $48 Fig. 50 Figure 7 $ 522 Figure 53 s4tb

Claims (1)

【特許請求の範囲】[Claims] 1、熱電対の集積度を高密度にしたことを特徴とする高
密度熱電素子。
1. A high-density thermoelectric element characterized by a high degree of integration of thermocouples.
JP56134110A 1981-08-28 1981-08-28 High-density thermoelectric element Granted JPS5835991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56134110A JPS5835991A (en) 1981-08-28 1981-08-28 High-density thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56134110A JPS5835991A (en) 1981-08-28 1981-08-28 High-density thermoelectric element

Publications (2)

Publication Number Publication Date
JPS5835991A true JPS5835991A (en) 1983-03-02
JPH0320909B2 JPH0320909B2 (en) 1991-03-20

Family

ID=15120683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56134110A Granted JPS5835991A (en) 1981-08-28 1981-08-28 High-density thermoelectric element

Country Status (1)

Country Link
JP (1) JPS5835991A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09321354A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Metal pattern plate
JPH09321356A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Thermoelectric module and its manufacture
US5837929A (en) * 1994-07-05 1998-11-17 Mantron, Inc. Microelectronic thermoelectric device and systems incorporating such device
JPWO2020129539A1 (en) * 2018-12-19 2021-11-04 国立研究開発法人産業技術総合研究所 Combined cycle with solar cells and thermoelectric conversion elements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493235A (en) * 1972-04-22 1974-01-12
JPS5092091A (en) * 1973-12-13 1975-07-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS493235A (en) * 1972-04-22 1974-01-12
JPS5092091A (en) * 1973-12-13 1975-07-23

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837929A (en) * 1994-07-05 1998-11-17 Mantron, Inc. Microelectronic thermoelectric device and systems incorporating such device
JPH09321354A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Metal pattern plate
JPH09321356A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Thermoelectric module and its manufacture
JPWO2020129539A1 (en) * 2018-12-19 2021-11-04 国立研究開発法人産業技術総合研究所 Combined cycle with solar cells and thermoelectric conversion elements

Also Published As

Publication number Publication date
JPH0320909B2 (en) 1991-03-20

Similar Documents

Publication Publication Date Title
US4292579A (en) Thermoelectric generator
US6043423A (en) Thermoelectric device and thermoelectric module
US8373057B2 (en) Thermoelectric element
US20120067064A1 (en) Thermo-electric structure
US20120048321A1 (en) Split thermo-electric cycles for simultaneous cooling, heating, and temperature control
TWI353673B (en) Integrated package having solar cell and thermoele
JP3442862B2 (en) Thermoelectric generation unit
JPS5835991A (en) High-density thermoelectric element
JPH0951126A (en) Thermoelectric conversion device
JP3501394B2 (en) Thermoelectric conversion module
JPH0430586A (en) Thermoelectric device
US20120048323A1 (en) Thermo-electric structure
JP2563524B2 (en) Thermoelectric device
JPH03295281A (en) Thermoelectric device and manufacture thereof
JP3350705B2 (en) Heat transfer control thermoelectric generator
JPH0485973A (en) Thermoelectric generator
JPH04280482A (en) Cooling device utilizing solar light
JP2609019B2 (en) Thermoelectric module
JPS63299383A (en) Thermoelectric converting module
JPH02155280A (en) Thermoelectric device
JPH02271683A (en) Thermoelectric element and manufacture thereof
JPH02303076A (en) Thermoelectric device and method of controlling same
JPH08254468A (en) Thermoelectric generating element and temperature sensor combining metal materials as thermocouple
JPH03263881A (en) Thermoelectric generation method and device
US20120047912A1 (en) Split thermo-electric cycles for simultaneous cooling, heating, and temperature control