JPH02303076A - Thermoelectric device and method of controlling same - Google Patents

Thermoelectric device and method of controlling same

Info

Publication number
JPH02303076A
JPH02303076A JP1123239A JP12323989A JPH02303076A JP H02303076 A JPH02303076 A JP H02303076A JP 1123239 A JP1123239 A JP 1123239A JP 12323989 A JP12323989 A JP 12323989A JP H02303076 A JPH02303076 A JP H02303076A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric element
element group
current
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1123239A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Tanaka
博由 田中
Yoshiaki Yamamoto
義明 山本
Fumitoshi Nishiwaki
文俊 西脇
Yasushi Nakagiri
康司 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1123239A priority Critical patent/JPH02303076A/en
Publication of JPH02303076A publication Critical patent/JPH02303076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To keep high efficiency at all times by controlling a current in each thermoelectric element group in response to a load. CONSTITUTION:A plurality of thermoelectric element groups 8 constituted of at least one thermoelectric element are electrically connected in parallel, and direct current rectified through a rectifier circuit 9 flows. A constant current maximizing the efficiency of each element group 8 is applied to each element group 8. On an electrode wiring connected with each element group 8, a switching circuit 10 is installed and controls the current flowing into each element group 8 by a controlling signal from a controlling circuit 11. Thereby each thermoelectric element group 8 or the number of the thermoelectric elements can be increased or decreased in accordance with a load.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はベルチェ効果を利用し 電気的に冷房もしくは
暖房を行う空調装置 もしくはゼーベック効果により温
度差を用いて発電を行う発電装置に用いる熱電装置の改
良及びその制御方法に関すも 従来の技術 従来 熱を電気に変換し もしくは電気を熱に変換する
熱電装置(友 第4図に示す採番−基板7上において、
金属板1及び金属板2によってP型下導体4もしくはN
型の半導体3を挟み込んだ素子を電気的に直列もしくは
並列に結合することによって構成し 両側の金属板1、
2の温度差により発電を行−入 もしくは電圧を与え電
流を通することにより冷紙 加熱を行うものである。な
叙5、6h金属板1、2のそれぞれの端子であも発明が
解決しようとする課題 一般に熱電素子では、 その効率はある電流値に対して
極大値を持つ。このような熱電素子を複数個電気的に接
合して冷却出力もしくは加熱出力を得ようとするとき、
負荷が一定の場合は問題がない力(負荷が変動する場合
には電流量を変化させて出力を変える必要があるたべ 
効率が最大となる電流値を常に維持することは困難であ
も つまり、素子効率を最大値に維持したまま、複数の
熱電素子によって構成される熱電装置を動作させようと
すると、負荷にあわせて素子数を変化させる必要がある
が、 第4図に示すような熱電装置ではそれが不可能で
あっ旭 つまり、従来の熱電装置で1よ このような理
由から公称効率に対して実際の使用時の効率が非常に低
いという問題があっ九また このような従来の熱電装置
でζ友 第4図にみられるようへ 半導体3、4を金属
板1または2に電気的かつ熱的に接合させ、セラミック
等の基板7に張り付けて保持され 半導体3、4と金属
板l、 2間の接合は一般に半田を用いて行われていも
 しかしなが収 大面積で一定の出力を持つ熱電装置を
構成しようとすると、金属板l、2を長くする必要があ
り、重量が増加すると共く基板7の反り等の理由から半
田と半導体3、4がはずれ易くなり、信頼性が低くなる
という問題があっ九 その上 高温雰囲気と低温雰囲気が、 金属板1と2、
比較的薄い空気恩 および基板7を挟んで接しているの
で漏れ熱量が大きく、効率を悪化させるという問題もあ
っ九 また このような構成において伝熱面積を増加させるた
めに(よ 新たに基板7但t もしくはその反対側番へ
 放熱フィンを接合する必要があるが、接合面が限られ
ている為フィン効率が悪化するばかりでなく、接触抵抗
による効率の低下が生じるという問題もありへ 本発明1よ ごれらの従来技術の問題点に鑑へ各々の熱
電素子を流れる電流値を、効率が最大の値に近い値に維
持できる一定値に保ったまま、負荷変動に対して、素子
数を増減させ、常に高い効率を維持できる熱電装風 及
びその制御方法を提供することを目的とし また高温雰
囲気から低温雰囲気への漏れ熱量が少なく、大面積熱電
装置を構成することが容易な熱電装置及びその制御方法
を提供することを目的とするものであム課題を解決する
ための手段 本発明による熱電装置は上記の課題を解決するために 
複数の熱電素子からなる熱電素子群を電気的に並列に接
合すると共に負荷に応じて、各熱電素子群へ流れる電流
を制御できる構成としたことを特徴とすも また 電流制御をオンオフ制御として、熱電素子群の数
を変化させるとともに 電流が流れる熱電素子群には常
にそれを構成する各熱電素子の効率が最大値となるよう
に電流値を保つことを特徴とすも また それらの制御のための電気回路もしくは半導体を
、基板上に予めパターニングされた電極配線上に設(す
、かつ熱電素子群をコルゲート状に構成し 基板の電極
パターン上にある貫通孔へ挿入するという手段も用いも 作   用 上記構成の熱電装置及びその制御方法によって得られる
作用は次の通りである。
[Detailed Description of the Invention] Industrial Application Field The present invention improves thermoelectric devices used in air conditioners that electrically cool or heat air using the Beltier effect, or power generation devices that generate electricity using temperature differences due to the Seebeck effect. Thermoelectric device (component) for converting heat into electricity or electricity into heat (component).
P type lower conductor 4 or N by metal plate 1 and metal plate 2
The metal plate 1 on both sides is constructed by electrically connecting elements in series or parallel with a type semiconductor 3 sandwiched therein.
Electricity is generated by the temperature difference between the two, or cold paper is heated by applying voltage and passing current. Problems to be Solved by the Invention Regarding the Terminals of Metal Plates 1 and 2 In general, in a thermoelectric element, its efficiency has a maximum value for a certain current value. When attempting to obtain cooling output or heating output by electrically connecting multiple such thermoelectric elements,
If the load is constant, this power is not a problem (if the load fluctuates, it is necessary to change the output by changing the amount of current).
Although it is difficult to always maintain the current value that maximizes efficiency, in other words, if you try to operate a thermoelectric device composed of multiple thermoelectric elements while maintaining the element efficiency at the maximum value, it will be difficult to maintain the current value that maximizes the efficiency. It is necessary to change the number of elements, but this is not possible with a thermoelectric device like the one shown in Figure 4. In other words, with a conventional thermoelectric device, the number of elements must be changed. There is also the problem that the efficiency of this conventional thermoelectric device is very low. The semiconductors 3, 4 and the metal plates 1, 2 are bonded and held on a substrate 7 made of ceramic or the like, and solder is generally used to connect them. In this case, it is necessary to make the metal plates 1 and 2 longer, which increases the weight and causes problems such as the solder and the semiconductors 3 and 4 becoming easier to separate from each other due to the warping of the board 7, resulting in lower reliability. Moreover, the high temperature atmosphere and low temperature atmosphere are metal plates 1 and 2,
Since the relatively thin air and substrate 7 are in contact with each other on both sides, there is a problem that a large amount of heat leaks and the efficiency deteriorates. t or to the opposite side It is necessary to bond the heat dissipation fins, but since the bonding surface is limited, there is a problem that not only the fin efficiency deteriorates, but also the efficiency decreases due to contact resistance.Invention 1 In view of the problems of conventional technology such as Yogore et al., the number of elements can be increased in response to load fluctuations while keeping the current value flowing through each thermoelectric element at a constant value that maintains the efficiency close to the maximum value. The purpose of this project is to provide a thermoelectric device and its control method that can increase or decrease the amount of heat and maintain high efficiency at all times, and also provide a thermoelectric device and a method for controlling the same, which have a small amount of heat leaking from a high-temperature atmosphere to a low-temperature atmosphere, and which are easy to configure into a large-area thermoelectric device. The purpose of the present invention is to provide a method for controlling the thermoelectric device, and a means for solving the problem.
The thermoelectric element group consisting of a plurality of thermoelectric elements is electrically connected in parallel, and the current flowing to each thermoelectric element group can be controlled according to the load. In addition to changing the number of thermoelectric element groups, the current value is always maintained in the thermoelectric element group through which current flows so that the efficiency of each thermoelectric element constituting the group is at its maximum value. An electric circuit or a semiconductor is placed on electrode wiring patterned in advance on a substrate, and a group of thermoelectric elements is configured in a corrugated shape and inserted into a through hole on the electrode pattern of the substrate. The effects obtained by the thermoelectric device having the above configuration and its control method are as follows.

1、負荷に応じて各熱電素子群に対して流す電流を制御
することにより従来と比べ著しく性能が良くなム とく
に各熱電素子の効率が最大となるように電流を流し 熱
電素子の数を変化させて負荷への対応を図ることにより
、常に最大効率近くの性能が得られる。
1. By controlling the current flowing to each thermoelectric element group according to the load, the performance is significantly better than before.In particular, the current is passed so that the efficiency of each thermoelectric element is maximized, and the number of thermoelectric elements is varied. By adjusting the load to accommodate the load, performance near maximum efficiency can always be obtained.

2、基板上に電極パターンを作成し 熱電素子群をその
電極パターン上に接合しているために大面積で低負荷の
場合や小面積で高負荷の場合にも製作が容易であり、形
状や負荷に対する自由度が高3、コルゲート状の熱電素
子群を基板を貫通した孔に挿入して支えることにより、
大面積化が容易であり、かつ軽く構成でき、さらに基板
を断熱壁し 低温側雰囲気と高温側雰囲気を分離するこ
とにより、高温側から低温側への熱の漏れを少なくでき
も 4、熱電素子群を設置する基板上に整流同区 電流制御
のための半導体もしくは回路を設けることにより非常に
コンパクトにできも 5、整流同区 電流制御回路等を熱電素子群によって加
熱される側に設置する、ことにより、これら電気回路に
より発生するジュール熱による暖房効率や冷房効率の低
下が少なくできも 実施例 以下、本発明の実施例を図面により説明すも第1図は本
発明の一実施例における熱電装置の制御回路の概略構成
を示したものである。
2. Since an electrode pattern is created on the substrate and a group of thermoelectric elements are bonded onto the electrode pattern, it is easy to manufacture even in the case of a large area and a low load, or a small area and a high load. By inserting and supporting a group of corrugated thermoelectric elements into holes penetrating the substrate, the degree of freedom with respect to loads is high.
Thermoelectric elements are easy to increase in area, can be constructed lightweight, and can reduce heat leakage from the high-temperature side to the low-temperature side by separating the low-temperature side atmosphere from the high-temperature side atmosphere by using an insulating wall on the substrate. It is possible to make it very compact by providing a semiconductor or circuit for rectifying current control on the board on which the thermoelectric element group is installed. By doing so, the decrease in heating efficiency and cooling efficiency due to Joule heat generated by these electric circuits can be reduced. This figure shows a schematic configuration of the control circuit of the device.

第1図において、最少1個の熱電素子からなる複数の熱
電素子群8ζよ 電気的に並列に接合され整流回路9に
より直流化された電流が流れも 各熱電素子群8へは各
熱電素子群8が最大効率となる一定の電流を流し かつ
それぞれの熱電素子群8に通する電極配線上にスイッチ
ング回路lO1がそれぞれ設けられており、制御回路1
1からの制御信号により各熱電素子群8に流れる電流の
制御をそれぞれ行なう。
In FIG. 1, a current that is electrically connected in parallel and converted into direct current by the rectifier circuit 9 flows through a plurality of thermoelectric element groups 8ζ consisting of at least one thermoelectric element. A switching circuit 1O1 is provided on each electrode wiring that passes a constant current such that 8 has the maximum efficiency and passes through each thermoelectric element group 8.
The current flowing through each thermoelectric element group 8 is controlled by the control signal from 1.

この制御回路11は動作する熱電素子群8からの熱電出
力と、加熱もしくは冷却すべき負荷とが均衡を保つよう
に制御を行う。つまり負荷が熱電出力より大きい時には
動作する熱電素子群8の数を増加させ、負荷が熱電出力
より小さいときには動作する熱電素子群8の数を減少さ
せも このスイッチング回路10は単なるリレーでもよ
い力(薄膜で形成したトランジスターでもよ(℃この様
な構成と制御方法によって、従来と異なり、個々の熱電
素子群8もしくは熱電素子数を負荷に合わせて増減させ
ることができるた八 各熱電素子に流す電流値を変化さ
せることなく、各熱電素子の効率が最大となる一定値に
設定したままで、出力を制御できる。そのため負荷に対
して効率は常に最大値を維持することができ、非常にラ
ンニングコストの低い冷却もしくは加熱のできる熱電装
置を得ることができるのであム 第2図ζ上 本発明の他の実施例における熱電装置の正
面図であム 本実施例において、断熱材でつくられた基板12の上に
は銅膜によって電極配線13が形成されていも 外部の
電源を接続する両電極端子17.17間の電極配線13
上には3個1組の熱電素子群14が211. 2個のス
イッチング回路15、および1個の整流回路16が電気
的に接続されていも つまり電極端子17から加えられ
る交番電流は整流回路16によって整流されて直流に変
換されも この直流電流については どちらか一方のス
イッチング回路15が外部からの信号でオンまたはオフ
の制御がなされる。スイッチング回路15がオンの場合
に(よ 電流は熱電素子群14へ流れ込み基板12の表
裏にて加肱 及び冷却を行なう。このスイッチング回路
15は本実施例ではTPTを用t\ 外部からの信号に
て制御を行っている。また本実施例では3個の熱電素子
群14を直列に接続した1組のものに対して1個のスイ
ッチング回路15を設けている力(これは第1図に示し
た例のよう鳳 各熱電装置群14とスイッチング回路を
1対として設けてもよ(−つまり、本実施例では、 両
電極端子17、17間で2つの並列の熱電回路を構成し
 それぞれの熱電回路に1つのスイッチング回路15を
接続しているが、 熱電素子群14の数については自由
に設定してもよ(〜また整流回路16については基板1
2上に設けてもよいし設けなくともよ− 第3図は前記熱電素子群14をより詳細に示したもので
あも つまりこの熱電素子群14は銅板18の間にN型
半導体19とP型半導体20を挟み込んで作られており
、コルゲート状をなしていも この熱電素子群14は基
板12上にメッキされた銅の電極配線13と半田付され
ていも この熱電素子群14へ流す電流によって半導体
19または20と銅板18の界面の一方で発熱し 一方
で吸熱すも また本実施例では電極配線13側で発熱が
生じるように構成しているのて 電極配線13、スイッ
チング回路15、整流回路16から放熱されるジュール
熱は高温側へ放出され 加熱効率もしくは冷却効率を向
上させも またこの熱電素子群14には遮熱板21を設
置す、熱電素子群14の保操 および高温側から低温側
への熱の漏れを低減していも 本実施例で(よ 基板12を断熱壁として構成しかつ銅
板を用いた薄い熱電素子群14を用いているので、非常
に軽く、かつ断熱性に優れた熱電装置とすることができ
へ まな電極配線13を予め基板12上にメッキして製
作し 熱電素子群14を別に製作して半田接合する方法
を用いるので、容易に製作でき、かつ大面積 大出力の
熱電装置を構成することができも また冷却側と発熱側の放熱量に応じて、銅板18の長さ
を変化させれば 経済法 効率面からみて最適な放熱状
態が実現できも もちろん本発明によるこの構成を有する熱電素子はゼー
ベック効果によって熱源の熱を電気に変換する際にも使
用が可能であり、その場合にも同様な効果を生じること
はいうまでもな(℃ ただその際には整流同区 スイッ
チング同区 電極配線等1友 低温雰囲気側に設けも 発明の詳細 な説明したよう番ζ 本発明による熱電装置(友1個も
しくは複数個の熱電素子群に通する電極配線上に電流制
御回路を設けて、負荷に応じて動作する熱電素子の個数
を変化させ、動作する熱電素子に4よ その最大効率を
生じるように電流を流すことができるものであり、また
熱電素子はコルゲート状とし 予め電気配線された基板
上に設置し且つその配線上にスイッチング回路等を設け
ることにより、以下のような効果を奏すも 1、各熱電素子を最大効率に保ったままその個数を制御
して、負荷に対応するものであるのて 負荷に係わらず
最大効率に近い効率を得ることができも 2、非常に大面積の熱電装置を簡単な工程で安価に量産
できも 3、伝熱面積が広く取れるため外部負荷との間の温度差
が小さくなり放熱効率が向上すも4、高温側と低温側を
断熱壁によって分離し かつジュール熱を発生する電気
回路を高温側に設置しているのて 総合的な冷却もしく
は加熱性能が向上すも つまり、本発明を実施すること弘 非常に強固で軽重 
かつ経済性に富へ しかも冷却もしくは加熱硅能の高い
大面積の熱電装置を実現することができるものであa
This control circuit 11 performs control so that the thermoelectric output from the operating thermoelectric element group 8 and the load to be heated or cooled are balanced. In other words, when the load is larger than the thermoelectric output, the number of thermoelectric element groups 8 that operate is increased, and when the load is smaller than the thermoelectric output, the number of thermoelectric element groups 8 that are operated is decreased. A transistor formed of a thin film may also be used (°C) With this configuration and control method, unlike conventional methods, it is possible to increase or decrease the number of individual thermoelectric elements or the number of thermoelectric elements according to the load.8 Current flowing through each thermoelectric element The output can be controlled without changing the value, keeping it set to a constant value that maximizes the efficiency of each thermoelectric element.As a result, the efficiency can always be maintained at the maximum value for the load, which reduces running costs. Figure 2 is a front view of a thermoelectric device in another embodiment of the present invention.In this embodiment, a substrate made of a heat insulating material is used. Although the electrode wiring 13 is formed by a copper film on the electrode wiring 12, the electrode wiring 13 between the two electrode terminals 17 and 17 that connect an external power source is
Above, a group of three thermoelectric elements 14 are arranged at 211. Even if the two switching circuits 15 and one rectifier circuit 16 are electrically connected, that is, even if the alternating current applied from the electrode terminal 17 is rectified by the rectifier circuit 16 and converted to direct current, which one of the direct currents will be? One of the switching circuits 15 is controlled to be turned on or off by an external signal. When the switching circuit 15 is on, current flows into the thermoelectric element group 14 and applies heat and cooling to the front and back sides of the substrate 12. In this embodiment, the switching circuit 15 uses a TPT and is not connected to external signals. In addition, in this embodiment, one switching circuit 15 is provided for one set of three thermoelectric element groups 14 connected in series (this is shown in FIG. 1). As in the example above, each thermoelectric device group 14 and the switching circuit may be provided as a pair (that is, in this embodiment, two parallel thermoelectric circuits are configured between the two electrode terminals 17, 17, Although one switching circuit 15 is connected to the circuit, the number of thermoelectric element groups 14 can be set freely (~Also, for the rectifier circuit 16, the number of the thermoelectric element groups 14 can be set freely)
2 may or may not be provided. FIG. 3 shows the thermoelectric element group 14 in more detail. In other words, the thermoelectric element group 14 is arranged between an N-type semiconductor 19 and a P-type semiconductor 19 between the copper plate 18. Although it is made by sandwiching a semiconductor 20 and has a corrugated shape, this thermoelectric element group 14 is soldered to the copper electrode wiring 13 plated on the substrate 12. 19 or 20 and the copper plate 18, heat is generated on one side, and heat is absorbed on the other side.Also, in this embodiment, heat is generated on the electrode wiring 13 side. The Joule heat radiated from the thermoelectric element group 14 is radiated to the high temperature side, improving heating efficiency or cooling efficiency.A heat shield plate 21 is also installed on this thermoelectric element group 14 to maintain the thermoelectric element group 14 from the high temperature side to the low temperature side. In this embodiment, the substrate 12 is constructed as a heat insulating wall, and the thin thermoelectric element group 14 made of a copper plate is used, so it is extremely light and has excellent heat insulation properties. It is possible to make a thermoelectric device by plating the thin electrode wiring 13 on the substrate 12 in advance, and then fabricating the thermoelectric element group 14 separately and joining them by soldering. Therefore, it can be easily manufactured, and has a large area and high output. In addition, by changing the length of the copper plate 18 according to the amount of heat dissipated on the cooling side and the heat generation side, the optimum heat dissipation state can be realized from an economical efficiency point of view. Thermoelectric elements with this configuration can also be used to convert heat from a heat source into electricity by the Seebeck effect, and it goes without saying that the same effect will be produced in that case as well. Same area for rectification Same area for switching Electrode wiring, etc. 1 side As described in the detailed explanation of the invention, the thermoelectric device according to the present invention (electrode wiring, etc., connected to one or more thermoelectric element groups) A control circuit is provided to change the number of thermoelectric elements that operate according to the load, allowing current to flow through the operating thermoelectric elements so as to produce a maximum efficiency of 4, and the thermoelectric elements are corrugated. By installing the thermoelectric elements on a board with electrical wiring in advance and providing a switching circuit etc. on the wiring, the following effects can be achieved. 1. The number of thermoelectric elements can be controlled while maintaining the maximum efficiency of each thermoelectric element. , because it corresponds to the load, it is possible to obtain efficiency close to the maximum efficiency regardless of the load, 2, it is possible to mass-produce thermoelectric devices with a very large area at low cost with a simple process, 3, and the heat transfer area is Because it can be made wider, the temperature difference with the external load is reduced and heat dissipation efficiency is improved.4 However, the high temperature side and the low temperature side are separated by an insulating wall, and the electric circuit that generates Joule heat is installed on the high temperature side. Therefore, it is possible to implement the present invention in order to improve the overall cooling or heating performance.
It is highly economical, and also enables the realization of large-area thermoelectric devices with high cooling or heating performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における熱電装置の制御回路
は 第2図は本発明の他の実施例における熱電装置の正
面医 第3図は第2図の熱電装置群の詳細斜視は 第4
図は従来の熱電装置の斜視図であも a、  14.、、熱電素子法Q、  16.、、整流
回路1代15、 、 、スイッチング同区 11.、、
制御回!  120.、基板、13.、、重金配線 1
8.、、銅板 1代 20. 、 、半導俟代理人の氏
名 弁理士 粟野重孝 はか1名第 1 図 第2図 178碇蝶迂
FIG. 1 shows a control circuit of a thermoelectric device in one embodiment of the present invention. FIG. 2 shows a front view of a thermoelectric device in another embodiment of the present invention. FIG. 3 shows a detailed perspective view of the thermoelectric device group in FIG. 2. 4
The figure is a perspective view of a conventional thermoelectric device. ,,Thermoelectric element method Q, 16. , , Rectifier circuit 1 generation 15, , , Switching circuit 1 generation 11. ,,
Control times! 120. , substrate, 13. ,, Heavy metal wiring 1
8. ,, Copper plate 1 generation 20. , , Name of Handojo agent Patent attorney Shigetaka Awano Haka 1 person Figure 2 Figure 2 178 Ikari Chorou

Claims (8)

【特許請求の範囲】[Claims] (1)半導体を金属によって挟み込んだ構成を有する複
数個の熱電素子を、互いに電気的に接合された複数の熱
電素子群に分割し、前記各熱電素子群を電気的に並列に
接合すると共に前記各熱電素子群に流す電流を制御する
手段を設けたことを特徴とする熱電装置。
(1) A plurality of thermoelectric elements having a configuration in which a semiconductor is sandwiched between metals is divided into a plurality of thermoelectric element groups that are electrically connected to each other, and each of the thermoelectric element groups is electrically connected in parallel, and the A thermoelectric device comprising means for controlling the current flowing through each thermoelectric element group.
(2)各熱電素子群は、同一個数の熱電素子が電気的に
直列に接合されている請求項1記載の熱電装置。
(2) The thermoelectric device according to claim 1, wherein each thermoelectric element group has the same number of thermoelectric elements electrically connected in series.
(3)基板上に複数の熱電素子群と各熱電素子群に流す
電液を制御する半導体素子を配置し、前記熱電素子群及
び前記半導体素子を前記基板上に予めパターニングされ
た金属電極によって接合した請求項1記載の熱電装置。
(3) Arranging a plurality of thermoelectric element groups and a semiconductor element that controls the electric liquid flowing through each thermoelectric element group on a substrate, and bonding the thermoelectric element group and the semiconductor element with a metal electrode patterned in advance on the substrate. The thermoelectric device according to claim 1.
(4)熱電素子群が、湾曲した金属板とP型及びN型の
半導体とからなるコルゲート状の構成を有し、この熱電
素子群を基板を貫通した孔に挿入してなる請求項3記載
の熱電装置。
(4) The thermoelectric element group has a corrugated structure consisting of a curved metal plate and P-type and N-type semiconductors, and the thermoelectric element group is inserted into a hole penetrating the substrate. thermoelectric device.
(5)複数の熱電素子によって構成された複数の熱電素
子群に流す電流の制御をオン、オフ制御とし、負荷の大
小に応じて電流を流す前記熱電素子群の数を変化させる
ことを特徴とする熱電装置の制御方法。
(5) The current flowing through a plurality of thermoelectric element groups constituted by a plurality of thermoelectric elements is controlled on and off, and the number of the thermoelectric element groups through which current flows is changed depending on the size of the load. A method for controlling a thermoelectric device.
(6)熱電素子群を構成する熱電素子へ流す電流値が、
前記熱電素子の効率をほぼ最大にする一定値である請求
項5記載の熱電装置の制御方法。
(6) The current value flowing through the thermoelectric elements that make up the thermoelectric element group is
6. The method of controlling a thermoelectric device according to claim 5, wherein the value is a constant value that substantially maximizes the efficiency of the thermoelectric element.
(7)交流を直流に変換する電気回路と、複数の熱電素
子によって構成された複数の熱電素子群に流れる電流の
制御を行う半導体もしくは電気回路とを、前記熱電素子
群が設置された基板面上に配設したことを特徴とする熱
電装置。
(7) An electric circuit that converts alternating current into direct current, and a semiconductor or electric circuit that controls current flowing through a plurality of thermoelectric element groups constituted by a plurality of thermoelectric elements, on the substrate surface on which the thermoelectric element groups are installed. A thermoelectric device characterized in that it is disposed on top.
(8)交流を直流に変換する電気回路と、熱電素子群へ
通する電流を制御する半導体もしくは電気回路とを、熱
電素子群により加熱される側の基板面上に配設した請求
項7記載の熱電装置。
(8) Claim 7, wherein an electric circuit for converting alternating current into direct current and a semiconductor or an electric circuit for controlling current flowing to the thermoelectric element group are arranged on the substrate surface on the side heated by the thermoelectric element group. thermoelectric device.
JP1123239A 1989-05-17 1989-05-17 Thermoelectric device and method of controlling same Pending JPH02303076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1123239A JPH02303076A (en) 1989-05-17 1989-05-17 Thermoelectric device and method of controlling same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1123239A JPH02303076A (en) 1989-05-17 1989-05-17 Thermoelectric device and method of controlling same

Publications (1)

Publication Number Publication Date
JPH02303076A true JPH02303076A (en) 1990-12-17

Family

ID=14855644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1123239A Pending JPH02303076A (en) 1989-05-17 1989-05-17 Thermoelectric device and method of controlling same

Country Status (1)

Country Link
JP (1) JPH02303076A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06509826A (en) * 1991-08-08 1994-11-02 キャタリティック ディスティレーション テクノロジーズ How to remove impurities from petroleum products
JP2000232251A (en) * 1999-02-09 2000-08-22 Nec Corp Electronic cooling device
JP2002243303A (en) * 2001-02-15 2002-08-28 Komatsu Electronics Inc Temperature controller and controlling method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06509826A (en) * 1991-08-08 1994-11-02 キャタリティック ディスティレーション テクノロジーズ How to remove impurities from petroleum products
JP2000232251A (en) * 1999-02-09 2000-08-22 Nec Corp Electronic cooling device
JP2002243303A (en) * 2001-02-15 2002-08-28 Komatsu Electronics Inc Temperature controller and controlling method thereof

Similar Documents

Publication Publication Date Title
US6043423A (en) Thermoelectric device and thermoelectric module
RU2173007C2 (en) Thermoelectric device
US5012325A (en) Thermoelectric cooling via electrical connections
US20060201161A1 (en) Cooling device for electronic component using thermo-electric conversion material
US8008571B2 (en) Thermoelectric composite semiconductor
JP2006294935A (en) High efficiency and low loss thermoelectric module
US5660227A (en) Heat exchanger for high power electrical component
US3411955A (en) Thermoelectric device
WO2022059272A1 (en) Semiconductor device
KR100663117B1 (en) Thermoelectric module
JPH02303076A (en) Thermoelectric device and method of controlling same
US20120111029A1 (en) Ac powered thermoelectric device
JPH077187A (en) Thermoelectric converter
WO2020100749A1 (en) Thermoelectric conversion module
JP2011253945A (en) Peltier module arrangement device and inside of housing cooling device using the same
US20180226559A1 (en) Thermoelectric conversion device
CN216213539U (en) Multilayer thermoelectric semiconductor module with special connection mode
JP3467891B2 (en) Multi-stage electronic cooler
JPH07176796A (en) Thermoelectric converter
KR102122153B1 (en) Thermoelectric module separated between heating part and cooling part
JPH08293628A (en) Thermoelectricity conversion device
JPS5835991A (en) High-density thermoelectric element
JPH02155281A (en) Thermoelectric device
JP2007043075A (en) Thermoelectric conversion device
JPH02130878A (en) Thermoelectric device