JP3467891B2 - Multi-stage electronic cooler - Google Patents

Multi-stage electronic cooler

Info

Publication number
JP3467891B2
JP3467891B2 JP03878695A JP3878695A JP3467891B2 JP 3467891 B2 JP3467891 B2 JP 3467891B2 JP 03878695 A JP03878695 A JP 03878695A JP 3878695 A JP3878695 A JP 3878695A JP 3467891 B2 JP3467891 B2 JP 3467891B2
Authority
JP
Japan
Prior art keywords
stage
heat
thermoelectric conversion
conversion element
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03878695A
Other languages
Japanese (ja)
Other versions
JPH08236820A (en
Inventor
倉 正 人 板
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP03878695A priority Critical patent/JP3467891B2/en
Publication of JPH08236820A publication Critical patent/JPH08236820A/en
Application granted granted Critical
Publication of JP3467891B2 publication Critical patent/JP3467891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多段電子クーラに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-stage electronic cooler.

【0002】[0002]

【従来の技術】この種の従来技術としては、特開平2−
10781号公報に開示されるようなものが知られてい
る。この公報に開示される多段電子クーラは、絶縁体に
より形成される基板と、基板を介して順次階段状にして
接続されペルチェ効果を持つ熱電変換素子とから成るも
のである。これは、下段から上段にかけて熱電変換素子
数が減少し且つ基板の大きさも小さくされたものであ
る。
2. Description of the Related Art As a conventional technique of this kind, Japanese Patent Laid-Open No.
The one disclosed in Japanese Patent No. 10781 is known. The multi-stage electronic cooler disclosed in this publication is composed of a substrate formed of an insulator and a thermoelectric conversion element having a Peltier effect which is connected in a stepwise manner through the substrate. This is because the number of thermoelectric conversion elements is reduced and the size of the substrate is reduced from the lower stage to the upper stage.

【0003】[0003]

【発明が解決しようとする課題】上記した技術では、下
段に行くに連れて基板の面積が大きくなっていくため、
上から2段目以降の吸熱面の全面に1つ上の段の放熱面
が接しないために、最上段以外の段の吸熱面が露出して
いるため、無駄な吸熱が生じてしまい、放熱面と吸熱面
との熱伝導が効率よく行われない。
In the above-mentioned technique, the area of the substrate increases as it goes to the lower stage.
Since the heat-dissipating surface of the upper step is not in contact with the entire heat-absorbing surface of the second and subsequent steps from the top, the heat-absorbing surfaces of the steps other than the uppermost step are exposed, resulting in wasteful heat absorption and heat dissipation. The heat conduction between the surface and the heat absorbing surface is not performed efficiently.

【0004】本発明は、基板の大きさを揃え、熱電変換
素子数を同等とすることによって、基板に生じる熱伝導
損失を防止することを課題とする。
An object of the present invention is to prevent the heat conduction loss generated in the substrate by making the sizes of the substrates uniform and making the number of thermoelectric conversion elements the same.

【0005】[0005]

【課題を解決するための手段】上記した課題を解決する
ために請求項1の発明において講じた手段は、絶縁体よ
り形成される基板と、基板を介して順次重ねられて接続
されペルチェ効果を持つ熱電変換素子とから成る多段電
子クーラにおいて、基板の大きさを揃えると共、夫々の
段に配設される熱電素子数を同等とし、吸熱側の段から
放熱側の段にかけて熱電変換素子に供給される電流量を
順次多くしたことである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the means taken in the invention of claim 1 has a substrate formed of an insulator and a Peltier effect which is sequentially stacked and connected through the substrate. In a multi-stage electronic cooler consisting of thermoelectric conversion elements, the number of thermoelectric elements arranged in each stage is made equal, and the thermoelectric conversion elements are arranged from the heat absorbing side stage to the heat radiating side stage while making the sizes of the substrates uniform. That is, the amount of current supplied is increased successively.

【0006】請求項2の発明において講じた手段は、一
つの電源を吸熱側の段から放熱側の段にかけて整数倍で
増加していく電流で制御されるように並列接続して熱電
変換素子に電流を供給したことである。
According to the second aspect of the present invention, one power source is connected in parallel to a thermoelectric conversion element such that one power source is connected in parallel so as to be controlled by a current that increases by an integral multiple from the heat absorbing side stage to the heat radiating side stage. That is, the electric current is supplied.

【0007】[0007]

【作用】上記した請求項1の手段によれば、電流を熱電
変換素子に供給すると一方の面では放熱し他方の面では
吸熱が開始される。例えば上段に位置する熱電変換素子
では上面が吸熱され、下面は次段の上面により熱が吸熱
される。次段の熱電変換素子は、同様に次の熱電変換素
子の吸熱面により熱が吸熱されていく。又、夫々の段に
配設される基板の大きさ及び熱電変換素子数が同等とな
るように構成されているため、吸熱面では放熱面と接触
しない部位がなくなり吸熱面の吸熱損失を防止できる。
又、放熱面から熱を吸熱する吸熱面の吸熱量は放熱側の
段に行くに連れて増大することが必要であるが、吸熱側
の段から放熱側の段にかけて熱電変換素子に供給される
電流量が増加するように並列接続したことにより、熱電
変換素子のペルチェ効果を向上させることができる。
According to the above-mentioned means of claim 1, when current is supplied to the thermoelectric conversion element, heat is radiated on one surface and heat absorption is started on the other surface. For example, in the thermoelectric conversion element located in the upper stage, the upper surface absorbs heat, and the lower surface absorbs heat by the upper surface in the next stage. In the thermoelectric conversion element in the next stage, heat is similarly absorbed by the heat absorption surface of the next thermoelectric conversion element. Further, since the size of the substrates arranged in each stage and the number of thermoelectric conversion elements are made equal, there is no part of the heat absorbing surface that does not contact the heat radiating surface, and heat absorption loss of the heat absorbing surface can be prevented. .
Further, the amount of heat absorbed by the heat absorbing surface that absorbs heat from the heat radiating surface needs to increase as it goes to the heat radiating side, but is supplied to the thermoelectric conversion element from the heat absorbing side to the heat radiating side. The Peltier effect of the thermoelectric conversion element can be improved by connecting in parallel so that the amount of current increases.

【0008】請求項2の手段によれば、吸熱側の段から
放熱側の段にかけて整数倍で増加していく電流で制御さ
れるように並列接続することにより、一つの電源により
電流を供給することができ、且つ、放熱側の段に行くに
連れ熱電変換素子全体ににかかる電圧が増加することか
ら、放熱面から熱を吸熱する吸熱面の吸熱効率を向上さ
せることができる。
According to the means of claim 2, the current is supplied from one power source by connecting in parallel so as to be controlled by the current which increases by an integral multiple from the stage on the heat absorption side to the stage on the heat radiation side. In addition, since the voltage applied to the entire thermoelectric conversion element increases as it goes to the stage on the heat dissipation side, it is possible to improve the heat absorption efficiency of the heat absorption surface that absorbs heat from the heat dissipation surface.

【0009】[0009]

【実施例】本発明の一実施例を図面に基づいて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings.

【0010】図1は多段電子クーラ10の斜視図を示
し、図2は回路図を示す。図に示されるように、多段電
子クーラ10は、アルミナセラミック、窒化アルミ等の
材質から形成される基板11上に例えば銅からなる第1
電極12をエッチングなど周知の方法によってパターニ
ングする。又、第1電極12上にはP型及びN型半導体
(熱電素子)13の一面が半田付けなどの方法によって
接合される。又、P型及びN型半導体13の他面には同
じく半田付けなどの方法によって第2電極14が接合さ
れる。この際、P型及びN型半導体13は、第1電極1
2及び第2電極14によって電気的に直列に接続され、
熱電変換素子15が構成される。本実施例では、熱電変
換素子15は図1に示すように3段から成っている。
又、図2に示すように、1段目(最上段)では、図示し
ない電源に接続された入力電極16に回路17が並列接
続されており、この回路17により16個の半導体13
に電流が供給される。又、2段目は入力電極16から2
つの回路18が並列接続されており、2段目の熱電変換
素子15は2つの回路18によりP型及びN型半導体1
3に電流が供給される。又、3段目は入力電極16から
4の回路19が並列接続されており、3段目の熱電変換
素子15は4つの回路19によりP型及びN型半導体1
3に電流が供給される。又、3段目の熱電変換素子の下
面には、図示しない放熱フィン等の冷却手段が配設され
る。
FIG. 1 shows a perspective view of a multi-stage electronic cooler 10, and FIG. 2 shows a circuit diagram. As shown in the figure, the multi-stage electronic cooler 10 includes a first substrate made of, for example, copper on a substrate 11 made of a material such as alumina ceramic or aluminum nitride.
The electrode 12 is patterned by a known method such as etching. Further, one surface of the P-type and N-type semiconductors (thermoelectric elements) 13 is bonded onto the first electrode 12 by a method such as soldering. Also, the second electrode 14 is joined to the other surface of the P-type and N-type semiconductors 13 by a method such as soldering. At this time, the P-type and N-type semiconductors 13 are connected to the first electrode 1
2 and the second electrode 14 electrically connected in series,
The thermoelectric conversion element 15 is configured. In the present embodiment, the thermoelectric conversion element 15 has three stages as shown in FIG.
Further, as shown in FIG. 2, in the first stage (uppermost stage), a circuit 17 is connected in parallel to an input electrode 16 connected to a power source (not shown).
Is supplied with current. The second stage is from the input electrode 16 to 2
Two circuits 18 are connected in parallel, and the thermoelectric conversion element 15 of the second stage is composed of two circuits 18 for the P-type and N-type semiconductor 1
Current is supplied to 3. Further, the circuits 19 of the input electrodes 16 to 4 are connected in parallel in the third stage, and the thermoelectric conversion element 15 in the third stage is composed of the four circuits 19 to form the P-type and N-type semiconductors 1.
Current is supplied to 3. On the lower surface of the third stage thermoelectric conversion element, cooling means such as a radiation fin (not shown) is provided.

【0011】多段電子クーラ10を作動させるために
は、熱電変換素子15に電力を供給しなければならな
い。入力電極16が基板11上に半田付けによって接続
されることにより、各熱電変換素子15に電流を流すこ
とができる。入力電極16から電圧がかかると各回路に
同電圧がかかるが、1段目は1つの回路17が接続され
ているため、16個の半導体13が電気的に直列に接続
される。これにより、上段の熱電変換素子15の上面で
は吸熱が開始され下面では放熱が開始される。2段目
は、2つの回路18が接続されているため、16個の半
導体13は8個づつ電気的に直列に接続され、2段目の
熱電変換素子15は、1段目の熱電変換素子より2倍の
電流が供給されることになる。これにより、2段目の上
面での吸熱量は増加し1段目の放熱面を充分冷却するこ
とができる。3段目は、4つの回路19が接続されてい
るため、16個の半導体13は4個づつ電気的に接続さ
れ、3段目の熱電変換素子15は、2段目の熱電変換素
子より2倍の電流が供給されることになる。これによ
り、3段目の上面での吸熱量は増加し、放熱量が増大し
た2段目の放熱面を充分冷却することができる。又、3
段目の下面は、前述した図示しない冷却手段により充分
冷却される。更に、吸熱と放熱とのバランスを良くし
て、ロスを少なくするためには各段の半導体のアスペク
ト比(面積と高さとの比)を変えて微調整することが好
ましい。尚、本実施例では、多段電子クーラ10の最上
面と最下面とに基板が配設されているが、基板が無い場
合にも同様に使用することができる。
In order to operate the multi-stage electronic cooler 10, electric power must be supplied to the thermoelectric conversion element 15. By connecting the input electrode 16 to the substrate 11 by soldering, a current can be passed through each thermoelectric conversion element 15. When a voltage is applied from the input electrode 16, the same voltage is applied to each circuit, but since one circuit 17 is connected in the first stage, 16 semiconductors 13 are electrically connected in series. As a result, heat absorption starts on the upper surface of the upper thermoelectric conversion element 15 and heat dissipation starts on the lower surface. Since two circuits 18 are connected in the second stage, eighteen semiconductors 13 are electrically connected in series, and the second stage thermoelectric conversion element 15 is the first stage thermoelectric conversion element. A double current will be supplied. As a result, the amount of heat absorbed on the upper surface of the second stage increases, and the heat radiating surface of the first stage can be cooled sufficiently. Since four circuits 19 are connected in the third stage, fourteen semiconductors 13 are electrically connected in fours, and the thermoelectric conversion element 15 in the third stage is more than the thermoelectric conversion element in the second stage. Double the current will be supplied. As a result, the amount of heat absorbed on the upper surface of the third tier increases, and the radiating surface of the second tier with the increased amount of heat radiation can be sufficiently cooled. Again 3
The lower surface of the step is sufficiently cooled by the aforementioned cooling means (not shown). Further, in order to improve the balance between heat absorption and heat dissipation and reduce loss, it is preferable to finely adjust by changing the aspect ratio (ratio between area and height) of the semiconductor in each stage. In this embodiment, the substrates are arranged on the uppermost surface and the lowermost surface of the multi-stage electronic cooler 10, but the same can be used when there is no substrate.

【0012】以上説明したように、基板11の大きさを
揃え且つ各段に配設される半導体13の数を同数とする
ことにより、吸熱面では放熱面と接触しない部位がなく
なり吸熱損失を防止することができる。又、下段(放熱
側)に位置する熱電変換素子15の吸熱量を増加させる
ために、最上段から下段に行くに連れて流される電流量
を増加させることにより、上段に位置する放熱面を充分
冷却できる吸熱量を得ることができる。
As described above, by making the size of the substrates 11 uniform and making the number of semiconductors 13 arranged in each step the same, there is no part of the heat absorbing surface that does not contact the heat radiating surface and heat absorption loss is prevented. can do. Further, in order to increase the amount of heat absorbed by the thermoelectric conversion element 15 located on the lower stage (heat radiation side), the amount of current flowing from the uppermost stage to the lower stage is increased, so that the heat radiation surface located on the upper stage is sufficiently An endotherm that can be cooled can be obtained.

【0013】[0013]

【発明の効果】上記した請求項1の多段電子クーラによ
れば、電流を熱電変換素子に供給すると一方の面では放
熱し他方の面では吸熱が開始される。夫々の段に配設さ
れる基板の大きさ及び熱電変換素子数が同等となるよう
に構成されているため、吸熱面では放熱面と接触しない
部位がなくなり吸熱面の吸熱損失を防止できる。又、放
熱面から熱を吸熱する吸熱面の吸熱量は放熱側の段に行
くに連れて増大していくことが必要であるが、吸熱側の
段から放熱側の段にかけて熱電変換素子に供給される電
流量が増加するように並列接続したことから、吸熱側の
段より放熱側の段に位置する熱電変換素子のペルチェ効
果を向上させることができる。
According to the multistage electronic cooler of the first aspect, when current is supplied to the thermoelectric conversion element, heat is radiated on one surface and heat absorption is started on the other surface. Since the size of the substrates and the number of thermoelectric conversion elements arranged in each stage are made equal, there is no part of the heat absorbing surface that does not contact the heat radiating surface, and heat absorption loss of the heat absorbing surface can be prevented. Also, the amount of heat absorbed by the heat-absorbing surface that absorbs heat from the heat-dissipating surface needs to increase as it goes to the heat-dissipating side, but is supplied to the thermoelectric conversion element from the heat-absorbing side to the heat-dissipating side. Since they are connected in parallel so as to increase the amount of current generated, it is possible to improve the Peltier effect of the thermoelectric conversion elements located in the stage on the heat radiation side than the stage on the heat absorption side.

【0014】請求項2の多段電子クーラによれば、吸熱
側の段から放熱側の段にかけて整数倍で増加していく電
流で制御されるように並列接続することにより、一つの
電源により電流を供給することができ、且つ、下段に行
くに連れ熱電変換素子全体ににかかる電圧が増加するこ
とから、下段に位置する熱電変換素子の吸熱効率を向上
させることができる。
According to the multi-stage electronic cooler of the second aspect, by connecting in parallel so as to be controlled by the current that increases by an integral multiple from the heat absorbing side stage to the heat radiating side stage, the current is supplied by one power source. Since the voltage can be supplied and the voltage applied to the entire thermoelectric conversion element increases as it goes to the lower stage, the heat absorption efficiency of the thermoelectric conversion element located at the lower stage can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る多段電子クーラの斜視図
を示す。
FIG. 1 shows a perspective view of a multi-stage electronic cooler according to an embodiment of the present invention.

【図2】本発明の実施例に係る多段電子クーラの回路図
を示す。
FIG. 2 shows a circuit diagram of a multi-stage electronic cooler according to an embodiment of the present invention.

【符合の説明】[Explanation of sign]

10・・・多段電子クーラ 11・・・基板 13・・・P型及びN型半導体(熱電素子) 15・・・熱電変換素子 10 ... Multi-stage electronic cooler 11 ... Substrate 13 ... P-type and N-type semiconductors (thermoelectric elements) 15 ... Thermoelectric conversion element

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 絶縁体より形成される基板と、ペルチェ
効果を持ち前記基板を介して順次重ねられて接続される
熱電変換素子とから成る多段電子クーラにおいて、前記
基板の大きさを揃えると共に、夫々の段に配設される熱
電素子数を同等とし、吸熱側の段から放熱側の段にかけ
て前記熱電変換素子に供給される電流量を順次多くする
ことを特徴とした多段電子クーラ。
1. A multi-stage electronic cooler comprising a substrate formed of an insulator and a thermoelectric conversion element which has a Peltier effect and is sequentially stacked and connected via the substrate. A multi-stage electronic cooler characterized in that the number of thermoelectric elements arranged in each stage is made equal, and the amount of current supplied to the thermoelectric conversion elements is increased sequentially from the stage on the heat absorption side to the stage on the heat radiation side.
【請求項2】 一つの電源により吸熱側の段から放熱側
の段にかけて整数倍で増加していく電流で制御されるよ
うに並列接続して前記熱電変換素子に電流を供給したこ
とを特徴とした請求項1記載の多段段電子クーラ。
2. A single power source is connected in parallel so as to be controlled by a current that increases by an integral multiple from the heat absorption side stage to the heat radiation side stage, and the current is supplied to the thermoelectric conversion element. The multi-stage electronic cooler according to claim 1.
JP03878695A 1995-02-27 1995-02-27 Multi-stage electronic cooler Expired - Fee Related JP3467891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03878695A JP3467891B2 (en) 1995-02-27 1995-02-27 Multi-stage electronic cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03878695A JP3467891B2 (en) 1995-02-27 1995-02-27 Multi-stage electronic cooler

Publications (2)

Publication Number Publication Date
JPH08236820A JPH08236820A (en) 1996-09-13
JP3467891B2 true JP3467891B2 (en) 2003-11-17

Family

ID=12534993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03878695A Expired - Fee Related JP3467891B2 (en) 1995-02-27 1995-02-27 Multi-stage electronic cooler

Country Status (1)

Country Link
JP (1) JP3467891B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945692A4 (en) * 1997-10-06 2004-12-15 Matsushita Refrigeration Manifold incorporating a thermoelectric module and a cooling device using the thermoelectric module
JP2000274871A (en) 1999-03-19 2000-10-06 Matsushita Refrig Co Ltd Thermoelectric unit and thermoelectric manifold
JP2000274872A (en) 1999-03-19 2000-10-06 Matsushita Refrig Co Ltd Manifold incorporating thermoelectric module
JP4669395B2 (en) * 2003-06-30 2011-04-13 株式会社ダ・ビンチ Peltier device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH08236820A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
US6804966B1 (en) Thermal dissipation assembly employing thermoelectric module with multiple arrays of thermoelectric elements of different densities
US5724818A (en) Thermoelectric cooling module and method for manufacturing the same
US6563211B2 (en) Semiconductor device for controlling electricity
JPH08335782A (en) Multilayer board
US20060005944A1 (en) Thermoelectric heat dissipation device and method for fabricating the same
US20090153007A1 (en) Light source module and method for manufacturing same
US8166769B2 (en) Self-cooled vertical electronic component
US4687879A (en) Tiered thermoelectric unit and method of fabricating same
JP2000174180A (en) Semiconductor device
JP3869467B2 (en) Semiconductor laser source
CN110660762A (en) Heat transfer structure, power electronic module, method for manufacturing power electronic module, and cooling element
JP3467891B2 (en) Multi-stage electronic cooler
JP3510430B2 (en) Thermoelectric converter
JPS6377154A (en) Semiconductor device for electronics
JPH11307826A (en) Thermionic module
JP2002043487A (en) Heat pipe type semiconductor stack
JP2002164485A (en) Semiconductor module
JPH08107166A (en) Heat dissipating fin
JP2010199373A (en) Thermoelectric module
JPH04101472A (en) Cooler
JP2558505B2 (en) Multi-stage electronic cooler
JPH0714029B2 (en) Power semiconductor device
JP3644161B2 (en) Power semiconductor module
US6081039A (en) Pressure assembled motor cube
JPH07176796A (en) Thermoelectric converter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees