JPS63299383A - Thermoelectric converting module - Google Patents

Thermoelectric converting module

Info

Publication number
JPS63299383A
JPS63299383A JP62135045A JP13504587A JPS63299383A JP S63299383 A JPS63299383 A JP S63299383A JP 62135045 A JP62135045 A JP 62135045A JP 13504587 A JP13504587 A JP 13504587A JP S63299383 A JPS63299383 A JP S63299383A
Authority
JP
Japan
Prior art keywords
thermoelectric
heat
thermoelectric conversion
thermoelectric converting
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62135045A
Other languages
Japanese (ja)
Inventor
Masanori Ogawa
正則 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62135045A priority Critical patent/JPS63299383A/en
Publication of JPS63299383A publication Critical patent/JPS63299383A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To decrease the quantity of heat transferred from the heat generating face to the cooling face and to improve the thermoelectric converting efficiency, by providing a through hole at the center of each thermoelectric converting element for increasing the area of thermoelectric converting surface, and passing air or insulating fluid through the through hole. CONSTITUTION:Semiconductor thermoelectric converting elements 5 are composed of a Bi-Te thermoelectric material and integrated by means of copper plates 2 and 2'. The elements 5 are fixed by a ceramic plate. Each of the elements 5 has a through hole 6 of phi 2.5 mm at the center thereof. By passing cooling air through the through holes 6, it is possible to decrease heat loss within the elements and heat transfer loss from the heat generating face to the cooling face. Thereby, the thermoelectric converting efficiency can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ペルチェ効果あるいはゼーベック効果を利用
し、熱電冷却あるいは熱電発電を行なう熱電変換モジュ
ール(こ−するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thermoelectric conversion module that performs thermoelectric cooling or thermoelectric power generation by utilizing the Peltier effect or the Seebeck effect.

従来の技術 従来のこの種の熱電変換モジュールは、例えば第2図の
ような構成になっていた。
2. Description of the Related Art A conventional thermoelectric conversion module of this type has a configuration as shown in FIG. 2, for example.

すなわち、熱電半導体素子1はB、 −7,系の固溶体
であり、一段的には数mm角の長方体である。
That is, the thermoelectric semiconductor element 1 is a solid solution of B, -7, system, and is a rectangular parallelepiped of several mm square.

この熱電半導体素子1はP型とN型がCu等の導体板2
により電気的に交互に接続され2板のセラミック板3,
3′の間に格子状に固定されており、2本の電力用端子
4,4′が、電気的接続端に取付けられていた。
This thermoelectric semiconductor element 1 has a P-type conductor plate 2 and an N-type conductor plate 2 made of Cu or the like.
two ceramic plates 3 which are electrically connected alternately by
3' in a grid pattern, and two power terminals 4, 4' were attached to the electrical connection ends.

以上のように構成された熱電変換モジュールについて、
ます熱電冷却の場合についてその動作について説明する
(なお、ペルチェ効果およびゼーベック効果そのものの
解説および、熱電変換モジュールの詳細な説明は、たと
えば、梶用武信ほか著「低熱落差利用熱電発電」電子技
術総合研究所調査報告 第208号(工業技術院)(昭
和58年)等に解説されている。)。
Regarding the thermoelectric conversion module configured as above,
We will now explain the operation of thermoelectric cooling (for an explanation of the Peltier effect and Seebeck effect themselves, as well as a detailed explanation of the thermoelectric conversion module, see, for example, "Thermoelectric power generation using low heat drop" by Takenobu Kajiyo et al. (Explained in Research Institute Investigation Report No. 208 (Agency of Industrial Science and Technology) (1981), etc.).

2本の電力用端子4,4′間に直流電圧を印加すると、
電気的に接続されたそれぞれの熱電半導体素子1と導体
板2間において、電子の移動に伴って、個々の電子が両
者の金属の電子に対するエネルギー差に相等する熱エネ
ルギーの吸熱と放熱を行なうため、結果的に熱電変換モ
ジュールの片面のセラミック板3が吸熱冷却され、他面
のセラミック板3′において放熱される。このため、熱
電変換モジュールの片面が冷却面、他面が発熱面となり
、冷却面から発熱面への熱移動が起こる。この時、2本
の電力用端子4,4′間に印加する直流電圧の極性を反
転すれば、冷却面と発熱面が逆転することも、周知であ
る。
When a DC voltage is applied between the two power terminals 4 and 4',
As electrons move between each electrically connected thermoelectric semiconductor element 1 and conductor plate 2, each electron absorbs and radiates thermal energy equivalent to the energy difference with respect to the electrons of both metals. As a result, the ceramic plate 3 on one side of the thermoelectric conversion module is endothermically cooled, and the heat is radiated through the ceramic plate 3' on the other side. Therefore, one side of the thermoelectric conversion module becomes a cooling surface and the other side becomes a heat generating surface, and heat transfer occurs from the cooling surface to the heat generating surface. At this time, it is well known that if the polarity of the DC voltage applied between the two power terminals 4 and 4' is reversed, the cooling surface and the heat generating surface can be reversed.

また、逆に熱電変換モジュールの片面を加熱、他面を冷
却し温度差を設けることにより、いわゆるゼーベック効
果に熱電発電が起こり、電力用端子4,4′間に直流電
力が発生するものである。
Conversely, by heating one side of the thermoelectric conversion module and cooling the other side to create a temperature difference, thermoelectric power generation occurs due to the so-called Seebeck effect, and DC power is generated between the power terminals 4 and 4'. .

このような熱電変換モジュールは、温度応答性が早い、
モジュール化が容易、強度的に強い、保守が容易等の6
々の長所を持つ反面、イニシャルコストが高い点、運転
効率が悪い等の短所を持っているため、その用途は限定
されていたのが現状である。特に、これらの短所が解決
されれば、空調・低熱落差発電を始め各種の分野に広く
利用されるとの報告が数多く提起されている。
Such thermoelectric conversion modules have fast temperature response,
Easy modularization, strong strength, easy maintenance, etc. 6
Although they have many advantages, they also have disadvantages such as high initial cost and poor operating efficiency, so their applications are currently limited. In particular, many reports have been made that if these shortcomings are resolved, it will be widely used in various fields including air conditioning and low heat drop power generation.

しかしながら、現状での  ゛      熱で一般的
に実用の範囲ではない。
However, the current level of heat is generally beyond the scope of practical use.

特に、熱電冷却時の効率の低下を起こす要因を第3図を
用いて説明する。
In particular, factors that cause a decrease in efficiency during thermoelectric cooling will be explained with reference to FIG.

素子対のペルチェ係数α、放熱側の素子の接合部の温度
Th 、熱電変換モジュールへの電流1を用いて、熱電
冷却(ペルチェ効果)による吸熱量QPは、 QP=αITh      ・・・・・・・・・・・・
・・・(1)となるが、素子を流れる電流1によるジュ
ール熱の損失QJ として、素子の抵抗値をRとすると
、−12・・・−・・・・・・・・・・・(2)Q、−
jlR さらに、放熱側から吸熱側へ伝熱する伝熱損失QKとし
て、素子の材料および構造により決定される伝熱係数に
を用いて、 Q −に(Th−Tc)   ・・・・・・・・・・・
・・・(31に− と表わされる。
Using the Peltier coefficient α of the element pair, the temperature Th of the junction of the elements on the heat radiation side, and the current 1 to the thermoelectric conversion module, the heat absorption amount QP due to thermoelectric cooling (Peltier effect) is: QP = αITh ...・・・・・・
...(1), but if the loss of Joule heat due to current 1 flowing through the element is QJ, and the resistance value of the element is R, -12... 2) Q, -
jlR Furthermore, as the heat transfer loss QK that transfers heat from the heat radiation side to the heat absorption side, using the heat transfer coefficient determined by the material and structure of the element, Q - (Th - Tc) ......・・・・・・
...(In 31, it is expressed as -.

以上、(1)〜(3)式をプロットしたのが第3図であ
り、実際上利用可能となる熱電冷却能力Qは、Q=QP
−Q、−Qに 一α+Th −!−12R−t (rh−To)・(4
)となり、電流値1により極大値Qmを示すことが明ら
かである。この極大値付近でのC0r0.7近傍である
Figure 3 plots the equations (1) to (3) above, and the practically usable thermoelectric cooling capacity Q is Q = QP
-Q, -Q is one α+Th -! -12R-t (rh-To)・(4
), and it is clear that a current value of 1 indicates the local maximum value Qm. C0r is around 0.7 near this maximum value.

話 ここで、QJを小さくするために曽抗値Rを物理的構造
(形状)により低下させると、にが太きくなると言った
関係があり、容易にQの改善は見込まれない。
Here, if the resistance value R is lowered due to the physical structure (shape) in order to reduce QJ, there is a relationship in which the tooth becomes thicker, so it is not easy to expect an improvement in Q.

以上、熱電冷却を中心に説明したが、熱電発電において
も同様の結果を示している。
Although the explanation above has focused on thermoelectric cooling, similar results have been shown in thermoelectric power generation as well.

発明が解決しようとする問題点 このよう→、熱電変換モジュールではジュール熱が低温
画に伝熱する点および伝熱損失が熱電効果を低下させる
という問題点を有していた。
Problems to be Solved by the Invention As described above, the thermoelectric conversion module has the problem that Joule heat is transferred to the low-temperature image and that the heat transfer loss reduces the thermoelectric effect.

問題点を解決するための手段 上記問題点を解決するために、本発明の熱電変換モジュ
ールは、熱電半導体素子に貫通穴を設けたちのである。
Means for Solving the Problems In order to solve the above problems, the thermoelectric conversion module of the present invention provides a through hole in the thermoelectric semiconductor element.

作   用 本発明の熱電変換モジュールは、熱電変換素子に貫通穴
を設け、熱交換面積を増加し、空気または絶縁性の流体
を通すことにより、熱電変換素子内部で発生するジュー
ル熱を放出すると共に、発熱面から冷却面へ伝熱する熱
量を減少することにより、熱電変換モジュールとして効
率の向上を図るものである。
Function The thermoelectric conversion module of the present invention provides a through hole in the thermoelectric conversion element to increase the heat exchange area and allow air or an insulating fluid to pass therethrough, thereby releasing Joule heat generated inside the thermoelectric conversion element. By reducing the amount of heat transferred from the heat generating surface to the cooling surface, the efficiency of the thermoelectric conversion module is improved.

いま、第4図のような簡易素子モデルを用いて説明する
。第4図において、(a)は従来の熱電変換素子であり
、断面積S1長さlの構造であり、体積抵抗率ρ、熱伝
導率にの均一な半導体熱電変換素子である。一方、(b
)は物性的性質は同一であるが、素子の中央部に長さ0
.51.断面積0.55の貫通穴を持つ半導体熱電変換
素子であり、(aJ・(b)とも上面がTh 、下面が
Tc とすると、前記の(1)〜(3)式により、第1
表のような熱損失となる。
Now, explanation will be given using a simple element model as shown in FIG. In FIG. 4, (a) is a conventional thermoelectric conversion element, which has a structure with a cross-sectional area S1 and a length l, and is a semiconductor thermoelectric conversion element with uniform volume resistivity ρ and thermal conductivity. On the other hand, (b
) have the same physical properties, but there is a length of 0 at the center of the element.
.. 51. It is a semiconductor thermoelectric conversion element having a through hole with a cross-sectional area of 0.55, and if (aJ and (b) both have an upper surface of Th and a lower surface of Tc, the first
The heat loss is as shown in the table.

以下余白 第   1   表 このモデルから明らかに、同一外形の半導体熱電変換素
子を考えた場合には、ジュール熱損失は25%un s
伝熱損失はHとなり、熱放出する表面積が約1.5倍と
なっていることがわかる。
Table 1: Table 1 It is clear from this model that when considering semiconductor thermoelectric conversion elements with the same external shape, the Joule heat loss is 25% un s
It can be seen that the heat transfer loss is H, and the surface area from which heat is released is approximately 1.5 times larger.

すなわち、表面積の増加分と伝熱損失の低下分により熱
損失を低減することが可能なことがわかる。また、ジュ
ール熱の増加分については、貫通穴の両側部分を太くす
ることに低減することができる。この時、当然伝熱損失
は増加するが、表面積比は変らないため、効率の向上が
見込まれるものである。
That is, it can be seen that heat loss can be reduced by an increase in surface area and a decrease in heat transfer loss. Further, the increase in Joule heat can be reduced by making both side portions of the through hole thicker. At this time, heat transfer loss naturally increases, but since the surface area ratio remains unchanged, an improvement in efficiency is expected.

実施例 以下本発明の一実施例を示す。Example An embodiment of the present invention will be shown below.

第1図は、本発明における熱電変換モジュールの素子の
斜視図であり、図中半導体熱電変換素子5は、El+ 
−To  系の熱電材料であり、断面形状が3 X 5
 mmで長さ8rnrn程度のものである。この半導体
熱電変換素子5は電気的に接続する銅板2.2′により
結合されている。さらに、これらの半導体熱電変換素子
5は、セラミック板(図示せず)により間延されている
。この半導体熱電変換素子5は、それぞれ2.5 l 
mmの貫通穴6を中央部に設けている。
FIG. 1 is a perspective view of an element of a thermoelectric conversion module according to the present invention, and in the figure, a semiconductor thermoelectric conversion element 5 is
-To-based thermoelectric material with a cross-sectional shape of 3 x 5
The length is approximately 8rnrn in mm. This semiconductor thermoelectric conversion element 5 is connected by an electrically connected copper plate 2.2'. Furthermore, these semiconductor thermoelectric conversion elements 5 are separated by ceramic plates (not shown). Each of the semiconductor thermoelectric conversion elements 5 has a capacity of 2.5 l.
A through hole 6 with a diameter of mm is provided in the center.

この熱電変換モジュールの貫通穴6に通風冷却すること
により、素子内部で発生する熱損失および発熱面から冷
却面への伝熱損失が減少し、熱電変換効率の向上が図れ
る。
By ventilation cooling through the through holes 6 of this thermoelectric conversion module, heat loss generated inside the element and heat transfer loss from the heat generating surface to the cooling surface are reduced, and thermoelectric conversion efficiency can be improved.

なお、本実施例において貫通穴6を円形で1個としたが
、他の形状で複数設けても良い。また、貫通穴に風を送
ったが、絶縁油等で冷却してもよい。
In this embodiment, one circular through hole 6 is provided, but a plurality of through holes 6 may be provided in other shapes. Further, although air was sent to the through hole, cooling may be performed using insulating oil or the like.

発明の効果 以上のように本発明は、熱電変換素子Cと貫通穴を設け
ることにより、熱電変換効率の向上ができ、熱電変換の
応用分野の拡大を図ることが可能となるものである。
Effects of the Invention As described above, in the present invention, by providing the thermoelectric conversion element C and the through hole, the thermoelectric conversion efficiency can be improved and the field of application of thermoelectric conversion can be expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における熱電変換素子の
斜視図、第2図は従来例における熱電変換上ジュールの
一部断面斜視図、第3図は熱電変5・・・・・・熱電変
換素子、6・・・・・貫通穴。 代理人の氏名 弁理士 中 尾 敏 男 ほか18第 
■ 図 第 2 図
FIG. 1 is a perspective view of a thermoelectric conversion element according to a first embodiment of the present invention, FIG. 2 is a partial cross-sectional perspective view of a thermoelectric conversion element in a conventional example, and FIG. 3 is a thermoelectric conversion element 5...・Thermoelectric conversion element, 6...through hole. Name of agent: Patent attorney Toshio Nakao et al. 18th
■Figure 2

Claims (1)

【特許請求の範囲】[Claims] 複数の熱電半導体素子を電気的に接続して熱電変換モジ
ュールを構成し、一部もしくはすべての熱電半導体素子
に、それぞれ熱流と直交する方向に少なくともひとつ以
上の貫通穴を設けた熱電変換モジュール。
A thermoelectric conversion module in which a plurality of thermoelectric semiconductor elements are electrically connected to form a thermoelectric conversion module, and some or all of the thermoelectric semiconductor elements are each provided with at least one through hole in a direction perpendicular to heat flow.
JP62135045A 1987-05-29 1987-05-29 Thermoelectric converting module Pending JPS63299383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135045A JPS63299383A (en) 1987-05-29 1987-05-29 Thermoelectric converting module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135045A JPS63299383A (en) 1987-05-29 1987-05-29 Thermoelectric converting module

Publications (1)

Publication Number Publication Date
JPS63299383A true JPS63299383A (en) 1988-12-06

Family

ID=15142646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135045A Pending JPS63299383A (en) 1987-05-29 1987-05-29 Thermoelectric converting module

Country Status (1)

Country Link
JP (1) JPS63299383A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006246A1 (en) * 2011-07-07 2013-01-10 Corning Incorporated A thermoelectric element design
JP2013545294A (en) * 2010-10-22 2013-12-19 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Semiconductor element made of thermoelectric material used for thermoelectric module
FR3022075A1 (en) * 2014-06-04 2015-12-11 Valeo Systemes Thermiques ELEMENTS, MODULE AND THERMO-ELECTRIC DEVICE, PARTICULARLY FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE
WO2019021703A1 (en) * 2017-07-27 2019-01-31 国立研究開発法人産業技術総合研究所 Thermoelectric power generation module for calibration

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545294A (en) * 2010-10-22 2013-12-19 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Semiconductor element made of thermoelectric material used for thermoelectric module
WO2013006246A1 (en) * 2011-07-07 2013-01-10 Corning Incorporated A thermoelectric element design
FR3022075A1 (en) * 2014-06-04 2015-12-11 Valeo Systemes Thermiques ELEMENTS, MODULE AND THERMO-ELECTRIC DEVICE, PARTICULARLY FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE
WO2019021703A1 (en) * 2017-07-27 2019-01-31 国立研究開発法人産業技術総合研究所 Thermoelectric power generation module for calibration
JPWO2019021703A1 (en) * 2017-07-27 2020-05-28 国立研究開発法人産業技術総合研究所 Calibration thermoelectric generator module
JP2021078351A (en) * 2017-07-27 2021-05-20 国立研究開発法人産業技術総合研究所 Thermoelectric power generation module for calibration

Similar Documents

Publication Publication Date Title
JP4781606B2 (en) Thermoelectric module, method of thermally changing material in thermoelectric module, and method of manufacturing thermoelectric module
US3899359A (en) Thermoelectric generator
US8008571B2 (en) Thermoelectric composite semiconductor
US20130340801A1 (en) Thermoelectric Power Generation System Using Gradient Heat Exchanger
US20070199587A1 (en) Thermoelectric Conversion Module
JP2006294935A (en) High efficiency and low loss thermoelectric module
US20180287517A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
JPS63299383A (en) Thermoelectric converting module
JPH0539966A (en) Heat pump device
JPH0430586A (en) Thermoelectric device
JP2563524B2 (en) Thermoelectric device
JPH05315657A (en) Thermoelectric converting element and thermoelectric converter
JPH0370483A (en) High heat resistance type thermoelectric generation set
GB1093620A (en) Thermo-electric heat exchange apparatus
JP2020150139A (en) Thermoelectric conversion module
JPH04280482A (en) Cooling device utilizing solar light
JPS63110680A (en) Thermal power generating device
JPH02130878A (en) Thermoelectric device
JP6858379B2 (en) Calibration thermoelectric power generation module
JP2003273412A (en) Thermoelectric conversion device
JP3056047B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
KR20190044236A (en) Thermoelectric element and thermoelectric conversion device comprising the same
JPH01164079A (en) Thermoelectric device
JPH0722655A (en) Thermoelectric transducer
JPS5835991A (en) High-density thermoelectric element