JPH0370483A - High heat resistance type thermoelectric generation set - Google Patents

High heat resistance type thermoelectric generation set

Info

Publication number
JPH0370483A
JPH0370483A JP1201166A JP20116689A JPH0370483A JP H0370483 A JPH0370483 A JP H0370483A JP 1201166 A JP1201166 A JP 1201166A JP 20116689 A JP20116689 A JP 20116689A JP H0370483 A JPH0370483 A JP H0370483A
Authority
JP
Japan
Prior art keywords
thin film
thermoelectric
heat
thermoelectric element
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1201166A
Other languages
Japanese (ja)
Other versions
JP2996305B2 (en
Inventor
Takeshi Yagakinai
野垣内 武志
Kichinosuke Kawamura
河村 吉之助
Nobutaka Wachi
和智 信隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Power Co Ltd
Original Assignee
Japan Atomic Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Power Co Ltd filed Critical Japan Atomic Power Co Ltd
Priority to JP1201166A priority Critical patent/JP2996305B2/en
Publication of JPH0370483A publication Critical patent/JPH0370483A/en
Application granted granted Critical
Publication of JP2996305B2 publication Critical patent/JP2996305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To generate a large temperature difference at a thin film type thermoelectric element and to enhance the efficiency of thermoelectric generation by providing many thin film type thermoelectric elements in which, when one side is raised to a high temperature, the other side is lowered to a low temperature, applying heat to the high temperature side with high temperature fluid, removing heat from the low temperature side with low temperature fluid, and providing a heat insulator in the element. CONSTITUTION:Many thin film thermoelectric elements 34 each has a first thin film layer 26, a second thin film layer (high temperature side electrode) 27, a second thin film layer 28, a fourth thin film layer (low temperature side electrode) 29, and a fifth thin film layer 30, and the layer 28 has a pair of a P-type semiconductor thermoelectric material 32 and an N-type semiconductor thermoelectric material 33. Many heat insulators 41 are provided in they layer 28, hot stream passing sectional area is reduced, and the element 24 is formed to have high heat resistance type. Thus, a large temperature difference is generated in the element 34.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高熱抵抗型熱電発電装置に関するもので、詳
しくは、タービンや発電機を介さないで、熱エネルギー
を直接電気エネルギーに変換する熱電発電装置の、熱電
素子を薄膜型にし、かつ、熱流が集束してその熱電素子
を通るようにした熱電発電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high thermal resistance type thermoelectric power generation device, and more specifically, to a thermoelectric power generation device that directly converts thermal energy into electrical energy without using a turbine or a generator. The present invention relates to a thermoelectric power generation device in which the thermoelectric element of the power generation device is of a thin film type, and heat flow is focused and passes through the thermoelectric element.

〔従来の技術] 熱エネルギーを電気エネルギーに変換する従来の原子力
発電設備は、たとえば、第20図に示すような構成から
なっている。
[Prior Art] A conventional nuclear power generation facility that converts thermal energy into electrical energy has a configuration as shown in FIG. 20, for example.

第20図において、61は原子炉格納容器、62は原子
炉、63は1次系高温溶融ナトリウムライン、64は中
間熱交換器、65は2次系高温溶融ナトリウムライン、
66は高温高圧の蒸気発生器、67は蒸気ライン、68
は蒸気タービン、69は交流発電機、70は電力送電ラ
インである。
In FIG. 20, 61 is a reactor containment vessel, 62 is a nuclear reactor, 63 is a primary system high temperature molten sodium line, 64 is an intermediate heat exchanger, 65 is a secondary system high temperature molten sodium line,
66 is a high temperature and high pressure steam generator, 67 is a steam line, 68
69 is a steam turbine, 69 is an alternator, and 70 is a power transmission line.

すなわち、原子炉62で加熱された1次系高温溶融ナト
リウムは中間熱交換器64で2次系高温溶融ナトリウム
と熱交換し、この熱交換した2次系高温溶融ナトリウム
は蒸気発生器66で水を加熱して蒸気を発生させる。こ
の蒸気は蒸気タービン6日に供給され、該タービン6日
は回転して交流発電機69を回転駆動し、該発電機69
で交流電力が発生されて電力送電ライン70から需用先
に供給される。
That is, the primary high-temperature molten sodium heated in the reactor 62 exchanges heat with the secondary high-temperature molten sodium in the intermediate heat exchanger 64, and the heat-exchanged secondary high-temperature molten sodium is converted into water in the steam generator 66. is heated to generate steam. This steam is supplied to the steam turbine 6, which rotates to rotationally drive the alternating current generator 69.
AC power is generated and supplied to the consumer through the power transmission line 70.

しかしながら、前述の熱エネルギーを電気エネルギーに
変換する従来の技術においては、中間熱交換器64、蒸
気発生器66、蒸気タービン68、発電機69などを必
要とするので、設備としては、多数の機器およびそれに
伴なう多くの配管などを必要とし、かつ、それらの保守
や点検などに多くの費用がかかるという問題点がある。
However, the conventional technology for converting thermal energy into electrical energy described above requires an intermediate heat exchanger 64, a steam generator 66, a steam turbine 68, a generator 69, etc., and therefore requires a large number of equipment. There are also problems in that a large number of piping and the like are required, and maintenance and inspection thereof are costly.

また可動部分による機械的損失および騒音などにも問題
点がある。
There are also problems with mechanical loss and noise caused by moving parts.

そこで、本発明者は、上記の問題点を解決するものとし
て、熱電発電装置を発明し、とくに、薄膜型の熱電素子
を有する熱電発電装置を発明し、平成1年特許願第53
918号として出願している。
Therefore, in order to solve the above-mentioned problems, the present inventor invented a thermoelectric power generation device, and in particular, invented a thermoelectric power generation device having a thin film type thermoelectric element.
It has been filed as No. 918.

まず、その出願の熱電発電装置の概略を説明する。First, the outline of the thermoelectric power generation device of the application will be explained.

第17図は、その熱電発電装置を用いた発電設備の説明
図で、1は原子炉格納容器、2は原子炉、3は後述する
熱電発電装置、4は溶融ナトリウム供給ライン、5は溶
融ナトリウム排出ライン、6は電磁ポンプ、7は冷却水
供給ライン、8は冷却水排出ライン、9は直流を交流に
変換する変換器、10は電力送電ラインである。
FIG. 17 is an explanatory diagram of a power generation facility using the thermoelectric power generation device, where 1 is a reactor containment vessel, 2 is a nuclear reactor, 3 is a thermoelectric power generation device to be described later, 4 is a molten sodium supply line, and 5 is a molten sodium A discharge line, 6 is an electromagnetic pump, 7 is a cooling water supply line, 8 is a cooling water discharge line, 9 is a converter that converts direct current to alternating current, and 10 is a power transmission line.

すなわち、原子炉2で約550°Cに加熱された高温溶
融ナトリウムは、熱電発電装置3に連続的に供給され、
熱電発電装置3の後述する高温側を加熱して約450″
Cに低下し、電磁ポンプ6によって溶融ナトリウム排出
ライン5から原子炉2に戻される。一方、約25°Cの
冷却水は、冷却水供給ライン7から流入し、熱電発電装
置3の後述する低温側を冷却して約32℃となって冷却
水排出ライン8から排出される。
That is, high-temperature molten sodium heated to about 550°C in the nuclear reactor 2 is continuously supplied to the thermoelectric power generation device 3,
Heat the high temperature side of the thermoelectric generator 3 (described later) to approximately 450"
C and is returned to the reactor 2 from the molten sodium discharge line 5 by the electromagnetic pump 6. On the other hand, cooling water at about 25° C. flows in from the cooling water supply line 7, cools the low temperature side of the thermoelectric generator 3, which will be described later, and is discharged from the cooling water discharge line 8 at about 32° C.

これによって、熱電発電装置3の熱電素子に起電力が発
生し、その直流電力は変換器9によって交流電力に変換
されて送電ライン10から需用先へ送電される。
As a result, an electromotive force is generated in the thermoelectric element of the thermoelectric power generation device 3, and the DC power is converted into AC power by the converter 9, and the power is transmitted from the power transmission line 10 to the consumer.

第18図は前記熱電発電装置3の半導体による熱電発電
の原理の説明図で、11はP型アモルファス半導体熱電
素材、12はN型アモルファス半導体熱電素材、13は
電気絶縁物、14は正札(+)、15は電子(−)、1
6は導線、17は高温側電気導体、18.19は低温側
電気導体、20は電球である。
FIG. 18 is an explanatory diagram of the principle of thermoelectric power generation using the semiconductor of the thermoelectric power generation device 3, in which 11 is a P-type amorphous semiconductor thermoelectric material, 12 is an N-type amorphous semiconductor thermoelectric material, 13 is an electrical insulator, and 14 is a regular plate (+ ), 15 is electron (-), 1
6 is a conductor, 17 is a high temperature side electrical conductor, 18.19 is a low temperature side electrical conductor, and 20 is a light bulb.

この熱電発電の原理は、公知の温度測定用の熱電対と同
様に、前記両熱電素材11.12の高温側と低温側の温
度差によって、前記両熱電素材11.12の間に起電力
が発生し、これに電球20を接続すれば点灯する。
The principle of this thermoelectric power generation is that, similar to the known thermocouple for temperature measurement, an electromotive force is generated between the thermoelectric materials 11.12 due to the temperature difference between the high temperature side and the low temperature side of the thermoelectric materials 11.12. When the light bulb 20 is connected to this light bulb, it lights up.

第19図は第17図の熱電発電装置3の熱電発電器の一
部を拡大した一部切欠正面図である。
FIG. 19 is a partially cutaway front view enlarging a part of the thermoelectric generator of the thermoelectric generator 3 of FIG. 17.

熱電発電器21は、内面に高温溶融ナトリウムが接触し
て流れるようにして該高温溶融ナトリウムの流路を形成
している熱良導体の円管23と、この円管23の管壁2
4の外面に密着された薄膜型の熱電素子集合体25とを
有し、この熱電素子集合体25の外面に接触して低温冷
却水が流れるようになっている。なお22は管板である
The thermoelectric generator 21 includes a circular tube 23 that is a good thermal conductor and whose inner surface is in contact with high temperature molten sodium to form a flow path for the high temperature molten sodium, and a tube wall 2 of this circular tube 23.
The thermoelectric element assembly 25 has a thin film type thermoelectric element assembly 25 closely attached to the outer surface of the thermoelectric element assembly 4, and low-temperature cooling water flows in contact with the outer surface of the thermoelectric element assembly 25. Note that 22 is a tube plate.

そして、熱電素子集合体25は、第1薄膜層26、第2
薄膜層27、第3薄膜層28、第4薄膜層29、第5薄
膜層30などからなっている。
The thermoelectric element assembly 25 includes a first thin film layer 26, a second thin film layer 26, and a second thin film layer 26.
It consists of a thin film layer 27, a third thin film layer 28, a fourth thin film layer 29, a fifth thin film layer 30, and the like.

前記第1薄膜層26は、管壁24の外周面に密着された
酸化ベリリウム薄膜またはダイヤモンド薄膜などの電気
的には不良導体で熱的には良導体である薄膜からなって
いる。
The first thin film layer 26 is made of a thin film that is an electrically poor conductor but a thermally good conductor, such as a beryllium oxide thin film or a diamond thin film, which is closely adhered to the outer peripheral surface of the tube wall 24.

前記第2薄膜層27は、第1薄膜層26の外周面に密着
されたw4薄膜などの電気的にも熱的にも良導体である
電極として作用する薄膜からなっている。
The second thin film layer 27 is made of a thin film, such as a W4 thin film, closely adhered to the outer peripheral surface of the first thin film layer 26, which acts as an electrode and is a good conductor both electrically and thermally.

前記第3薄膜層28は、第2薄膜層27の外周面に密着
されていて、電気的にも熱的にも不良導体である絶縁物
31を介してP型アモルファスFe5iz半導体熱電素
材32とN型アモルファスFe5iz半導体熱電素材3
3が対をなしている薄膜の熱電素子34の多数からなっ
ている。
The third thin film layer 28 is closely attached to the outer peripheral surface of the second thin film layer 27, and is connected to a P-type amorphous Fe5iz semiconductor thermoelectric material 32 and N via an insulator 31 that is a poor conductor both electrically and thermally. Type amorphous Fe5iz semiconductor thermoelectric material 3
It consists of a large number of thin film thermoelectric elements 34 arranged in pairs.

前記第4薄膜層29は、第3薄膜層28の外周面に密着
された銅薄膜などの電気的にも熱的にも良導体である電
極として作用する薄膜からなっている。
The fourth thin film layer 29 is made of a thin film such as a copper thin film closely adhered to the outer peripheral surface of the third thin film layer 28, which acts as an electrode and is a good conductor both electrically and thermally.

前記第5薄膜層30は、第4薄膜層29の外周面に密着
された酸化ベリリウムまたはダイヤモンド薄膜などの電
気的には不良導体で熱的には良導体である薄膜からなっ
ている。
The fifth thin film layer 30 is made of a thin film such as beryllium oxide or diamond thin film that is closely adhered to the outer peripheral surface of the fourth thin film layer 29 and is an electrically poor conductor but a thermally good conductor.

しかも、前記第3薄膜層28の各P型アモルファスFe
Si、半導体熱電素材32と各N型アモルファスFeS
 i、半導体熱電素材33が第2薄膜層27と第4薄膜
層29によって高温側と低温側とで交互に順に電気的に
接続されて全体として直列に接続されている。
Moreover, each P-type amorphous Fe of the third thin film layer 28
Si, semiconductor thermoelectric material 32 and each N-type amorphous FeS
i. The semiconductor thermoelectric material 33 is electrically connected alternately on the high temperature side and the low temperature side by the second thin film layer 27 and the fourth thin film layer 29, and is connected in series as a whole.

第19図に示すように構成された熱電発電器21におい
ては、高温溶融ナトリウムが円管23を流下することに
よって、熱電素子集合体25の各熱電素子34の高温側
が加熱され、同時に各熱電素子34の低温側が冷却水に
よって冷却されるので、第18図で説明したように、各
熱電素子34には起電力が発生し、しかも、各熱電素子
34は電気的に直列に接続されているので、その起電力
の総和の直流電力が得られる。
In the thermoelectric generator 21 configured as shown in FIG. 19, high-temperature molten sodium flows down the circular tube 23 to heat the high temperature side of each thermoelectric element 34 of the thermoelectric element assembly 25, and at the same time, each thermoelectric element 34 is cooled by cooling water, an electromotive force is generated in each thermoelectric element 34, as explained in FIG. 18, and since each thermoelectric element 34 is electrically connected in series, , DC power is obtained as the sum of the electromotive forces.

第19図に示した薄膜型の熱電素子34を有する熱電発
電器21においては、熱電素子34が薄膜型であるため
、熱電発電装置の小型化が容易であり、また必要な材料
の量を低減することができるとともに、その熱電素子3
4の内部電気抵抗が小さく、それだけ大きな直流電力を
取り出すことができ、熱電発電のための熱利用効率も向
上するなどの利点を有する。
In the thermoelectric generator 21 having the thin film type thermoelectric element 34 shown in FIG. 19, since the thermoelectric element 34 is of the thin film type, the thermoelectric generator can be easily miniaturized and the amount of required materials can be reduced. and the thermoelectric element 3
4 has the advantage of having a small internal electrical resistance, allowing a correspondingly large amount of DC power to be extracted, and improving heat utilization efficiency for thermoelectric power generation.

〔発明が解決しようとする課題] しかしながら、第19図に示した薄膜型の熱電素子34
を有する熱雷発電器21においては、前述の利点を有す
る反面、高温流体として、燃焼ガス、排ガス、火炎およ
び高温ガス炉によって加熱された高温ガス等の熱伝達特
性の悪い熱媒体に適用するには、薄膜でありながら、膜
厚さを比較的厚くしなければならなかった。
[Problem to be solved by the invention] However, the thin film type thermoelectric element 34 shown in FIG.
Although the thermal lightning generator 21 has the above-mentioned advantages, it cannot be applied as a high-temperature fluid to heat media with poor heat transfer characteristics such as combustion gas, exhaust gas, flame, and high-temperature gas heated by a high-temperature gas furnace. Although it is a thin film, it had to be relatively thick.

しかし、熱電素子の厚さを厚くすると、材料の必要量が
多くなることと、熱電発電器のサイズが太き(なること
と、さらに、製造工程が増えること、熱電素子と電極等
の密着を機械的な方法で行なわなければならないので、
熱のロスがあることなど、物理的および技術的な面で制
約があり、またコスト増につながる等の問題点がある。
However, increasing the thickness of the thermoelectric element increases the amount of material required, increases the size of the thermoelectric generator, and also increases the number of manufacturing steps and increases the need for close contact between the thermoelectric element and the electrodes. It has to be done mechanically, so
There are physical and technical limitations such as heat loss, and there are other problems such as increased costs.

本発明は、上記の問題点を解決しようとするものである
。すなわち、本発明は、溶融金属のような比較的熱伝達
特性のよい高温流体の場合は、もちろんのこと、気体等
の熱伝達特性の悪い高温流体からの熱を利用する場合に
も、薄膜型の熱電素子に、大きな温度差を発生させるこ
とができて、高効率が得られる高熱抵抗型熱電発電装置
を提供することを目的とするものである。
The present invention attempts to solve the above problems. In other words, the present invention is applicable not only to high-temperature fluids with relatively good heat transfer properties such as molten metal, but also when using heat from high-temperature fluids with poor heat transfer properties such as gases. It is an object of the present invention to provide a high thermal resistance type thermoelectric power generating device that can generate a large temperature difference in a thermoelectric element and obtain high efficiency.

〔課題を解決するための手段] 上記目的を達成するために、本発明は、P型半導体薄膜
型熱電素材とN型半導体薄膜型熱電素材とが対をなして
電気的にも熱的にも不良導体である絶縁物を介して形成
されていて、その一方の側が高温側となるとともに、他
方の側が低温側となる薄膜型熱電素子の多数を備え、か
つ、前記薄膜型熱電素子の該高温側と低温側のそれぞれ
に設けられた電極を備え、しかも、高温流体と低温流体
を各別に流す流路を有して、該高温流体により前記薄膜
型熱電素子の高温側に熱を与えるとともに、該低温流体
により前記薄膜型熱電素子の低温側から熱を奪うように
した熱電発電装置であって、前記熱電素子内を流れる熱
流に対する熱抵抗を大きくする断熱部を備えているもの
とした。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a structure in which a P-type semiconductor thin film thermoelectric material and an N-type semiconductor thin film thermoelectric material form a pair and are both electrically and thermally A large number of thin film thermoelectric elements are formed through an insulator that is a poor conductor, one side of which is a high temperature side, and the other side of which is a low temperature side, and the thin film thermoelectric element has a high temperature side. comprising electrodes provided on each side and a low temperature side, and having a flow path for flowing a high temperature fluid and a low temperature fluid separately, and applying heat to the high temperature side of the thin film thermoelectric element with the high temperature fluid, The thermoelectric power generating device is configured to remove heat from the low-temperature side of the thin film thermoelectric element by the low-temperature fluid, and includes a heat insulating section that increases thermal resistance to heat flow flowing within the thermoelectric element.

〔作 用] 本発明によれば、熱の通る部分に断熱部が設けられてい
て、熱電素子内の熱の通過する面積が実質的に小さくな
るので、熱電素子は高熱抵抗型となり、大きな温度差が
つく。したがって、熱電発電装置の起電力はその熱電素
子にかかる温度差に依存するので、大きな起電力が得ら
れる。
[Function] According to the present invention, a heat insulating section is provided in the portion through which heat passes, and the area through which heat passes within the thermoelectric element is substantially reduced, so that the thermoelectric element becomes a high heat resistance type, and is capable of resisting large temperatures. It makes a difference. Therefore, since the electromotive force of the thermoelectric generator depends on the temperature difference across the thermoelectric elements, a large electromotive force can be obtained.

つぎに、熱雷素子を高熱抵抗型にすると、温度差が大き
くなることの原理について、第13図により説明する。
Next, the principle of increasing the temperature difference when the thermal lightning element is made of a high thermal resistance type will be explained with reference to FIG. 13.

第13図において、51は高温側の電極、52は熱電素
子、53は低温側の電極である。
In FIG. 13, 51 is an electrode on the high temperature side, 52 is a thermoelectric element, and 53 is an electrode on the low temperature side.

そして、Toは高温流体のバルク温度、T1は高温流体
と電極51の接触面の温度、T2は電極51と熱電素子
52の境界面の温度、T3は熱電素子52と電極53の
境界面の温度、T4は低温流体と電極53の接触面の温
度、T、は低温流体のバルク温度であり、Qは単位時間
に流れる熱量である。
To is the bulk temperature of the high temperature fluid, T1 is the temperature of the contact surface between the high temperature fluid and the electrode 51, T2 is the temperature of the interface between the electrode 51 and the thermoelectric element 52, and T3 is the temperature of the interface between the thermoelectric element 52 and the electrode 53. , T4 is the temperature of the contact surface between the low temperature fluid and the electrode 53, T is the bulk temperature of the low temperature fluid, and Q is the amount of heat flowing per unit time.

ここで、電極51と熱電素子52と電極53の、熱流が
通過する断面積をそれぞれA、B、C1厚さをそれぞれ
Ll+jz+L]、熱伝導度をそれぞれkl+kZ+k
ff、高温流体と電極51の熱伝達係数をhl、低温流
体と電極53の熱伝達係数をh2とし、定常状態では、
以下のように表わされる。
Here, the cross-sectional area of the electrode 51, thermoelectric element 52, and electrode 53 through which the heat flow passes is A, B, C1 thickness, respectively, Ll + jz + L], and the thermal conductivity, respectively, is kl + kZ + k.
ff, the heat transfer coefficient between the high temperature fluid and the electrode 51 is hl, the heat transfer coefficient between the low temperature fluid and the electrode 53 is h2, and in a steady state,
It is expressed as follows.

Q =Ahl (To−TI)    ・・・・・ (
1)−Chz(T4Ts)     ・ ・ ・ ・ 
・ (5)上記(1)弐〜(5)式を温度差について解
くと、次のようになる。ただし、電極51と熱電素子5
2と電極53の各間の熱ギャップは、密着構造であるた
め、充分に小さく、無視できるものとする。
Q = Ahl (To-TI) ・・・・・・ (
1)-Chz (T4Ts) ・ ・ ・ ・
・(5) Solving equations (1) to (5) above for the temperature difference yields the following. However, the electrode 51 and the thermoelectric element 5
The thermal gap between each of the electrodes 2 and 53 is sufficiently small and can be ignored because of the close contact structure.

ここで、電極5L 53は、ともによく熱を通す物質で
あるから、k+ とに3は実質的に無限大とみなしてよ
く、上記(6)式は簡単化される。つまり、したがって
、 上記(7)式と(3′)式から、 1゜ 上記(r)式と(2′)式と(3′)式と(4′)式と
(5′)式を、左辺および右辺について、それぞれ加え
ると、左辺はT、−T、になるので、これをΔTとする
。すなわち、 Ah。
Here, since the electrodes 5L and 53 are both materials that conduct heat well, k+ and 3 can be considered to be substantially infinite, and the above equation (6) is simplified. In other words, from the above equations (7) and (3'), 1° the above equations (r), (2'), (3'), (4'), and (5'), When the left side and the right side are added, the left side becomes T and -T, so this is set as ΔT. That is, Ah.

2B h2 上記(7)式と(r)式から、 上記(7)弐と(5′)式から、 1 ここで、それぞれの熱抵抗を簡略化のため、とすると、
上記(8)式、(9)式、(10)式は、それぞれ、以
下のように表わされる。
2B h2 From the above equations (7) and (r), From the above equations (7) 2 and (5'), 1 Here, for the sake of simplicity, each thermal resistance is
The above equations (8), (9), and (10) are expressed as follows, respectively.

したがって、熱電発電装置の発電効率を上げようとすれ
ば、熱電素子52にかかる温度差(T2−’h)を大き
くする必要がある。
Therefore, in order to increase the power generation efficiency of the thermoelectric power generation device, it is necessary to increase the temperature difference (T2-'h) applied to the thermoelectric element 52.

このためには、上記(8’)式かられかるとおり、Yを
大きく、Xを小さく、Zを小さくする必要がある。
For this purpose, as can be seen from the above equation (8'), it is necessary to make Y large, X small, and Z small.

すなわち、第1に、Yを大きくするには、上記(11)
式から、k2を小さくする(熱電素子52の熱伝導度を
小さくする)、Bを小さくする(熱電素子52の熱流が
通過する断面積を小さくする)、t2を大きくする(熱
電素子52の厚さを増やす)ことになる。また第2に、
XとZを小さくするには、hlとh2が一定であれば、
AとCを大きくすることになる。したがって、熱電素子
52の熱伝導度に2および厚さt2が既に決まっている
場合には、面積BをAとCに比べて小さくすることによ
り、Tz  T3を大きくすることができる。
That is, first, in order to increase Y, the above (11)
From the formula, k2 is decreased (the thermal conductivity of the thermoelectric element 52 is decreased), B is decreased (the cross-sectional area through which the heat flow of the thermoelectric element 52 passes is decreased), and t2 is increased (the thickness of the thermoelectric element 52 is decreased). increase). Second,
To reduce X and Z, if hl and h2 are constant,
This will increase A and C. Therefore, if the thermal conductivity of the thermoelectric element 52 is already determined to be 2 and the thickness t2, by making the area B smaller than A and C, Tz T3 can be increased.

なお以上の原理は、次のように適用できる。Note that the above principle can be applied as follows.

(1)熱電素子の熱伝導度が大きく(熱を通しやすい)
、薄膜では充分な温度差が熱電素子の高温側と低温側の
間に発生しなくて、効率が低下する場合には、熱電素子
の熱流が通過する断面積BをAとCに比べて小さくして
熱抵抗を大きくする。
(1) Thermal conductivity of thermoelectric elements is high (easily heat passes through)
, if a sufficient temperature difference does not occur between the high-temperature side and the low-temperature side of the thermoelectric element in a thin film and the efficiency decreases, the cross-sectional area B through which the heat flow of the thermoelectric element passes should be made smaller than A and C. to increase thermal resistance.

(2)熱電素子の厚さを材料の量の低減や製造上等の問
題から薄くしたい場合に、熱電発電装置の発電効率を低
下させないためには、厚さt2を小さくし、それに伴な
い、面積Bも小さくする。
(2) When it is desired to reduce the thickness of the thermoelectric element due to reduction in the amount of material or manufacturing issues, the thickness t2 should be reduced in order to not reduce the power generation efficiency of the thermoelectric generator, and accordingly, Area B is also made smaller.

(3)熱電素子の熱伝導度も厚さも妥当な範囲にあるが
、高温側の加熱媒体が気体等で、前記hlが小さく、X
が大きくなって、高温流体壁面での温度降下T。−T、
が大きくなり、熱電素子の高温側と低温側にかかる温度
差T、−T、が小さくなってしまう場合がある。この場
合は、面積BをAに比べて小さくして熱抵抗Yを大きく
し、つまり、y>>xとなるようにする。
(3) The thermal conductivity and thickness of the thermoelectric element are within a reasonable range, but the heating medium on the high temperature side is gas, etc., and the above hl is small,
increases, and the temperature drop T on the high temperature fluid wall surface. -T,
may become large, and the temperature difference T, -T, between the high temperature side and the low temperature side of the thermoelectric element may become small. In this case, the area B is made smaller than A to make the thermal resistance Y larger, that is, y>>x.

(4)熱電素子の熱伝導度も厚さも妥当な範囲にあるが
、低温側の冷却媒体が気体で、前記h2が小さく、Zが
大きくなって、低温流体壁面での温度上昇Ta  Ts
が大きくなり、T2  Tsが小さくなってしまう場合
がある。この場合は、面積BをCに比べて小さくして熱
抵抗Yを大きくし、つまり、Y>>Zとなるようにする
(4) The thermal conductivity and thickness of the thermoelectric element are within reasonable ranges, but since the cooling medium on the low temperature side is gas, h2 is small and Z is large, resulting in a temperature rise Ta Ts on the wall surface of the low temperature fluid.
may become large and T2 Ts may become small. In this case, the area B is made smaller than C to make the thermal resistance Y larger, that is, Y>>Z.

〔実施例〕〔Example〕

第1図は本発明の第1実施例を示した断面正面図であり
、第2図は第1図の■の部分の拡大図である。
FIG. 1 is a cross-sectional front view showing a first embodiment of the present invention, and FIG. 2 is an enlarged view of the portion marked ■ in FIG. 1.

この第1実施例も、第18図に示した第1薄膜層26、
第2薄膜層(高温側電極)27、第3薄膜層2日、第4
薄膜層(低温側電極)29、第5薄膜層30を有し、ま
た第3薄膜層28は、P型アモルファスFeS i z
半導体熱電素材32とN型アモルファスFe5iz半導
体熱電素材33が対をなしている薄膜の熱電素子34の
多数からなっている。
This first embodiment also includes the first thin film layer 26 shown in FIG.
2nd thin film layer (high temperature side electrode) 27, 3rd thin film layer 2nd, 4th
It has a thin film layer (low temperature side electrode) 29 and a fifth thin film layer 30, and the third thin film layer 28 is made of P-type amorphous FeS i z
It consists of a large number of thin film thermoelectric elements 34 in which a semiconductor thermoelectric material 32 and an N-type amorphous Fe5iz semiconductor thermoelectric material 33 form pairs.

そして、寸法的には、たとえば、第2図に示すように、
第3薄膜層28(熱電素材32.33)の厚さaが0.
3++u++、第2薄膜層(高温側電極)27と第4薄
膜層(低温側電極)29の厚さす、  cがともに0.
8mm、第1薄膜層26と第5薄膜層30の厚さd、e
がともに0.4mm程度であることが望ましい。
In terms of dimensions, for example, as shown in Figure 2,
The thickness a of the third thin film layer 28 (thermoelectric material 32.33) is 0.
3++u++, the thicknesses of the second thin film layer (high temperature side electrode) 27 and the fourth thin film layer (low temperature side electrode) 29, c are both 0.
8 mm, thickness d, e of the first thin film layer 26 and the fifth thin film layer 30
It is desirable that both of them be about 0.4 mm.

また熱電素子34である第3薄膜層28には、多数の断
熱部41が設けられていて、熱流の通過する断面積(第
12図で説明した熱電素子52の面積Bに相当する)を
小さくしている。すなわち、熱電素子34は高熱抵抗型
になっている。またこの断熱部41はP型アモルファス
Fe5iz半導体熱電素材32とN型アモルファスPe
5t、半導体熱電素材33との間の電気的絶縁物の働き
もしている。
Further, the third thin film layer 28, which is the thermoelectric element 34, is provided with a large number of heat insulating parts 41 to reduce the cross-sectional area through which the heat flow passes (corresponding to the area B of the thermoelectric element 52 explained in FIG. 12). are doing. That is, the thermoelectric element 34 is of a high thermal resistance type. Moreover, this heat insulating part 41 is composed of a P-type amorphous Fe5iz semiconductor thermoelectric material 32 and an N-type amorphous Pe
5t, and also acts as an electrical insulator between the semiconductor thermoelectric material 33.

前記断熱部41は、真空にしたり、空気またはアルゴン
等の気体を密封したり、あるいは石綿、グラスウール等
の断熱材を充てんしたものとする。
The heat insulating section 41 is evacuated, sealed with a gas such as air or argon, or filled with a heat insulating material such as asbestos or glass wool.

このように、断熱部41を設けることによって、熱電素
子34が高熱抵抗型となるため、上記(8′)式で説明
したように、Tz  Tz  (熱電素子34の熱電発
電に有効な温度差)が大きくなり、それだけ大きな起電
力を得ることができる。
In this way, by providing the heat insulating part 41, the thermoelectric element 34 becomes a high thermal resistance type, so as explained in the above equation (8'), Tz Tz (temperature difference effective for thermoelectric generation of the thermoelectric element 34) becomes larger, and a larger electromotive force can be obtained.

第3図は本発明の第2実施例を示している。この第2実
施例では、前記第1実施例と同様な断熱部41を第4薄
膜層29に、つまり、低温側電極に設けている。このよ
うにしても、熱電素子34を流れる熱流が集束して流れ
、実質的に熱電素子34の面積が小さくなったことにな
り、したがって、熱電素子34は高熱抵抗型となる。
FIG. 3 shows a second embodiment of the invention. In this second embodiment, a heat insulating section 41 similar to that of the first embodiment is provided in the fourth thin film layer 29, that is, in the low temperature side electrode. Even in this case, the heat flow flowing through the thermoelectric element 34 is concentrated, and the area of the thermoelectric element 34 is substantially reduced, so that the thermoelectric element 34 becomes a high thermal resistance type.

第4図は本発明の第3実施例を示している。この第3実
施例では、前記第1実施例と同様な断熱部41を第2薄
膜層27に、つまり、高温側電極に設けている。この第
3実施例においても、前記第2実施例と同じように、熱
電素子34が高熱抵抗型となる。
FIG. 4 shows a third embodiment of the invention. In this third embodiment, a heat insulating section 41 similar to that of the first embodiment is provided in the second thin film layer 27, that is, in the high temperature side electrode. In this third embodiment as well, the thermoelectric element 34 is of a high thermal resistance type, as in the second embodiment.

なお断熱部41を第2薄膜層27と第4薄膜層29の両
方に設けてもよい。
Note that the heat insulating portion 41 may be provided in both the second thin film layer 27 and the fourth thin film layer 29.

第5図は本発明の第4実施例を示した断面正面図であり
、第6図は第5図の■の部分の拡大図である。
FIG. 5 is a sectional front view showing a fourth embodiment of the present invention, and FIG. 6 is an enlarged view of the portion marked ■ in FIG.

この第4実施例では、前述した断熱部41を熱電素子3
4と第4薄膜層29(低温側電極)とに設けている。
In this fourth embodiment, the above-described heat insulating section 41 is connected to the thermoelectric element 3.
4 and the fourth thin film layer 29 (low temperature side electrode).

すなわち、この第4実施例では、ちょうど、前記第1実
施例と第2実施例を組み合わせたものに相当する。この
ようにすることにより、熱電素子34は、より確実な高
熱抵抗型となる。
That is, the fourth embodiment corresponds to a combination of the first and second embodiments. By doing so, the thermoelectric element 34 becomes a more reliable high heat resistance type.

なお断熱部41を第2薄膜層27と熱電素子34と第4
薄膜層29の3者に設けてもよい。
Note that the heat insulating part 41 is connected to the second thin film layer 27, the thermoelectric element 34, and the fourth
It may be provided in three parts of the thin film layer 29.

第7図ないし第9図は本発明の第5実施例を示している
7 to 9 show a fifth embodiment of the present invention.

そして、第7図は第1薄膜層26と第5薄膜層30の図
示を省略し、一部を切欠して示した側面図であり、第8
図は第7図の第2薄膜層27(高温側電極)と第3薄膜
層28(熱電素子34)と第4薄膜層29(低温側電極
)を分解(実際は積層密着されている)した状態で示し
た断面正面図であり、第9図は第7図の第4薄膜層29
(低温側電極)のみを示した断面底面図である。
FIG. 7 is a partially cutaway side view with illustrations of the first thin film layer 26 and the fifth thin film layer 30 omitted;
The figure shows a state in which the second thin film layer 27 (high temperature side electrode), third thin film layer 28 (thermoelectric element 34), and fourth thin film layer 29 (low temperature side electrode) in Fig. 7 are disassembled (actually, they are laminated in close contact). FIG. 9 is a sectional front view of the fourth thin film layer 29 shown in FIG.
FIG. 3 is a cross-sectional bottom view showing only the (low-temperature side electrode).

この第5実施例では、断熱部41を第3薄膜層2日と第
4薄膜層29の両方に設け、すなわち、第4薄膜層29
では、マスキング等の方法により膜面に均等に十字状に
凹溝をつけ、第2薄膜層27との間を真空とし、あるい
は空気またはアルゴンなどの気体を封入し、あるいは石
綿、グラスウール等の断熱材を充てんして断熱部41を
形成したものである。
In this fifth embodiment, the heat insulating section 41 is provided in both the third thin film layer 29 and the fourth thin film layer 29, that is, the fourth thin film layer 29
Then, make cross-shaped grooves uniformly on the film surface by masking or other methods, create a vacuum between it and the second thin film layer 27, or fill in a gas such as air or argon, or use a heat insulating material such as asbestos or glass wool. The heat insulating portion 41 is formed by filling with a material.

この第5実施例の場合、第7図でわかるように、第3薄
膜層28に密着する部分の熱流集束部の面積が、全面積
の1/4となるため、熱抵抗は4倍となり、その結果、
第3薄膜層28の厚さを、断熱部41が全くない場合に
比較して、1/4に低減しても、同じ起電力と発電効率
が得られる。
In the case of the fifth embodiment, as can be seen in FIG. 7, the area of the heat flow concentrating portion in close contact with the third thin film layer 28 is 1/4 of the total area, so the thermal resistance is four times as large. the result,
The same electromotive force and power generation efficiency can be obtained even if the thickness of the third thin film layer 28 is reduced to 1/4 compared to the case where there is no heat insulating section 41 at all.

第10図および第11図は本発明の第6実施例を示して
いる。
10 and 11 show a sixth embodiment of the present invention.

この第6実施例では、断熱部41は、製造が容易なよう
に、球形の一部を切削したほぼ半球形の断熱材からなっ
ていて、各断熱部41の間に第3薄膜層28が形成され
ている。すなわち、断熱部41を設けたことにより、第
3薄膜層28(熱電素子)は高熱抵抗型となる。
In this sixth embodiment, the heat insulating parts 41 are made of a substantially hemispherical heat insulating material with a part of the spherical shape cut off for ease of manufacture, and the third thin film layer 28 is provided between each heat insulating part 41. It is formed. That is, by providing the heat insulating portion 41, the third thin film layer 28 (thermoelectric element) becomes a high heat resistance type.

第12図は本発明の第7実施例を示している。FIG. 12 shows a seventh embodiment of the invention.

この第7実施例では、第2薄膜層27(高温側電極)と
第4薄膜層29(低温側電極)の間に、球状のP型アモ
ルファスFe5iz半導体熱電素材32とN型アモルフ
ァスFe5iz半導体熱電素材33とが一様に、空間を
置いて分散配置され、それら各素材間に真空、気体、ま
たは断熱材からなる断熱部41が設けられていて、熱電
素子34の熱抵抗が大きなものとなっている。
In this seventh embodiment, a spherical P-type amorphous Fe5iz semiconductor thermoelectric material 32 and an N-type amorphous Fe5iz semiconductor thermoelectric material are placed between the second thin film layer 27 (high temperature side electrode) and the fourth thin film layer 29 (low temperature side electrode). 33 are uniformly distributed with a space between them, and a heat insulating part 41 made of vacuum, gas, or heat insulating material is provided between each of these materials, and the thermal resistance of the thermoelectric element 34 is large. There is.

〔試算例〕[Estimation example]

前述した第13図に基づいて、実際上の例として、高熱
抵抗型熱電発電装置の効果は、以下のように試算される
Based on the above-mentioned FIG. 13, as a practical example, the effect of the high thermal resistance type thermoelectric power generation device is estimated as follows.

第14図のように、To =550°C1T、=Tz 
=450°c (k+−を無限大とみなす)、T3=T
、=300°C(k3を無限大とみなす)、T、 =1
00°C1 第13図で説明したA=B=C=1cm”Q = 10
0 W、 t z = 0.5 mmで、定常状態にな
ッテいたとする。またふく射による熱伝達は無視できる
ものとする。
As shown in Figure 14, To =550°C1T, =Tz
=450°c (assuming k+- to be infinite), T3=T
, =300°C (assuming k3 to be infinite), T, =1
00°C1 A=B=C=1cm”Q=10 explained in Figure 13
Assume that a steady state is reached at 0 W and tz = 0.5 mm. It is also assumed that heat transfer due to radiation can be ignored.

上記(r)式から 上記(2′)式から I =O k+ 上記(3′)弐から 上記(4′)式から 1 上記(5′)式から ■ ここで、熱電素子52の面積Bだけが−Bになつま たとすると、(3’)式から したがって、上記(8)式、(9)式、(lO)式から すなわち、熱電素子52の面積を−にすることにより、
熱電素子52にかかる温度差−は、上記(3′)式01
50°Cから上記(3’)式0225°Cになるので、
つまり、第15図のように、50%増加する。このため
、熱電発電装置の発電効率が増加する。まま た前記Bを−とすることによって、熱電発電にかかる温
度差を変えず、すなわち、起電力や発電動率を低下させ
ることなく、厚さを−とすることができる。この状態を
第16図に示す。
From the above equation (r) From the above equation (2') I = O k+ From the above (3') 2 From the above (4') equation 1 From the above (5') equation ■ Here, only the area B of the thermoelectric element 52 Suppose that becomes -B, then from equation (3'), and from equations (8), (9), and (lO) above, that is, by setting the area of thermoelectric element 52 to -,
The temperature difference applied to the thermoelectric element 52 is expressed by the above equation (3') 01
From 50°C, the formula (3') above becomes 0225°C, so
In other words, as shown in FIG. 15, it increases by 50%. Therefore, the power generation efficiency of the thermoelectric power generation device increases. Furthermore, by setting B to -, the thickness can be set to - without changing the temperature difference involved in thermoelectric power generation, that is, without reducing the electromotive force or the power generation rate. This state is shown in FIG.

(発明の効果〕 以上説明したように、本発明によれば、熱の通る部分に
断熱部が設けられていて、熱電素子内の熱の通過する面
積が実質的に小さくなるので、熱電素子は、簡単な構造
で高熱抵抗型となり、大きな温度差がつく。したがって
、熱伝達特性の悪い熱媒体であっても、薄膜型の熱電素
子の両端に充分な温度差がつき、高い効率の発電ができ
る。このため、材料が少量ですみ、製造工程が簡単で、
各薄膜層の密着も良好であるといった薄膜型熱電発電装
置を、熱伝達特性の悪い燃焼ガス、排ガス、高温ガス炉
によって加熱された高温のガス、プ般の火炎等に、幅広
く通用することが可能となる。
(Effects of the Invention) As explained above, according to the present invention, a heat insulating portion is provided in the portion through which heat passes, and the area through which heat passes within the thermoelectric element is substantially reduced. , has a simple structure and high thermal resistance, creating a large temperature difference. Therefore, even if the heat medium has poor heat transfer characteristics, a sufficient temperature difference can be created between both ends of the thin film thermoelectric element, allowing highly efficient power generation. Therefore, only a small amount of materials are required, and the manufacturing process is simple.
Thin-film thermoelectric generators with good adhesion between each thin-film layer can be widely used for combustion gases with poor heat transfer characteristics, exhaust gases, high-temperature gases heated by high-temperature gas furnaces, and general flames. It becomes possible.

また熱伝達特性がよい熱媒体に対しても、熱の通過面積
を実質的に小さくすることにより、熱電発電装置の発電
効率を低下させることなく、薄膜型熱電素子の膜厚をよ
り薄くすることができる。
In addition, by substantially reducing the heat passing area for a heat medium with good heat transfer characteristics, the film thickness of the thin-film thermoelectric element can be made thinner without reducing the power generation efficiency of the thermoelectric generator. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示した断面正面図、第2
図は第1図の■の部分の拡大図、第3図は本発明の第2
実施例を示した断面正面図、第4図は本発明の第3実施
例を示した断面正面図、第5図は本発明の第4実施例を
示した断面正面図、第6図は第5図の■の部分の拡大図
、第7図は本発明の第5実施例を示した一部切欠側面図
、第8図は第7図の分解断面正面図、第9図は第7図の
一部のみを示した断面底面図、第10図は本発明の第6
実施例を示した一部切欠側面図、第11図は第10図の
切断線XI−XIに沿う断面正面図、第12図は本発明
の第7実施例を示した断面正面図、第13図は高熱抵抗
型の熱電素子の原理の説明図、第14図は第13図に基
づいた試算例の1つの説明図、第15図は同しくもう1
つの説明図、第16図は同しくさらにもう1つの説明図
、第17図は熱電発電設備の一例を示した説明図、第1
8図は熱電発電の原理の説明図、第19図は薄膜型の熱
電素子を用いた熱電発電器の一例を示した一部切欠断面
正面図、第20図は従来の技術の一例を示した説明図で
ある。 3・・・熱電発電装置、  2■・・・熱電発電器、2
6・・・第1薄膜層、  27・・・第2薄膜層、28
・・・第3薄膜層、  29・・・第4薄膜層、30・
・・第5薄膜層、  31・・・絶縁物、32・・・P
型アモルファスFeSi、半導体熱電素材、33・・・
N型アモルファスFe5iz半導体熱電素材、34・・
・熱電素子、   41・・・断熱部。
FIG. 1 is a cross-sectional front view showing the first embodiment of the present invention, and the second embodiment is a cross-sectional front view showing the first embodiment of the present invention.
The figure is an enlarged view of the part marked ■ in Figure 1, and Figure 3 is the second part of the present invention.
4 is a cross-sectional front view showing the third embodiment of the present invention, FIG. 5 is a cross-sectional front view showing the fourth embodiment of the present invention, and FIG. 6 is a cross-sectional front view showing the fourth embodiment of the present invention. 5 is an enlarged view of the part marked ■, FIG. 7 is a partially cutaway side view showing the fifth embodiment of the present invention, FIG. 8 is an exploded sectional front view of FIG. 7, and FIG. 9 is an exploded sectional front view of FIG. 7. FIG. 10 is a cross-sectional bottom view showing only a part of the sixth embodiment of the present invention.
11 is a partially cutaway side view showing the embodiment; FIG. 11 is a cross-sectional front view taken along cutting line XI-XI in FIG. 10; FIG. 12 is a cross-sectional front view showing a seventh embodiment of the present invention; FIG. The figure is an explanatory diagram of the principle of a high thermal resistance type thermoelectric element, Fig. 14 is an explanatory diagram of one example of trial calculation based on Fig. 13, and Fig. 15 is another one.
FIG. 16 is another explanatory diagram, and FIG. 17 is an explanatory diagram showing an example of thermoelectric power generation equipment.
Figure 8 is an explanatory diagram of the principle of thermoelectric power generation, Figure 19 is a partially cutaway front view showing an example of a thermoelectric generator using a thin film type thermoelectric element, and Figure 20 is an example of conventional technology. It is an explanatory diagram. 3...Thermoelectric generator, 2■...Thermoelectric generator, 2
6... First thin film layer, 27... Second thin film layer, 28
...Third thin film layer, 29...Fourth thin film layer, 30.
...Fifth thin film layer, 31...Insulator, 32...P
Type amorphous FeSi, semiconductor thermoelectric material, 33...
N-type amorphous Fe5iz semiconductor thermoelectric material, 34...
・Thermoelectric element, 41...insulation section.

Claims (1)

【特許請求の範囲】 1、P型半導体薄膜型熱電素材とN型半導体薄膜型熱電
素材とが対をなして電気的にも熱的にも不良導体である
絶縁物を介して形成されていて、その一方の側が高温側
となるとともに、他方の側が低温側となる薄膜型熱電素
子の多数を備え、かつ、前記薄膜型熱電素子の該高温側
と低温側のそれぞれに設けられた電極を備え、しかも、
高温流体と低温流体を各別に流す流路を有して、該高温
流体により前記薄膜型熱電素子の高温側に熱を与えると
ともに、該低温流体により前記薄膜型熱電素子の低温側
から熱を奪うようにした熱電発電装置であって、前記熱
電素子内を流れる熱流に対する熱抵抗を大きくする断熱
部を備えていることを特徴とする、高熱抵抗型熱電発電
装置。 2、断熱部が薄膜型熱電素子に設けられている請求項1
記載の高熱抵抗型熱電発電装置。 3、薄膜型熱電素子が、多数の熱電素材からなり、かつ
、それら各熱電素材の間の隙間が断熱部になっている請
求項1または2記載の高熱抵抗型熱電発電装置。 4、断熱部が電極に設けられている請求項1記載の高熱
抵抗型熱電発電装置。 5、断熱部が薄膜型熱電素子と電極とに設けられている
請求項1記載の高熱抵抗型熱電発電装置。 6、断熱部が断熱材からなっている請求項1、2、3、
4または5記載の高熱抵抗型熱電発電装置。 7、断熱部が真空からなっている請求項1、2、3、4
または5記載の高熱抵抗型熱電発電装置。 8、断熱部が気体からなっている請求項1、2、3、4
または5記載の高熱抵抗型熱電発電装置。
[Claims] 1. A P-type semiconductor thin film thermoelectric material and an N-type semiconductor thin film thermoelectric material are formed as a pair through an insulator that is a poor conductor both electrically and thermally. , comprising a large number of thin film thermoelectric elements whose one side is a high temperature side and the other side is a low temperature side, and comprising electrodes provided on each of the high temperature side and the low temperature side of the thin film thermoelectric element. ,Moreover,
It has flow paths through which high-temperature fluid and low-temperature fluid flow separately, and the high-temperature fluid applies heat to the high-temperature side of the thin-film thermoelectric element, and the low-temperature fluid removes heat from the low-temperature side of the thin-film thermoelectric element. 1. A high thermal resistance type thermoelectric power generation device, comprising: a heat insulating portion that increases thermal resistance to heat flow flowing within the thermoelectric element. 2. Claim 1, wherein the heat insulating portion is provided in the thin film thermoelectric element.
The high thermal resistance type thermoelectric power generating device described above. 3. The high thermal resistance type thermoelectric power generation device according to claim 1 or 2, wherein the thin film type thermoelectric element is made of a large number of thermoelectric materials, and the gaps between the thermoelectric materials serve as a heat insulating section. 4. The high heat resistance type thermoelectric power generation device according to claim 1, wherein the electrode is provided with a heat insulating section. 5. The high thermal resistance type thermoelectric power generation device according to claim 1, wherein the heat insulating portion is provided on the thin film type thermoelectric element and the electrode. 6. Claims 1, 2, and 3, wherein the heat insulating part is made of a heat insulating material.
5. The high thermal resistance type thermoelectric power generation device according to 4 or 5. 7. Claims 1, 2, 3, 4, wherein the heat insulating part is made of vacuum.
or the high thermal resistance type thermoelectric power generation device according to 5. 8. Claims 1, 2, 3, and 4, wherein the heat insulating portion is made of gas.
or the high thermal resistance type thermoelectric power generation device according to 5.
JP1201166A 1989-08-04 1989-08-04 High thermal resistance thermoelectric generator Expired - Fee Related JP2996305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1201166A JP2996305B2 (en) 1989-08-04 1989-08-04 High thermal resistance thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1201166A JP2996305B2 (en) 1989-08-04 1989-08-04 High thermal resistance thermoelectric generator

Publications (2)

Publication Number Publication Date
JPH0370483A true JPH0370483A (en) 1991-03-26
JP2996305B2 JP2996305B2 (en) 1999-12-27

Family

ID=16436464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1201166A Expired - Fee Related JP2996305B2 (en) 1989-08-04 1989-08-04 High thermal resistance thermoelectric generator

Country Status (1)

Country Link
JP (1) JP2996305B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266102A (en) * 2006-03-27 2007-10-11 Toshiba Corp Thermoelectric conversion module
JP2010135620A (en) * 2008-12-05 2010-06-17 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module, and generator using the same
JP2012080761A (en) * 2010-09-10 2012-04-19 Toshiba Corp Temperature difference power generation apparatus and thermoelectric conversion element frame
JP2013175627A (en) * 2012-02-27 2013-09-05 Fujitsu Ltd Thermoelectric device and manufacturing method therefor
WO2013129057A1 (en) * 2012-02-27 2013-09-06 株式会社Kelk Thermoelectric module, thermoelectric power generating apparatus, and thermoelectric power generator
JP2014086454A (en) * 2012-10-19 2014-05-12 Toyota Motor Corp Thermoelectric generator
JP2017092263A (en) * 2015-11-11 2017-05-25 日東電工株式会社 Thermoelectric conversion device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101637302B1 (en) * 2014-12-04 2016-07-07 현대자동차 주식회사 Thermoelectric generation apparatus for recovery waste heat from engine of vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254082A (en) * 1985-04-30 1986-11-11 Suzuki Motor Co Ltd Power generator utilizing exhaust heat
JPS62145783A (en) * 1985-12-20 1987-06-29 Hitachi Ltd Thin film thermoelectric module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254082A (en) * 1985-04-30 1986-11-11 Suzuki Motor Co Ltd Power generator utilizing exhaust heat
JPS62145783A (en) * 1985-12-20 1987-06-29 Hitachi Ltd Thin film thermoelectric module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266102A (en) * 2006-03-27 2007-10-11 Toshiba Corp Thermoelectric conversion module
JP2010135620A (en) * 2008-12-05 2010-06-17 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module, and generator using the same
JP2012080761A (en) * 2010-09-10 2012-04-19 Toshiba Corp Temperature difference power generation apparatus and thermoelectric conversion element frame
JP2013175627A (en) * 2012-02-27 2013-09-05 Fujitsu Ltd Thermoelectric device and manufacturing method therefor
WO2013129057A1 (en) * 2012-02-27 2013-09-06 株式会社Kelk Thermoelectric module, thermoelectric power generating apparatus, and thermoelectric power generator
JPWO2013129057A1 (en) * 2012-02-27 2015-07-30 株式会社Kelk Thermoelectric module, thermoelectric generator and thermoelectric generator
US9793462B2 (en) 2012-02-27 2017-10-17 Kelk Ltd. Thermoelectric module, thermoelectric power generating apparatus, and thermoelectric generator
JP2014086454A (en) * 2012-10-19 2014-05-12 Toyota Motor Corp Thermoelectric generator
JP2017092263A (en) * 2015-11-11 2017-05-25 日東電工株式会社 Thermoelectric conversion device

Also Published As

Publication number Publication date
JP2996305B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US8575467B2 (en) Generator of electric energy based on the thermoelectric effect
JP3388841B2 (en) Thermoelectric generator
US4492809A (en) Thermoelectrical arrangement
JPH03155376A (en) Thermoelectric generating element
JPH0370483A (en) High heat resistance type thermoelectric generation set
US20200203592A1 (en) Electric power generation from a thin-film based thermoelectric module placed between each hot plate and cold plate of a number of hot plates and cold plates
CN102891248A (en) Flexible thermoelectric conversion system and manufacturing method thereof
US3266944A (en) Hermetically sealed thermoelectric generator
JPH07106641A (en) Integral ring type thermoelectric conversion element and device employing same
US11785849B2 (en) Thermoelectric power generator
JPH05315657A (en) Thermoelectric converting element and thermoelectric converter
JP3482094B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
RU2732821C2 (en) Tubular thermoelectric module
CN106784278B (en) Thermoelectric conversion device
CN202855806U (en) Flexible thermoelectric generator
CN108447974B (en) Inclined thermoelectric element and inclined thermoelectric assembly composed of same
JP2010192776A (en) Structure of thick film type thermoelectric power generation module
RU33462U1 (en) THERMOELECTRIC MODULE
JPH10243670A (en) Thermoelectric transducing system
JP3585565B2 (en) Thermoelectric element using porous metal
JP2000188429A (en) Thermo-electric conversion module
JP2566330B2 (en) Thermoelectric power generation method and apparatus
JP2639478B2 (en) Thermoelectric generator
JPH02271683A (en) Thermoelectric element and manufacture thereof
JP2639479B2 (en) Thermoelectric generator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees