JP2014086454A - Thermoelectric generator - Google Patents

Thermoelectric generator Download PDF

Info

Publication number
JP2014086454A
JP2014086454A JP2012231993A JP2012231993A JP2014086454A JP 2014086454 A JP2014086454 A JP 2014086454A JP 2012231993 A JP2012231993 A JP 2012231993A JP 2012231993 A JP2012231993 A JP 2012231993A JP 2014086454 A JP2014086454 A JP 2014086454A
Authority
JP
Japan
Prior art keywords
temperature side
heat transfer
thermoelectric
heat
transfer plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012231993A
Other languages
Japanese (ja)
Other versions
JP5954103B2 (en
Inventor
Yojiro Iriyama
要次郎 入山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012231993A priority Critical patent/JP5954103B2/en
Publication of JP2014086454A publication Critical patent/JP2014086454A/en
Application granted granted Critical
Publication of JP5954103B2 publication Critical patent/JP5954103B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric generator of simple structure having high power generation efficiency which is capable of ensuring a stable contact state between a heat exchanger surface of a thermoelectric element and heat exchanger plates on the high temperature side and the low temperature side.SOLUTION: A thermoelectric generator comprises a heat exchanger plate 32a on the high-temperature side and a heat exchanger plate 45a on the low-temperature side and a plurality of thermoelectric elements 43 respectively having a heat exchanger surface 43a on the heat absorbing side which contacts the heat exchanger plate 32a on the high-temperature side and a heat exchanger surface 43b on the heat dissipation side which contacts the heat exchanger plate 45a on the low-temperature side, and generates electric power by the thermoelectric elements 43 depending on the temperature difference between the heat absorbing surface and the heat dissipation surface. At least one heat exchanger plate of the heat exchanger plate 32a on the high-temperature side and the heat exchanger plate 45a on the low-temperature side includes a contact region R1 contacting the thermoelectric element 43 and a non-contact region R2 not contacting the thermoelectric element. The rigidity of a wall surface part 45a1 of the contact region R1 is lower than that of a wall surface part 45a2 of the non-contact region R2.

Description

本発明は、熱電発電装置に関し、特に電気的に直列接続される複数の熱電素子を高温側の伝熱板と低温側の伝熱板との間に熱的に並列に配置する熱電発電装置に関する。   The present invention relates to a thermoelectric power generation device, and more particularly to a thermoelectric power generation device in which a plurality of thermoelectric elements electrically connected in series are thermally arranged in parallel between a high temperature side heat transfer plate and a low temperature side heat transfer plate. .

従来、熱電素子の両側の温度差に応じて発電する熱電発電装置として、例えば熱電素子の設置空間を真空ラミネータ等により真空にして密閉することで、吸放熱効率の向上と、結露に伴うモジュールの破損の回避を図ったものが知られている(例えば、特許文献1の段落0052、0057等参照)。   Conventionally, as a thermoelectric generator that generates electricity according to the temperature difference between the two sides of the thermoelectric element, for example, the installation space of the thermoelectric element is evacuated and sealed with a vacuum laminator etc. A device for avoiding breakage is known (see, for example, paragraphs 0052 and 0057 of Patent Document 1).

また、バンドを用いた保持機構により複数の熱電素子を保持することで、熱膨張差が生じる高温側と低温側との間で熱歪みを吸収しつつ複数の熱電素子を適正に保持できるようにしたものも知られている(例えば、特許文献2参照)。   In addition, by holding a plurality of thermoelectric elements by a holding mechanism using a band, it is possible to appropriately hold a plurality of thermoelectric elements while absorbing thermal strain between a high temperature side and a low temperature side where a difference in thermal expansion occurs. Is also known (see, for example, Patent Document 2).

さらに、熱電変換モジュールの両端側の絶縁層と高温側および低温側の伝熱板との間にそれぞれ軟金属層を介在させて両者の接触面凹凸を吸収させ、接触面積の増加により熱伝達効率を向上させることで、発電出力を高めるものがある(例えば、特許文献3参照)。   Furthermore, a soft metal layer is interposed between the insulating layers on both ends of the thermoelectric conversion module and the heat transfer plates on the high temperature side and the low temperature side to absorb the unevenness of the contact surfaces between them, and the heat transfer efficiency is increased by increasing the contact area. There is one that improves the power generation output by improving the power (see, for example, Patent Document 3).

特開2007−273572号公報JP 2007-273572 A 特開2006−109539号公報JP 2006-109539 A 特開2000−232244号公報JP 2000-232244 A

しかしながら、上述のような従来の熱電発電装置にあっては、複数の熱電素子の伝熱面の安定接触状態を確保するために装置構成の複雑化を招き易くなり、装置構成を簡素にすると、熱歪み等に伴う接触面積の低下により熱電発電効率が低下してしまい易くなるという問題があった。   However, in the conventional thermoelectric power generation device as described above, it becomes easy to invite complication of the device configuration in order to ensure a stable contact state of the heat transfer surfaces of the plurality of thermoelectric elements, and when the device configuration is simplified, There has been a problem that thermoelectric power generation efficiency tends to decrease due to a decrease in contact area due to thermal strain or the like.

そこで、本発明は、熱電素子の伝熱面と高温側および低温側の伝熱板との安定接触状態を確保することができる構成の簡素な高発電効率の熱電発電装置を提供することを目的とする。   Accordingly, the present invention has an object to provide a simple high power generation efficiency thermoelectric generator having a configuration capable of ensuring a stable contact state between the heat transfer surface of the thermoelectric element and the heat transfer plates on the high temperature side and the low temperature side. And

本発明に係る熱電発電装置は、上記目的達成のため、(1)高温側の伝熱板および低温側の伝熱板と、それぞれ前記高温側の伝熱板に接触する吸熱面および前記低温側の伝熱板に接触する放熱面を有する複数の熱電素子と、を備え、前記熱電素子により前記吸熱面および前記放熱面の間の温度差に応じて発電する熱電発電装置であって、前記高温側の伝熱板および前記低温側の伝熱板のうち少なくとも一方の伝熱板は、前記熱電素子に接する接触領域と前記熱電素子に接しない非接触領域とを有し、前記接触領域の壁面部分は、前記非接触領域の壁面部分より剛性が低くなっていることを特徴とする。   In order to achieve the above object, the thermoelectric power generator according to the present invention includes (1) a high-temperature side heat transfer plate and a low-temperature side heat transfer plate, and a heat-absorbing surface and the low-temperature side that are in contact with the high-temperature side heat transfer plate. A plurality of thermoelectric elements having a heat radiating surface in contact with the heat transfer plate, wherein the thermoelectric power generator generates electric power according to a temperature difference between the heat absorbing surface and the heat radiating surface by the thermoelectric element, wherein the high temperature At least one of the heat transfer plate on the side and the heat transfer plate on the low temperature side has a contact region in contact with the thermoelectric element and a non-contact region not in contact with the thermoelectric element, and the wall surface of the contact region The portion has a lower rigidity than the wall surface portion of the non-contact region.

この熱電発電装置では、熱電素子に接触する少なくとも一方の伝熱板における接触領域の壁面部分が、その伝熱板における非接触領域の壁面部分より低剛性となっていることから、非接触領域で所要の支持剛性を持つ少なくとも一方の伝熱板にあって部分的に低剛性となる接触領域の壁面部分に、複数の熱電素子の吸熱面および放熱面のうち少なくとも一方の面が低支持剛性で支持できることになる。したがって、複数の熱電素子の伝熱面と高温側および低温側の伝熱板との間で、熱歪みや接触面凹凸が吸収され易くなり、熱電素子の伝熱面と高温側および低温側の伝熱板との安定接触状態を確保できる構成の簡素な高発電効率の熱電発電装置となる。なお、少なくとも一方の伝熱板であるから、高温側か低温側かいずれか一方の伝熱板の接触領域の壁面部分のみを低剛性とすることができる。その場合、一方の伝熱板の接触領域の壁面部分を他方の伝熱板の接触領域の壁面部分より低剛性としてもよい。   In this thermoelectric generator, the wall surface portion of the contact region in at least one heat transfer plate that contacts the thermoelectric element is less rigid than the wall surface portion of the non-contact region in the heat transfer plate. At least one of the heat absorbing surface and the heat radiating surface of the plurality of thermoelectric elements has a low support rigidity on the wall surface portion of the contact region that is partially low in the heat transfer plate having the required support rigidity. It can be supported. Therefore, thermal distortion and contact surface irregularities are easily absorbed between the heat transfer surfaces of the plurality of thermoelectric elements and the high temperature side and low temperature side heat transfer plates. A thermoelectric generator with a simple and high power generation efficiency having a configuration capable of ensuring a stable contact state with the heat transfer plate. Since at least one of the heat transfer plates is used, only the wall surface portion of the contact area of the heat transfer plate on either the high temperature side or the low temperature side can be made to have low rigidity. In that case, the wall surface portion of the contact region of one heat transfer plate may have a lower rigidity than the wall surface portion of the contact region of the other heat transfer plate.

本発明の熱電発電装置は、好ましくは、(2)前記高温側の伝熱板および前記低温側の伝熱板の間に前記熱電素子を設置する閉じた設置空間が形成されており、前記設置空間の内部の圧力が大気圧より低い圧力に保持されているものである。   In the thermoelectric generator of the present invention, preferably, (2) a closed installation space for installing the thermoelectric element is formed between the high temperature side heat transfer plate and the low temperature side heat transfer plate, The internal pressure is maintained at a pressure lower than atmospheric pressure.

この構成により、熱電素子の伝熱面と高温側および低温側の伝熱板との接触状態がより安定するとともに、設置空間内での空気による熱伝達が抑制され、熱電素子の周囲の高温側の伝熱板と低温側の伝熱板の間に効果的な断熱層が形成された状態で、熱電素子による吸熱と放熱が効果的に行われることになる。したがって、高発電効率の熱電発電装置となる。   With this configuration, the contact state between the heat transfer surface of the thermoelectric element and the heat transfer plate on the high temperature side and the low temperature side is more stable, and heat transfer by air in the installation space is suppressed, and the high temperature side around the thermoelectric element In the state in which an effective heat insulating layer is formed between the heat transfer plate and the low-temperature heat transfer plate, heat absorption and heat dissipation by the thermoelectric element are effectively performed. Therefore, it becomes a thermoelectric power generator with high power generation efficiency.

なお、複数の熱電素子を設置する設置空間は、少なくとも一方の伝熱板によって形成されることになり、設置空間が一方の伝熱板の内方に形成される場合、一方の伝熱板は閉止可能なケース状のものとなる。   The installation space for installing the plurality of thermoelectric elements is formed by at least one heat transfer plate. When the installation space is formed inside one heat transfer plate, one heat transfer plate is It will be a case that can be closed.

上記(2)の構成を有する熱電発電装置においては、(3)前記一方の伝熱板が、前記高温側の伝熱板を介して前記熱電素子に吸熱させる高温側の熱媒体と前記低温側の伝熱板を介して前記熱電素子から放熱させる低温側の熱媒体とのうちいずれか一方の熱媒体を通す配管の管壁によって構成されていてもよい。   In the thermoelectric generator having the configuration of (2) above, (3) the one heat transfer plate absorbs heat from the thermoelectric element via the high temperature side heat transfer plate and the low temperature side It may be configured by a pipe wall of a pipe through which any one of the low-temperature-side heat medium that radiates heat from the thermoelectric element through the heat transfer plate.

この場合、一方の熱媒体を通す配管の管壁が、非接触領域と接触領域を有することになり、その接触領域の壁面部分に、複数の熱電素子が伝熱面を接触させつつ低支持剛性で支持される。したがって、接触領域の壁面部分となる一部でのみ低剛性となる配管に複数の熱電素子を直接的に支持させることができ、構成が非常に簡素な熱電発電装置となる。   In this case, the pipe wall of the pipe through which one heat medium passes has a non-contact area and a contact area, and a low support rigidity while a plurality of thermoelectric elements are in contact with the heat transfer surface on the wall surface portion of the contact area. Supported by Therefore, a plurality of thermoelectric elements can be directly supported by a pipe having low rigidity only at a part of the wall surface portion of the contact region, and a thermoelectric generator having a very simple configuration can be obtained.

上記(1)または(2)の構成を有する熱電発電装置においては、(4)前記一方の伝熱板が、前記高温側の伝熱板に熱を吸収させる高温側の熱媒体と前記低温側の伝熱板から熱を放出させる低温側の熱媒体とのうちいずれか一方の熱媒体を通す配管の管壁と、一面側で前記配管の管壁に接触するとともに他面側で前記熱電素子に接触する熱伝導性電気絶縁基板とによって構成されていてもよい。   In the thermoelectric generator having the configuration of (1) or (2), (4) the one heat transfer plate absorbs heat by the high temperature heat transfer plate and the low temperature side heat medium. The pipe wall of the pipe through which any one of the low-temperature side heat medium that releases heat from the heat transfer plate, and the thermoelectric element in contact with the pipe wall of the pipe on one side and on the other side And a thermally conductive and electrically insulating substrate in contact with the substrate.

この場合、一方の熱媒体を通す配管の管壁とその管壁に接触する熱伝導性電気絶縁基板とによって構成される一方の伝熱板が非接触領域と接触領域を有し、その接触領域の壁面部分を構成する熱伝導性電気絶縁基板に対し、複数の熱電素子が伝熱面を接触させつつ低支持剛性で支持されることになる。したがって、複数の熱電素子の伝熱面を、熱伝導性電気絶縁基板の一部を含み低剛性部となる一方の伝熱板の接触領域の壁面部分に安定接触させることができる。   In this case, one heat transfer plate constituted by the pipe wall of the pipe through which one heat medium passes and the heat conductive electrically insulating substrate in contact with the pipe wall has a non-contact area and a contact area, and the contact area A plurality of thermoelectric elements are supported with low support rigidity while contacting the heat transfer surface with respect to the thermally conductive electrically insulating substrate constituting the wall surface portion of the substrate. Therefore, the heat transfer surfaces of the plurality of thermoelectric elements can be stably brought into contact with the wall surface portion of the contact region of one heat transfer plate that includes a part of the heat conductive electrically insulating substrate and becomes the low rigidity portion.

上記(4)の構成を有する熱電発電装置においては、(5)前記複数の熱電素子が、前記熱伝導性電気絶縁基板の前記他面側に互いに間隔を隔てて配置されており、前記熱伝導性電気絶縁基板が、前記複数の熱電素子との非接触部に、板厚方向に貫通する貫通穴を有していてもよい。   In the thermoelectric generator having the configuration of (4) above, (5) the plurality of thermoelectric elements are arranged on the other surface side of the thermally conductive electrically insulating substrate with a space therebetween, and the heat conduction The electrically insulating substrate may have a through hole penetrating in the thickness direction in a non-contact portion with the plurality of thermoelectric elements.

この場合、熱伝導性電気絶縁基板とその一面側の管壁との密着時に、両者間の空気を貫通穴を通して容易に排出させることができ、残存空気により熱伝導性電気絶縁基板と管壁との密着性が低下することを抑制することができる。   In this case, when the heat conductive electrically insulating substrate and the tube wall on the one surface side thereof are in close contact with each other, the air between them can be easily discharged through the through-hole, and the remaining air allows the heat conductive electrically insulating substrate and the tube wall to be discharged. It can suppress that adhesiveness falls.

本発明によれば、熱電素子に接触する一方の伝熱板の接触領域の壁面部分を非接触領域の壁面部分より低剛性として、複数の熱電素子の伝熱面と高温側および低温側の伝熱板との間で、熱歪みや接触面凹凸を吸収し易くしているので、熱電素子の伝熱面と高温側および低温側の伝熱板との安定接触状態を確保することができる構成の簡素な高発電効率の熱電発電装置を提供することができる。   According to the present invention, the wall surface portion of the contact region of one heat transfer plate that contacts the thermoelectric element is made to be less rigid than the wall surface portion of the non-contact region, and the heat transfer surfaces of the plurality of thermoelectric elements are transferred to the high temperature side and the low temperature side. Because it is easy to absorb thermal distortion and contact surface unevenness between the heat plate and the heat transfer surface of the thermoelectric element, the configuration that can ensure a stable contact state between the high temperature side and low temperature side heat transfer plate It is possible to provide a simple thermoelectric generator with high power generation efficiency.

本発明の第1実施形態に係る熱電発電装置を備えた内燃機関の排気熱回収システムの概略構成図である。1 is a schematic configuration diagram of an exhaust heat recovery system for an internal combustion engine including a thermoelectric power generator according to a first embodiment of the present invention. 本発明の第1実施形態に係る熱電発電装置の要部断面図である。It is principal part sectional drawing of the thermoelectric generator which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る熱電発電装置を排気通路上のバルブをバイパスするバイパス通路上に配置した態様を示すその排気熱回収システムの要部概略構成図である。It is a principal part schematic block diagram of the exhaust heat recovery system which shows the aspect which has arrange | positioned the thermoelectric power generating apparatus which concerns on 1st Embodiment of this invention on the bypass channel which bypasses the valve | bulb on an exhaust channel. 本発明の第2実施形態に係る熱電発電装置の要部断面図である。It is principal part sectional drawing of the thermoelectric power generating apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る熱電発電装置における複数の熱電素子とそれらの素子を電気的に直列接続する電極との配置説明図である。It is arrangement | positioning explanatory drawing of the several thermoelectric element and electrode which electrically connects these elements in series in the thermoelectric power generation apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る熱電発電装置の要部断面図である。It is principal part sectional drawing of the thermoelectric power generating apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る熱電発電装置の要部断面図である。It is principal part sectional drawing of the thermoelectric power generating apparatus which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る熱電発電装置の要部断面図である。It is principal part sectional drawing of the thermoelectric power generating apparatus which concerns on 5th Embodiment of this invention.

以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1〜図3に、本発明の第1実施形態に係る熱電発電装置およびその装置を備えた内燃機関の排気熱回収システムを示している。
(First embodiment)
1 to 3 show a thermoelectric generator according to a first embodiment of the present invention and an exhaust heat recovery system for an internal combustion engine equipped with the device.

本実施形態の排気熱回収システムは、自動車(車両)に搭載される水冷式の多気筒の内燃機関、例えば4サイクルガソリンエンジンに装備されている。勿論、本発明に係る熱電発電装置およびこれを備えた排気熱回収システムは、燃料が異なる他のエンジンに装備されるものであってもよい。また、本発明の熱電発電装置が内燃機関の排気熱回収システム以外にも使用できることはいうまでもなく、熱電素子による高温側熱源からの吸熱と低温側熱源への放熱が可能なものであれば、熱源も限定されるものではない。もっとも、本発明は、複数の熱電素子(熱電変換素子)を用いて2つの熱媒体間で熱交換させつつ発電させる熱電発電装置に好適である。   The exhaust heat recovery system of the present embodiment is installed in a water-cooled multi-cylinder internal combustion engine, for example, a 4-cycle gasoline engine, which is mounted on an automobile (vehicle). Of course, the thermoelectric generator according to the present invention and the exhaust heat recovery system including the thermoelectric generator may be mounted on another engine having different fuel. In addition, it goes without saying that the thermoelectric generator of the present invention can be used other than the exhaust heat recovery system of an internal combustion engine, as long as it can absorb heat from the high temperature side heat source and release heat to the low temperature side heat source by the thermoelectric element. The heat source is not limited. However, the present invention is suitable for a thermoelectric power generation apparatus that generates power while performing heat exchange between two heat media using a plurality of thermoelectric elements (thermoelectric conversion elements).

まず、本実施形態の構成について説明する。   First, the configuration of the present embodiment will be described.

図1に示すように、エンジン1は、その本体ブロック11の各気筒11c内に往復動可能なピストン2を収納して燃焼室3を形成しており、ピストン2は、コネクティングロッド4を介してクランクシャフト5に連結されている。燃焼室3の上部には、図示しない動弁機構によりクランクシャフト5の回転に応じて開閉される吸気弁6および排気弁7と、燃焼室3内に火花点火可能に露出する点火プラグ8とが設けられている。吸気弁6は、その開弁時に燃焼室3を吸気管21Pの内部通路を含む吸気通路21に連通させ、排気弁7は、その開弁時に燃焼室3を排気管31Pの内部通路を含む排気通路31に連通させるようになっている。そして、吸気弁6の開弁により燃焼室3が吸気通路21に連通した状態でピストン2が下降するとき、燃焼室3は、吸気通路21を通して空気を吸入することができる。また、排気弁7の開弁により燃焼室3が排気通路31に連通した状態でピストン2が上昇するとき、燃焼室3は、排気通路31を通し排気ガスを排出することができる。   As shown in FIG. 1, the engine 1 houses a reciprocable piston 2 in each cylinder 11 c of a main body block 11 to form a combustion chamber 3, and the piston 2 is connected via a connecting rod 4. It is connected to the crankshaft 5. In the upper part of the combustion chamber 3, there are an intake valve 6 and an exhaust valve 7 that are opened and closed according to the rotation of the crankshaft 5 by a valve mechanism (not shown), and an ignition plug 8 that is exposed in the combustion chamber 3 so as to be capable of spark ignition. Is provided. The intake valve 6 communicates the combustion chamber 3 with the intake passage 21 including the internal passage of the intake pipe 21P when the valve is opened, and the exhaust valve 7 exhausts the combustion chamber 3 including the internal passage of the exhaust pipe 31P when the valve is opened. It communicates with the passage 31. When the piston 2 descends in a state where the combustion chamber 3 communicates with the intake passage 21 by opening the intake valve 6, the combustion chamber 3 can suck air through the intake passage 21. Further, when the piston 2 rises with the combustion chamber 3 communicating with the exhaust passage 31 by opening the exhaust valve 7, the combustion chamber 3 can exhaust the exhaust gas through the exhaust passage 31.

吸気通路21は、図示しないエアクリーナを通して空気を導入可能であるとともに、スロットル弁22の開度に応じて吸入空気量が調節可能であり、エアフローメータ23によってその吸入空気量が検出されるようになっている。また、スロットル弁22より下流側には、吸気通路21内の圧力脈動を緩和するサージタンク24が設けられており、そのサージタンク24より下流側で各気筒11cに分岐する吸気ポート部分21cには、吸気通路21内に燃料を噴射して吸入空気中に燃料を混合させるインジェクタ25が設けられている。なお、点火プラグ8、スロットル弁22およびインジェクタ25は、それぞれ車載用の電子制御ユニット(以下、ECUという)50によって、その点火時期、スロットル開度および噴射量(噴射時間)を制御されるようになっている。各気筒11cに対応する各インジェクタ25は、図示しない燃料ポンプからの燃料を蓄圧・貯留するデリバリパイプ26に接続されており、デリバリパイプ26から分配される所定燃圧の燃料を燃焼室3内に噴射するよう開弁するとともに、その噴射量を開弁時間のデューティ制御によって制御できるようになっている。   The intake passage 21 can introduce air through an air cleaner (not shown), and the intake air amount can be adjusted according to the opening of the throttle valve 22, and the intake air amount is detected by the air flow meter 23. ing. Further, a surge tank 24 for reducing pressure pulsation in the intake passage 21 is provided on the downstream side of the throttle valve 22, and an intake port portion 21 c branched to each cylinder 11 c on the downstream side of the surge tank 24 is provided in the intake port portion 21 c. An injector 25 for injecting fuel into the intake passage 21 and mixing the fuel into the intake air is provided. The ignition plug 8, the throttle valve 22 and the injector 25 are controlled so that their ignition timing, throttle opening and injection amount (injection time) are controlled by an on-vehicle electronic control unit (hereinafter referred to as ECU) 50, respectively. It has become. Each injector 25 corresponding to each cylinder 11c is connected to a delivery pipe 26 that accumulates and stores fuel from a fuel pump (not shown), and injects fuel of a predetermined fuel pressure distributed from the delivery pipe 26 into the combustion chamber 3. The valve is opened so that the injection amount can be controlled by duty control of the valve opening time.

一方、エンジン1の各気筒11cを形成するシリンダブロックおよびシリンダヘッドの内部には、冷却水を通すウォータジャケット11wが形成されている。詳細は図示しないが、ウォータジャケット11wを通過した冷却水は、エンジン1のシリンダヘッドに形成された冷却水出口から流出するようになっており、エンジン1から流出した冷却水は、ラジエータ12によって外部の空気との熱交換により冷却されるようになっている。また、エンジン1のウォータジャケット11wの上流側にはウォータポンプ15が配置されており、そのウォータポンプ15の吸入側に冷却水の温度に感応して開弁および閉弁するサーモスタット14が配置されている。   On the other hand, a water jacket 11w through which cooling water passes is formed inside the cylinder block and cylinder head forming each cylinder 11c of the engine 1. Although not shown in detail, the cooling water that has passed through the water jacket 11w flows out from the cooling water outlet formed in the cylinder head of the engine 1, and the cooling water that has flowed out of the engine 1 is externally supplied by the radiator 12. It is cooled by heat exchange with the air. Further, a water pump 15 is disposed upstream of the water jacket 11w of the engine 1, and a thermostat 14 that opens and closes in response to the temperature of the cooling water is disposed on the suction side of the water pump 15. Yes.

エンジン1から流出した冷却水は、車室内の暖房等のために冷却水と空気との間の熱交換を行う図示しないヒータコア等にも供給されるようになっている。そして、そのヒータコア等を通過したエンジン冷却水は、冷却水通路19の分岐通路19a,19bを通して、EGRクーラ18と、排気熱再循環および熱電発電装置40とに、それぞれ供給されるようになっている。エンジン1から流出する冷却水は、また、吸気通路の一部を形成するとともにスロットルバルブの一部を構成する図示しないスロットルボデーにも通水されるようになっている。   The cooling water that has flowed out of the engine 1 is also supplied to a heater core (not shown) that performs heat exchange between the cooling water and air for heating the passenger compartment. The engine coolant that has passed through the heater core and the like is supplied to the EGR cooler 18 and the exhaust heat recirculation and thermoelectric generator 40 through the branch passages 19a and 19b of the coolant passage 19, respectively. Yes. The cooling water flowing out from the engine 1 is also passed through a throttle body (not shown) that forms part of the intake passage and forms part of the throttle valve.

排気熱再循環および熱電発電装置40(以下、単に熱電発電装置40という)は、エンジン1の排気管中を通る排気ガスとエンジン冷却水との間の熱交換により排気熱を回収することで前述のヒータコアやエンジン1の暖機性能を向上させることができるようになっている。   The exhaust heat recirculation and thermoelectric generator 40 (hereinafter simply referred to as the thermoelectric generator 40) recovers exhaust heat by exchanging heat between the exhaust gas passing through the exhaust pipe of the engine 1 and the engine coolant. The heater core and the warm-up performance of the engine 1 can be improved.

この熱電発電装置40には、冷却水通路19に接続されたサーモスタットタイプの排気ガス制御アクチュエータ41が設けられており、この排気ガス制御アクチュエータ41は、排気通路31の一部を絞ることができる弁体41aを有している。   The thermoelectric generator 40 is provided with a thermostat type exhaust gas control actuator 41 connected to the cooling water passage 19. The exhaust gas control actuator 41 is a valve that can throttle a part of the exhaust passage 31. It has a body 41a.

より具体的には、図3に示すように、熱電発電装置40の弁体41aは排気通路31の主通路部分31aに装着されており、熱電発電装置40の本体部40Mは弁体41aをバイパスするよう排気通路31の主通路部分31aに並列に接続するバイパス通路部分31bに装着されている。そして、弁体41aにより排気通路31の主通路部分31aが絞られるとき、熱電発電装置40の本体部40Mが装着されたバイパス通路部分31bの内部を通過する排気ガスの流量が増加するようになっている。   More specifically, as shown in FIG. 3, the valve body 41a of the thermoelectric generator 40 is attached to the main passage portion 31a of the exhaust passage 31, and the main body 40M of the thermoelectric generator 40 bypasses the valve body 41a. The exhaust passage 31 is mounted on a bypass passage portion 31b connected in parallel to the main passage portion 31a. When the main passage portion 31a of the exhaust passage 31 is throttled by the valve body 41a, the flow rate of the exhaust gas passing through the inside of the bypass passage portion 31b to which the main body portion 40M of the thermoelectric generator 40 is mounted increases. ing.

また、図2に示すように、排気通路31のバイパス通路部分31bは、排気管31Pに接続されたバイパス配管32によって形成されており、そのバイパス配管32の内周面32i側には、複数の吸熱フィン部33fおよび一対の集熱壁部33sを有する吸熱部材33が設けられている。複数の吸熱フィン部33fは、バイパス配管32内を通る排気ガスからの熱伝達面を大きくして吸熱し易くしたものである。また、集熱壁部33sは、複数の吸熱フィン部33fと一体に形成され、複数の吸熱フィン部33fに吸熱された熱をバイパス配管32の内周面32i側に移動させる高熱伝導率の部材である。   As shown in FIG. 2, the bypass passage portion 31b of the exhaust passage 31 is formed by a bypass pipe 32 connected to the exhaust pipe 31P, and a plurality of bypass pipes 32 are provided on the inner peripheral surface 32i side of the bypass pipe 32. A heat absorbing member 33 having a heat absorbing fin portion 33f and a pair of heat collecting wall portions 33s is provided. The plurality of heat-absorbing fin portions 33f make the heat transfer surface from the exhaust gas passing through the bypass pipe 32 larger so as to absorb heat easily. The heat collecting wall portion 33s is formed integrally with the plurality of heat absorbing fin portions 33f, and has a high thermal conductivity that moves the heat absorbed by the plurality of heat absorbing fin portions 33f to the inner peripheral surface 32i side of the bypass pipe 32. It is.

一方、バイパス配管32の外周側には、P型半導体素子およびN型半導体素子の対(ペルチェ素子)を複数含んで構成され、少なくとも1つ例えば複数の熱電発電モジュールを形成する複数の熱電素子43と、これら複数の熱電素子43およびバイパス配管32の偏平な中間部分を取り囲むように、筒状の冷却水配管45が設けられている。   On the other hand, on the outer peripheral side of the bypass pipe 32, a plurality of thermoelectric elements 43 including a plurality of pairs of P-type semiconductor elements and N-type semiconductor elements (Peltier elements) and forming at least one, for example, a plurality of thermoelectric power generation modules. And the cylindrical cooling water piping 45 is provided so that the flat intermediate part of these thermoelectric elements 43 and bypass piping 32 may be surrounded.

これらバイパス配管32、複数の熱電素子43および冷却水配管45は、熱電発電装置40の主要部を構成しており、排気ガス制御アクチュエータ41によってバイパス配管32の内部を通過する排気ガスの流量が増量されるとき、複数の熱電素子43によって発電するようになっている。   The bypass pipe 32, the plurality of thermoelectric elements 43, and the cooling water pipe 45 constitute the main part of the thermoelectric generator 40, and the exhaust gas control actuator 41 increases the flow rate of the exhaust gas passing through the bypass pipe 32. When this is done, power is generated by a plurality of thermoelectric elements 43.

具体的には、バイパス配管32は、少なくともその通路延在方向の中間部分で偏平管形状をなしており、その一面側および他面側の平坦管壁部32a,32bと、これら平坦管壁部32a,32bを連結してバイパス通路部分31bの一部を形成する両側壁部32c,32dと、によって構成されている。   Specifically, the bypass pipe 32 has a flat tube shape at least in an intermediate portion of the passage extending direction, and the flat tube wall portions 32a and 32b on one surface side and the other surface side thereof, and these flat tube wall portions. 32a and 32b are connected to each other to form part of the bypass passage portion 31b.

バイパス配管32の平坦管壁部32a,32bは、バイパス配管32の内周面32i側では、吸熱部材33の一対の集熱壁部33sに広範囲に接触している。また、これら一面側および他面側の平坦管壁部32a,32bは、バイパス配管32の外周面側では、複数の熱電素子43に接触している。   The flat tube wall portions 32 a and 32 b of the bypass pipe 32 are in wide contact with the pair of heat collecting wall portions 33 s of the heat absorbing member 33 on the inner peripheral surface 32 i side of the bypass pipe 32. Further, the flat tube wall portions 32 a and 32 b on the one surface side and the other surface side are in contact with the plurality of thermoelectric elements 43 on the outer peripheral surface side of the bypass pipe 32.

バイパス配管32の一面側および他面側の平坦管壁部32a,32bは、高温の排気ガスから吸熱する吸熱部材33によって高温に加熱されるときに複数の熱電素子43に吸熱させることができる高温側の伝熱板となっている。   The flat pipe wall portions 32a and 32b on the one surface side and the other surface side of the bypass pipe 32 can be absorbed by the plurality of thermoelectric elements 43 when heated to a high temperature by the heat absorbing member 33 that absorbs heat from the high-temperature exhaust gas. It is a heat transfer plate on the side.

複数の熱電素子43は、筒状の冷却水配管45とバイパス配管32との間に熱的には並列に配置されるとともに電気的には直列に接続されている。   The plurality of thermoelectric elements 43 are thermally arranged in parallel between the cylindrical cooling water pipe 45 and the bypass pipe 32 and are electrically connected in series.

また、各熱電素子43は、バイパス配管32の一面側および他面側の平坦管壁部32a,32bに接触する平坦な高温側の端面部43a(吸熱面)と、高温側の端面部43aに対し平行な低温側の端面部43b(放熱面)とを有している。   In addition, each thermoelectric element 43 has a flat high-temperature end surface 43a (heat absorption surface) contacting the flat pipe wall portions 32a and 32b on one surface side and the other surface side of the bypass pipe 32, and an end surface portion 43a on the high-temperature side. It has an end surface portion 43b (heat dissipating surface) on the low temperature side parallel to the surface.

これら複数の熱電素子43は、それぞれのペルチェ素子に高温側および低温側の端面部43a,43bの温度差に応じたゼーベック効果(N型半導体素子内での電子の低温側への移動およびP型半導体素子内での正孔の低温側への移動)を生じさせることで、発電することができるようになっている。また、複数の熱電素子43は、直列に接続された複数個を1組の熱電素子43とするとき、少なくとも1組の熱電素子43によって発電できるようにも構成されている。すなわち、熱電発電装置40は、複数の熱電素子43により、それらの両端面部43a,43bの温度差に応じて発電する機能を有している。   The plurality of thermoelectric elements 43 have a Seebeck effect (transfer of electrons to the low temperature side in the N-type semiconductor element and P-type in accordance with the temperature difference between the end faces 43a and 43b on the high temperature side and the low temperature side of each Peltier element. Electricity can be generated by generating holes in the semiconductor element to the low temperature side). In addition, the plurality of thermoelectric elements 43 are configured to be able to generate power with at least one set of thermoelectric elements 43 when a plurality of thermoelectric elements 43 connected in series are used as one set of thermoelectric elements 43. That is, the thermoelectric power generation device 40 has a function of generating electric power by a plurality of thermoelectric elements 43 according to the temperature difference between the both end surface portions 43a and 43b.

冷却水配管45は、複数の熱電素子43の低温側の平坦な端面部43bに接触する内管壁部45a(一方の伝熱板)と、この内管壁部45aを内部の定位置に収納保持しつつ内管壁部45aとの間に冷却水通路45cを形成する筒状の外管壁部45bと、バイパス配管32の軸線方向における内管壁部45aおよび外管壁部45bの両端側で冷却水通路45cを閉止する両端側壁部45dとによって構成されている。   The cooling water pipe 45 accommodates the inner tube wall 45a (one heat transfer plate) contacting the flat end surface portion 43b on the low temperature side of the plurality of thermoelectric elements 43 and the inner tube wall 45a in a fixed position inside. A cylindrical outer tube wall 45b that forms a cooling water passage 45c between the inner tube wall 45a while being held, and both end sides of the inner tube wall 45a and the outer tube wall 45b in the axial direction of the bypass pipe 32 And both end side wall portions 45d for closing the cooling water passage 45c.

この冷却水配管45の内管壁部45aは、冷却水通路45c内を通るエンジン冷却水により冷却されるときに複数の熱電素子43から放熱させることができる低温側の伝熱板となっている。   The inner pipe wall 45a of the cooling water pipe 45 is a low-temperature heat transfer plate that can dissipate heat from the plurality of thermoelectric elements 43 when cooled by engine cooling water passing through the cooling water passage 45c. .

また、冷却水配管45の内管壁部45aは、電気的に直列に接続された複数の熱電素子43の伝熱面群、例えば同一平面上に等間隔に配置された複数の端面部43bの島状の集まりに接する接触領域R1と、複数の熱電素子43の伝熱面群に接しない非接触領域R2とを有している。そして、内管壁部45aの内周面45i(片面)側における図2中の上下両側の接触領域R1の壁面部分45a1は、内管壁部45aにおける非接触領域R2の壁面部分45a2より薄肉(厚さが相対的に小さい壁部)に形成され、非接触領域R2の壁面部分45a2に対して相対的に剛性(ここでは加わる力に耐えて変形を抑制する剛さの意で、例えば曲げ剛性を含むものである)が低くなっている。ここにいう薄肉化の程度は、例えば内管壁部45aの接触領域R1の壁面部分45a1が冷却水通路45cを通る冷却水の圧力と設置空間46内の圧力とに応じて容易に弾性変形し、各熱電素子43の端面部43bと接触領域R1の壁面部分45a1との密着性が高まる程度の薄肉化である。   In addition, the inner pipe wall 45a of the cooling water pipe 45 has a heat transfer surface group of a plurality of thermoelectric elements 43 electrically connected in series, for example, a plurality of end face parts 43b arranged at equal intervals on the same plane. It has a contact region R1 in contact with the island-shaped gathering and a non-contact region R2 in contact with the heat transfer surface group of the plurality of thermoelectric elements 43. The wall surface portion 45a1 of the contact region R1 on both the upper and lower sides in FIG. 2 on the inner peripheral surface 45i (one surface) side of the inner tube wall portion 45a is thinner than the wall surface portion 45a2 of the non-contact region R2 in the inner tube wall portion 45a (see FIG. The wall portion 45a2 of the non-contact region R2 is formed with a relatively small thickness, and is relatively rigid (in this case, rigid to withstand the force applied and suppress deformation, for example, bending rigidity. Is low). For example, the wall thickness 45a1 of the contact region R1 of the inner tube wall 45a is easily elastically deformed according to the pressure of the cooling water passing through the cooling water passage 45c and the pressure in the installation space 46. The thinning is such that the adhesion between the end surface portion 43b of each thermoelectric element 43 and the wall surface portion 45a1 of the contact region R1 is enhanced.

この冷却水配管45の内管壁部45aは、バイパス配管32の平坦管壁部32a,32bを介して複数の熱電素子43に吸熱させる排気ガス(高温側の熱媒体)とこの冷却水配管45の内管壁部45aを介して複数の熱電素子43から放熱させるエンジン冷却水(低温側の熱媒体)とのうちいずれか一方の熱媒体、例えばエンジン冷却水を通す配管の管壁となっている。   The inner pipe wall portion 45 a of the cooling water pipe 45 includes an exhaust gas (high temperature side heat medium) that absorbs heat from the plurality of thermoelectric elements 43 via the flat pipe wall parts 32 a and 32 b of the bypass pipe 32 and the cooling water pipe 45. It becomes the pipe wall of the piping through which any one heat medium, for example, engine cooling water, is radiated from the plurality of thermoelectric elements 43 through the inner pipe wall portion 45a. Yes.

なお、複数の熱電素子43は、それぞれ複数個の素子を一体化した複数の熱電発電モジュール43M(図2参照)として構成される場合、各壁面部分45a1の面積は、1つの熱電発電モジュールを構成する各熱電発電チップの端面の面積と同じ面積であるかまたはそれより広くなっており、例えば各熱電発電モジュールの端面の面積よりわずかに広くなっている。また、冷却水配管45の冷却水通路45cは、その通路形状が限定されるものではないが、例えば図1に示すように、冷却水通路45cの冷却水導入口位置が冷却水通路45cの冷却水排出口位置よりも排気方向における下流側に位置するように設定されている。   When the plurality of thermoelectric elements 43 are configured as a plurality of thermoelectric power generation modules 43M (see FIG. 2) each integrating a plurality of elements, the area of each wall surface portion 45a1 configures one thermoelectric power generation module. It is the same area as or larger than the area of the end face of each thermoelectric power generation chip, for example, slightly larger than the area of the end face of each thermoelectric power generation module. Further, the shape of the cooling water passage 45c of the cooling water pipe 45 is not limited. For example, as shown in FIG. 1, the cooling water inlet position of the cooling water passage 45c is the cooling water passage 45c. It is set so as to be located downstream of the water discharge port position in the exhaust direction.

バイパス配管32と内管壁部45aの間、少なくともバイパス配管32の一面側および他面側の平坦管壁部32a,32bと冷却水配管45の内管壁部45aとの間には、複数の熱電素子43を設置する閉じた設置空間46が形成されている。そして、この設置空間46の内部の圧力は、大気圧より低い圧力に保持されている。   Between the bypass pipe 32 and the inner pipe wall 45a, at least between the flat pipe walls 32a and 32b on one side and the other side of the bypass pipe 32 and the inner pipe wall 45a of the cooling water pipe 45, a plurality of A closed installation space 46 in which the thermoelectric element 43 is installed is formed. The pressure inside the installation space 46 is maintained at a pressure lower than atmospheric pressure.

具体的には、冷却水配管45は、バイパス配管32の周囲を取り囲むとともに、その内管壁部45aおよび外管壁部45bが、両者間に設置空間46を画成するように互いに接続されている。   Specifically, the cooling water pipe 45 surrounds the periphery of the bypass pipe 32, and the inner pipe wall part 45a and the outer pipe wall part 45b are connected to each other so as to define an installation space 46 therebetween. Yes.

この設置空間46は、公知の一方向弁(逆止弁)47が装着された減圧配管48を通してサージタンク24の内部に連通可能であり、サージタンク24内の圧力が設置空間46内の圧力より低圧となるとき、一方向弁47が開弁して設置空間46の内部がサージタンク24内の吸気負圧(例えば、スロットル弁22の開度が低開度に絞られた状態で燃焼室3内に空気が吸入されるときの吸気管内の圧力)により減圧されるようになっている。すなわち、サージタンク24、一方向弁47および減圧配管48は、エンジン1の吸気負圧(吸気管内の負圧)を設置空間46に導入して設置空間46の内部を減圧することができる減圧機構49を構成している。この減圧機構49は、一方向弁47の閉弁時に減圧配管48と協働して設置空間46の内部の圧力を所定の減圧状態に保持することができる減圧状態保持機構となっている。   The installation space 46 can communicate with the inside of the surge tank 24 through a pressure reducing pipe 48 equipped with a known one-way valve (check valve) 47, and the pressure in the surge tank 24 is higher than the pressure in the installation space 46. When the pressure becomes low, the one-way valve 47 is opened and the inside of the installation space 46 is the intake negative pressure in the surge tank 24 (for example, the combustion chamber 3 with the throttle valve 22 opened to a low opening). The pressure is reduced by the pressure in the intake pipe when air is sucked into the inside. That is, the surge tank 24, the one-way valve 47, and the pressure reducing pipe 48 introduce the intake negative pressure (negative pressure in the intake pipe) of the engine 1 into the installation space 46 to reduce the pressure inside the installation space 46. 49. The pressure reducing mechanism 49 is a pressure reducing state holding mechanism capable of holding the pressure inside the installation space 46 in a predetermined pressure reducing state in cooperation with the pressure reducing pipe 48 when the one-way valve 47 is closed.

より具体的には、一方向弁47は、サージタンク24内に吸気負圧が発生してその一方向弁47の前後差圧が所定値に達した状態下で、設置空間46の内部の圧力が減圧機構49によって減圧されるのを許容するように開弁し、サージタンク24内に吸気負圧が低下してその前後差圧が所定値を下回った状態下で、設置空間46の内部の圧力を保持するよう閉弁状態を保持することができるようになっている。   More specifically, the one-way valve 47 is a pressure inside the installation space 46 in a state in which intake negative pressure is generated in the surge tank 24 and the differential pressure across the one-way valve 47 reaches a predetermined value. Is opened so as to allow the pressure to be reduced by the pressure reducing mechanism 49, and under the condition that the intake negative pressure is reduced in the surge tank 24 and the differential pressure before and after it falls below a predetermined value, The valve closed state can be maintained so as to maintain the pressure.

また、ここでの設置空間46は、バイパス配管32の軸線方向における内管壁部45aの両端部をバイパス配管32側に接近させるように、内管壁部45aの両端部およびその近傍のバイパス配管32のうち少なくとも一方の管径を変化させ、バイパス配管32と内管壁部45aの両端部とによって複数の熱電素子43を設置可能な筒状の閉じた空間としたものである。   In addition, the installation space 46 here is configured so that both end portions of the inner pipe wall portion 45a and the bypass pipes in the vicinity thereof are arranged so that both end portions of the inner pipe wall portion 45a in the axial direction of the bypass pipe 32 approach the bypass pipe 32 side. At least one of the pipe diameters of 32 is changed to form a cylindrical closed space in which a plurality of thermoelectric elements 43 can be installed by the bypass pipe 32 and both ends of the inner pipe wall 45a.

勿論、設置空間46は、複数の熱電素子43の配列パターンや排気管31Pおよび冷却水配管45の形状等に応じて、任意の断面形状を採り得るとともに、排気管31Pまたはそのバイパス配管32の周方向に隣り合う複数の平行な設置空間(筒状空間を複数の略短冊状空間に分割した形状等)となってもよいし、排気管31Pまたはそのバイパス配管32の軸線方向に隣り合う複数の筒状空間となっていてもよい。また、冷却水通路45cの内部に1つの仕切り板や放熱フィンを設けてもよい。   Of course, the installation space 46 may take any cross-sectional shape according to the arrangement pattern of the plurality of thermoelectric elements 43, the shapes of the exhaust pipe 31P and the cooling water pipe 45, and the like, and the circumference of the exhaust pipe 31P or the bypass pipe 32 thereof. A plurality of parallel installation spaces (such as a shape obtained by dividing the cylindrical space into a plurality of substantially strip-shaped spaces) adjacent to each other in the direction may be provided, or a plurality of adjacent installation spaces adjacent to each other in the axial direction of the exhaust pipe 31P or the bypass pipe 32 thereof. It may be a cylindrical space. Moreover, you may provide one partition plate and a radiation fin in the inside of the cooling water channel | path 45c.

なお、設置空間46は、高温側および低温側の伝熱板のうち少なくとも一方の伝熱板によって形成されることになり、設置空間46が一方の伝熱板の内方に形成される場合、一方の伝熱板は閉止可能なケース状のものとなる。   The installation space 46 is formed by at least one of the heat transfer plates on the high temperature side and the low temperature side, and when the installation space 46 is formed inside one of the heat transfer plates, One of the heat transfer plates is a case that can be closed.

次に、作用について説明する。   Next, the operation will be described.

上述のように構成された本実施形態の熱電発電装置を備えた排気熱回収システムにおいては、冷却水通路19を通る冷却水の温度が閾値温度以下で、冷却水への熱回収を優先すべき条件が成立すると、ECU50が排気ガス制御アクチュエータ41を作動させ、排気通路31の主通路部分31aを閉塞するよう、弁体41aを閉弁位置側に変位させる。   In the exhaust heat recovery system provided with the thermoelectric power generator of the present embodiment configured as described above, the temperature of the cooling water passing through the cooling water passage 19 is lower than the threshold temperature, and heat recovery to the cooling water should be given priority. When the condition is satisfied, the ECU 50 operates the exhaust gas control actuator 41 to displace the valve body 41a toward the valve closing position so as to close the main passage portion 31a of the exhaust passage 31.

このとき、高温の排気ガスが排気通路31のバイパス通路部分31bに入り、この排気ガスからバイパス配管32内の吸熱部材33への熱伝達によって、排気ガスの熱が吸熱部材33を介して複数の熱電素子43の高温側の端面部43aに吸熱され、その端面部43aの温度が上昇する。また、冷却水配管45の冷却水通路45cにエンジン冷却水が流れることで、複数の熱電素子43の低温側の端面部43bから冷却水配管45内の冷却水に内管壁部45aを介して放熱され、複数の熱電素子43の低温側の端面部43bの温度が低下する。   At this time, high-temperature exhaust gas enters the bypass passage portion 31 b of the exhaust passage 31, and heat transfer from the exhaust gas to the heat absorption member 33 in the bypass pipe 32 causes the heat of the exhaust gas to pass through the heat absorption member 33. Heat is absorbed by the end surface portion 43a on the high temperature side of the thermoelectric element 43, and the temperature of the end surface portion 43a rises. Further, the engine cooling water flows through the cooling water passage 45c of the cooling water pipe 45, whereby the cooling water in the cooling water pipe 45 is transferred from the low temperature side end face part 43b of the plurality of thermoelectric elements 43 through the inner pipe wall part 45a. The heat is dissipated, and the temperature of the end surface portion 43b on the low temperature side of the plurality of thermoelectric elements 43 decreases.

したがって、各熱電素子43を構成するN型半導体素子内での電子の低温側への移動とP型半導体素子内での正孔の低温側への移動とが生じるとともに、排気通路31を通る排気ガスの持つ熱の一部が複数の熱電素子43を介し冷却水配管45側に伝熱されて冷却水に回収される。その結果、エンジン1の冷却水の温度が上昇し、例えば冷間始動時におけるエンジン1の暖機が促進されるとともに、複数の熱電素子43による発電出力が得られることになる。   Therefore, movement of electrons in the N-type semiconductor element constituting each thermoelectric element 43 to the low temperature side and movement of holes in the P-type semiconductor element to the low temperature side occur, and exhaust through the exhaust passage 31 occurs. Part of the heat of the gas is transferred to the cooling water pipe 45 side through the plurality of thermoelectric elements 43 and is recovered in the cooling water. As a result, the temperature of the cooling water of the engine 1 rises, for example, warming up of the engine 1 at the time of cold start is promoted, and power generation output by the plurality of thermoelectric elements 43 is obtained.

一方、冷却水通路45cを通る冷却水の温度が閾値温度を超えると、ECU50が排気ガス制御アクチュエータ41を作動させ、排気通路31の主通路部分31aを開放するよう、弁体41aを開弁位置側に復帰させる。このとき、排気通路31内の排気ガスは主通路部分31aを通して抵抗なく下流側に通過することができるので、エンジン1の出力優先の運転が可能となる。   On the other hand, when the temperature of the cooling water passing through the cooling water passage 45c exceeds the threshold temperature, the ECU 50 operates the exhaust gas control actuator 41 to open the valve body 41a so as to open the main passage portion 31a of the exhaust passage 31. Return to the side. At this time, since the exhaust gas in the exhaust passage 31 can pass downstream without resistance through the main passage portion 31a, the output priority operation of the engine 1 can be performed.

ところで、本実施形態の熱電発電装置では、複数の熱電素子43に接触する冷却水配管45の内管壁部45aにおいて、接触領域R1の壁面部分45a1が非接触領域R2の壁面部分45a2よりも薄肉に形成されて低剛性となっている。   By the way, in the thermoelectric generator of this embodiment, in the inner pipe wall part 45a of the cooling water piping 45 which contacts the several thermoelectric element 43, the wall surface part 45a1 of contact region R1 is thinner than the wall surface part 45a2 of non-contact area | region R2. It has a low rigidity.

したがって、非接触領域R2で所要の大きな支持剛性を持つ冷却水配管45の内管壁部45aにあって部分的に低剛性となる接触領域R1の壁面部分45a1に、複数の熱電素子43の伝熱面である放熱面側の端面部43bが低支持剛性で支持されることになる。   Accordingly, the plurality of thermoelectric elements 43 are transferred to the wall surface portion 45a1 of the contact region R1 which is in the inner tube wall portion 45a of the cooling water pipe 45 having the required large support rigidity in the non-contact region R2 and partially has low rigidity. The end surface portion 43b on the heat radiating surface side that is the heat surface is supported with low support rigidity.

そして、複数の熱電素子43の端面部43bと冷却水配管45の内管壁部45aとの間、さらには、複数の熱電素子43の他の端面部43aとバイパス配管32の一面側および他面側の平坦管壁部32a,32bとの間で、熱歪みや接触面凹凸が吸収され易くなる。その結果、熱電素子43の端面部43a,43bと高温側のバイパス配管32および低温側の冷却水配管45との間に、空気溜まりのない安定した密着接触状態を確保することができ、伝熱面接触状態が安定した構成の簡素な高発電効率の熱電発電装置となる。   And between the end surface part 43b of the some thermoelectric element 43 and the inner pipe wall part 45a of the cooling water piping 45, Furthermore, the other end surface part 43a of the some thermoelectric element 43, the one surface side and other surface of the bypass piping 32 Thermal distortion and contact surface irregularities are easily absorbed between the flat tube wall portions 32a and 32b on the side. As a result, it is possible to ensure a stable close contact state without air accumulation between the end face portions 43a and 43b of the thermoelectric element 43 and the high-temperature side bypass pipe 32 and the low-temperature side cooling water pipe 45. It becomes a simple high power generation efficiency thermoelectric generator having a stable surface contact state.

また、本実施形態では、高温側の伝熱板であるバイパス配管32の平坦管壁部32a,32bと低温側の伝熱板である冷却水配管45の内管壁部45aとの間に熱電素子43を設置する閉じた設置空間46が形成され、その設置空間の内部の圧力が大気圧より低い圧力に保持されている。   In the present embodiment, the thermoelectric power is provided between the flat tube wall portions 32a and 32b of the bypass pipe 32, which is a high temperature side heat transfer plate, and the inner tube wall portion 45a of the cooling water pipe 45, which is a low temperature side heat transfer plate. A closed installation space 46 for installing the element 43 is formed, and the pressure inside the installation space is maintained at a pressure lower than the atmospheric pressure.

したがって、熱電素子43の端面部43a,43bと高温側のバイパス配管32および低温側の冷却水配管45との接触状態が設置空間46内の負圧により安定することに加えて、設置空間46内での空気による熱伝達が抑制され、バイパス配管32と冷却水配管45の内管壁部45aとの間の熱電素子43の周囲に効果的な断熱層が形成される。その結果、複数の熱電素子43によるバイパス配管32からの吸熱と冷却水配管45への放熱とが効果的に行われることになり、排気熱再循環および熱電発電装置40が高発電効率となる。   Therefore, in addition to the contact state between the end face portions 43a and 43b of the thermoelectric element 43 and the high temperature side bypass pipe 32 and the low temperature side cooling water pipe 45 being stabilized by the negative pressure in the installation space 46, The heat transfer by air is suppressed, and an effective heat insulating layer is formed around the thermoelectric element 43 between the bypass pipe 32 and the inner pipe wall 45a of the cooling water pipe 45. As a result, the heat absorption from the bypass pipe 32 and the heat dissipation to the cooling water pipe 45 by the plurality of thermoelectric elements 43 are effectively performed, and the exhaust heat recirculation and the thermoelectric generator 40 have high power generation efficiency.

加えて、部分的に低剛性となる伝熱板が、低温側の熱媒体であるエンジン冷却水を通す冷却水配管45の内管壁部45aによって構成されているので、エンジン冷却水を通す冷却水配管45の内管壁部45aが、剛性の高い非接触領域R2と剛性の低い接触領域R1とのうち低剛性の接触領域R1の壁面部分45a1に、複数の熱電素子43の低温側の端面部43bを接触させつつ低支持剛性で支持させることができる。   In addition, since the heat transfer plate that is partially low in rigidity is constituted by the inner pipe wall portion 45a of the cooling water pipe 45 through which the engine cooling water that is the low-temperature side heat medium passes, the cooling through which the engine cooling water passes The inner pipe wall portion 45a of the water pipe 45 is connected to the wall surface portion 45a1 of the low-rigidity contact region R1 out of the high-rigidity non-contact region R2 and the low-rigidity contact region R1. The portion 43b can be supported with low support rigidity while being in contact with the portion 43b.

その結果、本実施形態では、接触領域R1の壁面部分45a1となる一部でのみ低剛性となる冷却水配管45の内管壁部45aに複数の熱電素子43を直接的に支持させることができ、構成が非常に簡素な熱電発電装置となる。   As a result, in the present embodiment, the plurality of thermoelectric elements 43 can be directly supported on the inner pipe wall portion 45a of the cooling water pipe 45 having low rigidity only at a part of the wall portion 45a1 of the contact region R1. It becomes a thermoelectric power generator with a very simple configuration.

(第2実施形態)
図4および図5に、本発明の第2実施形態に係る熱電発電装置の要部を示している。
(Second Embodiment)
4 and 5 show the main part of a thermoelectric generator according to the second embodiment of the present invention.

なお、本実施形態は、熱電発電装置の一部の構成が上述の第1実施形態とは相違するものの、内燃機関の配管構成等とった周辺の構成は第1実施形態と類似するものである。したがって、上述の第1実施形態と同一または類似の構成要素については、図1〜図3中の対応する構成要素と同一の符号を用いつつ、以下に第1実施形態との相違点について説明する。   Although the present embodiment is different from the first embodiment in the configuration of a part of the thermoelectric generator, the peripheral configuration such as the piping configuration of the internal combustion engine is similar to the first embodiment. . Accordingly, the same or similar components as those in the first embodiment described above are denoted by the same reference numerals as the corresponding components in FIGS. 1 to 3, and differences from the first embodiment will be described below. .

図4および図5に示すように、本実施形態においては、高温側の熱媒体である排気ガスを通すバイパス配管32の平坦管壁部32a,32b(管壁)と、一面側でバイパス配管32の平坦管壁部32a,32bに接触する一対の高温側の熱伝導性電気絶縁基板44Aとによって、複数の熱電素子43の吸熱に関与する一対の高温側の伝熱板61が構成されている。各々の高温側の熱伝導性電気絶縁基板44Aの他面側は、高温側の回路用電極部42aを介して複数の熱電素子43に接合されている。   As shown in FIGS. 4 and 5, in the present embodiment, the flat pipe wall portions 32 a and 32 b (tube walls) of the bypass pipe 32 through which the exhaust gas that is the heat medium on the high temperature side passes, and the bypass pipe 32 on one side. The pair of high-temperature side heat conductive electrical insulating substrates 44A in contact with the flat tube wall portions 32a and 32b constitute a pair of high-temperature side heat transfer plates 61 involved in heat absorption of the plurality of thermoelectric elements 43. . The other surface side of each high-temperature side heat conductive electrically insulating substrate 44A is joined to a plurality of thermoelectric elements 43 via a circuit electrode portion 42a on the high-temperature side.

また、低温側の熱媒体であるエンジン冷却水を通す冷却水配管45の内管壁部45aと、それぞれ一面側で冷却水配管45の内管壁部45a(管壁)に接触する一対の低温側の熱伝導性電気絶縁基板44Bとによって、複数の熱電素子43の放熱に関与する一対の低温側の伝熱板62が構成されている。各々の低温側の熱伝導性電気絶縁基板44Bの他面側は、低温側の回路用電極部42bを介して複数の熱電素子43に接合されている。そして、複数の熱電素子43は、高温側の回路用電極部42aおよび低温側の回路用電極部42bにより電気的に直列に接続されている。   In addition, a pair of low temperatures that contact the inner pipe wall 45a of the cooling water pipe 45 through which engine cooling water, which is a low-temperature side heat medium, and the inner pipe wall 45a (pipe wall) of the cooling water pipe 45 on one surface side respectively. A pair of low-temperature-side heat transfer plates 62 that are involved in the heat radiation of the plurality of thermoelectric elements 43 are configured by the side heat conductive electrically insulating substrate 44B. The other surface side of each low-temperature side heat conductive electrically insulating substrate 44B is joined to a plurality of thermoelectric elements 43 via low-temperature side circuit electrode portions 42b. The plurality of thermoelectric elements 43 are electrically connected in series by a high-temperature circuit electrode portion 42a and a low-temperature circuit electrode portion 42b.

より具体的には、図5に示すように、複数の熱電素子43は、互いに図5中の上下および左右方向に所定の空間を隔てて、例えば等間隔に離間した状態で配置されており、図4に示すように、高温側の熱伝導性電気絶縁基板44Aの他面上において高温側の回路用電極部42aに電気的に接続され、低温側の熱伝導性電気絶縁基板44Bの他面上において低温側の回路用電極部42bに電気的に接続されている。これにより、複数の熱電素子43は、高温側の熱伝導性電気絶縁基板44Aおよび低温側の熱伝導性電気絶縁基板44Bの間に熱的に並列に配置されつつ、高温側の回路用電極部42aおよび低温側の回路用電極部42bを介して直列に接続されている。また、直列に接続された1組の複数の熱電素子43が、一対の接続端子42cを介して図外の電気負荷の正負端子に接続されるようになっている。   More specifically, as shown in FIG. 5, the plurality of thermoelectric elements 43 are arranged with a predetermined space in the vertical and horizontal directions in FIG. As shown in FIG. 4, on the other surface of the high temperature side heat conductive electrically insulating substrate 44A, the other surface of the low temperature side heat conductive electric insulating substrate 44B is electrically connected to the circuit electrode portion 42a on the high temperature side. Above, it is electrically connected to the circuit electrode part 42b on the low temperature side. As a result, the plurality of thermoelectric elements 43 are arranged in thermal parallel between the high-temperature-side thermally conductive electrical insulating substrate 44A and the low-temperature-side thermally conductive electrical insulating substrate 44B, while the high-temperature-side circuit electrode unit. 42a and the circuit electrode part 42b on the low temperature side are connected in series. In addition, a set of a plurality of thermoelectric elements 43 connected in series is connected to positive and negative terminals of an electric load (not shown) via a pair of connection terminals 42c.

低温側の熱伝導性電気絶縁基板44Bは、低温側の回路用電極部42bを介して複数の熱電素子43に熱伝導可能に接触する複数の接触部44e,44fと、それら複数の接触部44e,44fの間にあって複数の熱電素子43に接触しない非接触部44gとを有している。さらに、低温側の熱伝導性電気絶縁基板44Bの非接触部44gには、各接触部44e,44fの四隅の近傍に位置するよう、熱伝導性電気絶縁基板44Bの板厚方向を深さ方向とする複数の円形の貫通孔44hが形成されている。これらの貫通孔44hは、各熱電発電材料チップ43cに対応する接触部44eや図5中のクロスハッチング部分の周囲で低温側の熱伝導性電気絶縁基板44Bを板厚方向として貫通するのと同時に、低温側の回路用電極部42bを介して各一対の熱電発電材料チップ43c(P型およびN型半導体素子の対)に接触する接触部44fの周囲でも低温側の熱伝導性電気絶縁基板44Bを板厚方向に貫通している。   The low-temperature-side thermally conductive electrical insulating substrate 44B includes a plurality of contact portions 44e and 44f that are in contact with the plurality of thermoelectric elements 43 through the low-temperature-side circuit electrode portion 42b so as to allow heat conduction, and the plurality of contact portions 44e. , 44f and a non-contact portion 44g that does not contact the plurality of thermoelectric elements 43. Further, the thickness direction of the heat conductive electrically insulating substrate 44B is set to the depth direction so that the non-contact portion 44g of the low temperature side heat conductive electrically insulating substrate 44B is positioned in the vicinity of the four corners of the contact portions 44e and 44f. A plurality of circular through holes 44h are formed. These through-holes 44h penetrate the low-temperature side heat conductive electrically insulating substrate 44B in the plate thickness direction around the contact portions 44e corresponding to each thermoelectric power generation material chip 43c and the cross-hatched portion in FIG. The low-temperature-side thermally conductive electrically insulating substrate 44B also around the contact portion 44f that contacts each pair of thermoelectric power generation material chips 43c (a pair of P-type and N-type semiconductor elements) via the low-temperature-side circuit electrode portion 42b. Is penetrated in the thickness direction.

図4および図5においては、複数の熱電素子43は、P型半導体素子およびN型半導体素子の対を相互に電気接続するとともに少なくとも1組の熱電素子43を直列に接続した状態を示しており、図示の便宜上、複数の熱電素子43の数を制限して図示している。すなわち、両図中に示す各熱電素子43は、熱電発電モジュールの一部を構成する熱電発電材料チップ43c(P型半導体素子またはN型半導体素子)に相当するものであり、モジュール化されたものではない。   4 and 5, the plurality of thermoelectric elements 43 shows a state in which a pair of P-type semiconductor elements and N-type semiconductor elements are electrically connected to each other and at least one set of thermoelectric elements 43 are connected in series. For convenience of illustration, the number of the plurality of thermoelectric elements 43 is limited. That is, each thermoelectric element 43 shown in both figures corresponds to a thermoelectric power generation material chip 43c (P-type semiconductor element or N-type semiconductor element) constituting a part of the thermoelectric power generation module, and is modularized. is not.

低温側の伝熱板62を構成する冷却水配管45の内管壁部45aおよび低温側の熱伝導性電気絶縁基板44Bのうち少なくとも一方は、低温側の熱伝導性電気絶縁基板44Bの複数の接触部44e,44fの近傍の部分において、非接触部44gの近傍の部分より低剛性となっており、複数の熱電素子43の低温側の端面部43b(伝熱面)を接触させつつ低支持剛性で支持させることができるようになっている。例えば、図4に示すように、冷却水配管45の内管壁部45aは、接触領域R1の各壁面部分45a1において薄肉とされ得るし、低温側の熱伝導性電気絶縁基板44Bの複数の接触部44e,44fは、非接触部44gより薄肉に形成されるか非接触部44gより低剛性の素材で形成され得る。前者の場合、接触領域R1の各壁面部分45a1は、接触部44e,44fのうちいずれか1つの面積と略同一面積かそれよりわずかに広くなっており、あるいは、複数の接触部44e,44fのうち対応する一部の複数の接触部44e,44fあるいは対応する一部の複数の接触部44fの面積の総和より広い面積を有している。ここで、接触領域R1の各壁面部分45a1の広さは、1つの熱電発電モジュールの接触領域より広くなってもよいが、複数の壁面部分45a1の間および各壁面部分45a1の周囲に非接触領域R2の壁面部分45a2が配置される。   At least one of the inner pipe wall 45a of the cooling water pipe 45 constituting the low temperature side heat transfer plate 62 and the low temperature side heat conductive electrical insulation substrate 44B is a plurality of low temperature side heat conductive electrical insulation substrates 44B. The portions in the vicinity of the contact portions 44e and 44f have lower rigidity than the portions in the vicinity of the non-contact portion 44g, and support is low while the end surface portions 43b (heat transfer surfaces) on the low temperature side of the plurality of thermoelectric elements 43 are in contact with each other. It can be supported with rigidity. For example, as shown in FIG. 4, the inner pipe wall portion 45a of the cooling water pipe 45 can be made thin at each wall surface portion 45a1 of the contact region R1, and a plurality of contacts of the low-temperature side heat conductive electrically insulating substrate 44B. The portions 44e and 44f may be formed thinner than the non-contact portion 44g or may be formed of a material having lower rigidity than the non-contact portion 44g. In the former case, each wall surface portion 45a1 of the contact region R1 is substantially the same area as or slightly wider than any one of the contact portions 44e and 44f, or a plurality of contact portions 44e and 44f. Of these, the contact portions 44e and 44f corresponding to some of the contact portions 44f or a corresponding plurality of contact portions 44f have a larger area. Here, the width of each wall surface portion 45a1 of the contact region R1 may be wider than the contact region of one thermoelectric power generation module, but the non-contact region between the plurality of wall surface portions 45a1 and around each wall surface portion 45a1. A wall surface portion 45a2 of R2 is disposed.

高温側の熱伝導性電気絶縁基板44Aには、複数の貫通孔44hが形成されていない。   A plurality of through holes 44h are not formed in the high temperature side heat conductive electrically insulating substrate 44A.

なお、複数の貫通孔44hは、非円形形状でもよい。また、複数の貫通孔44hに代えて、少なくとも1本の溝形状の貫通穴としてもよい。複数の貫通孔44hを設けると、低温側の熱伝導性電気絶縁基板44Bと冷却水配管45の内管壁部45aとの密着時に、両者間の空気を複数の貫通穴である貫通孔44hを通して各接合部44eの周囲から排出させることができ、残存空気により低温側の熱伝導性電気絶縁基板44Bと冷却水配管45の内管壁部45aとの密着性が低下することも抑制することができる。   The plurality of through holes 44h may be non-circular. Further, instead of the plurality of through holes 44h, at least one groove-shaped through hole may be used. When a plurality of through-holes 44h are provided, when the low-temperature side heat conductive electrically insulating substrate 44B and the inner pipe wall 45a of the cooling water pipe 45 are in close contact with each other, the air between them passes through the plurality of through-holes 44h. It can be discharged from the periphery of each joint portion 44e, and it is also possible to suppress a decrease in adhesion between the low-temperature side heat conductive electrical insulating substrate 44B and the inner tube wall portion 45a of the cooling water pipe 45 due to the remaining air. it can.

本実施形態の熱電発電装置においては、低温側の伝熱板62が、冷却水配管45の内管壁部45aとこれに接触する低温側の熱伝導性電気絶縁基板44Bとによって構成され、その接触領域R1の壁面部分を構成する低温側の熱伝導性電気絶縁基板44Bの複数の接触部44e,44fに、複数の熱電素子43の低温側の端面部43b(伝熱面)を接触させつつ低支持剛性で支持させることができる。したがって、複数の熱電素子43の伝熱面を、低温側の伝熱板62の接触領域R1の壁面部分に密着状態で安定接触させることができる。   In the thermoelectric generator of the present embodiment, the low-temperature heat transfer plate 62 is constituted by the inner tube wall portion 45a of the cooling water pipe 45 and the low-temperature heat conductive electrically insulating substrate 44B in contact therewith, While bringing the plurality of contact portions 44e, 44f of the low temperature side heat conductive electrically insulating substrate 44B constituting the wall surface portion of the contact region R1 into contact with the low temperature side end surface portions 43b (heat transfer surfaces) of the plurality of thermoelectric elements 43. It can be supported with low support rigidity. Therefore, the heat transfer surfaces of the plurality of thermoelectric elements 43 can be stably brought into close contact with the wall surface portion of the contact region R1 of the heat transfer plate 62 on the low temperature side.

しかも、本実施形態では、低温側の熱伝導性電気絶縁基板44Bの接触部44e,44fの周囲に位置する非接触部44gに複数の貫通孔44hを形成しているので、低温側の熱伝導性電気絶縁基板44Bと冷却水配管45の内管壁部45aとの密着性が低下することによる発電量の低下を有効に防止することができる。   In addition, in this embodiment, since the plurality of through holes 44h are formed in the non-contact part 44g located around the contact parts 44e and 44f of the low-temperature side heat conductive electrically insulating substrate 44B, the low-temperature side heat conduction is performed. It is possible to effectively prevent a decrease in the amount of power generated due to a decrease in the adhesion between the conductive electrical insulating substrate 44B and the inner pipe wall 45a of the cooling water pipe 45.

このように、本実施形態においても、複数の熱電素子43に接触する一方の伝熱板62の接触領域R1の壁面部分を、非接触領域R2の壁面部分より低剛性として、複数の熱電素子43の伝熱面と高温側および低温側の伝熱板61,62との間で、熱歪みや接触面凹凸を吸収し易くできる。その結果、複数の熱電素子43の伝熱面と高温側および低温側の伝熱板61,62との安定接触状態を確保することができる構成の簡素な高発電効率の熱電発電装置を提供することができる。   Thus, also in this embodiment, the wall surface part of the contact region R1 of the one heat transfer plate 62 that contacts the plurality of thermoelectric elements 43 is made to be less rigid than the wall surface part of the non-contact region R2, and thus the plurality of thermoelectric elements 43 Between the heat transfer surface and the heat transfer plates 61 and 62 on the high temperature side and the low temperature side can be easily absorbed. As a result, it is possible to provide a thermoelectric generator having a simple high power generation efficiency and capable of ensuring a stable contact state between the heat transfer surfaces of the plurality of thermoelectric elements 43 and the heat transfer plates 61 and 62 on the high temperature side and the low temperature side. be able to.

(第3実施形態)
図6に、本発明の第3実施形態に係る熱電発電装置の要部を示している。
(Third embodiment)
FIG. 6 shows a main part of a thermoelectric generator according to the third embodiment of the present invention.

なお、前述の第2実施形態が低温側の伝熱板62の複数の熱電素子43との接触領域R1の壁面部分の一部を構成する低温側の熱伝導性電気絶縁基板44Bに部分的な低剛性部を設けていたのに対して、本実施形態は、高温側の伝熱板61の複数の熱電素子43との接触領域R3の壁面部分を構成する高温側の熱伝導性電気絶縁基板44Aに部分的な低剛性部を設けたものである。したがって、上述の第1、第2実施形態と同一または類似の構成要素については、図1〜図5中の対応する構成要素と同一の符号を用いつつ、以下に第2実施形態との相違点について説明する。   Note that the second embodiment described above is partially applied to the low-temperature side heat conductive electrically insulating substrate 44B constituting a part of the wall surface portion of the contact region R1 of the low-temperature side heat transfer plate 62 with the plurality of thermoelectric elements 43. In contrast to the provision of the low-rigidity portion, in the present embodiment, the high-temperature side heat conductive electrically insulating substrate constituting the wall surface portion of the contact region R3 of the high-temperature side heat transfer plate 61 with the plurality of thermoelectric elements 43 is provided. 44A is provided with a partial low rigidity portion. Accordingly, the same or similar components as those in the first and second embodiments described above are denoted by the same reference numerals as the corresponding components in FIGS. 1 to 5 and are different from the second embodiment below. Will be described.

図6に示すように、本実施形態においては、複数の熱電素子43の吸熱に関与する一対の高温側の伝熱板61が、排気ガスを通すバイパス配管32の平坦管壁部32a,32bと、それぞれ一面側でバイパス配管32の平坦管壁部32a,32bに接触するとともに他面側で高温側の回路用電極部42aを介して複数の熱電素子43に接合された一対の高温側の熱伝導性電気絶縁基板44Aとによって構成されている。このように配管の管壁部と伝熱板とで構成される点は、第2実施形態と同様である。   As shown in FIG. 6, in this embodiment, the pair of high-temperature side heat transfer plates 61 involved in the heat absorption of the plurality of thermoelectric elements 43 are connected to the flat tube wall portions 32a and 32b of the bypass pipe 32 through which the exhaust gas passes. A pair of high-temperature-side heats that are in contact with the flat tube wall portions 32a and 32b of the bypass pipe 32 on one surface side and joined to the plurality of thermoelectric elements 43 via the high-temperature-side circuit electrode portion 42a on the other-surface side. A conductive electrically insulating substrate 44A. Thus, the point comprised by the pipe wall part and heat exchanger plate of piping is the same as that of 2nd Embodiment.

しかし、本実施形態では、高温側の伝熱板61を構成するバイパス配管32の平坦管壁部32a,32bおよび高温側の熱伝導性電気絶縁基板44Aのうち少なくとも一方が、低剛性となっている。   However, in this embodiment, at least one of the flat tube wall portions 32a and 32b of the bypass pipe 32 and the high temperature side heat conductive electrically insulating substrate 44A constituting the high temperature side heat transfer plate 61 has low rigidity. Yes.

具体的には、高温側の熱伝導性電気絶縁基板44Aは、高温側の回路用電極部42aを介して複数の熱電素子43に熱伝導可能に接触する複数の接触部と、高温側の熱伝導性電気絶縁基板44Aの複数の熱電素子43との非接触部とを有している。なお、説明の便宜上、ここでは、第2実施形態についての図5中の符号を用いて、高温側の熱伝導性電気絶縁基板44Aの複数の接触部を接触部44e,44fといい、高温側の熱伝導性電気絶縁基板44Aの非接触部を非接触部44gという。   Specifically, the high-temperature-side thermally conductive electrical insulating substrate 44A includes a plurality of contact portions that are in contact with the plurality of thermoelectric elements 43 through the high-temperature-side circuit electrode portion 42a so as to conduct heat, and a high-temperature-side heat. The conductive electrically insulating substrate 44A has a non-contact portion with the plurality of thermoelectric elements 43. For convenience of explanation, here, a plurality of contact portions of the high temperature side heat conductive electrically insulating substrate 44A are referred to as contact portions 44e and 44f using the reference numerals in FIG. The non-contact portion of the thermally conductive and electrically insulating substrate 44A is referred to as a non-contact portion 44g.

そして、高温側の伝熱板61を構成するバイパス配管32の平坦管壁部32a,32bおよび高温側の熱伝導性電気絶縁基板44Aのうち少なくとも一方は、複数の接触部44e,44fの近傍の部分において非接触部44gの近傍の部分より低剛性となっており、複数の熱電素子43の高温側の端面部43a(伝熱面)を接触させつつ低支持剛性で支持させることができるようになっている。   At least one of the flat tube wall portions 32a and 32b of the bypass pipe 32 constituting the high temperature side heat transfer plate 61 and the high temperature side heat conductive electrically insulating substrate 44A is in the vicinity of the plurality of contact portions 44e and 44f. The portion is lower in rigidity than the portion in the vicinity of the non-contact portion 44g, and can be supported with low support rigidity while contacting the high-temperature side end surface portions 43a (heat transfer surfaces) of the plurality of thermoelectric elements 43. It has become.

例えば、バイパス配管32の平坦管壁部32a,32bは、接触領域R3の壁面部分のうち高温側の回路用電極部42aに近接する部分で薄肉とされ得るし、高温側の熱伝導性電気絶縁基板44Aの複数の接触部44e,44fは、非接触部44gより薄肉に形成されるか非接触部44gより低剛性の素材で形成され得る。   For example, the flat pipe wall portions 32a and 32b of the bypass pipe 32 can be thinned at the portion of the wall surface portion of the contact region R3 that is close to the high temperature side circuit electrode portion 42a, or the high temperature side heat conductive electrical insulation. The plurality of contact portions 44e and 44f of the substrate 44A can be formed thinner than the non-contact portion 44g or made of a material having lower rigidity than the non-contact portion 44g.

本実施形態では、また、第2実施形態における低温側の熱伝導性電気絶縁基板44Bと同様に、高温側の熱伝導性電気絶縁基板44Aの複数の熱電素子43との非接触部44gに、高温側の熱伝導性電気絶縁基板44Aの板厚方向を深さ方向とする複数の円形の貫通孔44hが所定間隔で形成されている。そして、この高温側の熱伝導性電気絶縁基板44Aの他面側(図6中で上面側)において、複数の熱電素子43は、等間隔に離間しつつ高温側の回路用電極部42aを介して相互に直列に接続され、高温側の熱伝導性電気絶縁基板44Aおよびバイパス配管32に対して熱的に並列に接合されている。勿論、高温側の熱伝導性電気絶縁基板44Aに形成される複数の貫通孔44hは、非円形形状でよいし、少なくとも1本の溝形状の貫通穴として形成されてもよい。   In the present embodiment, similarly to the low-temperature-side thermally conductive electrical insulating substrate 44B in the second embodiment, the non-contact portion 44g with the plurality of thermoelectric elements 43 on the high-temperature-side thermally conductive electrical insulating substrate 44A A plurality of circular through-holes 44h are formed at predetermined intervals with the thickness direction of the heat conductive electrically insulating substrate 44A on the high temperature side as the depth direction. Then, on the other surface side (upper surface side in FIG. 6) of the high temperature side heat conductive electrically insulating substrate 44A, the plurality of thermoelectric elements 43 are spaced apart at equal intervals via the high temperature side circuit electrode portion 42a. Are connected to each other in series, and are thermally bonded in parallel to the high-temperature side heat conductive electrical insulating substrate 44A and the bypass pipe 32. Of course, the plurality of through holes 44h formed in the high temperature side heat conductive electrically insulating substrate 44A may be non-circular or may be formed as at least one groove-shaped through hole.

一方、本実施形態における低温側の熱伝導性電気絶縁基板44Bは、第2実施形態における高温側の熱伝導性電気絶縁基板44Aと同様に、複数の貫通孔44hが形成されておらず、接触領域R1の全域で一様な剛性を有している。   On the other hand, the low temperature side thermally conductive electrical insulating substrate 44B in this embodiment is not formed with a plurality of through-holes 44h, like the high temperature side thermally conductive electrical insulating substrate 44A in the second embodiment. It has uniform rigidity throughout the entire region R1.

前述の接触領域R3は、電気的に直列に接続された複数の熱電素子43の伝熱面群、例えば同一平面上に等間隔に配置された複数の端面部43aの島状の集まりに接する領域であり、バイパス配管32の図6中の上下両側に形成される。   The aforementioned contact region R3 is a region in contact with a heat transfer surface group of a plurality of thermoelectric elements 43 electrically connected in series, for example, an island-like collection of a plurality of end surface portions 43a arranged at equal intervals on the same plane. It is formed on both upper and lower sides of the bypass pipe 32 in FIG.

また、高温側の伝熱板61を構成するバイパス配管32の平坦管壁部32a,32bおよび高温側の熱伝導性電気絶縁基板44Aのうち少なくとも一方は、高温側の伝熱板61の接触領域R3における外周側の伝熱壁面部分を、低温側の伝熱板62の内周側の壁面部分である低温側の熱伝導性電気絶縁基板44Bの伝熱壁面部分よりも低剛性にする機能を併有している。   Further, at least one of the flat tube wall portions 32a and 32b of the bypass pipe 32 and the high temperature side heat conductive electrical insulating substrate 44A constituting the high temperature side heat transfer plate 61 is a contact region of the high temperature side heat transfer plate 61. The function of making the outer peripheral heat transfer wall surface portion of R3 have a lower rigidity than the heat transfer wall surface portion of the low temperature heat conductive electrically insulating substrate 44B that is the inner peripheral wall surface portion of the low temperature heat transfer plate 62. Have both.

本実施形態においても、高温側の伝熱板61が、排気管31Pの一部であるバイパス配管32とこれに接触する高温側の熱伝導性電気絶縁基板44Aとによって構成され、その伝熱板61の接触領域R3の壁面部分に、複数の熱電素子43の高温側の端面部43b(伝熱面)を接触させつつ低支持剛性で支持させることができる。よって、複数の熱電素子43の伝熱面を、高温側の伝熱板61の接触領域R3の壁面部分に安定接触させることができる。   Also in this embodiment, the heat transfer plate 61 on the high temperature side is constituted by the bypass pipe 32 that is a part of the exhaust pipe 31P and the heat conductive electrically insulating substrate 44A on the high temperature side that contacts the bypass pipe 32, and the heat transfer plate. The end surface portion 43b (heat transfer surface) on the high temperature side of the plurality of thermoelectric elements 43 can be supported with low support rigidity while contacting the wall surface portion of the contact region R3 of 61. Therefore, the heat transfer surfaces of the plurality of thermoelectric elements 43 can be stably brought into contact with the wall surface portion of the contact region R3 of the heat transfer plate 61 on the high temperature side.

しかも、本実施形態では、複数の熱電素子43の高温側の端面部43bに傾きや段差が生じていても、そのような高温側の端面部43bの接触面ずれをバイパス配管32の平坦管壁部32a,32bおよび高温側の熱伝導性電気絶縁基板44Aのうち少なくとも一方で吸収させることができ、複数の熱電素子43の伝熱面を高温側の熱伝導性電気絶縁基板44Aの表面に安定接触させることができる。その結果、複数の熱電素子43の高温側および低温側の端面部43a,43bが、高温側および低温側の熱伝導性電気絶縁基板44A,44Bの表面にそれぞれに安定接触可能となり、複数の熱電素子43の発電効率が向上する。   In addition, in the present embodiment, even if the end surfaces 43b on the high temperature side of the plurality of thermoelectric elements 43 are inclined or stepped, the contact surface displacement of the end surfaces 43b on the high temperature side is eliminated by the flat tube wall of the bypass pipe 32. It is possible to absorb at least one of the portions 32a and 32b and the high temperature side heat conductive electrically insulating substrate 44A, and the heat transfer surfaces of the plurality of thermoelectric elements 43 are stabilized on the surface of the high temperature side heat conductive electrically insulating substrate 44A. Can be contacted. As a result, the end surfaces 43a and 43b on the high temperature side and the low temperature side of the plurality of thermoelectric elements 43 can come into stable contact with the surfaces of the heat conductive electrical insulating substrates 44A and 44B on the high temperature side and the low temperature side, respectively. The power generation efficiency of the element 43 is improved.

さらに、高温側の熱伝導性電気絶縁基板44Aの非接触部44gに複数の貫通穴44hが形成されているので、複数の熱電素子43の高温側の端面部43bを高温側の熱伝導性電気絶縁基板44Aの表面に接触させる作業やそれらをバイパス配管32の平坦管壁部32a,32bに接触させる作業を容易かつ確実化できる。   Further, since the plurality of through holes 44h are formed in the non-contact portion 44g of the high temperature side heat conductive electrically insulating substrate 44A, the high temperature side end surface portions 43b of the plurality of thermoelectric elements 43 are connected to the high temperature side heat conductive electricity. The operation of bringing the surface into contact with the surface of the insulating substrate 44A and the operation of bringing them into contact with the flat tube wall portions 32a and 32b of the bypass pipe 32 can be easily and reliably performed.

このように、本実施形態においても、複数の熱電素子43に接触する一方の伝熱板61の片面側における接触領域R3の壁面部分を、その片面側における非接触領域R4の壁面部分より低剛性として、複数の熱電素子43の伝熱面と高温側および低温側の伝熱板61,62との間で、熱歪みや接触面凹凸を吸収し易くできる。その結果、複数の熱電素子43の伝熱面と高温側および低温側の伝熱板61,62との安定接触状態を確保することができる構成の簡素な高発電効率の熱電発電装置を提供することができる。   Thus, also in this embodiment, the wall surface portion of the contact region R3 on one side of the one heat transfer plate 61 that contacts the plurality of thermoelectric elements 43 is less rigid than the wall surface portion of the non-contact region R4 on the one surface side. As described above, thermal distortion and contact surface irregularities can be easily absorbed between the heat transfer surfaces of the plurality of thermoelectric elements 43 and the heat transfer plates 61 and 62 on the high temperature side and the low temperature side. As a result, it is possible to provide a thermoelectric generator having a simple high power generation efficiency and capable of ensuring a stable contact state between the heat transfer surfaces of the plurality of thermoelectric elements 43 and the heat transfer plates 61 and 62 on the high temperature side and the low temperature side. be able to.

(第4実施形態)
図7に、本発明の第4実施形態に係る熱電発電装置の要部を示している。
(Fourth embodiment)
In FIG. 7, the principal part of the thermoelectric power generating apparatus which concerns on 4th Embodiment of this invention is shown.

なお、前述の第2、第3実施形態が高温側の伝熱板61および低温側の伝熱板62のうちいずれか一方にのみ低剛性部を設けていたのに対して、本実施形態は、高温側および低温側の伝熱板61,62の双方に、低剛性部を設けたものである。したがって、上述の第2、第3実施形態と同一または類似の構成要素については、図1〜図6中の対応する構成要素と同一の符号を用いつつ、以下に第2、第3実施形態との相違点について説明する。   In the second and third embodiments described above, the low-rigidity portion is provided only in one of the high-temperature side heat transfer plate 61 and the low-temperature side heat transfer plate 62, whereas in the present embodiment, Both the high-temperature side and low-temperature side heat transfer plates 61 and 62 are provided with low rigidity portions. Accordingly, the same or similar components as those of the second and third embodiments described above are denoted by the same reference numerals as the corresponding components in FIGS. The differences will be described.

図7に示すように、本実施形態においては、高温側の熱伝導性電気絶縁基板44Aおよび低温側の熱伝導性電気絶縁基板44Bが、第2実施形態における低温側の熱伝導性電気絶縁基板44Bおよび第3実施形態における高温側の熱伝導性電気絶縁基板44Aと同様に構成されている。すなわち、低温側の伝熱板62を構成する冷却水配管45の内管壁部45aおよび低温側の熱伝導性電気絶縁基板44Bのうち少なくとも一方が、低温側の熱伝導性電気絶縁基板44Bの複数の接触部44e,44fの近傍の部分において、非接触部44gの近傍の部分より低剛性となっている。また、高温側の伝熱板61を構成するバイパス配管32の平坦管壁部32a,32bおよび高温側の熱伝導性電気絶縁基板44Aのうち少なくとも一方が、高温側の熱伝導性電気絶縁基板44Aの複数の接触部44e,44fの近傍の部分において、非接触部44gの近傍の部分より低剛性となっている。そして、各熱伝導性電気絶縁基板44A,44Bには、その板厚方向を深さ方向とする複数の円形の貫通孔44hが所定間隔で形成されている。   As shown in FIG. 7, in the present embodiment, the high temperature side heat conductive electrically insulating substrate 44A and the low temperature side heat conductive electrically insulating substrate 44B are the low temperature side heat conductive electrically insulating substrate in the second embodiment. 44B and the high temperature side heat conductive electrically insulating substrate 44A in the third embodiment are configured. That is, at least one of the inner pipe wall portion 45a of the cooling water pipe 45 constituting the low temperature side heat transfer plate 62 and the low temperature side heat conductive electrically insulating substrate 44B is the low temperature side heat conductive electric insulating substrate 44B. The portion in the vicinity of the plurality of contact portions 44e and 44f has lower rigidity than the portion in the vicinity of the non-contact portion 44g. Further, at least one of the flat tube wall portions 32a and 32b of the bypass pipe 32 constituting the high temperature side heat transfer plate 61 and the high temperature side heat conductive electric insulating substrate 44A is the high temperature side heat conductive electric insulating substrate 44A. In the vicinity of the plurality of contact portions 44e and 44f, the rigidity is lower than that in the vicinity of the non-contact portion 44g. A plurality of circular through-holes 44h are formed at predetermined intervals in each of the heat conductive electrically insulating substrates 44A and 44B with the plate thickness direction as the depth direction.

したがって、本実施形態においても、複数の熱電素子43に接触する一方および他方の伝熱板61,62の対向する接触領域R1,R3の壁面部分を、非接触領域R2,R4の壁面部分より低剛性として、複数の熱電素子43の伝熱面と高温側および低温側の伝熱板61,62との間で、熱歪みや接触面凹凸を吸収し易くできる。その結果、複数の熱電素子43の伝熱面と高温側および低温側の伝熱板61,62との安定接触状態を確保することができる構成の簡素な高発電効率の熱電発電装置を提供することができる。   Therefore, also in the present embodiment, the wall surface portions of the contact regions R1, R3 facing each other and the other heat transfer plates 61, 62 that are in contact with the plurality of thermoelectric elements 43 are lower than the wall surface portions of the non-contact regions R2, R4. As rigidity, thermal distortion and contact surface unevenness can be easily absorbed between the heat transfer surfaces of the plurality of thermoelectric elements 43 and the heat transfer plates 61 and 62 on the high temperature side and the low temperature side. As a result, it is possible to provide a thermoelectric generator having a simple high power generation efficiency and capable of ensuring a stable contact state between the heat transfer surfaces of the plurality of thermoelectric elements 43 and the heat transfer plates 61 and 62 on the high temperature side and the low temperature side. be able to.

(第5実施形態)
図8に、本発明の第5実施形態に係る熱電発電装置の要部を示している。
(Fifth embodiment)
FIG. 8 shows a main part of a thermoelectric generator according to the fifth embodiment of the present invention.

前述の第1実施形態が冷却水配管45の内管壁部45a(低温側の伝熱板)の複数の熱電素子43との接触領域R1における壁面部分45a1のみを薄肉にしていたのに対して、本実施形態では、その冷却水配管45の構成に加え、高温側の伝熱板61を構成する上下の偏平な排気管32U,32Lの複数の熱電素子43との接触領域R3を非接触部R4よりも薄肉にして吸熱側の接触壁面剛性をも低剛性化したものである。したがって、上述の第1実施形態と同一または類似の構成要素については、図1〜図3中の対応する構成要素と同一の符号を用いつつ、以下に第1実施形態との相違点について説明する。   In contrast to the first embodiment described above, only the wall surface portion 45a1 in the contact region R1 of the inner pipe wall portion 45a (low temperature side heat transfer plate) of the cooling water pipe 45 with the plurality of thermoelectric elements 43 is made thin. In this embodiment, in addition to the configuration of the cooling water pipe 45, the contact region R3 with the plurality of thermoelectric elements 43 of the upper and lower flat exhaust pipes 32U and 32L constituting the heat transfer plate 61 on the high temperature side is not contacted. It is thinner than R4, and the rigidity of the contact wall surface on the heat absorption side is also reduced. Accordingly, the same or similar components as those in the first embodiment described above are denoted by the same reference numerals as the corresponding components in FIGS. 1 to 3, and differences from the first embodiment will be described below. .

図8に示すように、本実施形態においては、冷却水配管45の内管壁部45aの内部に収納されつつ片面側で互いに接触する上下の偏平な排気管32U,32Lの内部に、それぞれ複数の吸熱フィン部83fおよび複数の集熱壁部83sを有する吸熱部材83が設けられている。   As shown in FIG. 8, in the present embodiment, a plurality of upper and lower flat exhaust pipes 32 </ b> U and 32 </ b> L that are housed in the inner pipe wall portion 45 a of the cooling water pipe 45 and contact each other on one side are provided. An endothermic member 83 having a plurality of endothermic fin portions 83f and a plurality of heat collecting wall portions 83s is provided.

排気管32U,32Lは、第1実施形態におけるバイパス配管32に代えて接触領域R3の管壁を薄肉にするとともに、第1実施形態の吸熱部材33より低剛性の吸熱部材83をそれぞれに収納したものである。ここにいう薄肉化の程度は、例えば排気管32U,32Lの接触領域R3の壁面部分である平坦管壁部32a,32bが排気管32U,32L内を通る排気ガスの圧力と設置空間46内の圧力とに応じて容易に弾性変形し、各熱電素子43の端面部43aと接触領域R3の平坦管壁部32a,32bとの密着性が高まる程度の薄肉化である。   The exhaust pipes 32U and 32L are made thinner in the wall of the contact region R3 in place of the bypass pipe 32 in the first embodiment, and each of them accommodates a heat absorbing member 83 having a rigidity lower than that of the heat absorbing member 33 in the first embodiment. Is. The degree of thinning here is, for example, the pressure of the exhaust gas through which the flat tube wall portions 32a and 32b, which are the wall portions of the contact region R3 of the exhaust pipes 32U and 32L, pass through the exhaust pipes 32U and 32L, and the installation space 46. The thickness is reduced to such an extent that the adhesiveness between the end surface portion 43a of each thermoelectric element 43 and the flat tube wall portions 32a and 32b of the contact region R3 is enhanced easily according to the pressure.

また、本実施形態においては、各熱電素子43は、例えば電極板や冷却板で複数個の熱電発電材料チップを一体化した熱電発電モジュール43Mとして構成されている。   Further, in the present embodiment, each thermoelectric element 43 is configured as a thermoelectric power generation module 43M in which a plurality of thermoelectric power generation material chips are integrated with, for example, an electrode plate or a cooling plate.

したがって、本実施形態においても、複数の熱電素子43に接触する冷却水配管45およびバイパス配管32(一方および他方の伝熱板)における接触領域R1,R3の壁面部分(壁面部分45a1等)を、非接触領域R2,R4の壁面部分より低剛性として、複数の熱電素子43の伝熱面と高温側および低温側の伝熱板となる冷却水配管45およびバイパス配管32との間で、熱歪みや接触面凹凸を吸収し易くできる。その結果、複数の熱電素子43の伝熱面の安定接触状態を確保することができる構成の簡素な高発電効率の熱電発電装置を提供することができる。   Therefore, also in the present embodiment, the wall surface portions (wall surface portions 45a1 and the like) of the contact regions R1, R3 in the cooling water piping 45 and the bypass piping 32 (one and the other heat transfer plates) that are in contact with the plurality of thermoelectric elements 43, Thermal strain between the heat transfer surface of the plurality of thermoelectric elements 43 and the cooling water pipe 45 and bypass pipe 32 serving as heat transfer plates on the high temperature side and the low temperature side is lower than the wall surface portions of the non-contact regions R2 and R4. And can easily absorb contact surface irregularities. As a result, it is possible to provide a simple and high power generation efficiency thermoelectric generator having a configuration capable of ensuring a stable contact state of the heat transfer surfaces of the plurality of thermoelectric elements 43.

なお、上述の実施形態におけるように肉厚を小さくしたり素材を低剛性にしたりして接触領域R1,R3内に部分的な低剛性部を形成する方法だけでなく、リブや曲げ、補強部材の貼り合わせ等によって部分的に高剛性化し、そのような高剛性化がされない低剛性部を形成することも考えられる。   In addition, as in the above-described embodiment, not only a method of forming partial low rigidity portions in the contact regions R1 and R3 by reducing the thickness or making the material low rigidity, but also ribs, bends, reinforcing members It is also conceivable to form a low-rigidity part that is partially made highly rigid by bonding or the like, and that is not made highly rigid.

さらに、設置空間46の内部は、大気圧より低い圧力状態、例えば吸気負圧により一方向弁47を介して減圧されるものとしたが、設置空間46を真空引きした後に完全に封止することや、他の負圧源に接続することも考えられる。また、複数の熱電素子43や冷却水通路45c等を多層に積層する構成を採用できるのはいうまでもない。   Further, the inside of the installation space 46 is depressurized via the one-way valve 47 by a pressure state lower than atmospheric pressure, for example, negative intake pressure, but the installation space 46 is completely sealed after evacuating the installation space 46. It is also possible to connect to other negative pressure sources. Needless to say, a configuration in which a plurality of thermoelectric elements 43, cooling water passages 45c, and the like are stacked in multiple layers can be employed.

以上説明したように、本発明は、熱電素子に接触する伝熱板に低剛性部を設けて、複数の熱電素子の伝熱面と高温側および低温側の伝熱板との間における熱歪みや接触面凹凸を吸収し易くしているので、熱電素子の伝熱面と高温側および低温側の伝熱板との安定接触状態を確保することができる構成の簡素な高発電効率の熱電発電装置を提供することができる。このような本発明は、電気的に直列接続される複数の熱電素子を高温側の伝熱板と低温側の伝熱板との間に熱的に並列に配置する熱電発電装置全般に有用である。   As described above, the present invention provides a thermal strain between the heat transfer surface of a plurality of thermoelectric elements and the heat transfer plates on the high temperature side and the low temperature side by providing a low rigidity portion on the heat transfer plate in contact with the thermoelectric elements. And the contact surface irregularities are easily absorbed, so that the thermoelectric power generation with a simple and high power generation efficiency can secure a stable contact state between the heat transfer surface of the thermoelectric element and the heat transfer plate on the high temperature side and the low temperature side. An apparatus can be provided. The present invention is useful for all thermoelectric generators in which a plurality of thermoelectric elements electrically connected in series are thermally arranged in parallel between a high temperature side heat transfer plate and a low temperature side heat transfer plate. is there.

1…エンジン(内燃機関)、11…本体ブロック、11c…気筒、11w…ウォータジャケット、12…ラジエータ、14…サーモスタット、15…ウォータポンプ、18…EGRクーラ、19…冷却水通路、19a,19b…分岐通路、24…サージタンク、31…排気通路、31a…主通路部分、31b…バイパス通路部分、32…バイパス配管、32a,32b…平坦管壁部(高温側の伝熱板、接触領域の壁面部分)、32c,32d…側壁部(非接触領域の壁面部分)、32i…内周面、32U,32L…排気管、33,83…吸熱部材、33f,83f…吸熱フィン部、33s,83s…集熱壁部、40…熱電発電装置(排気熱再循環および熱電発電装置、熱電変換装置)、41…排気ガス制御アクチュエータ、41a…弁体、42a,42b…回路用電極部、43…熱電素子、43a,43b…端面部(伝熱面)、43c…熱電発電材料チップ、43M…熱電発電モジュール、44A…高温側の熱伝導性電気絶縁基板、44B…低温側の熱伝導性電気絶縁基板(一方の伝熱板の壁面部分)、44e,44f…接触部、44g…非接触部、44h…貫通穴、45…冷却水配管、45a…内管壁部(低温側の伝熱板、一方の伝熱板の壁面部分)、45a1…壁面部分(接触領域の壁面部分)、45a2…壁面部分(非接触領域の壁面部分)、45b…外管壁部、45c…冷却水通路、45d…両端側壁部、45i…内周面(片面)、46…設置空間、47…一方向弁(逆止弁)、49…減圧機構、61…高温側の伝熱板、62…低温側の伝熱板、R1,R3…接触領域、R2,R4…非接触領域 DESCRIPTION OF SYMBOLS 1 ... Engine (internal combustion engine), 11 ... Main body block, 11c ... Cylinder, 11w ... Water jacket, 12 ... Radiator, 14 ... Thermostat, 15 ... Water pump, 18 ... EGR cooler, 19 ... Cooling water passage, 19a, 19b ... Branch passage, 24 ... Surge tank, 31 ... Exhaust passage, 31a ... Main passage portion, 31b ... Bypass passage portion, 32 ... Bypass piping, 32a, 32b ... Flat tube wall (high temperature side heat transfer plate, wall surface of contact area) Part), 32c, 32d ... side wall part (wall surface part of non-contact area), 32i ... inner peripheral surface, 32U, 32L ... exhaust pipe, 33, 83 ... heat absorbing member, 33f, 83f ... heat absorbing fin part, 33s, 83s ... Heat collecting wall, 40 ... thermoelectric generator (exhaust heat recirculation and thermoelectric generator, thermoelectric converter), 41 ... exhaust gas control actuator, 41a ... valve element, 4 a, 42b ... circuit electrode part, 43 ... thermoelectric element, 43a, 43b ... end face part (heat transfer surface), 43c ... thermoelectric power generation material chip, 43M ... thermoelectric power generation module, 44A ... high temperature side heat conductive electrically insulating substrate , 44B ... Low-temperature side heat conductive electrical insulating substrate (wall surface part of one heat transfer plate), 44e, 44f ... contact part, 44g ... non-contact part, 44h ... through hole, 45 ... cooling water pipe, 45a ... inside Tube wall portion (low temperature side heat transfer plate, wall surface portion of one heat transfer plate), 45a1 ... wall surface portion (wall surface portion of contact area), 45a2 ... wall surface portion (wall surface portion of non-contact area), 45b ... outer tube Wall part, 45c ... Cooling water passage, 45d ... Side wall part on both ends, 45i ... Inner peripheral surface (one side), 46 ... Installation space, 47 ... One-way valve (check valve), 49 ... Pressure reducing mechanism, 61 ... High temperature side Heat transfer plate, 62 ... low temperature side heat transfer plate, R1, R3 ... contact area, R , R4 ... non-contact area

Claims (5)

高温側の伝熱板および低温側の伝熱板と、それぞれ前記高温側の伝熱板に接触する吸熱面および前記低温側の伝熱板に接触する放熱面を有する複数の熱電素子と、を備え、
前記熱電素子により前記吸熱面および前記放熱面の間の温度差に応じて発電する熱電発電装置であって、
前記高温側の伝熱板および前記低温側の伝熱板のうち少なくとも一方の伝熱板は、前記熱電素子に接する接触領域と前記熱電素子に接しない非接触領域とを有し、前記接触領域の壁面部分は、前記非接触領域の壁面部分より剛性が低くなっていることを特徴とする熱電発電装置。
A plurality of thermoelectric elements each having a heat transfer plate on the high temperature side and a heat transfer plate on the low temperature side, and a heat absorption surface in contact with the heat transfer plate on the high temperature side and a heat dissipation surface in contact with the heat transfer plate on the low temperature side, respectively. Prepared,
A thermoelectric generator that generates electric power according to a temperature difference between the heat absorption surface and the heat dissipation surface by the thermoelectric element,
At least one of the high temperature side heat transfer plate and the low temperature side heat transfer plate has a contact area in contact with the thermoelectric element and a non-contact area not in contact with the thermoelectric element, and the contact area The thermoelectric power generator is characterized in that the wall surface portion has a lower rigidity than the wall surface portion of the non-contact region.
前記高温側の伝熱板および前記低温側の伝熱板の間に前記熱電素子を設置する閉じた設置空間が形成されており、前記設置空間の内部の圧力が大気圧より低い圧力に保持されていることを特徴とする請求項1に記載の熱電発電装置。   A closed installation space for installing the thermoelectric element is formed between the high temperature side heat transfer plate and the low temperature side heat transfer plate, and the pressure inside the installation space is maintained at a pressure lower than atmospheric pressure. The thermoelectric power generator according to claim 1. 前記一方の伝熱板が、前記高温側の伝熱板を介して前記熱電素子に吸熱させる高温側の熱媒体と前記低温側の伝熱板を介して前記熱電素子から放熱させる低温側の熱媒体とのうちいずれか一方の熱媒体を通す配管の管壁によって構成されていることを特徴とする請求項1または請求項2に記載の熱電発電装置。   The one heat transfer plate causes the thermoelectric element to absorb heat via the high temperature side heat transfer plate, and the low temperature side heat dissipates from the thermoelectric element via the low temperature side heat transfer plate. The thermoelectric generator according to claim 1, wherein the thermoelectric generator is configured by a pipe wall of a pipe through which any one of the heat medium passes. 前記一方の伝熱板が、前記高温側の伝熱板に熱を吸収させる高温側の熱媒体と前記低温側の伝熱板から熱を放出させる低温側の熱媒体とのうちいずれか一方の熱媒体を通す配管の管壁と、一面側で前記配管の管壁に接触するとともに他面側で前記熱電素子に接触する熱伝導性電気絶縁基板とによって構成されていることを特徴とする請求項1または請求項2に記載の熱電発電装置。   The one heat transfer plate is either one of a high temperature side heat medium that absorbs heat to the high temperature side heat transfer plate and a low temperature side heat medium that releases heat from the low temperature side heat transfer plate. It is comprised by the pipe wall of the piping which lets a heat medium pass, and the heat conductive electrical insulation board | substrate which contacts the pipe wall of the said piping on the one surface side, and contacts the said thermoelectric element on the other surface side. Item 3. The thermoelectric generator according to item 1 or item 2. 前記複数の熱電素子が、前記熱伝導性電気絶縁基板の前記他面側に互いに間隔を隔てて配置されており、
前記熱伝導性電気絶縁基板が、前記複数の熱電素子との非接触部に、板厚方向に貫通する貫通穴を有していることを特徴とする請求項4に記載の熱電発電装置。
The plurality of thermoelectric elements are arranged at intervals on the other surface side of the thermally conductive electrically insulating substrate,
The thermoelectric generator according to claim 4, wherein the thermally conductive electrically insulating substrate has a through hole penetrating in a thickness direction in a non-contact portion with the plurality of thermoelectric elements.
JP2012231993A 2012-10-19 2012-10-19 Thermoelectric generator Expired - Fee Related JP5954103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012231993A JP5954103B2 (en) 2012-10-19 2012-10-19 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012231993A JP5954103B2 (en) 2012-10-19 2012-10-19 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2014086454A true JP2014086454A (en) 2014-05-12
JP5954103B2 JP5954103B2 (en) 2016-07-20

Family

ID=50789277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012231993A Expired - Fee Related JP5954103B2 (en) 2012-10-19 2012-10-19 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP5954103B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093238A1 (en) * 2014-12-10 2016-06-16 日立化成株式会社 Thermoelectric conversion device
JP2017220492A (en) * 2016-06-03 2017-12-14 株式会社デンソー Thermoelectric generator
WO2018226046A1 (en) * 2017-06-08 2018-12-13 엘지이노텍 주식회사 Heat conversion apparatus
KR20190038101A (en) * 2017-09-29 2019-04-08 엘지이노텍 주식회사 Heat conversion device
CN110612612A (en) * 2017-05-10 2019-12-24 株式会社Kelk Thermoelectric power generation device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370483A (en) * 1989-08-04 1991-03-26 Japan Atom Power Co Ltd:The High heat resistance type thermoelectric generation set
JPH0864878A (en) * 1994-08-18 1996-03-08 Kansai Electric Power Co Inc:The Thermoelectric generator
JPH08335723A (en) * 1995-06-06 1996-12-17 Fujikura Ltd Thermoelectric converter
JPH10220909A (en) * 1996-12-03 1998-08-21 Komatsu Ltd Fluid temperature control device
JPH11330568A (en) * 1998-05-12 1999-11-30 Nissan Motor Co Ltd Thermoelectric power generation device and its manufacture
JP2002076448A (en) * 2000-09-04 2002-03-15 Shin Etsu Handotai Co Ltd Thermoelectric element
JP2005072080A (en) * 2003-08-28 2005-03-17 Chubu Electric Power Co Inc Power generator utilizing evaporation heat of lng
JP2005210782A (en) * 2004-01-20 2005-08-04 Toyota Motor Corp Exhaust heat recovery equipment
JP2007036178A (en) * 2005-06-24 2007-02-08 Denso Corp Thermoelectric converter and heating and cooling apparatus
JP2008244100A (en) * 2007-03-27 2008-10-09 Yamaha Corp Thermoelectric module and manufacturing method thereof
WO2011135970A1 (en) * 2010-04-28 2011-11-03 ダイハツ工業株式会社 Power generation system
US20120073276A1 (en) * 2010-09-29 2012-03-29 Gm Global Technology Operations, Inc. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370483A (en) * 1989-08-04 1991-03-26 Japan Atom Power Co Ltd:The High heat resistance type thermoelectric generation set
JPH0864878A (en) * 1994-08-18 1996-03-08 Kansai Electric Power Co Inc:The Thermoelectric generator
JPH08335723A (en) * 1995-06-06 1996-12-17 Fujikura Ltd Thermoelectric converter
JPH10220909A (en) * 1996-12-03 1998-08-21 Komatsu Ltd Fluid temperature control device
JPH11330568A (en) * 1998-05-12 1999-11-30 Nissan Motor Co Ltd Thermoelectric power generation device and its manufacture
JP2002076448A (en) * 2000-09-04 2002-03-15 Shin Etsu Handotai Co Ltd Thermoelectric element
JP2005072080A (en) * 2003-08-28 2005-03-17 Chubu Electric Power Co Inc Power generator utilizing evaporation heat of lng
JP2005210782A (en) * 2004-01-20 2005-08-04 Toyota Motor Corp Exhaust heat recovery equipment
JP2007036178A (en) * 2005-06-24 2007-02-08 Denso Corp Thermoelectric converter and heating and cooling apparatus
JP2008244100A (en) * 2007-03-27 2008-10-09 Yamaha Corp Thermoelectric module and manufacturing method thereof
WO2011135970A1 (en) * 2010-04-28 2011-11-03 ダイハツ工業株式会社 Power generation system
US20120073276A1 (en) * 2010-09-29 2012-03-29 Gm Global Technology Operations, Inc. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093238A1 (en) * 2014-12-10 2016-06-16 日立化成株式会社 Thermoelectric conversion device
JP2017220492A (en) * 2016-06-03 2017-12-14 株式会社デンソー Thermoelectric generator
CN110612612A (en) * 2017-05-10 2019-12-24 株式会社Kelk Thermoelectric power generation device
CN110612612B (en) * 2017-05-10 2023-06-09 株式会社Kelk Thermoelectric power generation device
WO2018226046A1 (en) * 2017-06-08 2018-12-13 엘지이노텍 주식회사 Heat conversion apparatus
CN110720147A (en) * 2017-06-08 2020-01-21 Lg伊诺特有限公司 Heat conversion device
JP2020522880A (en) * 2017-06-08 2020-07-30 エルジー イノテック カンパニー リミテッド Heat converter
US11205746B2 (en) 2017-06-08 2021-12-21 Lg Innotek Co., Ltd. Heat conversion apparatus
CN110720147B (en) * 2017-06-08 2023-10-31 Lg伊诺特有限公司 Heat conversion device
US11903312B2 (en) 2017-06-08 2024-02-13 Lg Innotek Co., Ltd. Heat conversion apparatus
KR20190038101A (en) * 2017-09-29 2019-04-08 엘지이노텍 주식회사 Heat conversion device
KR102334189B1 (en) 2017-09-29 2021-12-02 엘지이노텍 주식회사 Heat conversion device

Also Published As

Publication number Publication date
JP5954103B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
US9466778B2 (en) Thermoelectric generator unit
JP5954103B2 (en) Thermoelectric generator
JP5737151B2 (en) Thermoelectric generator
US8826663B2 (en) Heat exchanger
JP6081583B2 (en) Thermoelectric module, heat exchanger, exhaust system and internal combustion engine
US20120174567A1 (en) Thermoelectric device with tube bundles, method for operating a thermoelectric device and motor vehicle having a thermoelectric device
US20110197941A1 (en) Energy conversion devices and methods
JP6064591B2 (en) Thermoelectric generator
WO2013114428A1 (en) Thermoelectric generator
JP5724723B2 (en) Thermoelectric generator
JP2007221895A (en) Thermal power generator
JP2010245265A (en) Thermoelectric module
US10727389B2 (en) Thermoelectric generating system and vehicle exhaust manifold having the same
KR101435667B1 (en) Thermoelectric Power Generator
JP2008035595A (en) Thermal power generation equipment and its manufacturing method
JP2012512983A (en) Exhaust gas cooler for internal combustion engine
US9416712B2 (en) Thermoelectric module with heat exchanger
US8661801B2 (en) Thermoelectric generator of vehicle
JP2007211748A (en) Heat exchanger and thermoelectric generator
JP2012057579A (en) Egr cooler of internal combustion engine
KR101749057B1 (en) Apparatus for generating thermoelectric semiconductor using exhaust gas heat of vehicle
JP6350297B2 (en) Thermoelectric generator
KR101637674B1 (en) Thermoelectric Generation Device for vehicle
CN112437866A (en) Thermal management system
KR101327731B1 (en) Thermoelectric generator of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160530

R151 Written notification of patent or utility model registration

Ref document number: 5954103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees