JP2007211748A - Heat exchanger and thermoelectric generator - Google Patents

Heat exchanger and thermoelectric generator Download PDF

Info

Publication number
JP2007211748A
JP2007211748A JP2006035462A JP2006035462A JP2007211748A JP 2007211748 A JP2007211748 A JP 2007211748A JP 2006035462 A JP2006035462 A JP 2006035462A JP 2006035462 A JP2006035462 A JP 2006035462A JP 2007211748 A JP2007211748 A JP 2007211748A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
exchange medium
heat exchange
temperature side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006035462A
Other languages
Japanese (ja)
Inventor
Akihisa Matsushita
晃久 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006035462A priority Critical patent/JP2007211748A/en
Publication of JP2007211748A publication Critical patent/JP2007211748A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger and a thermoelectric generator capable of suppressing change of fin intervals due to thermal deformation of fins. <P>SOLUTION: A high temperature side heat exchanger 12 constructing an exhaust thermoelectric generator 10 is provided with a high temperature side heat exchanger case 18 forming a passage of exhaust gas and a fin heat collection part 20 having a plurality of fins 48 arranged in parallel with an exhaust gas flow direction in a high temperature side heat exchanger case 18. At least part of an outer surface of a circumference wall of the high temperature side heat exchanger case 18 is used as an upper side heat transmission surface 12A and a lower side heat transmission surface 12B touching each heat power generation module 16. A plurality of heat collection fin 48 is formed in a corrugated plate shape to make thermal deformation direction consistent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、シェル内を通過する熱交換媒体の熱をシェルの伝熱面に接触した熱伝達対象に伝達するための熱交換器、及び該熱交換器を備える熱発電装置に関する。   The present invention relates to a heat exchanger for transferring heat of a heat exchange medium that passes through a shell to a heat transfer object in contact with a heat transfer surface of the shell, and a thermoelectric generator including the heat exchanger.

自動車等の車両において、エンジンの排気熱を利用して発電を行なう自動車用排熱発電装置を搭載したものがある(例えば、特許文献1参照)。この自動車用排熱発電装置を構成する熱交換器は、排気ガスの熱を発電モジュールに伝達するようになっており、矩形断面の短手方向対向面を複数のフィンにて結合して構成されている。
特開2001−12240号公報 特開2002−199762号公報
Some vehicles, such as automobiles, are equipped with an automobile exhaust heat power generation device that generates electric power using exhaust heat of an engine (see, for example, Patent Document 1). The heat exchanger constituting the automobile exhaust heat power generation apparatus is configured to transmit heat of exhaust gas to the power generation module, and is configured by connecting the rectangular cross-section facing surfaces in the short direction with a plurality of fins. ing.
JP 2001-12240 A JP 2002-199762 A

しかしながら、上記の如き従来の技術では、フィンの熱変形の方向がフィン毎で異なるため、フィン間隔すなわち複数のフィン間の排気ガス流量が不均一になって熱回収効率が低下することが懸念される。特に、多数のフィンを狭い間隔で配置した場合は、熱変形前のフィン間隔に対する熱変形によるフィン間隔の変化の割合が大きくなるので、上記問題が顕著となる。   However, in the conventional technology as described above, since the direction of thermal deformation of the fins is different for each fin, there is a concern that the fin interval, that is, the exhaust gas flow rate between the plurality of fins becomes uneven and the heat recovery efficiency decreases. The In particular, when a large number of fins are arranged at a narrow interval, the rate of change in fin interval due to thermal deformation with respect to the fin interval before thermal deformation becomes large, so the above problem becomes significant.

本発明は上記事実を考慮して、フィンの熱変形によるフィン間隔の変化を抑制することができる熱交換器、及び熱発電装置を得ることが目的である。   In view of the above fact, an object of the present invention is to obtain a heat exchanger and a thermoelectric generator that can suppress changes in fin spacing due to thermal deformation of fins.

上記目的を達成するために請求項1記載の発明に係る熱交換器は、熱交換媒体の流路を形成し、周壁の外面の少なくとも一部が熱伝達対象と接触する伝熱面とされたシェルと、前記シェルの周壁における前記伝熱面の裏面側から立設され、それぞれ熱交換媒体の流れ方向に並列する複数のフィンと、前記複数のフィンの熱変形方向を一致させるためのフィン変形方向規制手段と、を備えている。   In order to achieve the above object, the heat exchanger according to the first aspect of the present invention forms a heat exchange medium flow path, and at least a part of the outer surface of the peripheral wall is a heat transfer surface in contact with the heat transfer object. A shell, a plurality of fins standing from the back surface side of the heat transfer surface on the peripheral wall of the shell, and parallel to the flow direction of the heat exchange medium, and fin deformation for matching the heat deformation direction of the plurality of fins Direction regulating means.

請求項1記載の熱交換器では、シェルを流れる熱交換媒体の熱が複数のフィンによって集熱され、該シェルの伝熱面から熱伝達対象に伝達される。このとき、熱交換媒体との熱交換によって、各フィンは熱変形する。ここで、本熱交換器には、各フィンが熱変形する方向(変形後の形状)を略一致させるフィン変形方向規制手段が設けられているため、複数のフィンが熱変形してもフィン間隔の変化が抑制される。これにより、フィン間隔が略一定に保たれて所要の熱交換性能が確保される。   In the heat exchanger according to the first aspect, the heat of the heat exchange medium flowing through the shell is collected by a plurality of fins and transmitted from the heat transfer surface of the shell to the heat transfer target. At this time, each fin is thermally deformed by heat exchange with the heat exchange medium. Here, the present heat exchanger is provided with fin deformation direction regulating means that substantially matches the direction in which each fin is thermally deformed (the shape after deformation). The change of is suppressed. Thereby, a fin space | interval is kept substantially constant and required heat exchange performance is ensured.

このように、請求項1記載の熱交換器では、フィンの熱変形によるフィン間隔の変化を抑制することができる。   Thus, in the heat exchanger according to the first aspect, changes in the fin interval due to thermal deformation of the fins can be suppressed.

請求項2記載の発明に係る熱交換器は、請求項1記載の熱交換器において、前記複数のフィンは、前記シェルの周壁における前記伝熱面の裏面及び該裏面との対向面のそれぞれに接続されており、前記フィン変形方向規制手段は、前記複数のフィンが前記シェルの対向面を曲線でつなぐように該フィン立設方向の中間部を同じ側に曲げて形成した曲がり形状である。   The heat exchanger according to a second aspect of the present invention is the heat exchanger according to the first aspect, wherein the plurality of fins are provided on each of a back surface of the heat transfer surface and a surface facing the back surface of the peripheral wall of the shell. The fin deformation direction restricting means is a bent shape formed by bending an intermediate portion in the fin standing direction to the same side so that the plurality of fins connect the opposing surfaces of the shell with curves.

請求項2記載の熱交換器では、複数のフィンは、伝熱面の裏面からの立設方向の両端がシェルとの接続によって拘束されると共に、該立設方向の中間部において熱交換媒体の流れ方向との交差(直角)方向に突出するように予め湾曲して並列されている。このため、熱交換媒体との熱交換によって、各フィンは、予め設定された曲げ方向に変形する。このように、簡単な構造でフィン変形規制手段が実現されている。   In the heat exchanger according to claim 2, both ends of the plurality of fins in the standing direction from the back surface of the heat transfer surface are constrained by connection with the shell, and at the intermediate portion in the standing direction, They are pre-curved and juxtaposed so as to project in the direction intersecting (right angle) with the flow direction. For this reason, each fin deform | transforms into the preset bending direction by heat exchange with a heat exchange medium. Thus, the fin deformation restricting means is realized with a simple structure.

請求項3記載の発明に係る熱交換器は、請求項1記載の熱交換器において、前記シェルは、矩形状断面を有する前記流路を形成すると共に周壁における互いに対向する部分の外面がそれぞれ前記伝熱面とされており、前記複数のフィンは、前記シェルの周壁における前記各伝熱面の互いに対向する裏面にそれぞれ接続されており、前記フィン変形方向規制手段は、前記複数のフィンが前記シェルの対向面を曲線でつなぐように該フィン立設方向の中間部を同じ側に曲げて形成した曲がり形状である。   A heat exchanger according to a third aspect of the present invention is the heat exchanger according to the first aspect, wherein the shell forms the flow path having a rectangular cross section and the outer surfaces of the portions facing each other on the peripheral wall are each The plurality of fins are respectively connected to back surfaces of the respective heat transfer surfaces of the peripheral wall of the shell facing each other, and the fin deformation direction regulating means is configured such that the plurality of fins are It is a bent shape formed by bending the intermediate portion in the fin erection direction to the same side so as to connect the opposing surfaces of the shell with a curve.

請求項3記載の熱交換器では、シェルを流れる熱交換媒体の熱は、複数のフィンによって集熱され、該シェルの対向する周壁の外面である各伝熱面からそれぞれ接触している熱伝達対象に伝達される。複数のフィンは、各伝熱面の裏面への接続によって立設方向の両端が拘束されると共に、該立設方向の中間部において熱交換媒体の流れ方向との交差(直角)方向に突出するように予め屈曲又は湾曲して並列されている。このため、熱交換媒体との熱交換によって、各フィンは、予め設定された曲げ方向に変形する。このように、シェルの両側に熱伝達対象を配設する構造において、簡単な構造でフィン変形規制手段が実現されている。   4. The heat exchanger according to claim 3, wherein the heat of the heat exchange medium flowing through the shell is collected by a plurality of fins and is in contact with each heat transfer surface, which is the outer surface of the opposing peripheral wall of the shell. Communicated to the subject. The plurality of fins are constrained at both ends in the standing direction by connection to the back surface of each heat transfer surface, and project in a direction intersecting (at a right angle) with the flow direction of the heat exchange medium at an intermediate portion of the standing direction. As described above, they are bent or curved in parallel. For this reason, each fin deform | transforms into the preset bending direction by heat exchange with a heat exchange medium. Thus, the fin deformation restricting means is realized with a simple structure in the structure in which the heat transfer object is arranged on both sides of the shell.

請求項4記載の発明に係る熱交換器は、請求項1乃至請求項3の何れか1項記載の熱交換器において、前記複数のフィンが熱交換媒体の流れ方向に沿って並列して構成された単位集熱部を、熱交換媒体の流れ方向に所定間隔で配置した。   A heat exchanger according to a fourth aspect of the present invention is the heat exchanger according to any one of the first to third aspects, wherein the plurality of fins are arranged in parallel along the flow direction of the heat exchange medium. The unit heat collecting portions thus arranged were arranged at predetermined intervals in the flow direction of the heat exchange medium.

請求項4記載の熱交換器では、複数の単位集熱部が熱交換媒体に流れ方向に所定間隔で配置されているため、換言すれば、単位集熱部間に空隙が設定されているため、この空隙にて熱交換媒体が拡散されることで該熱交換媒体の温度(分布)が均一化され、この温度が均一化された熱交換媒体が下流側の単位集熱部に流入する。このため、熱交換媒体の流れ方向に沿って配置された各単位集熱部の各部において、フィン面積を有効な集熱面として利用して熱交換性能を向上することができる。また、この熱交換器では、熱交換媒体の上流側と下流側との温度差に起因して上流側単位集熱部と下流側単位集熱部との熱変形量が異なる場合に、単位集熱部間の空隙によってフィンには熱変形量の相違による歪が生じない(連続しない)ので、フィン間隔が略一定に保たれる。なお、単位集熱部間の所定間隔は、一定間隔でも良く不定間隔でも良い。   In the heat exchanger according to claim 4, since the plurality of unit heat collecting portions are arranged in the heat exchange medium at predetermined intervals in the flow direction, in other words, a gap is set between the unit heat collecting portions. The heat exchange medium is diffused in the gaps, so that the temperature (distribution) of the heat exchange medium is made uniform, and the heat exchange medium having the uniform temperature flows into the unit heat collecting section on the downstream side. For this reason, in each part of each unit heat collection part arrange | positioned along the flow direction of a heat exchange medium, heat exchange performance can be improved using a fin area as an effective heat collection surface. In addition, in this heat exchanger, when the amount of thermal deformation between the upstream unit heat collection unit and the downstream unit heat collection unit is different due to the temperature difference between the upstream side and the downstream side of the heat exchange medium, the unit collection is performed. Since the fins are not distorted (not continuous) due to the difference in the amount of thermal deformation due to the gaps between the hot portions, the fin interval is kept substantially constant. The predetermined interval between the unit heat collecting units may be a fixed interval or an indefinite interval.

上記目的を達成するために請求項5記載の発明に係る熱交換器は、熱交換媒体の流路を形成し、周壁の外面の少なくとも一部が熱伝達対象と接触する伝熱面とされたシェルと、熱交換媒体の流れ方向に沿って並列されて前記シェルの周壁における前記伝熱面の裏面と該裏面との対向面とのそれぞれに接続された複数のフィンにて構成された複数の単位集熱部を、熱交換媒体の流れ方向に所定間隔で配置して構成された集熱部と、を備えている。   In order to achieve the above object, a heat exchanger according to a fifth aspect of the present invention forms a flow path of a heat exchange medium, and at least a part of the outer surface of the peripheral wall is a heat transfer surface in contact with a heat transfer target. A plurality of fins configured in parallel with the shell and in the flow direction of the heat exchange medium and connected to the back surface of the heat transfer surface and the opposing surface of the back surface of the peripheral wall of the shell. And a heat collecting part configured by arranging unit heat collecting parts at predetermined intervals in the flow direction of the heat exchange medium.

請求項5記載の熱交換器では、シェルを流れる熱交換媒体の熱が集熱部を構成するフィンによって集熱され、該シェルの伝熱面から熱伝達対象に伝達される。このとき、熱交換媒体との熱交換によって、各フィンは熱変形する。ここで、複数の単位集熱部が熱交換媒体に流れ方向に所定間隔で配置されているため、換言すれば、単位集熱部間に空隙が設定されているため、この空隙にて熱交換媒体が拡散されることで該熱交換媒体の温度(分布)が均一化され、この温度が均一化された熱交換媒体が下流側の単位集熱部に流入する。このため、熱交換媒体の流れ方向に沿って配置された各単位集熱部の各部において、フィン面積を有効な集熱面として利用して熱交換性能を向上することができる。また、この熱交換器では、熱交換媒体の上流側と下流側との温度差に起因して上流側単位集熱部と下流側単位集熱部との熱変形量が異なる場合に、単位集熱部間の空隙によってフィンには熱変形量の相違による歪が生じない(連続しない)ので、フィン間隔が略一定に保たれる。   In the heat exchanger according to the fifth aspect, the heat of the heat exchange medium flowing through the shell is collected by the fins constituting the heat collecting section, and is transmitted from the heat transfer surface of the shell to the heat transfer target. At this time, each fin is thermally deformed by heat exchange with the heat exchange medium. Here, since the plurality of unit heat collecting portions are arranged in the heat exchange medium at predetermined intervals in the flow direction, in other words, since a gap is set between the unit heat collecting portions, heat exchange is performed in the gap. When the medium is diffused, the temperature (distribution) of the heat exchange medium is made uniform, and the heat exchange medium with the temperature made uniform flows into the unit heat collecting section on the downstream side. For this reason, in each part of each unit heat collection part arrange | positioned along the flow direction of a heat exchange medium, heat exchange performance can be improved using a fin area as an effective heat collection surface. In addition, in this heat exchanger, when the amount of thermal deformation between the upstream unit heat collection unit and the downstream unit heat collection unit is different due to the temperature difference between the upstream side and the downstream side of the heat exchange medium, the unit collection is performed. Since the fins are not distorted (not continuous) due to the difference in the amount of thermal deformation due to the gaps between the hot portions, the fin interval is kept substantially constant.

このように、請求項5記載の熱交換器では、フィンの熱変形によるフィン間隔の変化を抑制することができる。なお、単位集熱部間の所定間隔は、一定間隔でも良く不定間隔でも良い。   Thus, in the heat exchanger according to claim 5, it is possible to suppress changes in the fin interval due to thermal deformation of the fins. The predetermined interval between the unit heat collecting units may be a fixed interval or an indefinite interval.

請求項6記載の発明に係る熱交換器は、請求項1乃至請求項5の何れか1項記載の熱交換器において、前記シェルにおける熱交換媒体の入口側には、該熱交換媒体の供給管に流路断面形状を徐変させながら連結された連結流路形成部が設けられており、前記連結流路形成部には、熱交換媒体の一部を前記シェル内における該シェルの中央部から遠ざける方向に案内するガイド手段が設けられている。   A heat exchanger according to a sixth aspect of the present invention is the heat exchanger according to any one of the first to fifth aspects, wherein the heat exchange medium is supplied to an inlet side of the heat exchange medium in the shell. A connecting channel forming part connected to the pipe while gradually changing the channel cross-sectional shape is provided, and the connecting channel forming part includes a part of the heat exchange medium in the center of the shell in the shell. Guide means for guiding in a direction away from the vehicle is provided.

請求項6記載の熱交換器では、熱交換媒体は、供給管から連結流路形成部を経由してシェルに導入される。流路断面の形状を徐変させる連結流路形成部では、ガイド手段が熱交換媒体をシェルの中央部から遠ざける方向に(周縁部に向けて)案内するため、連結流路形成部によって熱交換媒体の流れがシェル中央部に偏せられてしまうことが防止される。これにより、シェルに導入される熱交換媒体の流れ(流量)の均一化が図られ、すなわち各フィンの熱交換媒体との熱交換量が均一化され、熱変形によるフィン間隔の変化が一層効果的に抑制される。   In the heat exchanger according to claim 6, the heat exchange medium is introduced from the supply pipe into the shell via the connection flow path forming portion. In the connected flow path forming section that gradually changes the shape of the flow path cross section, the guide means guides the heat exchange medium in the direction away from the center of the shell (toward the peripheral edge). It is possible to prevent the medium flow from being biased toward the center of the shell. As a result, the flow (flow rate) of the heat exchange medium introduced into the shell is made uniform, that is, the amount of heat exchange between the fins and the heat exchange medium is made uniform, and the change in the fin interval due to thermal deformation is more effective. Is suppressed.

請求項7記載の発明に係る熱交換器は、請求項6記載の熱交換器において、前記連結流路形成部は、熱交換媒体の流れ方向に対し直角を成す第1所定方向において該熱交換媒体の流路を狭めると共に、熱交換媒体の流れ方向及び前記第1所定方向に対しそれぞれ直角を成す第2所定方向において該熱交換媒体の流路を広げており、前記ガイド手段は、熱交換媒体の流れを第2所定方向に分散させるように構成されている。   A heat exchanger according to a seventh aspect of the present invention is the heat exchanger according to the sixth aspect, wherein the connecting flow path forming portion exchanges the heat in a first predetermined direction perpendicular to the flow direction of the heat exchange medium. The flow path of the medium is narrowed, and the flow path of the heat exchange medium is widened in a second predetermined direction perpendicular to the flow direction of the heat exchange medium and the first predetermined direction. The medium flow is configured to be distributed in the second predetermined direction.

請求項7記載の熱交換器では、ガイド手段は、第1所定方向に縮流される熱交換媒体の流れを、第2所定方向に分散させて拡流させる。これにより、シェルに導入される熱交換媒体の流れの均一化が図られる。   In the heat exchanger according to claim 7, the guide means disperses and expands the flow of the heat exchange medium contracted in the first predetermined direction in the second predetermined direction. Thereby, the flow of the heat exchange medium introduced into the shell is made uniform.

請求項8記載の熱発電装置は、高温側と低温側との温度差によって起電力を生じる熱発電体と、前記熱発電体の低温側を冷却するための冷却部と、前記熱発電体の高温側を加熱するための加熱部とを備えた熱発電装置であって、前記加熱部は、前記熱交換媒体として排気ガスを用いると共に前記熱伝達対象を前記熱発電体の高温側とした請求項1乃至請求項7の何れか1項記載の熱交換器である。   The thermoelectric generator according to claim 8 is a thermoelectric generator that generates electromotive force due to a temperature difference between a high temperature side and a low temperature side, a cooling unit for cooling the low temperature side of the thermoelectric generator, and the thermoelectric generator A thermoelectric generator having a heating unit for heating the high temperature side, wherein the heating unit uses exhaust gas as the heat exchange medium and the heat transfer target is the high temperature side of the thermoelectric generator. The heat exchanger according to any one of claims 1 to 7.

請求項8記載の熱発電装置では、熱発電体は、高温側(吸熱側)が加熱部にて加熱されると共に低温側(放熱側)が冷却部にて冷却されることにより生じる(維持される)該高温側と低温側との温度差によって起電力を生じる。ここで、加熱部として請求項1〜8の何れかの熱交換器を用いているため、該熱交換器による排気ガスからの熱回収効率が高く、発電効率が向上する。   In the thermoelectric generator according to claim 8, the thermoelectric generator is generated (maintained) when the high temperature side (heat absorption side) is heated by the heating unit and the low temperature side (heat dissipation side) is cooled by the cooling unit. An electromotive force is generated by the temperature difference between the high temperature side and the low temperature side. Here, since the heat exchanger according to any one of claims 1 to 8 is used as the heating unit, the heat recovery efficiency from the exhaust gas by the heat exchanger is high, and the power generation efficiency is improved.

以上説明したように本発明に係る熱交換器及び熱発電装置は、フィンの熱変形によるフィン間隔の変化を抑制することができるという優れた効果を有する。   As described above, the heat exchanger and the thermoelectric generator according to the present invention have an excellent effect of being able to suppress changes in the fin interval due to thermal deformation of the fins.

本発明の実施形態に係る熱交換器である高温側熱交換器12が適用された排気熱発電装置10について、図1乃至図7に基づいて説明する。なお、以下の説明では、便宜上、矢印Uで示す方向を上方向、矢印Wで示す方向を幅方向、矢印Fで示す方向を排気ガス流れ方向とする。先ず、排気熱発電装置10の概略全体構成を説明し、次いで、本発明の要部である高温側熱交換器12のフィン構造、排気ガス案内構造について詳細に説明することとする。   An exhaust heat power generation apparatus 10 to which a high temperature side heat exchanger 12 that is a heat exchanger according to an embodiment of the present invention is applied will be described with reference to FIGS. 1 to 7. In the following description, for the sake of convenience, the direction indicated by the arrow U is the upward direction, the direction indicated by the arrow W is the width direction, and the direction indicated by the arrow F is the exhaust gas flow direction. First, the schematic overall configuration of the exhaust heat power generation apparatus 10 will be described, and then the fin structure and exhaust gas guide structure of the high temperature side heat exchanger 12 which are the main parts of the present invention will be described in detail.

(排気熱発電装置の全体構成)
図4には、排気熱発電装置10の概略全体構成が側面図にて示されており、図1には図4の1−1線に沿う断面図が示されている。また、図2には、図1の2−2線に沿う側断面図が示されており、図3には図4の3−3線に沿う平面断面図が示されている。図1乃至図4に示される如く、排気熱発電装置10は、本発明における熱交換器(熱回収器)としての高温側熱交換器12と、冷却部としての低温側熱交換器14との間に、それぞれ熱発電体としての複数の熱発電モジュール16を挟み込んで構成されている。各熱発電モジュール16は、それぞれ上下方向に扁平した平面視矩形状に形成されている。
(Overall configuration of exhaust heat generator)
4 shows a schematic overall configuration of the exhaust thermoelectric generator 10 in a side view, and FIG. 1 shows a cross-sectional view taken along line 1-1 of FIG. 2 is a side sectional view taken along line 2-2 in FIG. 1, and FIG. 3 is a plan sectional view taken along line 3-3 in FIG. As shown in FIGS. 1 to 4, the exhaust thermoelectric generator 10 includes a high temperature side heat exchanger 12 as a heat exchanger (heat recovery device) in the present invention and a low temperature side heat exchanger 14 as a cooling unit. A plurality of thermoelectric generator modules 16 as thermoelectric generators are sandwiched therebetween. Each thermoelectric generation module 16 is formed in a rectangular shape in plan view that is flattened in the vertical direction.

図1に示される如く、高温側熱交換器12は、上下高が幅と比較して小さい扁平矩形状に形成されており、上側伝熱面12Aと上側の低温側熱交換器14との間に複数の熱発電モジュール16を挟み込んで保持すると共に、下側伝熱面12Bと下側の低温側熱交換器14との間に上側と同数の熱発電モジュール16を挟み込んで保持している。この実施形態では、排気熱発電装置10は、高温側熱交換器12の片面側において、排気ガス流れ方向に4つで幅方向に2つの各8つの熱発電モジュール16を保持しており、両面合わせて計16個の熱発電モジュール16を備えている。   As shown in FIG. 1, the high temperature side heat exchanger 12 is formed in a flat rectangular shape whose vertical height is smaller than the width, and between the upper heat transfer surface 12 </ b> A and the upper low temperature side heat exchanger 14. A plurality of thermoelectric modules 16 are sandwiched and held, and the same number of thermoelectric modules 16 are sandwiched and held between the lower heat transfer surface 12B and the lower low-temperature heat exchanger 14. In this embodiment, the exhaust thermoelectric generator 10 holds four thermoelectric generator modules 16 in the exhaust gas flow direction and two in the width direction on one side of the high temperature side heat exchanger 12. A total of 16 thermoelectric generator modules 16 are provided.

図1に示される如く、高温側熱交換器12は、排気ガスの流れ方向のとの直交面に沿う断面視で扁平矩形状の排気ガス流路を形成するシェルとしての高温側熱交換器ケース18内に、集熱部としてのフィン集熱部20を配設した構造とされている。図2乃至図4に示される如く、高温側熱交換器ケース18は、その上流端18Aが自動車の内燃機関エンジンの排気ガスを浄化するための触媒コンバータ22の下流端に連結流路形成部としての上流側接続ダクト25を介して接続されており、その下流端18Bが排気管接続部24の上流端に下流側接続ダクト26を介して接続されている。   As shown in FIG. 1, the high temperature side heat exchanger 12 is a high temperature side heat exchanger case as a shell that forms a flat rectangular exhaust gas passage in a cross-sectional view along a plane orthogonal to the flow direction of the exhaust gas. A fin heat collecting portion 20 as a heat collecting portion is disposed in the heat sink 18. As shown in FIGS. 2 to 4, the high temperature side heat exchanger case 18 has an upstream end 18A as a connecting flow path forming portion at the downstream end of the catalytic converter 22 for purifying exhaust gas of an internal combustion engine of an automobile. The downstream end 18B is connected to the upstream end of the exhaust pipe connecting portion 24 via the downstream connection duct 26.

触媒コンバータ22の上流端には、図示しない排気マニホルドの集合部又は排気管に接続されるフランジ22Aが設けられている。排気管接続部24の下流端には、図示しないマフラ又は排気管に接続されるフランジ24Aが設けられている。これにより、高温側熱交換器ケース18は、内燃機関エンジンから触媒コンバータ22を経由して導入された排気ガスを通過させて排気管接続部24を経由してマフラ等に排出するようになっている。この実施形態では、触媒コンバータ22が「熱交換媒体の供給管」に相当する。   At the upstream end of the catalytic converter 22, a flange 22 </ b> A connected to an unillustrated exhaust manifold assembly or an exhaust pipe is provided. At the downstream end of the exhaust pipe connecting portion 24, a muffler (not shown) or a flange 24A connected to the exhaust pipe is provided. As a result, the high temperature side heat exchanger case 18 allows the exhaust gas introduced from the internal combustion engine through the catalytic converter 22 to pass through and is discharged to the muffler or the like via the exhaust pipe connecting portion 24. Yes. In this embodiment, the catalytic converter 22 corresponds to a “heat exchange medium supply pipe”.

図3に示される如く、高温側熱交換器ケース18の幅方向両端を構成する各側壁28は、それぞれ二重構造とされており、内側壁28Aと外側壁28Bとの間に断熱空気層28Cが形成されている。この高温側熱交換器ケース18内に配設されたフィン集熱部20は、高温側熱交換器ケース18を矢印F方向に流れる排気ガスから受けた熱を、高温側熱交換器ケース18における外面(上面)が上側伝熱面12Aとされた天板30、外面(下面)が下側伝熱面12Bとされた底板32に、それぞれ伝達するようになっている。これらフィン集熱部20の詳細構造については、後述する。   As shown in FIG. 3, each side wall 28 constituting both ends in the width direction of the high temperature side heat exchanger case 18 has a double structure, and a heat insulating air layer 28C is provided between the inner side wall 28A and the outer side wall 28B. Is formed. The fin heat collector 20 disposed in the high temperature side heat exchanger case 18 receives heat received from the exhaust gas flowing in the high temperature side heat exchanger case 18 in the direction of arrow F in the high temperature side heat exchanger case 18. The outer surface (upper surface) is transmitted to the top plate 30 having the upper heat transfer surface 12A, and the outer surface (lower surface) is transmitted to the bottom plate 32 having the lower heat transfer surface 12B. The detailed structure of these fin heat collecting parts 20 will be described later.

複数の熱発電モジュール16は、それぞれ多数の熱発電素子(図示省略)をモジュール化して構成されており、上記の通り扁平した矩形状に形成されている。各熱発電モジュール16は、高温側と低温側との温度差によって起電力を生じるようになっている。したがって、各熱発電モジュール16は、高温側の面16Aを高温側熱交換器12(天板30又は底板32)に接触させ、低温側の面16Bを低温側熱交換器14に接触している。   Each of the plurality of thermoelectric generation modules 16 is configured by modularizing a large number of thermoelectric generation elements (not shown), and is formed in a flat rectangular shape as described above. Each thermoelectric module 16 generates an electromotive force due to a temperature difference between the high temperature side and the low temperature side. Therefore, each thermoelectric generation module 16 has the high temperature side surface 16A in contact with the high temperature side heat exchanger 12 (the top plate 30 or the bottom plate 32) and the low temperature side surface 16B in contact with the low temperature side heat exchanger 14. .

図1及び図4に示される如く、低温側熱交換器14は、平面視で高温側熱交換器ケース18とほぼ同等の長さ及び幅を有する矩形状に形成されると共に上下方向に扁平して形成されている。図1に示される如く、低温側熱交換器14は、熱発電モジュール16側に開口する低温側熱交換器ケース34の開口端を蓋板36にて閉止することで、冷媒としてのエンジン冷却水が流れる冷却水流路38を形成している。また、この実施形態では、低温側熱交換器ケース34の幅方向中央部には冷却水流路38を幅方向に並列する2つの冷却水流路38A、38Bに区画する隔壁34Aが立設されている。   As shown in FIGS. 1 and 4, the low-temperature side heat exchanger 14 is formed in a rectangular shape having a length and width substantially equal to the high-temperature side heat exchanger case 18 in a plan view and flattened in the vertical direction. Is formed. As shown in FIG. 1, the low-temperature side heat exchanger 14 closes the opening end of the low-temperature side heat exchanger case 34 that opens to the thermoelectric generator module 16 side with a lid plate 36, so Is formed. Further, in this embodiment, a partition wall 34A that divides the cooling water flow path 38 into two cooling water flow paths 38A and 38B that are arranged in parallel in the width direction is provided upright at the center in the width direction of the low temperature side heat exchanger case 34. .

この低温側熱交換器14は、低温側熱交換器ケース34と蓋板36とは接合されず、低温側熱交換器14と高温側熱交換器12との間に熱発電モジュール16を挟み込んで保持するための後述する保持荷重によって、図示しない防水パッキンを挟んだ低温側熱交換器ケース34と蓋板36とが冷却水流路38を形成した状態を維持する構成とされている。図示は省略するが、低温側熱交換器14には、冷却水流路38A、38Bにエンジン冷却水を導入するための冷却水導入部、冷却水流路38A、38Bからエンジン冷却水を排出するための冷却水排出部がそれぞれ設けられている。また、蓋板36からは、それぞれ上下方向及び冷却水流れ方向(排気ガス流れ方向)に沿う板状に形成された複数の放熱フィン36Aが一定間隔立設されている。   In this low temperature side heat exchanger 14, the low temperature side heat exchanger case 34 and the cover plate 36 are not joined, and the thermoelectric generation module 16 is sandwiched between the low temperature side heat exchanger 14 and the high temperature side heat exchanger 12. The low-temperature side heat exchanger case 34 and the lid plate 36 sandwiching a waterproof packing (not shown) maintain the state in which the cooling water flow path 38 is formed by a holding load to be described later for holding. Although not shown, the low temperature side heat exchanger 14 has a cooling water introduction part for introducing engine cooling water into the cooling water passages 38A and 38B, and an exhaust for discharging engine cooling water from the cooling water passages 38A and 38B. A cooling water discharge part is provided. In addition, a plurality of radiating fins 36A formed in a plate shape along the vertical direction and the cooling water flow direction (exhaust gas flow direction) are erected from the lid plate 36 at regular intervals.

また、排気熱発電装置10は、ブラケット40と、ブラケット40と低温側熱交換器14との間に圧縮状態で配設されて保持荷重付与手段を構成する弾性体としての皿ばね42とを備えている。排気熱発電装置10では、皿ばね42の付勢力(復元力)に基づく上下方向に沿った保持荷重によって、低温側熱交換器14と高温側熱交換器12との間に熱発電モジュール16を保持するようになっている。   The exhaust thermoelectric generator 10 includes a bracket 40 and a disc spring 42 as an elastic body that is disposed between the bracket 40 and the low-temperature side heat exchanger 14 in a compressed state and constitutes a holding load applying unit. ing. In the exhaust thermoelectric generator 10, the thermoelectric generator module 16 is placed between the low temperature side heat exchanger 14 and the high temperature side heat exchanger 12 by a holding load along the vertical direction based on the biasing force (restoring force) of the disc spring 42. It comes to hold.

高温側熱交換器12の上下両側に熱発電モジュール16、低温側熱交換器14を配置する排気熱発電装置10では、ブラケット40は、高温側熱交換器12とは非接触の環状に形成されている。具体的には、図1及び図4に示される如く、ブラケット40は、それぞれ正面視でハット形状に形成された半体40A、40Bの重ね合わされたフランジ部40Cがボルト・ナットを主要構成要素とする締結手段40Dにて固定されることで、上記の通り全体として環状に形成されている。環状に形成され高温側熱交換器12に対し非接触であるブラケット40は、該高温側熱交換器12からの熱影響を受け難い構成とされている。   In the exhaust thermoelectric generator 10 in which the thermoelectric generator module 16 and the low temperature side heat exchanger 14 are arranged on both upper and lower sides of the high temperature side heat exchanger 12, the bracket 40 is formed in an annular shape that is not in contact with the high temperature side heat exchanger 12. ing. Specifically, as shown in FIGS. 1 and 4, the bracket 40 includes a flange 40 </ b> C formed by overlapping half bodies 40 </ b> A and 40 </ b> B formed in a hat shape in front view, and bolts and nuts as main components. By being fixed by the fastening means 40D, the whole is formed in an annular shape as described above. The bracket 40 that is formed in an annular shape and is not in contact with the high temperature side heat exchanger 12 is configured to be hardly affected by the heat from the high temperature side heat exchanger 12.

また、この実施形態では、1つの熱発電モジュール16に対し1つの皿ばね42が設けられている。これにより、排気熱発電装置10では、各熱発電モジュール16に対応する皿ばね42の保持荷重が作用するようになっている。より具体的には、図1に示される如く、高温側熱交換器12の周方向に沿って配設された上下各2つの熱発電モジュール16に対応してそれぞれ皿ばね42が設けられ、これら4つの皿ばね42を共通のブラケット40が支持するようになっている。したがって、この実施形態では、排気熱発電装置10は、排気ガスの流れ方向に沿って配置された4つのブラケット40を有する。   In this embodiment, one disc spring 42 is provided for one thermoelectric generation module 16. Thereby, in the exhaust thermoelectric generator 10, the holding load of the disc spring 42 corresponding to each thermoelectric generator module 16 acts. More specifically, as shown in FIG. 1, a disc spring 42 is provided corresponding to each of the two upper and lower thermoelectric generator modules 16 disposed along the circumferential direction of the high temperature side heat exchanger 12. A common bracket 40 supports the four disc springs 42. Therefore, in this embodiment, the exhaust thermoelectric generator 10 has the four brackets 40 arranged along the flow direction of the exhaust gas.

さらに、この実施形態では、図1に示される如く、排気熱発電装置10は、皿ばね42の圧縮量すなわち皿ばね42の復元力に基づく保持荷重を調節可能な荷重調節機構44を備えている。図1及び図3に示される如く、荷重調節機構44は、複数の皿ばね42すなわち熱発電モジュール16に対応して熱発電モジュール16毎に(ブラケット40毎に4つ)設けられており、各熱発電モジュール16を個別に独立して保持荷重の調整可能とされている。   Furthermore, in this embodiment, as shown in FIG. 1, the exhaust thermoelectric generator 10 includes a load adjustment mechanism 44 that can adjust the holding load based on the compression amount of the disc spring 42, that is, the restoring force of the disc spring 42. . As shown in FIGS. 1 and 3, the load adjusting mechanism 44 is provided for each thermoelectric generation module 16 (four for each bracket 40) corresponding to the plurality of disc springs 42, that is, the thermoelectric generation modules 16. The holding load of the thermoelectric generator module 16 can be adjusted independently.

(高温側熱交換器のフィン構造)
図2、図3及び図5に示される如く、高温側熱交換器12を構成するフィン集熱部20は、矢印F方向に沿って配設された複数(この実施形態では4つ)の単位集熱部としての単位フィン集熱部46を備えている。各単位フィン集熱部46は、それぞれ多数の集熱フィン48の集合体として構成されている。この実施形態では、各集熱フィン48は、矢印F方向に沿って設けられて(延在して)おり、矢印F方向に流れる排気ガスと接触して該排気ガスから熱を受けるようになっている。
(High temperature side heat exchanger fin structure)
As shown in FIGS. 2, 3, and 5, the fin heat collecting section 20 constituting the high temperature side heat exchanger 12 has a plurality of units (four in this embodiment) arranged along the arrow F direction. A unit fin heat collecting part 46 as a heat collecting part is provided. Each unit fin heat collecting portion 46 is configured as an aggregate of a large number of heat collecting fins 48. In this embodiment, each heat collection fin 48 is provided (extended) along the direction of arrow F, and comes into contact with the exhaust gas flowing in the direction of arrow F to receive heat from the exhaust gas. ing.

図5の6−6線に沿った断面図である図6に示される如く、各集熱フィン48は、それぞれ上端48Aが高温側熱交換器ケース18における外面が上側伝熱面12Aとされた天板30に固定的に接続されると共に、下端48Bが外面が下側伝熱面12Bとされた底板32に固定的に接続されている。この実施形態では、高温の排気ガスが流通する高温側熱交換器12を構成する高温側熱交換器ケース18及び集熱フィン48は、例えばステンレス鋼などの耐熱性(耐クリープ性)の良好な金属材にて構成されており、集熱フィン48と高温側熱交換器ケース18の天板30、底板32とはロー付けにて接合されている。なお、幅方向外端に位置する各集熱フィン48と内側壁28Aとの間は、図示しないシール剤にてシールされている。   As shown in FIG. 6, which is a cross-sectional view taken along line 6-6 in FIG. 5, each heat collection fin 48 has an upper end 48A and an outer surface of the high temperature side heat exchanger case 18 as an upper heat transfer surface 12A. While being fixedly connected to the top plate 30, the lower end 48B is fixedly connected to the bottom plate 32 whose outer surface is the lower heat transfer surface 12B. In this embodiment, the high temperature side heat exchanger case 18 and the heat collecting fins 48 constituting the high temperature side heat exchanger 12 through which high temperature exhaust gas flows are excellent in heat resistance (creep resistance) such as stainless steel, for example. The heat collecting fin 48 and the top plate 30 and the bottom plate 32 of the high temperature side heat exchanger case 18 are joined by brazing. The space between each heat collection fin 48 and the inner wall 28A located at the outer end in the width direction is sealed with a sealing agent (not shown).

以上により、各単位フィン集熱部46では、排気ガスから集熱フィン48が受けた熱を上側伝熱面12A、下側伝熱面12Bすなわち各熱発電モジュール16の高温側に伝達する構成とされている。そして、この実施形態では、各集熱フィン48は、上下方向に対して湾曲して形成されている。具体的には、図6に示される如く、各集熱フィン48は、振幅方向が幅方向(矢印F方向及び上下方向のそれぞれに対する直角方向)に略一致した略波型に形成されており、それぞれが同じ形状に形成されている。これにより、それぞれ単位フィン集熱部46では、隣接する集熱フィン48間の間隔Gは、各集熱フィン48間毎にそれぞれ略一定とされると共に、同じ集熱フィン48間における上下方向の各部においても略一定とされている。これら各集熱フィン48の湾曲形状は、本発明における「フィン変形方向規制手段」に相当する。   As described above, in each unit fin heat collecting section 46, the heat received by the heat collecting fin 48 from the exhaust gas is transmitted to the upper heat transfer surface 12A, the lower heat transfer surface 12B, that is, the high temperature side of each thermoelectric generator module 16. Has been. In this embodiment, each heat collection fin 48 is formed to be curved with respect to the vertical direction. Specifically, as shown in FIG. 6, each heat collection fin 48 is formed in a substantially wave shape in which the amplitude direction substantially coincides with the width direction (the direction perpendicular to the arrow F direction and the vertical direction), Each is formed in the same shape. Thereby, in each unit fin heat collecting part 46, the space | interval G between the adjacent heat collecting fins 48 is made substantially constant for each heat collecting fin 48, and the vertical direction between the same heat collecting fins 48 is set. Each part is also substantially constant. The curved shape of each of the heat collecting fins 48 corresponds to the “fin deformation direction restricting means” in the present invention.

また、図6に示される如く、高温側熱交換器ケース18内における矢印F方向に隣り合う単位フィン集熱部46は、該矢印F方向に所定間隔で離間している。これにより、矢印F方向に隣り合う単位フィン集熱部46の間には、それぞれ空隙である拡散ガス層50が設定されている。この拡散ガス層50は、上流側の単位フィン集熱部46を通過した排気ガスが下流側に単位フィン集熱部46に導入される前に拡散させるための空間とされている。   Further, as shown in FIG. 6, the unit fin heat collecting portions 46 adjacent to each other in the arrow F direction in the high temperature side heat exchanger case 18 are spaced apart at a predetermined interval in the arrow F direction. Thereby, the diffusion gas layer 50 which is a space | gap is set between the unit fin heat collection parts 46 adjacent to the arrow F direction, respectively. The diffusion gas layer 50 is a space for allowing the exhaust gas that has passed through the upstream unit fin heat collecting section 46 to diffuse before being introduced into the unit fin heat collecting section 46 on the downstream side.

図2及び図3に示される如く、矢印F方向に沿って所定間隔で配設された4つの単位フィン集熱部46は、それぞれ高温側熱交換器12の上側伝熱面12A、下側伝熱面12B側に矢印F方向に沿って配設された各熱発電モジュール16に対応して配置されている。換言すれば、矢印F方向に隣り合う熱発電モジュール16間の隙間は拡散ガス層50に対応している。したがって、高温側熱交換器12では、1つの単位フィン集熱部46が上下それぞれ幅方向に2つずつ、計4つの各熱発電モジュール16のために排気ガスの熱を集熱(回収)する構成とされている。   As shown in FIGS. 2 and 3, the four unit fin heat collecting portions 46 arranged at predetermined intervals along the arrow F direction are respectively connected to the upper heat transfer surface 12 </ b> A and the lower heat transfer surface of the high temperature side heat exchanger 12. It arrange | positions corresponding to each thermoelectric generation module 16 arrange | positioned along the arrow F direction at the hot surface 12B side. In other words, the gap between the thermoelectric generator modules 16 adjacent in the arrow F direction corresponds to the diffusion gas layer 50. Therefore, in the high temperature side heat exchanger 12, one unit fin heat collecting section 46 collects (collects) the heat of the exhaust gas for each of the four thermoelectric modules 16 in total, two in the vertical direction. It is configured.

(高温側熱交換器の排気ガス案内構造)
図2及び図3に示される如く、高温側熱交換器12を構成する上流側接続ダクト25は、断面が略円形である触媒コンバータ22と断面が扁平矩形状である高温側熱交換器ケース18とを、断面形状を連続的に変化(徐変)させて連通している。このため、上流側接続ダクト25は、側面視で排気ガス流路を第1所定方向としての上下方向に絞る縮流形状とされると共に、平面視で排気ガス流路を第2所定方向としての幅方向に広げる拡流形状とされている。
(Exhaust gas guide structure for high temperature side heat exchanger)
As shown in FIGS. 2 and 3, the upstream side connection duct 25 constituting the high temperature side heat exchanger 12 includes a catalytic converter 22 having a substantially circular cross section and a high temperature side heat exchanger case 18 having a flat rectangular shape in cross section. Are communicated by continuously changing (gradually changing) the cross-sectional shape. For this reason, the upstream side connection duct 25 has a reduced flow shape that restricts the exhaust gas passage in the vertical direction as the first predetermined direction in a side view, and the exhaust gas passage in the second predetermined direction in a plan view. It has a widening shape that widens in the width direction.

この上流側接続ダクト25内には、排気ガスの流れを高温側熱交換器ケース18の幅方向に分散させるように排気ガスを案内するガイド手段としてのガス拡散ガイド52が配設されている。図3に示される如く、ガス拡散ガイド52は、それぞれ排気ガスの流れ方向の上流端よりも下流端の方が幅方向外側に位置するように、平面視で矢印F方向に対し傾斜した複数の平板状のガイド片54を含んでいる。各ガイド片54は、図2に示される如く、それぞれ上端が上流側接続ダクト25の上壁部25Aに固定的に接続されると共に、下端が下壁部25Bに固定的に接続されている。   A gas diffusion guide 52 as guide means for guiding the exhaust gas is disposed in the upstream connection duct 25 so as to disperse the flow of the exhaust gas in the width direction of the high temperature side heat exchanger case 18. As shown in FIG. 3, the gas diffusion guide 52 has a plurality of inclined portions with respect to the direction of the arrow F in plan view so that the downstream end is positioned on the outer side in the width direction than the upstream end in the exhaust gas flow direction. A flat guide piece 54 is included. As shown in FIG. 2, each guide piece 54 has an upper end fixedly connected to the upper wall portion 25A of the upstream connection duct 25 and a lower end fixedly connected to the lower wall portion 25B.

これにより、ガス拡散ガイド52すなわち各ガイド片54によって上流側接続ダクト25を通過する排気ガスの一部が幅方向外側に案内され、排気ガスが全体として高温側熱交換器ケース18の幅方向に分散されるようになっている。また、ガス拡散ガイド52は、側面視の縮流形状によって高温側熱交換器ケース18の中央部に向かおうとする排気ガスの流れを幅方向に分散させることで、上下方向の縮流(中央部に集中する流れの流速)を抑制する構造とされている。これらにより、上流側接続ダクト25を通過する排気ガスの熱総量が、高温側熱交換器ケース18すなわち高温側熱交換器12の各部に略均一に分散されて導入される構成となっている。   Thereby, a part of the exhaust gas passing through the upstream connection duct 25 is guided outward in the width direction by the gas diffusion guide 52, that is, each guide piece 54, and the exhaust gas as a whole extends in the width direction of the high temperature side heat exchanger case 18. To be distributed. Further, the gas diffusion guide 52 disperses the exhaust gas flow toward the central portion of the high temperature side heat exchanger case 18 in the width direction according to the contracted shape in the side view, thereby reducing the vertical contracted flow (center The flow velocity of the flow concentrated on the part) is suppressed. As a result, the total heat amount of the exhaust gas passing through the upstream connection duct 25 is introduced into the high temperature side heat exchanger case 18, that is, the respective portions of the high temperature side heat exchanger 12 in a substantially uniform manner.

次に、実施形態の作用を説明する。   Next, the operation of the embodiment will be described.

上記構成の排気熱発電装置10では、自動車の内燃機関エンジンが始動すると、このエンジンの排気ガスが触媒コンバータ22を経由して高温側熱交換器12(高温側熱交換器ケース18)に導入される。この排気ガスは、フィン集熱部20、高温側熱交換器ケース18の天板30、底板32と接触してこれらと熱交換し、該天板30、底板32に熱を与える。これにより、天板30、底板32の外面である上側伝熱面12A、下側伝熱面12Bに接触している各熱発電モジュール16の高温側が加熱される。上記熱交換によって冷却されつつ高温側熱交換器12を通過した排気ガスは、排気管接続部24を通じて装置外に排出される。   In the exhaust heat power generation apparatus 10 having the above-described configuration, when the internal combustion engine of the automobile is started, the exhaust gas of the engine is introduced into the high temperature side heat exchanger 12 (high temperature side heat exchanger case 18) via the catalytic converter 22. The The exhaust gas contacts the fin heat collecting section 20 and the top plate 30 and the bottom plate 32 of the high temperature side heat exchanger case 18 to exchange heat with them, and gives heat to the top plate 30 and the bottom plate 32. Thereby, the high temperature side of each thermoelectric generation module 16 that is in contact with the upper heat transfer surface 12A and the lower heat transfer surface 12B that are the outer surfaces of the top plate 30 and the bottom plate 32 is heated. The exhaust gas passing through the high temperature side heat exchanger 12 while being cooled by the heat exchange is discharged out of the apparatus through the exhaust pipe connecting portion 24.

一方、エンジン冷却水は、エンジンの図示しないウォータポンプの作動によって、例えば上下の低温側熱交換器14の冷却水流路38(各冷却水流路38A、38B)、内燃機関エンジン、ラジエータの順に循環する。低温側熱交換器14の冷却水流路38を通過するエンジン冷却水は、複数の放熱フィン36A、蓋板36と接触してこれらと熱交換し、蓋板36から熱を奪う。これにより、蓋板36に接触している各熱発電モジュール16の低温側が冷却される。   On the other hand, the engine cooling water circulates in the order of, for example, the cooling water passages 38 (respective cooling water passages 38A and 38B) of the upper and lower low-temperature heat exchangers 14, the internal combustion engine, and the radiator by the operation of a water pump (not shown) of the engine. . Engine cooling water that passes through the cooling water flow path 38 of the low-temperature side heat exchanger 14 contacts the heat radiating fins 36 </ b> A and the lid plate 36, exchanges heat therewith, and takes heat from the lid plate 36. Thereby, the low temperature side of each thermoelectric generation module 16 in contact with the cover plate 36 is cooled.

以上のように、各熱発電モジュール16の高温側が排気ガスの熱を有効利用して加熱されると共に、各熱発電モジュール16の低温側がエンジン冷却水にて冷却されることで、各熱発電モジュール16の高低温側間の温度差が確保され、各熱発電モジュール16は、この温度差に基づく起電力を生じる。すなわち、排気熱発電装置10では、各熱発電モジュール16が発電を行なう。発電された電力は、例えば自動車に搭載された蓄電池であるバッテリ等に蓄えられる(バッテリを充電する)。   As described above, the high temperature side of each thermoelectric generation module 16 is heated by effectively using the heat of the exhaust gas, and the low temperature side of each thermoelectric generation module 16 is cooled by the engine cooling water. The temperature difference between the 16 high and low temperature sides is ensured, and each thermoelectric generation module 16 generates an electromotive force based on this temperature difference. That is, in the exhaust thermoelectric generator 10, each thermoelectric generator module 16 generates electric power. The generated electric power is stored in, for example, a battery that is a storage battery mounted on an automobile (charges the battery).

ところで、排気熱発電装置10では、高温の排気ガスとの接触によって、フィン集熱部20を構成する各集熱フィン48は、熱膨張し、上下両端が高温側熱交換器ケース18に固定されているために熱膨張分を逃がすために熱変形(曲げ又は撓み)を生じる。   By the way, in the exhaust thermoelectric generator 10, each heat collection fin 48 which comprises the fin heat collecting part 20 expands thermally by contact with high temperature exhaust gas, and upper and lower ends are fixed to the high temperature side heat exchanger case 18. Therefore, thermal deformation (bending or bending) is caused to escape the thermal expansion.

ここで、排気熱発電装置10では、各集熱フィン48をそれぞれ略波型に湾曲して形成したため、幅方向に隣り合う各集熱フィン48の上下方向の各部は、互いに同じ方向に変形する(撓む)。このため、排気ガスからの熱によって各集熱フィン48に熱変形を生じても、幅方向に隣り合う各集熱フィン48の間隔Gは、略一定に保たれる。例えば排気ガスの非流通状態で上下方向に沿う平板状の集熱フィンの上下両端を高温側熱交換器ケース18で拘束した構成では、これらの集熱フィンは熱変形による撓み方向が板厚方向に対する何れの側か不定であるので、幅方向に隣り合う集熱フィンの間隔が広い部分と狭い部分とが生じてしまう。幅方向に隣り合う集熱フィンの間隔が狭い部分には、排気ガスは殆ど流れないので、熱回収効率が悪化する原因となる。これに対して排気熱発電装置10では、上記の通り、幅方向に隣り合う各集熱フィン48の間隔Gが略一定に保たれるので、熱回収効率が向上する。   Here, in the exhaust thermoelectric generator 10, the heat collecting fins 48 are formed in a substantially wave shape, so that the vertical portions of the heat collecting fins 48 adjacent in the width direction are deformed in the same direction. (Bend). For this reason, even if the heat collection fins 48 are thermally deformed by the heat from the exhaust gas, the gap G between the heat collection fins 48 adjacent in the width direction is kept substantially constant. For example, in a configuration in which the upper and lower ends of the flat plate-like heat collecting fins extending in the vertical direction in a non-circulating state of the exhaust gas are constrained by the high-temperature side heat exchanger case 18, Therefore, a portion where the interval between the heat collecting fins adjacent to each other in the width direction is wide and a portion where the heat collecting fin is narrow are generated. Since the exhaust gas hardly flows in the portion where the interval between the heat collecting fins adjacent in the width direction is narrow, it causes the heat recovery efficiency to deteriorate. On the other hand, in the exhaust thermoelectric generator 10, as described above, the interval G between the heat collecting fins 48 adjacent in the width direction is kept substantially constant, so that the heat recovery efficiency is improved.

またここで、排気熱発電装置10では、フィン集熱部20を構成する単位フィン集熱部46間に拡散ガス層50を設定したため、上流側の単位フィン集熱部46を通過した排気ガスは拡散ガス層50にて拡散され、温度が均一化された排気ガスが次の単位フィン集熱部46に流入するため、熱回収効率が一層良好となる。すなわち、一般にフィン式の熱交換器では、フィンにおける伝熱面に近い根元側(上下端部)で排気ガスが低温となり、フィンの上下方向中央部で排気ガスが高温となり、この傾向は排気ガス流れの下流側ほど顕著であるため、例えば拡散ガス層50を備えない構成では、排気ガス流れの下流側ほどフィン根元部と中央部との排気ガスの温度差が大きくなり、換言すれば、排気ガスの温度が流れ方向に直交する断面において不均一であるため、熱回収率が低い。   Here, in the exhaust thermoelectric generator 10, since the diffusion gas layer 50 is set between the unit fin heat collecting portions 46 constituting the fin heat collecting portion 20, the exhaust gas that has passed through the upstream unit fin heat collecting portion 46 is Since the exhaust gas diffused in the diffusion gas layer 50 and having a uniform temperature flows into the next unit fin heat collecting section 46, the heat recovery efficiency is further improved. That is, in general, in a fin type heat exchanger, the exhaust gas becomes cold at the base side (upper and lower ends) near the heat transfer surface of the fin, and the exhaust gas becomes hot at the center in the vertical direction of the fin. Since the downstream side of the flow is more conspicuous, for example, in the configuration without the diffusion gas layer 50, the exhaust gas temperature difference between the fin base portion and the central portion increases toward the downstream side of the exhaust gas flow. Since the gas temperature is non-uniform in the cross section perpendicular to the flow direction, the heat recovery rate is low.

これに対して排気熱発電装置10では、上記の通り、拡散ガス層50で拡散されて温度が均一化されたガスが下流側の単位フィン集熱部46に流入するため、排気ガス流れの下流側においても各集熱フィン48の根元部と中央部との温度差が小さい。これにより、排気熱発電装置10では、排気ガス流れ方向の各部において単位フィン集熱部46が略均一な温度分布(特に上下方向に均一な温度分布)の排気ガスと熱交換を行なうため、換言すれば、各単位フィン集熱部46の各集熱フィン48が集熱部材として有効利用されるため、熱回収効率が高い。   On the other hand, in the exhaust thermoelectric generator 10, as described above, the gas diffused in the diffusion gas layer 50 and having a uniform temperature flows into the downstream unit fin heat collector 46, and therefore, downstream of the exhaust gas flow. Also on the side, the temperature difference between the root portion and the center portion of each heat collection fin 48 is small. As a result, in the exhaust thermoelectric generator 10, the unit fin heat collecting section 46 performs heat exchange with the exhaust gas having a substantially uniform temperature distribution (particularly, a uniform temperature distribution in the vertical direction) at each part in the exhaust gas flow direction. In this case, each heat collection fin 48 of each unit fin heat collection section 46 is effectively used as a heat collection member, so that heat recovery efficiency is high.

しかも、各単位フィン集熱部46間に拡散ガス層50が設定されているため、換言すれば、各単位フィン集熱部46を構成する各集熱フィン48は排気ガス流れ方向に不連続であるため、熱を奪われながら下流側に流れる排気ガスの温度が下流側ほど低くなることに起因して、上流側の単位フィン集熱部46の各集熱フィン48と、下流側の単位フィン集熱部46の各集熱フィン48とで熱変形量が異なっても、排気ガス流れ方向に連続したフィンを備えた構成のようにフィン上下流の変形量の差が該フィンの歪を生じる(伝播する)ことが、拡散ガス層50の存在によって防止され、幅方向に隣り合う集熱フィン48の間隔Gが略一定に保たれる。このため、熱回収効率が一層向上する。   Moreover, since the diffusion gas layer 50 is set between the unit fin heat collecting portions 46, in other words, the heat collecting fins 48 constituting each unit fin heat collecting portion 46 are discontinuous in the exhaust gas flow direction. Therefore, the temperature of the exhaust gas flowing downstream while the heat is being deprived becomes lower as the downstream side becomes lower, so that the heat collecting fins 48 of the upstream unit fin heat collecting section 46 and the downstream unit fins Even if the amount of thermal deformation differs between the heat collecting fins 48 of the heat collecting section 46, the difference in the amount of deformation upstream and downstream of the fins causes distortion of the fins as in the configuration having fins continuous in the exhaust gas flow direction. (Propagation) is prevented by the presence of the diffusion gas layer 50, and the gap G between the heat collecting fins 48 adjacent in the width direction is kept substantially constant. For this reason, the heat recovery efficiency is further improved.

さらにここで、排気熱発電装置10では、上流側接続ダクト25にガス拡散ガイド52を設けたため、触媒コンバータ22を通過した排気ガスの流れが高温側熱交換器ケース18の中央部(上下及び幅方向中心線)に向けて集中することなく、高温側熱交換器ケース18の幅方向各部に略均一に分散される。例えばガス拡散ガイド52を備えない比較例100では、図7(B)に示される如く、排気ガスの流れが高温側熱交換器ケース18の中央部に集中する(白抜き矢印の太さが流量に対応している)が、排気熱発電装置10では、図7(A)に示される如く、ガス拡散ガイド52の各ガイド片54によって排気ガスが幅方向各部に均一に分散される。これにより、排気熱発電装置10では、排気ガス流れ方向の各部、特に最上流において単位フィン集熱部46が略均一な流量分布の排気ガスと熱交換を行なうため、換言すれば、各単位フィン集熱部46の各集熱フィン48が集熱部材として有効利用されるため、熱回収効率が高い。   Further, in the exhaust thermoelectric generator 10, since the gas diffusion guide 52 is provided in the upstream connection duct 25, the flow of the exhaust gas that has passed through the catalytic converter 22 is changed to the central portion (vertical and width) of the high temperature side heat exchanger case 18. Without being concentrated toward the direction center line), and is distributed substantially uniformly in each part in the width direction of the high temperature side heat exchanger case 18. For example, in the comparative example 100 that does not include the gas diffusion guide 52, as shown in FIG. 7B, the flow of the exhaust gas is concentrated at the center of the high temperature side heat exchanger case 18 (the thickness of the white arrow indicates the flow rate). However, in the exhaust thermoelectric generator 10, as shown in FIG. 7A, the exhaust gas is uniformly dispersed in each part in the width direction by the guide pieces 54 of the gas diffusion guide 52. As a result, in the exhaust thermoelectric generator 10, each unit fin heat collecting section 46 performs heat exchange with the exhaust gas having a substantially uniform flow rate distribution in each part in the exhaust gas flow direction, particularly in the uppermost stream. Since each heat collection fin 48 of the heat collection unit 46 is effectively used as a heat collection member, the heat recovery efficiency is high.

このように、本実施形態に係る排気熱発電装置10を構成する高温側熱交換器12では、フィン48の熱変形によるフィン間隔Gの変化を抑制することができる。また、排気熱発電装置10では、高温側熱交換器12による熱回収効率が高いため、各熱発電モジュール16の高温側と低温側との温度差を大きく保つことができ、全体として発電効率が向上する。   Thus, in the high temperature side heat exchanger 12 constituting the exhaust thermoelectric generator 10 according to the present embodiment, changes in the fin interval G due to thermal deformation of the fins 48 can be suppressed. Further, in the exhaust thermoelectric generator 10, since the heat recovery efficiency by the high temperature side heat exchanger 12 is high, the temperature difference between the high temperature side and the low temperature side of each thermoelectric module 16 can be kept large, and the power generation efficiency is improved as a whole. improves.

なお、上記実施形態では、各集熱フィン48がそれぞれ独立した板である例を示したが、本発明はこれに限定されず、例えば、図8に示される如く、幅方向に隣り合う各集熱フィン48の上端48Aと下端48Bとを交互に連結する連結部56を設けることで、一体構造とされた所謂コルゲートフィン構造を採用しても良い。この構成では、各集熱フィン48の取り扱い、高温側熱交換器ケース18とのロー付け作業が容易である。   In the above-described embodiment, an example in which each heat collecting fin 48 is an independent plate has been described. However, the present invention is not limited to this, and for example, as shown in FIG. A so-called corrugated fin structure may be employed in which the connecting portions 56 for alternately connecting the upper end 48A and the lower end 48B of the heat fin 48 are provided. In this configuration, handling of each heat collection fin 48 and brazing operation with the high temperature side heat exchanger case 18 are easy.

また、上記実施形態では、本発明が排気熱発電装置10を構成する高温側熱交換器12に適用された例を示したが、本発明はこれに限定されず、本発明の熱交換器は各種用途に適用可能である。   Moreover, in the said embodiment, although the example in which this invention was applied to the high temperature side heat exchanger 12 which comprises the exhaust heat power generator 10 was shown, this invention is not limited to this, The heat exchanger of this invention is It is applicable to various uses.

本発明の実施形態に係る排気熱発電装置を示す図であって、図4の1−1線に沿った断面図である。It is a figure which shows the exhaust heat power generator which concerns on embodiment of this invention, Comprising: It is sectional drawing along the 1-1 line | wire of FIG. 図1の2−2線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line 2-2 in FIG. 図4の3−3線に沿った断面図である。FIG. 5 is a cross-sectional view taken along line 3-3 in FIG. 4. 本発明の実施形態に係る排気熱発電装置の側面図である。It is a side view of the exhaust heat power generator concerning the embodiment of the present invention. 本発明の実施形態に係る排気熱発電装置を構成する高温側熱交換器の平面断面図である。It is a plane sectional view of the high temperature side heat exchanger which constitutes the exhaust heat power generator concerning the embodiment of the present invention. 本発明の実施形態に係る排気熱発電装置を構成する高温側熱交換器のフィン形状を示す図であって、図5の6−6線に沿った断面図である。It is a figure which shows the fin shape of the high temperature side heat exchanger which comprises the exhaust heat power generator which concerns on embodiment of this invention, Comprising: It is sectional drawing along line 6-6 in FIG. (A)は本発明の実施形態に係る排気熱発電装置を構成する高温側熱交換器の流入排気ガスの案内状態を示す平面断面図、(B)は比較例における排気ガス流入状態を示す平面断面図である。(A) is a plane sectional view showing a guidance state of inflow exhaust gas of a high temperature side heat exchanger which constitutes an exhaust heat power generator concerning an embodiment of the present invention, and (B) is a plane showing an exhaust gas inflow state in a comparative example It is sectional drawing. 本発明の実施形態に係る排気熱発電装置を構成する高温側熱交換器のフィン形状の変形例を示す図6に対応する断面図である。It is sectional drawing corresponding to FIG. 6 which shows the modification of the fin shape of the high temperature side heat exchanger which comprises the exhaust heat power generator which concerns on embodiment of this invention.

符号の説明Explanation of symbols

10 排気熱発電装置(熱発電装置)
12 高温側熱交換器(熱交換器、加熱部)
12A 上側伝熱面(伝熱面)
12B 下側伝熱面(伝熱面)
14 低温側熱交換器(冷却部)
16 熱発電モジュール(熱発電体)
18 高温側熱交換器ケース(シェル)
20 フィン集熱部(集熱部)
22 触媒コンバータ(熱交換媒体の供給管)
25 上流側接続ダクト(連結流路形成部)
30 天板(シェルの周壁、対向面)
32 底板(シェルの周壁、対向面)
46 単位フィン集熱部(単位集熱部)
48 集熱フィン(フィン、フィン変形方向規制手段)
52 ガス拡散ガイド(ガイド手段)
54 ガイド片(ガイド手段)
10 Exhaust thermoelectric generator (Thermoelectric generator)
12 High temperature side heat exchanger (heat exchanger, heating part)
12A Upper heat transfer surface (heat transfer surface)
12B Lower heat transfer surface (heat transfer surface)
14 Low temperature side heat exchanger (cooling section)
16 Thermoelectric module (thermoelectric generator)
18 High-temperature side heat exchanger case (shell)
20 Fin heat collector (heat collector)
22 Catalytic converter (heat exchange medium supply pipe)
25 Upstream connection duct (connection flow path forming part)
30 Top plate (Surround wall, facing surface)
32 Bottom plate (shell peripheral wall, facing surface)
46 Unit fin heat collector (unit heat collector)
48 Heat collection fin (Fin, Fin deformation direction regulating means)
52 Gas diffusion guide (guide means)
54 Guide piece (guide means)

Claims (8)

熱交換媒体の流路を形成し、周壁の外面の少なくとも一部が熱伝達対象と接触する伝熱面とされたシェルと、
前記シェルの周壁における前記伝熱面の裏面側から立設され、それぞれ熱交換媒体の流れ方向に沿って並列する複数のフィンと、
前記複数のフィンの熱変形方向を一致させるためのフィン変形方向規制手段と、
を備えた熱交換器。
A shell that forms a flow path of the heat exchange medium, and at least a part of the outer surface of the peripheral wall is a heat transfer surface in contact with the heat transfer target;
A plurality of fins that are erected from the back surface side of the heat transfer surface in the peripheral wall of the shell, and are arranged in parallel along the flow direction of the heat exchange medium;
Fin deformation direction restricting means for matching the heat deformation direction of the plurality of fins;
With heat exchanger.
前記複数のフィンは、前記シェルの周壁における前記伝熱面の裏面及び該裏面との対向面のそれぞれに接続されており、
前記フィン変形方向規制手段は、前記複数のフィンが前記シェルの対向面を曲線でつなぐように該フィン立設方向の中間部を同じ側に曲げて形成した曲がり形状である請求項1記載の熱交換器。
The plurality of fins are connected to each of a back surface of the heat transfer surface and a surface facing the back surface of the peripheral wall of the shell,
2. The heat according to claim 1, wherein the fin deformation direction restricting means has a bent shape formed by bending an intermediate portion of the fin erection direction to the same side so that the plurality of fins connect opposite surfaces of the shell with a curve. Exchanger.
前記シェルは、矩形状断面を有する前記流路を形成すると共に周壁における互いに対向する部分の外面がそれぞれ前記伝熱面とされており、
前記複数のフィンは、前記シェルの周壁における前記各伝熱面の互いに対向する裏面にそれぞれ接続されており、
前記フィン変形方向規制手段は、前記複数のフィンが前記シェルの対向面を曲線でつなぐように該フィン立設方向の中間部を同じ側に曲げて形成した曲がり形状である請求項1記載の熱交換器。
The shell forms the flow path having a rectangular cross section, and the outer surfaces of the opposed portions of the peripheral wall are the heat transfer surfaces, respectively.
The plurality of fins are respectively connected to back surfaces of the heat transfer surfaces of the peripheral wall of the shell facing each other.
2. The heat according to claim 1, wherein the fin deformation direction restricting means has a bent shape formed by bending an intermediate portion of the fin erection direction to the same side so that the plurality of fins connect opposite surfaces of the shell with a curve. Exchanger.
前記複数のフィンが熱交換媒体の流れ方向に沿って並列して構成された単位集熱部を、熱交換媒体の流れ方向に所定間隔で配置した請求項1乃至請求項3記載の熱交換器。   4. The heat exchanger according to claim 1, wherein the unit heat collecting portions in which the plurality of fins are configured in parallel along the flow direction of the heat exchange medium are arranged at predetermined intervals in the flow direction of the heat exchange medium. . 熱交換媒体の流路を形成し、周壁の外面の少なくとも一部が熱伝達対象と接触する伝熱面とされたシェルと、
熱交換媒体の流れ方向に沿って並列されて前記シェルの周壁における前記伝熱面の裏面と該裏面との対向面とのそれぞれに接続された複数のフィンにて構成された複数の単位集熱部を、熱交換媒体の流れ方向に所定間隔で配置して構成された集熱部と、
を備えた熱交換器。
A shell that forms a flow path of the heat exchange medium, and at least a part of the outer surface of the peripheral wall is a heat transfer surface in contact with the heat transfer target;
A plurality of unit heat collecting units configured by a plurality of fins arranged in parallel along the flow direction of the heat exchange medium and respectively connected to the back surface of the heat transfer surface and the surface opposite to the back surface of the peripheral wall of the shell A heat collecting part configured by arranging the parts at predetermined intervals in the flow direction of the heat exchange medium;
With heat exchanger.
前記シェルにおける熱交換媒体の入口側には、該熱交換媒体の供給管に流路断面形状を徐変させながら連結された連結流路形成部が設けられており、
前記連結流路形成部には、熱交換媒体の一部を前記シェル内における該シェルの中央部から遠ざける方向に案内するガイド手段が設けられている請求項1乃至請求項5の何れか1項記載の熱交換器。
The inlet side of the heat exchange medium in the shell is provided with a connected flow path forming part connected to the heat exchange medium supply pipe while gradually changing the cross-sectional shape of the flow path,
6. The guide means for guiding a part of the heat exchange medium in the direction away from the center part of the shell in the shell is provided in the connection flow path forming part. The described heat exchanger.
前記連結流路形成部は、熱交換媒体の流れ方向に対し直角を成す第1所定方向において該熱交換媒体の流路を狭めると共に、熱交換媒体の流れ方向及び前記第1所定方向に対しそれぞれ直角を成す第2所定方向において該熱交換媒体の流路を広げており、
前記ガイド手段は、熱交換媒体の流れを第2所定方向に分散させるように構成されている請求項6記載の熱交換器。
The connection flow path forming section narrows the flow path of the heat exchange medium in a first predetermined direction perpendicular to the flow direction of the heat exchange medium, and each of the flow direction of the heat exchange medium and the first predetermined direction. Expanding the flow path of the heat exchange medium in a second predetermined direction forming a right angle;
The heat exchanger according to claim 6, wherein the guide means is configured to disperse a flow of the heat exchange medium in a second predetermined direction.
高温側と低温側との温度差によって起電力を生じる熱発電体と、前記熱発電体の低温側を冷却するための冷却部と、前記熱発電体の高温側を加熱するための加熱部とを備えた熱発電装置であって、前記加熱部は、前記熱交換媒体として排気ガスを用いると共に前記熱伝達対象を前記熱発電体の高温側とした請求項1乃至請求項7の何れか1項記載の熱交換器である熱発電装置。   A thermoelectric generator that generates an electromotive force due to a temperature difference between the high temperature side and the low temperature side, a cooling unit for cooling the low temperature side of the thermoelectric generator, and a heating unit for heating the high temperature side of the thermoelectric generator, The heating unit uses an exhaust gas as the heat exchange medium, and the heat transfer target is the high temperature side of the thermoelectric generator. The thermoelectric generator which is a heat exchanger of description.
JP2006035462A 2006-02-13 2006-02-13 Heat exchanger and thermoelectric generator Pending JP2007211748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006035462A JP2007211748A (en) 2006-02-13 2006-02-13 Heat exchanger and thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006035462A JP2007211748A (en) 2006-02-13 2006-02-13 Heat exchanger and thermoelectric generator

Publications (1)

Publication Number Publication Date
JP2007211748A true JP2007211748A (en) 2007-08-23

Family

ID=38490402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006035462A Pending JP2007211748A (en) 2006-02-13 2006-02-13 Heat exchanger and thermoelectric generator

Country Status (1)

Country Link
JP (1) JP2007211748A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147879A (en) * 2013-03-12 2013-06-12 武汉理工大学 Power generation heat exchanger with automobile tail gas temperature difference
WO2014181404A1 (en) * 2013-05-08 2014-11-13 トヨタ自動車株式会社 Heat exchanger
US9018511B2 (en) 2013-03-08 2015-04-28 Hamilton Sundstrand Space Systems International, Inc. Spring-loaded heat exchanger fins
WO2015107815A1 (en) * 2014-01-14 2015-07-23 株式会社ミクニ Heat transfer pipe for heat exchanger and heat exchanger
KR20150108519A (en) * 2014-03-18 2015-09-30 삼성중공업 주식회사 Apparatus for reducing combustible gas
KR101767766B1 (en) * 2015-12-22 2017-08-11 주식회사 포스코 Apparatus for recovering waste heat in a reheating furnace
CN114220777A (en) * 2021-12-15 2022-03-22 东北大学 Finned heat collector and non-contact thermoelectric module heat collecting device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018511B2 (en) 2013-03-08 2015-04-28 Hamilton Sundstrand Space Systems International, Inc. Spring-loaded heat exchanger fins
CN103147879A (en) * 2013-03-12 2013-06-12 武汉理工大学 Power generation heat exchanger with automobile tail gas temperature difference
WO2014181404A1 (en) * 2013-05-08 2014-11-13 トヨタ自動車株式会社 Heat exchanger
JP5967300B2 (en) * 2013-05-08 2016-08-10 トヨタ自動車株式会社 Heat exchanger
US9874407B2 (en) 2013-05-08 2018-01-23 Toyota Jidosha Kabushiki Kaisha Heat exchanger
WO2015107815A1 (en) * 2014-01-14 2015-07-23 株式会社ミクニ Heat transfer pipe for heat exchanger and heat exchanger
KR20150108519A (en) * 2014-03-18 2015-09-30 삼성중공업 주식회사 Apparatus for reducing combustible gas
KR101616318B1 (en) 2014-03-18 2016-04-28 삼성중공업 주식회사 Apparatus for reducing combustible gas
KR101767766B1 (en) * 2015-12-22 2017-08-11 주식회사 포스코 Apparatus for recovering waste heat in a reheating furnace
CN114220777A (en) * 2021-12-15 2022-03-22 东北大学 Finned heat collector and non-contact thermoelectric module heat collecting device

Similar Documents

Publication Publication Date Title
CN100374693C (en) Exhaust system
US10062826B2 (en) Thermoelectric device
US8069905B2 (en) EGR gas cooling device
JP2007211748A (en) Heat exchanger and thermoelectric generator
US8136578B2 (en) Heat exchanger for EGR-gas
JP2004208476A (en) Waste heat power generator
JP6397411B2 (en) Improved exhaust gas recirculation device and method for forming the same
JP2013514515A (en) Heat exchanger
JP5939143B2 (en) Thermoelectric generator
US9991435B2 (en) Device for exhaust gas heat utilization, exhaust gas module having such a device, and method of manufacturing the device
JP2006336902A (en) Heat exchanger
JP2016505799A (en) Heat exchanger
KR20130096264A (en) Plate-shaped heat exchanger for a cooling device comprising at least one heat exchanger package
JP4285438B2 (en) Thermoelectric generator
JP2007155321A (en) Small high-temperature heat exchanger such as recovery heat exchanger
JP2008035595A (en) Thermal power generation equipment and its manufacturing method
JP2001012240A (en) Exhaust heat generator for automobile
JP2000111277A (en) Double piping type heat exchanger
JP5954103B2 (en) Thermoelectric generator
JP2006118436A (en) Bonnet for egr gas cooling device
JP6018787B2 (en) Automotive thermoelectric generator
JP2017008911A (en) Heat exchanger
JP2007149841A (en) Thermal power generating system
US7517501B2 (en) Exhaust system for internal combustion engines
JP2003314980A (en) High-temperature plate fin heat exchanger