JP2002076448A - Thermoelectric element - Google Patents

Thermoelectric element

Info

Publication number
JP2002076448A
JP2002076448A JP2000266610A JP2000266610A JP2002076448A JP 2002076448 A JP2002076448 A JP 2002076448A JP 2000266610 A JP2000266610 A JP 2000266610A JP 2000266610 A JP2000266610 A JP 2000266610A JP 2002076448 A JP2002076448 A JP 2002076448A
Authority
JP
Japan
Prior art keywords
thermoelectric
temperature side
wiring
thermoelectric element
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000266610A
Other languages
Japanese (ja)
Inventor
Takao Abe
孝夫 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2000266610A priority Critical patent/JP2002076448A/en
Priority to PCT/JP2001/007362 priority patent/WO2002021608A1/en
Publication of JP2002076448A publication Critical patent/JP2002076448A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric element having a structure capable of improving durability at connectors of electrodes of thermoelectric materials to wirings in a heat cycle to be applied to a high temperature side when used as a ground thermoelectric element and having excellent thermoelectric performance. SOLUTION: The thermoelectric element comprises a connector for electrically connecting the electrodes of a plurality of thermoelectric materials to wirings and the structure in which the wirings and the connector are split to a low temperature side and the high temperature side. In this element, at least the connector of the high temperature side of the connectors is electrically connected with a contact without integrating the wiring with the electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電素子における
熱電材料の電極と配線との接続構造に関し、特に、シリ
コン−ゲルマニウム(SiGe)系の熱電材料を用いた
熱電素子に好適に用いられる接続構造および配線材料を
有する熱電素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connection structure between a thermoelectric material electrode and a wiring in a thermoelectric device, and more particularly to a connection structure suitably used for a thermoelectric device using a silicon-germanium (SiGe) -based thermoelectric material. And a thermoelectric element having a wiring material.

【0002】[0002]

【関連技術】p型半導体材料とn型半導体材料を2ヶ所
で接合させ、その2ヶ所の接合部位の間に温度差を与え
ると、いわゆるゼーベック効果によって、この2ヶ所の
接合部位の間に熱起電力が発生する。
2. Related Art When a p-type semiconductor material and an n-type semiconductor material are joined at two locations and a temperature difference is applied between the two locations, heat is applied between the two locations due to the so-called Seebeck effect. An electromotive force is generated.

【0003】この原理を応用した熱電素子は、可動部分
が無く構造が簡単であるため、これを用いて、信頼性が
高く又高寿命かつ保守の容易なエネルギー直接変換シス
テムを構成しうる可能性が高い。そのために、従来から
種々の熱電素子材料が製造開発されてきている。
Since a thermoelectric element applying this principle has no moving parts and has a simple structure, there is a possibility that a thermoelectric element having a high reliability, a long service life, and easy maintenance can be used. Is high. For this purpose, various thermoelectric element materials have been conventionally manufactured and developed.

【0004】その中でもSiGeは化学的に安定で代表
的な熱電素子材料として知られており、その性能の改良
や製造法について従来より多くの提案がなされている
〔特開昭61−149453号公報(米国特許第471
1971号、欧州特許第185499号)、特開平8−
56020号公報、特許第2623172号公報等〕。
[0004] Among them, SiGe is known as a chemically stable and typical thermoelectric element material, and many proposals have been made with respect to its performance improvement and manufacturing method as compared to the prior art (Japanese Patent Application Laid-Open No. 61-149453). (US Patent No. 471
1971; European Patent No. 185499);
No. 56020, Japanese Patent No. 2623172, etc.].

【0005】熱電素子(熱電変換モジュール)の一例と
して、1981年に打ち上げられたボイジャーには、S
iとGeの粉体を熱間プレス法により焼結体とした熱電
材料を用いて形成された熱電素子が、核分裂を熱源とし
た宇宙用として使用されている。また、地上用として
は、火力発電用、或いは自動車排気熱や燃焼熱を熱源と
する熱電発電装置としての用途が開発されている。
[0005] As an example of a thermoelectric element (thermoelectric conversion module), Voyager launched in 1981 includes S
BACKGROUND ART A thermoelectric element formed by using a thermoelectric material obtained by sintering a powder of i and Ge by a hot pressing method is used for space applications using fission as a heat source. For ground use, applications for thermal power generation or as thermoelectric generators using heat from vehicle exhaust heat or combustion heat as heat sources have been developed.

【0006】図2は、このような従来の熱電素子(熱電
変換モジュール)の一般的な断面構造を示す概略説明図
である。
FIG. 2 is a schematic explanatory view showing a general sectional structure of such a conventional thermoelectric element (thermoelectric conversion module).

【0007】図2において、30は従来の熱電素子で、
複数の熱電材料、即ちp型熱電半導体32及びn型熱電
半導体34が、高温側配線36及び低温側配線38を介
して電気的に接続された高温側接続部32a,34a及
び高温側電極33a,35a並びに低温側接続部32
b,34b及び低温側電極33b,35bを有してい
る。なお、40は高温側基板、42は低温側基板、44
は配線36,38と接続部32a,34a及び32b,
34bとを接合する接合剤及び46はp型熱電半導体3
2とn型熱電半導体34の間を溶着するけい酸ガラス等
の断熱絶縁体である。
In FIG. 2, reference numeral 30 denotes a conventional thermoelectric element.
A plurality of thermoelectric materials, that is, a p-type thermoelectric semiconductor 32 and an n-type thermoelectric semiconductor 34, are electrically connected to each other via a high-temperature side wiring 36 and a low-temperature side wiring 38. 35a and low-temperature side connection part 32
b, 34b and low-temperature side electrodes 33b, 35b. In addition, 40 is a high temperature side substrate, 42 is a low temperature side substrate, 44
Are wirings 36, 38 and connecting portions 32a, 34a and 32b,
34b and the bonding agent for bonding to the p-type thermoelectric semiconductor 3
It is a heat insulating insulator such as silicate glass for welding between the second and n-type thermoelectric semiconductors 34.

【0008】従来より熱電材料としては、SiGe系材
料のほか、Bi2Te3やPbTeなどのテルル系材料
や、FeSi2などの鉄ケイ素系材料などが用いられて
おり、これらの熱電材料の電極と配線との接続方法とし
て、拡散結合やろう付け接合、はんだ付け接合、あるい
は、特定の合金からなる接合剤を用いた接合(特開平1
1−68172参照)などが一般的に用いられていた。
Conventionally, as thermoelectric materials, in addition to SiGe-based materials, tellurium-based materials such as Bi 2 Te 3 and PbTe, and iron-silicon-based materials such as FeSi 2 have been used. Diffusion bonding, brazing bonding, soldering bonding, or bonding using a bonding agent made of a specific alloy may be used as a method of connecting the wiring and the wiring (Japanese Patent Laid-Open No.
1-68172) and the like were generally used.

【0009】しかし、火力発電用などの地上用の熱電素
子として用いる場合、高温側の接続部では500〜10
00℃程度の高温の熱サイクルがあるため、熱電材料の
電極と配線間に熱歪が発生し、耐久性が問題となってい
た。特に熱膨張係数が大きな熱電材料の場合、昇降温の
際に大きな応力が発生するため、接続部の破壊が発生し
やすい。SiGeの場合、高い熱電性能を有するにもか
かわらず、熱膨張係数が大きいためにこのような接続部
の耐久性に問題があり、実用化の妨げとなっていた。
However, when used as a terrestrial thermoelectric element for thermal power generation or the like, the connecting portion on the high temperature side has a resistance of 500 to 10
Since there is a high-temperature thermal cycle of about 00 ° C., thermal strain occurs between the electrode and wiring of the thermoelectric material, and durability has been a problem. Particularly, in the case of a thermoelectric material having a large thermal expansion coefficient, a large stress is generated at the time of temperature rise and fall, so that the connection portion is likely to be broken. In the case of SiGe, despite its high thermoelectric performance, there is a problem in the durability of such a connection part due to a large coefficient of thermal expansion, which has hindered its practical use.

【0010】[0010]

【発明が解決しようとする課題】本発明はこのような問
題点に鑑みてなされたものであり、地上用の熱電素子と
して用いられる際の高温側に加えられる熱サイクルに対
し、熱電材料の電極と配線との接続部における耐久性を
向上させることのできる構造を有し、かつ、優れた熱電
性能を有する熱電素子を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has been made in consideration of the problem that an electrode made of a thermoelectric material is protected from a heat cycle applied to a high temperature side when used as a thermoelectric element for ground use. It is an object of the present invention to provide a thermoelectric element having a structure capable of improving the durability at a connection portion between the thermoelectric element and a wiring, and having excellent thermoelectric performance.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明の熱電素子は、複数の熱電材料の電極と配線
とが電気的に接続された接続部を有し、該電極と該配線
および該接続部が低温側と高温側とに二分された構造を
有する熱電素子において、前記接続部のうち、少なくと
も高温側の接続部は、配線と電極とが一体化されること
なく、接触により電気的に接続されていることを特徴と
する。
In order to achieve the above object, a thermoelectric element according to the present invention has a connecting portion in which electrodes of a plurality of thermoelectric materials and wirings are electrically connected, and the electrodes and the wirings are connected to each other. And in the thermoelectric element having a structure in which the connection portion is divided into a low-temperature side and a high-temperature side, at least the connection portion on the high-temperature side of the connection portions is configured such that the wiring and the electrode are not integrated, and It is characterized by being electrically connected.

【0012】このように、熱電材料の電極と配線とを一
体化することなく、接触によりオーミックコンタクトを
とる様にすれば、熱サイクルを受けても熱膨張係数の差
による破壊を起こすことなく、安定して導通が得られ
る。
As described above, if the electrode of the thermoelectric material and the wiring are not integrated with each other and the ohmic contact is made by contact, even if it is subjected to a thermal cycle, it does not break down due to a difference in thermal expansion coefficient. Stable conduction is obtained.

【0013】この際、少なくとも高温側の配線をPBN
(パイロボロンナイトライド)板上に形成することが好
ましい。このようにすれば、PBNは高温でも剛性が高
いため、電極と配線との接触不良を避けることができる
上、熱線に対して透明な材料であるため、高温側の接続
部を効率よく高温にすることができる。
At this time, at least the high-temperature side wiring is
(Pyroboron nitride) It is preferably formed on a plate. In this way, PBN has high rigidity even at high temperatures, so that it is possible to avoid poor contact between the electrodes and the wiring. In addition, since the PBN is a material transparent to the heat rays, the connection portion on the high temperature side can be efficiently heated to a high temperature. can do.

【0014】また、少なくとも高温側の配線材料として
PG(パイログラファイト)膜を使用することが好まし
い。PG膜は、高温において電気的な良導体であるため
熱電効率を低下させることが少なく、しかも熱線の吸収
体であるので、高温側の接続部をさらに効率よく高温に
することができる。
It is preferable to use a PG (pyrrographite) film as a wiring material on at least the high temperature side. Since the PG film is a good electrical conductor at high temperatures, it does not cause a decrease in thermoelectric efficiency, and since it is an absorber for heat rays, the connecting portion on the high temperature side can be more efficiently heated to a high temperature.

【0015】熱電素子を構成する熱電材料としては、高
い熱電性能が得られるシリコン−ゲルマニウム系材料と
することが好ましい。より高い熱電性能を得るため、シ
リコン−ゲルマニウム系材料としては、粒子サイズの大
きな多結晶であることが好ましく、より好ましくは単結
晶であるとよい。
It is preferable that the thermoelectric material constituting the thermoelectric element is a silicon-germanium-based material from which high thermoelectric performance can be obtained. In order to obtain higher thermoelectric performance, the silicon-germanium-based material is preferably a polycrystal having a large particle size, and more preferably a single crystal.

【0016】[0016]

【発明の実施の形態】本発明の実施の形態について、S
iGe結晶を例にとり、図面を参照しながら説明する
が、本発明の技術思想から逸脱しない限り、この実施の
形態について種々の変形が可能なことはいうまでもな
い。
BEST MODE FOR CARRYING OUT THE INVENTION
An iGe crystal will be described as an example with reference to the drawings. However, it goes without saying that various modifications can be made to this embodiment without departing from the technical idea of the present invention.

【0017】図1は本発明の熱電素子の断面構造を示す
概略説明図である。図1において図2と同一又は類似部
材は同一の符号で示される。
FIG. 1 is a schematic explanatory view showing a cross-sectional structure of a thermoelectric element of the present invention. 1, the same or similar members as those in FIG. 2 are denoted by the same reference numerals.

【0018】図1において、10は本発明に係る熱電素
子で、複数の熱電材料、即ちp型熱電半導体32及びn
型熱電半導体34が、高温側配線36及び低温側配線3
8と電気的に接続された高温側接続部32a,34a及
び高温側電極33a,35a並びに低温側接続部32
b,34b及び低温側電極33b,35bを有し、高温
側配線36には高温側基板40が、また低温側配線38
には低温側基板42がそれぞれ連設されているという基
本的構造は、図2に示した従来の熱電素子の構造と変る
ところはない。この構造において、高温側基板40と低
温側基板42との間に、高温側配線36及び低温側配線
38を介してp型熱電半導体32及びn型熱電半導体3
4が交互に配置される。
In FIG. 1, reference numeral 10 denotes a thermoelectric element according to the present invention, which includes a plurality of thermoelectric materials, that is, p-type thermoelectric semiconductors 32 and n.
Type thermoelectric semiconductor 34 is composed of high-temperature side wiring 36 and low-temperature side wiring 3
8 and the high-temperature-side electrodes 33a and 35a and the low-temperature-side connection 32
b, 34b and low-temperature side electrodes 33b, 35b, the high-temperature side wiring 36 has a high-temperature side substrate 40, and the low-temperature side wiring 38
The basic structure in which the low-temperature-side substrates 42 are provided continuously is the same as the structure of the conventional thermoelectric element shown in FIG. In this structure, the p-type thermoelectric semiconductor 32 and the n-type thermoelectric semiconductor 3 are disposed between the high-temperature side substrate 40 and the low-temperature side substrate 42 via the high-temperature side wiring 36 and the low-temperature side wiring 38.
4 are alternately arranged.

【0019】本発明における熱電材料、即ち、p型熱電
半導体32及びn型熱電半導体34としてはSiGe結
晶が好適に用いられる。使用するSiGe結晶は、チョ
クラルスキー法により作製され、p型またはn型ドーパ
ントを含有させた化学式Si 1-XGeX(0<X<1)で
表されるSiGe結晶である。チョクラルスキー法によ
り、Xのほぼ全域にわたって結晶粒子の大きさが5×1
-5mm3以上を有し、熱電素子としての性能指数の高
い結晶(多結晶または単結晶)が得られる(特願平10
−335894号)。得られた結晶を例えば2×2×2
mm程度の大きさに分割し、n型SiGe結晶(n型熱
電半導体)32及びp型SiGe結晶(p型熱電半導
体)34として用いる。
The thermoelectric material of the present invention, that is, the p-type thermoelectric
The semiconductor 32 and the n-type thermoelectric semiconductor 34 are SiGe
Crystals are preferably used. The SiGe crystal used is
P-type or n-type dopa prepared by the Kralski method
Chemical formula containing Si 1-XGeX(0 <X <1)
It is a SiGe crystal represented. Czochralski method
And the size of the crystal grains is 5 × 1 over almost the entire area of X.
0-FivemmThreeHaving the above, the high figure of merit as a thermoelectric element
Crystal (polycrystal or single crystal) is obtained (Japanese Patent Application
-335894). The obtained crystal is, for example, 2 × 2 × 2
mm, and divided into n-type SiGe crystals (n-type heat
32) and p-type SiGe crystal (p-type thermoelectric semiconductor)
Used as body 34.

【0020】図2に示したような従来の熱電素子30の
構造においては、これらのp型及びn型熱電半導体3
2,34の間は、けい酸ガラス等の断熱絶縁体54によ
って溶着固定されている。
In the structure of the conventional thermoelectric element 30 shown in FIG. 2, these p-type and n-type thermoelectric semiconductors 3 are used.
The space between 2 and 34 is welded and fixed by a heat insulating insulator 54 such as silicate glass.

【0021】しかし、図2の従来構造のようにp型及び
n型熱電半導体32,34の間を固定してしまうと後述
するような不都合が生ずることを考慮して、本発明にお
いては、p型及びn型熱電半導体32,34の間を固定
しない構造、例えば空洞12を設けておく構造としたも
のである。なお、14は低温側基板42に設けられた中
空部で、流体、例えば空気等を導入させることによって
低温側基板42の温度調節を行うことができる。
However, in consideration of the fact that fixing between the p-type and n-type thermoelectric semiconductors 32 and 34 as in the conventional structure of FIG. A structure in which the mold and n-type thermoelectric semiconductors 32 and 34 are not fixed, for example, a structure in which the cavity 12 is provided. Reference numeral 14 denotes a hollow portion provided in the low-temperature side substrate 42, and the temperature of the low-temperature side substrate 42 can be adjusted by introducing a fluid such as air.

【0022】このような本発明特有のp型及びn型熱電
半導体32,34の間を固定しない構造を実現するため
には、図1に示したように高温側基板40及び低温側基
板42に保持用突部40a,42aをそれぞれ形成(パ
ターニング)し、p型及びn型熱電半導体32,34並
びに高温側及び低温側配線36,38を保持用突部40
a,42aを介して嵌着保持するように構成すればよ
い。これにより、熱電材料、即ちp型及びn型熱電半導
体32,34の両端の電極部33a,35a及び33
b,35bと高温側及び低温側配線36,38とを、図
2に示した従来構造のように接合剤44によって接合し
て一体化してしまう構造とは異なり、一体化することな
く固定することができる。
In order to realize such a structure in which the p-type and n-type thermoelectric semiconductors 32 and 34 peculiar to the present invention are not fixed, the high-temperature side substrate 40 and the low-temperature side substrate 42 as shown in FIG. The holding projections 40a and 42a are formed (patterned), respectively, and the p-type and n-type thermoelectric semiconductors 32 and 34 and the high-temperature side and low-temperature side wirings 36 and 38 are held.
a and 42a may be configured to be fitted and held. Thereby, the thermoelectric material, that is, the electrode portions 33a, 35a and 33 at both ends of the p-type and n-type thermoelectric semiconductors 32 and 34 are formed.
Unlike the conventional structure shown in FIG. 2 in which the b and 35b and the high-temperature side and low-temperature side wirings 36 and 38 are joined by a bonding agent 44 and integrated, unlike the conventional structure shown in FIG. Can be.

【0023】このように、熱電材料32,34の電極3
3a,33b及び35a,35bと配線36,38とを
一体化することなく、接触によりオーミックコンタクト
をとる様にすれば、熱サイクルを受けても接触部分が熱
応力を緩和するため、熱膨張係数の差による破壊を起こ
すことなく、安定して導通が得られるという本発明の効
果が得られる。
As described above, the electrodes 3 of the thermoelectric materials 32 and 34
If the ohmic contacts are made by contact without integrating the wires 3a, 33b and 35a, 35b with the wirings 36, 38, the thermal stress can be reduced at the contact portions even when subjected to a thermal cycle. Therefore, the effect of the present invention that stable conduction can be obtained without causing destruction due to the difference between the two.

【0024】また、一体化せずに接触により良好なオー
ミックコンタクトをとるためには、高温側配線36と接
する熱電材料、即ち、p型熱電半導体32及びn型熱電
半導体34の表面に、電極としてTi、W、Mo、Ta
などの高融点金属の合金や積層膜、シリサイド等を形成
しておくことが好ましい。また、低抵抗率の熱電材料、
即ち、p型熱電半導体32及びn型熱電半導体34を用
いることにより、このような膜を形成することなくその
表面を電極として配線と直接接触させてオーミックをと
ることも可能であるが、その場合には熱電材料、即ち、
p型熱電半導体32及びn型熱電半導体34の表面に自
然酸化膜が形成されていると良好なオーミックコンタク
トが得られにくくなるので、フッ酸処理などにより表面
の自然酸化膜はできる限り除去しておくことが望まし
い。
In order to obtain a good ohmic contact by contact without being integrated, it is necessary to form an electrode on the surface of the thermoelectric material in contact with the high-temperature side wiring 36, that is, the surface of the p-type thermoelectric semiconductor 32 and the n-type thermoelectric semiconductor 34. Ti, W, Mo, Ta
It is preferable to form an alloy of a high melting point metal, a laminated film, a silicide, or the like. Also, low resistivity thermoelectric materials,
That is, by using the p-type thermoelectric semiconductor 32 and the n-type thermoelectric semiconductor 34, it is possible to make ohmic contact by directly contacting the surface with the wiring as an electrode without forming such a film. Contains thermoelectric material,
If a natural oxide film is formed on the surface of the p-type thermoelectric semiconductor 32 and the n-type thermoelectric semiconductor 34, it becomes difficult to obtain a good ohmic contact. Therefore, the natural oxide film on the surface is removed as much as possible by hydrofluoric acid treatment or the like. It is desirable to keep.

【0025】高温側配線36を構成する材料としてはP
G膜が好適である。PG(パイログラファイト)は、化
学的気相成長法によってグラファイト層を複数積層させ
て得た熱分解型グラファイトであり、高温において電気
的な良導体であるため熱電効率を低下させることが少な
く、しかも熱線の吸収体であるので、外部からの熱を効
率よく伝達することができる。使用するPG膜の厚さ
は、0.1〜1mm程度が適切であり、低温側の配線3
8にもPGを用いる場合には、熱伝導を考慮して高温側
の膜厚よりも薄くすることが好ましい。
The material constituting the high-temperature side wiring 36 is P
G films are preferred. PG (pyrrographite) is a pyrolytic graphite obtained by laminating a plurality of graphite layers by a chemical vapor deposition method. Since it is a good electrical conductor at a high temperature, it does not cause a decrease in thermoelectric efficiency. Since it is an absorber, the heat from the outside can be efficiently transmitted. The thickness of the PG film to be used is suitably about 0.1 to 1 mm, and the low-temperature side wiring 3
In the case where PG is also used as 8, it is preferable to make the thickness smaller than the film thickness on the high temperature side in consideration of heat conduction.

【0026】高温側基板48としては、PBN板を用い
ることが好ましい。PBN(パイロボロンナイトライ
ド)は、化学的気相成長法によって窒化ホウ素層を複数
積層させて得た熱分解型窒化ホウ素層であり、1800
℃までの高温で安定した絶縁体であり、しかも高温でも
剛性が高いため、高温側配線36と熱電材料、即ち、p
型熱電半導体32及びn型熱電半導体34の電極33
a,33b及び35a,35bとの接触不良を避けるこ
とができる上、熱線に対して透明な材料であるため、高
温側配線36および熱電材料、即ち、p型熱電半導体3
2及びn型熱電半導体34を効率よく高温にすることが
できる。使用するPBN板の厚さは、0.1〜1mm程
度が適切である。
As the high temperature side substrate 48, it is preferable to use a PBN plate. PBN (pyroboron nitride) is a pyrolytic boron nitride layer obtained by laminating a plurality of boron nitride layers by a chemical vapor deposition method.
It is an insulator that is stable at high temperatures up to 100 ° C. and has high rigidity even at high temperatures.
Type thermoelectric semiconductor 32 and electrode 33 of n-type thermoelectric semiconductor 34
a, 33b and 35a, 35b can be avoided, and since it is a material transparent to heat rays, the high-temperature side wiring 36 and the thermoelectric material, that is, the p-type thermoelectric semiconductor 3
The 2 and n-type thermoelectric semiconductors 34 can be efficiently heated to a high temperature. The thickness of the PBN plate used is suitably about 0.1 to 1 mm.

【0027】尚、低温側配線38および低温側基板42
の材質としては高温側と同様にPGおよびPBNを用い
ることもできるが、上記したTi、W、Mo、Taなど
の高融点金属の合金や積層膜、シリサイド等のほか、C
u、Al、Au、Ni、Ptなどの金属を用いることも
できる。
The low-temperature side wiring 38 and the low-temperature side substrate 42
PG and PBN can be used as the material of the high-temperature side, but in addition to the above-mentioned alloys of high melting point metals such as Ti, W, Mo, Ta, etc., laminated films, silicides, etc., C
Metals such as u, Al, Au, Ni, and Pt can also be used.

【0028】また、低温側の場合高温側に比べて熱歪が
小さいので、熱電材料と電極材料や配線材料の組み合わ
せや温度により、従来の様に一体化して作製することも
できる。
Further, since the thermal strain at the low temperature side is smaller than that at the high temperature side, it can be integrally formed by a conventional method depending on the combination and temperature of the thermoelectric material and the electrode material or the wiring material.

【0029】[0029]

【発明の効果】上述したごとく、本発明によれば、地上
用の熱電素子として用いられる際の高温側に加えられる
熱サイクルに対し、熱電材料と電極との接続部における
耐久性を向上させることのできる構造を有し、かつ、優
れた熱電性能を有する熱電素子が得られ、熱電素子の用
途を拡大することができる。
As described above, according to the present invention, it is possible to improve the durability of a connection between a thermoelectric material and an electrode against a heat cycle applied to a high temperature side when used as a ground thermoelectric element. Thus, a thermoelectric element having a structure that allows the thermoelectric element to have excellent thermoelectric performance can be obtained, and the use of the thermoelectric element can be expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の熱電素子の一つの実施の形態の断面
構造を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing a cross-sectional structure of one embodiment of a thermoelectric element of the present invention.

【図2】 従来の熱電素子の断面構造の一例を示す概略
説明図である。
FIG. 2 is a schematic explanatory view showing an example of a cross-sectional structure of a conventional thermoelectric element.

【符号の説明】[Explanation of symbols]

10:本発明の熱電素子、12:空洞、14:中空部、
30:従来の熱電素子、32:p型熱電半導体、34:
n型熱電半導体、36:高温側配線、38:低温側配
線、32a,34a:高温側接続部、32b,34b:
低温側接続部、33a,35a:高温側電極、33b,
35b:低温側電極、40:高温側基板、42:低温側
基板、40a,42a:保持用突部、44:接合剤、4
6:断熱絶縁体。
10: thermoelectric element of the present invention, 12: hollow, 14: hollow,
30: conventional thermoelectric element, 32: p-type thermoelectric semiconductor, 34:
n-type thermoelectric semiconductor, 36: high-temperature side wiring, 38: low-temperature side wiring, 32a, 34a: high-temperature side connection part, 32b, 34b:
Low-temperature side connection part, 33a, 35a: high-temperature side electrode, 33b,
35b: low-temperature side electrode, 40: high-temperature side substrate, 42: low-temperature side substrate, 40a, 42a: holding projection, 44: bonding agent, 4
6: heat insulating insulator.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の熱電材料の電極と配線とが電気的
に接続された接続部を有し、該電極と該配線および該接
続部が低温側と高温側とに二分された構造を有する熱電
素子において、前記接続部のうち、少なくとも高温側の
接続部は、配線と電極とが一体化されることなく、接触
により電気的に接続されていることを特徴とする熱電素
子。
1. A structure in which a plurality of electrodes of thermoelectric material and a wiring are electrically connected to each other, and the electrode, the wiring and the connection are divided into a low-temperature side and a high-temperature side. In the thermoelectric element, at least the high-temperature side connection part of the connection parts is electrically connected by contact without integrating the wiring and the electrode.
【請求項2】 少なくとも前記高温側の配線が、PBN
(パイロボロンナイトライド)板上に配線されることを
特徴とする請求項1に記載された熱電素子。
2. The method according to claim 1, wherein at least the high-temperature side wiring is a PBN.
The thermoelectric element according to claim 1, wherein the thermoelectric element is wired on a (pyroboron nitride) plate.
【請求項3】 少なくとも前記高温側の配線が、PG
(パイログラファイト)膜であることを特徴とする請求
項1または請求項2に記載された熱電素子。
3. At least the high-temperature side wiring is a PG
The thermoelectric element according to claim 1, wherein the thermoelectric element is a (pyrographite) film.
【請求項4】 前記熱電材料がシリコン−ゲルマニウム
系材料であることを特徴とする請求項1から請求項3の
いずれか1項に記載された熱電素子。
4. The thermoelectric device according to claim 1, wherein the thermoelectric material is a silicon-germanium-based material.
【請求項5】 前記シリコン−ゲルマニウム系材料が単
結晶または多結晶であることを特徴とする請求項4に記
載された熱電素子。
5. The thermoelectric device according to claim 4, wherein the silicon-germanium-based material is single crystal or polycrystal.
JP2000266610A 2000-09-04 2000-09-04 Thermoelectric element Pending JP2002076448A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000266610A JP2002076448A (en) 2000-09-04 2000-09-04 Thermoelectric element
PCT/JP2001/007362 WO2002021608A1 (en) 2000-09-04 2001-08-28 Thermoelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000266610A JP2002076448A (en) 2000-09-04 2000-09-04 Thermoelectric element

Publications (1)

Publication Number Publication Date
JP2002076448A true JP2002076448A (en) 2002-03-15

Family

ID=18753663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000266610A Pending JP2002076448A (en) 2000-09-04 2000-09-04 Thermoelectric element

Country Status (2)

Country Link
JP (1) JP2002076448A (en)
WO (1) WO2002021608A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064457A (en) * 2003-07-25 2005-03-10 Toshiba Corp Thermoelectric converter
JP2006332398A (en) * 2005-05-27 2006-12-07 Toshiba Corp Thermoelectric direct converter
JP2014086454A (en) * 2012-10-19 2014-05-12 Toyota Motor Corp Thermoelectric generator
JP5881066B2 (en) * 2010-11-30 2016-03-09 学校法人東京理科大学 Thermoelectric conversion element and thermoelectric conversion module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325685A (en) * 1991-04-24 1992-11-16 Shin Etsu Chem Co Ltd Production of thin film
JPH10144969A (en) * 1996-11-08 1998-05-29 Sumitomo Special Metals Co Ltd Thermoelectric conversion element
JPH10213360A (en) * 1997-01-30 1998-08-11 Yamaha Corp Thermoelectric conversion device
JPH1155974A (en) * 1997-07-28 1999-02-26 Gastar Corp Thermal power generation unit
JP2873961B1 (en) * 1998-02-02 1999-03-24 科学技術庁航空宇宙技術研究所長 Thermoelectric converter
JPH11307825A (en) * 1998-04-21 1999-11-05 Yamaha Corp Thermoelectric module and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064457A (en) * 2003-07-25 2005-03-10 Toshiba Corp Thermoelectric converter
JP2006332398A (en) * 2005-05-27 2006-12-07 Toshiba Corp Thermoelectric direct converter
JP5881066B2 (en) * 2010-11-30 2016-03-09 学校法人東京理科大学 Thermoelectric conversion element and thermoelectric conversion module
JP2014086454A (en) * 2012-10-19 2014-05-12 Toyota Motor Corp Thermoelectric generator

Also Published As

Publication number Publication date
WO2002021608A1 (en) 2002-03-14

Similar Documents

Publication Publication Date Title
JP5336373B2 (en) Thermoelectric conversion module
JP5160784B2 (en) Thermoelectric conversion element module
US8841540B2 (en) High temperature thermoelectrics
JP2006156993A (en) Thermoelectric conversion module, apparatus and method for thermoelectric generation using it, exhaust heat recovery system, solar heat using system, peltier cooling/heating system, nuclear thermoelectric generation system, and biomass system
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP2002325470A (en) Automotive thermoelectric power generating device
JP2005277206A (en) Thermoelectric converter
JP5159264B2 (en) Thermoelectric device and thermoelectric module
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
TW202040774A (en) Thermoelectric conversion module
JPH11261118A (en) Thermoelectric conversion module, semiconductor unit, and manufacture of them
JP2002076448A (en) Thermoelectric element
JP2896496B2 (en) Thermoelectric converter
JPH11330568A (en) Thermoelectric power generation device and its manufacture
CN111670505A (en) Thermoelectric module for generating electricity and corresponding production method
JP3469811B2 (en) Line type thermoelectric conversion module
JP3469812B2 (en) Thermoelectric conversion module and thermoelectric conversion module block
JP7313660B2 (en) Thermoelectric conversion module
JP3482094B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
JP3573448B2 (en) Thermoelectric conversion element
JP3763107B2 (en) Thermoelectric conversion module and manufacturing method thereof
JPH0485973A (en) Thermoelectric generator
JP3007904U (en) Thermal battery
JP3056047B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061207