WO2002021608A1 - Thermoelement - Google Patents

Thermoelement Download PDF

Info

Publication number
WO2002021608A1
WO2002021608A1 PCT/JP2001/007362 JP0107362W WO0221608A1 WO 2002021608 A1 WO2002021608 A1 WO 2002021608A1 JP 0107362 W JP0107362 W JP 0107362W WO 0221608 A1 WO0221608 A1 WO 0221608A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
temperature side
electrodes
wiring
thermoelectric element
Prior art date
Application number
PCT/JP2001/007362
Other languages
French (fr)
Japanese (ja)
Inventor
Takao Abe
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Publication of WO2002021608A1 publication Critical patent/WO2002021608A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a connection structure between a thermoelectric material electrode and a wiring in a thermoelectric element, and particularly to a connection structure and a wiring suitably used for a thermoelectric element using a silicon-germanium (SiGe) -based thermoelectric material.
  • the present invention relates to a thermoelectric element having a material.
  • thermoelectric power is generated between the two locations due to the so-called Seebeck effect. I do.
  • thermoelectric elements that apply this principle have no moving parts and have a simple structure.Therefore, there is a high possibility that a thermoelectric element with high reliability, a long service life, and easy maintenance can be used. . For this purpose, various thermoelectric element materials have been conventionally manufactured and developed.
  • SiGe is known as a chemically stable and typical thermoelectric element material, and many proposals have been made for improving its performance and manufacturing methods [JP-A-6-11-1].
  • No. 494553 U.S. Pat.No. 4,711,971; European Patent No. 1,849,499); Japanese Unexamined Patent Publication No. H8-56020; Patent No. 2623 No.172 publication etc.].
  • thermoelectric element thermoelectric conversion module
  • the Voyager launched in 1981 was made of a thermoelectric material made by sintering Si and Ge powder by hot pressing.
  • the formed thermoelectric element uses fission as a heat source Used for space applications.
  • ground-based applications have been developed for thermal power generation, or as thermoelectric generators that use vehicle exhaust heat or combustion heat as a heat source.
  • FIG. 2 is a schematic explanatory view showing a general cross-sectional structure of such a conventional thermoelectric element (thermoelectric conversion module).
  • reference numeral 30 denotes a conventional thermoelectric element, in which a plurality of thermoelectric materials, that is, a p-type thermoelectric semiconductor 32 and an n-type thermoelectric semiconductor 34 are electrically connected via a high-temperature side wiring 36 and a low-temperature side wiring 38.
  • High-temperature side connections 32a, 34a and high-temperature side electrodes 33a, 35a, and low-temperature side connections 32b, 34b and low-temperature side electrodes 33b, 35 has b.
  • 40 is a high-temperature side substrate
  • 42 is a low-temperature side substrate
  • 44 is a bonding agent and a bonding agent for bonding the wirings 36, 38 and the connecting portions 32a, 34a and 32b, 34b.
  • Numeral 6 denotes a heat insulating insulator such as silicate glass for welding between the p-type thermoelectric semiconductor 32 and the n-type thermoelectric semiconductor 34.
  • thermoelectric material conventionally intensification of S i G e based material, tellurium materials and such B i 2 T e 3 P b T e, such as iron Kei Motokei material such as F e S i 2 is used Diffusion bonding, brazing, soldering, or bonding using a bonding agent made of a specific alloy can be used as a method of connecting the electrodes and wiring of these thermoelectric materials (Japanese Patent Application Laid-Open No. H11-16881). 72) was commonly used.
  • thermoelectric material having a large coefficient of thermal expansion
  • SiGe despite its high thermoelectric performance, there was a problem in the durability of such a connection due to a large coefficient of thermal expansion, which hindered its practical use. Disclosure of the invention
  • the present invention has been made in view of such a problem, and the present invention has been made in consideration of a heat cycle applied to a high temperature side when used as a terrestrial thermoelectric element, in which a connection between an electrode of thermoelectric material and a wiring is provided.
  • An object of the present invention is to provide a thermoelectric element having a structure capable of improving durability and having excellent thermoelectric performance.
  • thermoelectric element of the present invention has a connection portion in which electrodes and wires of a plurality of thermoelectric materials are electrically connected, and the electrodes, the wires and the connection portions are connected to a low-temperature side.
  • a thermoelectric element having a structure divided into a high-temperature side and a high-temperature side at least a high-temperature-side connection portion of the connection portions is electrically connected by contact without integrating the wiring and the electrode. It is characterized by the following.
  • thermoelectric material and the wiring are not integrated, and the contact is made to be in a uniform contact state, even if subjected to a thermal cycle, no destruction due to a difference in thermal expansion coefficient occurs. A stable conduction can be obtained.
  • PBN pyroboron nitride
  • PBN pyroboron nitride
  • thermoelectric material constituting the thermoelectric element it is preferable to use a silicon-germanium-based material capable of obtaining high thermoelectric performance.
  • the silicon-germanium-based material is preferably a polycrystal having a large particle size, and more preferably a single crystal.
  • FIG. 1 is a schematic explanatory view showing a cross-sectional structure of one embodiment of the thermoelectric element of the present invention.
  • FIG. 2 is a schematic explanatory view showing an example of a cross-sectional structure of a conventional thermoelectric element.
  • FIG. 1 is a schematic explanatory view showing a cross-sectional structure of a thermoelectric element of the present invention.
  • the same or similar members as those in FIG. 2 are denoted by the same reference numerals.
  • reference numeral 10 denotes a thermoelectric element according to the present invention, in which a plurality of thermoelectric materials, that is, P-type thermoelectric semiconductors 32 and n-type thermoelectric semiconductors 34 are electrically connected to the high-temperature side wiring 36 and the low-temperature side wiring 38.
  • the basic structure in which a high-temperature side substrate 40 is connected to the high-temperature side wiring 36 and a low-temperature side substrate 42 is connected to the low-temperature side wiring 38 is shown in FIG. There is no difference from the structure of the conventional thermoelectric element.
  • the P-type thermoelectric semiconductor 32 and the n-type thermoelectric semiconductor 34 alternate between the high-temperature side substrate 40 and the low-temperature side substrate 42 via the high-temperature side wiring 36 and the low-temperature side wiring 38.
  • the thermoelectric material in the present invention that is, the p-type thermoelectric semiconductor 32 and the n-type thermoelectric semiconductor 34, SiGe crystals are suitably used.
  • the S i G e crystals used are prepared by Chiyokurarusuki method, p-type or Formula was contained n-type dopant preparative S i t.
  • X G e ⁇ S i represented by (0 ⁇ X ⁇ 1) It is a G e crystal.
  • the Chiyokurarusuki method approximately the size of the crystal grains over the entire X has a 5 X 1 0- 5 mm 3 or more, the number of performance finger high crystallinity as thermoelectric elements (polycrystalline or monocrystalline) is obtained (Japanese Patent Application No. 10-33 358 904).
  • the obtained crystal is divided into, for example, a size of about 2 ⁇ 2 ⁇ 2 mm, and n-type SiGe crystal (n-type thermoelectric semiconductor) 32 and p-type SiGe crystal (p-type thermoelectric semiconductor) 34 Used as
  • thermoelectric element 30 In the structure of the conventional thermoelectric element 30 as shown in FIG. 2, the P-type and n-type thermoelectric semiconductors 32 and 34 are welded and fixed by a heat insulating insulator 54 such as silicate glass. ing.
  • thermoelectric semiconductors 32 and 34 As in the conventional structure of FIG. It has a structure in which the n-type thermoelectric semiconductors 32 and 34 are not fixed, for example, a structure in which a cavity 12 is provided.
  • Reference numeral 14 denotes a hollow portion provided in the low-temperature substrate 42, and the temperature of the low-temperature substrate 42 can be adjusted by introducing a fluid, for example, air.
  • a fluid for example, air.
  • thermoelectric material that is, the electrode portions 33a, 35a and 33b, 35b at both ends of the p-type and n-type thermoelectric semiconductors 32, 34 are formed.
  • the high-temperature side wiring and low-temperature side wiring 36, 38 are joined together with a bonding agent 44 as in the conventional structure shown in Fig. 2, they can be fixed without being integrated. it can.
  • the electrodes 33a, 33b and 35a, 35b of the thermoelectric materials 32, 34 and the wirings 36, 38 are not integrated with the wirings 36, 38, but the ohmic contact is obtained by contact.
  • the contact portion relaxes the thermal stress, so that the effect of the present invention that stable conduction can be obtained without causing destruction due to a difference in thermal expansion coefficient is obtained.
  • thermoelectric material in contact with the high-temperature side wiring 36 that is, the surface of the p-type thermoelectric semiconductor 32 and the surface of the n-type thermoelectric semiconductor 34
  • a high melting point metal such as Ti, W, Mo and Ta
  • a laminated film, a silicide or the like as an electrode.
  • thermoelectric material that is, a p-type thermoelectric semiconductor 32 and an n-type thermoelectric semiconductor 34
  • the surface can be directly contacted with the wiring as an electrode without forming such a film.
  • thermoelectric material that is, the p-type thermoelectric semiconductor 32 and the n-type thermoelectric semiconductor 34
  • a good ohmic contact is obtained. Therefore, it is desirable to remove the natural oxide film on the surface as much as possible by hydrofluoric acid treatment or the like.
  • a PG film As a material for forming the high-temperature side wiring 36, a PG film is preferable.
  • PG Polyrographite
  • PG is a pyrolytic graphiteite obtained by laminating multiple graphiteite layers by chemical vapor deposition, and it is a good electrical conductor at high temperatures and therefore reduces thermoelectric efficiency. Since it is a low heat absorber, it can efficiently transfer external heat. It is appropriate that the thickness of the PG film used is about 0.1 to 1 mm.If PG is also used for the wiring 38 on the low temperature side, the thickness on the high temperature side should be considered in consideration of heat conduction. It is preferable that the thickness be smaller.
  • PBN pyroboron nitride
  • PBN pyroboron nitride
  • pyrolytic boron nitride layer obtained by stacking multiple boron nitride layers by chemical vapor deposition, and is stable at high temperatures up to 180 ° C.
  • thermoelectric semiconductor 34 can be efficiently heated to a high temperature.
  • the thickness of the PBN plate to be used is preferably from 0.1 to: Lmm. '
  • PG and PBN can be used as the material of the low-temperature side wiring 38 and the low-temperature side substrate 42 as in the case of the high-temperature side, but the high melting point metal such as Ti, W, Mo, and Ta described above is used.
  • the high melting point metal such as Ti, W, Mo, and Ta described above is used.
  • metals such as Cu, Al, Au, Ni, and Pt can also be used.
  • thermoelectric material since the thermal strain at the low temperature side is smaller than that at the high temperature side, it can be integrated as in the past depending on the combination and temperature of the thermoelectric material, electrode material and wiring material. Industrial applicability
  • thermoelectric element having a structure and excellent thermoelectric performance can be obtained, and the use of the thermoelectric element can be expanded.

Abstract

A thermoelement having a structure capable of increasing the durability of connection parts between the electrodes and wirings of thermoelectric materials against a heat cycle applied to a high temperature side when the thermoelement is used as a thermoelement for use on the ground and providing an excellent thermoelectric performance, comprising the connection parts having the electrodes and wirings of a plurality of thermoelectric materials electrically connected to each other and formed of a structure having the electrodes, wirings, and connection parts disposed at two positions, low temperature and high temperature sides, wherein at least the high temperature side connection parts of the connection parts are formed so that the wirings and electrodes are electrically connected to each other by contact without being integrated with each other.

Description

明 細 書 熱電素子 技術分野  Description Thermoelectric element Technical field
本発明は、 熱電素子における熱電材料の電極と配線との接続構造に関 し、 特に、 シリコン一ゲルマニウム (S i G e ) 系の熱電材料を用いた 熱電素子に好適に用いられる接続構造および配線材料を有する熱電素子 に関する。 背景技術  The present invention relates to a connection structure between a thermoelectric material electrode and a wiring in a thermoelectric element, and particularly to a connection structure and a wiring suitably used for a thermoelectric element using a silicon-germanium (SiGe) -based thermoelectric material. The present invention relates to a thermoelectric element having a material. Background art
P型半導体材料と n型半導体材料を 2ケ所で接合させ、 その 2ケ所の 接合部位の間に温度差を与えると、 いわゆるゼーベック効果によって、 この 2ケ所の接合部位の間に熱起電力が発生する。  When a P-type semiconductor material and an n-type semiconductor material are joined at two locations and a temperature difference is applied between the two locations, a thermoelectric power is generated between the two locations due to the so-called Seebeck effect. I do.
この原理を応用した熱電素子は、 可動部分が無く構造が簡単であるた め、 これを用いて、 信頼性が高く又高寿命かつ保守の容易なエネルギー 直接変換システムを構成しうる可能性が高い。 そのために、 従来から 種々の熱電素子材料が製造開発されてきている。  Thermoelectric elements that apply this principle have no moving parts and have a simple structure.Therefore, there is a high possibility that a thermoelectric element with high reliability, a long service life, and easy maintenance can be used. . For this purpose, various thermoelectric element materials have been conventionally manufactured and developed.
その中でも S i G eは化学的に安定で代表的な熱電素子材料として知 られており、 その性能の改良や製造法について従来より多くの提案がな されている 〔特開昭 6 1 _ 1 4 9 4 5 3号公報 (米国特許第 4 7 1 1 9 7 1号、 欧州特許第 1 8 5 4 9 9号) 、 特開平 8— 5 6 0 2 0号公報、 特許第 2 6 2 3 1 7 2号公報等〕 。  Among them, SiGe is known as a chemically stable and typical thermoelectric element material, and many proposals have been made for improving its performance and manufacturing methods [JP-A-6-11-1]. No. 494553 (U.S. Pat.No. 4,711,971; European Patent No. 1,849,499); Japanese Unexamined Patent Publication No. H8-56020; Patent No. 2623 No.172 publication etc.].
熱電素子 (熱電変換モジュール) の一例として、 1 9 8 1年に打ち上 げられたボイジャーには、 S i と G eの粉体を熱間プレス法により焼結 体とした熱電材料を用いて形成された熱電素子が、 核分裂を熱源とした 宇宙用として使用されている。 また、 地上用としては、 火力発電用、 或 いは自動車排気熱や燃焼熱を熱源とする熱電発電装置としての用途が開 発されている。 As an example of a thermoelectric element (thermoelectric conversion module), the Voyager launched in 1981 was made of a thermoelectric material made by sintering Si and Ge powder by hot pressing. The formed thermoelectric element uses fission as a heat source Used for space applications. In addition, ground-based applications have been developed for thermal power generation, or as thermoelectric generators that use vehicle exhaust heat or combustion heat as a heat source.
図 2は、 このような従来の熱電素子 (熱電変換モジュール) の一般的 な断面構造を示す概略説明図である。  FIG. 2 is a schematic explanatory view showing a general cross-sectional structure of such a conventional thermoelectric element (thermoelectric conversion module).
図 2において、 3 0は従来の熱電素子で、 複数の熱電材料、 即ち p型 熱電半導体 3 2及び n型熱電半導体 3 4が、 高温側配線 3 6及ぴ低温側 配線 3 8を介して電気的に接続された高温側接続部 3 2 a , 3 4 a及び 高温側電極 3 3 a, 3 5 a並びに低温側接続部 3 2 b, 3 4 b及ぴ低温 側電極 3 3 b , 3 5 bを有している。 なお、 4 0は高温側基板、 4 2は 低温側基板、 44は配線 3 6, 3 8と接続部 3 2 a, 3 4 a及び 3 2 b , 3 4 b とを接合する接合剤及び 4 6は p型熱電半導体 3 2と n型熱電半 導体 3 4の間を溶着するけい酸ガラス等の断熱絶縁体である。  In FIG. 2, reference numeral 30 denotes a conventional thermoelectric element, in which a plurality of thermoelectric materials, that is, a p-type thermoelectric semiconductor 32 and an n-type thermoelectric semiconductor 34 are electrically connected via a high-temperature side wiring 36 and a low-temperature side wiring 38. High-temperature side connections 32a, 34a and high-temperature side electrodes 33a, 35a, and low-temperature side connections 32b, 34b and low-temperature side electrodes 33b, 35 has b. In addition, 40 is a high-temperature side substrate, 42 is a low-temperature side substrate, 44 is a bonding agent and a bonding agent for bonding the wirings 36, 38 and the connecting portions 32a, 34a and 32b, 34b. Numeral 6 denotes a heat insulating insulator such as silicate glass for welding between the p-type thermoelectric semiconductor 32 and the n-type thermoelectric semiconductor 34.
従来より熱電材料としては、 S i G e系材料のほ力 、 B i 2T e 3 P b T eなどのテルル系材料や、 F e S i 2などの鉄ケィ素系材料などが 用いられており、 これらの熱電材料の電極と配線との接続方法として、 拡散結合やろう付け接合、 はんだ付け接合、 あるいは、 特定の合金から なる接合剤を用いた接合 (特開平 1 1一 6 8 1 7 2号公報参照) などが 一般的に用いられていた。 The thermoelectric material conventionally intensification of S i G e based material, tellurium materials and such B i 2 T e 3 P b T e, such as iron Kei Motokei material such as F e S i 2 is used Diffusion bonding, brazing, soldering, or bonding using a bonding agent made of a specific alloy can be used as a method of connecting the electrodes and wiring of these thermoelectric materials (Japanese Patent Application Laid-Open No. H11-16881). 72) was commonly used.
しかし、 火力発電用などの地上用の熱電素子として用いる場合、 高温 側の接続部では 5 0 0〜 1 0 0 0°C程度の高温の熱サイクルがあるため- 熱電材料の電極と配線間に熱歪が発生し、 耐久性が問題となっていた。 特に熱膨張係数が大きな熱電材料の場合、 昇降温の際に大きな応力が発 生するため、 接続部の破壊が発生しやすい。 S i G eの場合、 高い熱電 性能を有するにもかかわらず、 熱膨張係数が大きいためにこのような接 続部の耐久性に問題があり、 実用化の妨げとなっていた。 発明の開示 However, when used as ground-based thermoelectric elements such as for thermal power generation, there is a high-temperature thermal cycle of about 500 to 100 ° C at the high-temperature side connection-between the thermoelectric material electrode and wiring. Thermal strain occurred, and durability was a problem. Particularly in the case of a thermoelectric material having a large coefficient of thermal expansion, a large stress is generated when the temperature rises and falls, so that the connection portion is easily broken. In the case of SiGe, despite its high thermoelectric performance, there was a problem in the durability of such a connection due to a large coefficient of thermal expansion, which hindered its practical use. Disclosure of the invention
本発明はこのような問題点に鑑みてなされたものであり、 地上用の熱 電素子として用いられる際の高温側に加えられる熱サイクルに対し、 熱 電材料の電極と配線との接続部における耐久性を向上させることのでき る構造を有し、 かつ、 優れた熱電性能を有する熱電素子を提供すること を目的とする。  The present invention has been made in view of such a problem, and the present invention has been made in consideration of a heat cycle applied to a high temperature side when used as a terrestrial thermoelectric element, in which a connection between an electrode of thermoelectric material and a wiring is provided. An object of the present invention is to provide a thermoelectric element having a structure capable of improving durability and having excellent thermoelectric performance.
上記目的を達成するため、 本発明の熱電素子は、 複数の熱電材料の電 極と配線とが電気的に接続された接続部を有し、 該電極と該配線および 該接続部が低温側と高温側とに二分された構造を有する熱電素子におい て、 前記接続部のうち、 少なくとも高温側の接続部は、 配線と電極とが 一体化されることなく、 接触により電気的に接続されていることを特徴 とする。  In order to achieve the above object, a thermoelectric element of the present invention has a connection portion in which electrodes and wires of a plurality of thermoelectric materials are electrically connected, and the electrodes, the wires and the connection portions are connected to a low-temperature side. In a thermoelectric element having a structure divided into a high-temperature side and a high-temperature side, at least a high-temperature-side connection portion of the connection portions is electrically connected by contact without integrating the wiring and the electrode. It is characterized by the following.
このように、 熱電材料の電極と配線とを一体化することなく、 接触に よりォ一ミックコンタク トをとる様にすれば、 熱サイクルを受けても熱 膨張係数の差による破壊を起こすことなく、 安定して導通が得られる。  As described above, if the electrodes of the thermoelectric material and the wiring are not integrated, and the contact is made to be in a uniform contact state, even if subjected to a thermal cycle, no destruction due to a difference in thermal expansion coefficient occurs. A stable conduction can be obtained.
この際、 少なくとも高温側の配線を P B N (パイロボロンナイ トライ ド) 板上に形成することが好ましい。 このようにすれば、 P B Nは高温 でも剛性が高いため、 電極と配線との接触不良を避けることができる上, 熱線に対して透明な材料であるため、 高温側の接続部を効率よく高温に することができる。  At this time, it is preferable that at least the high-temperature side wiring be formed on a PBN (pyroboron nitride) plate. In this way, PBN has high rigidity even at high temperatures, so it is possible to avoid poor contact between electrodes and wiring. In addition, since it is a material that is transparent to heat rays, the connection part on the high-temperature side can be efficiently heated to high temperatures. can do.
また、 少なく とも高温側の配線材料として P G (パイログラファイ ト) 膜を使用することが好ましい。 P G膜は、 高温において電気的な良 導体であるため熱電効率を低下させることが少なく、 しかも熱線の吸収 体であるので、 高温側の接続部をさらに効率よく高温にすることができ る。 熱電素子を構成する熱電材料としては、 高い熱電性能が得られるシリ コンーゲルマニウム系材料とすることが好ましい。 より高い熱電性能を 得るため、 シリコン一ゲルマニウム系材料としては、 粒子サイズの大き な多結晶であることが好ましく、 より好ましくは単結晶であるとよい。 図面の簡単な説明 In addition, it is preferable to use a PG (pyrographite) film as a wiring material at least on the high-temperature side. Since the PG film is a good electrical conductor at high temperatures, it does not cause a decrease in thermoelectric efficiency, and since it is an absorber for heat rays, the connection portion on the high temperature side can be heated to higher temperatures more efficiently. As a thermoelectric material constituting the thermoelectric element, it is preferable to use a silicon-germanium-based material capable of obtaining high thermoelectric performance. In order to obtain higher thermoelectric performance, the silicon-germanium-based material is preferably a polycrystal having a large particle size, and more preferably a single crystal. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の熱電素子の一つの実施の形態の断面構造を示す概略 説明図である。  FIG. 1 is a schematic explanatory view showing a cross-sectional structure of one embodiment of the thermoelectric element of the present invention.
図 2は、 従来の熱電素子の断面構造の一例を示す概略説明図である。 発明を実施するための最良の形態  FIG. 2 is a schematic explanatory view showing an example of a cross-sectional structure of a conventional thermoelectric element. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の形態について、 S i G e結晶を例にとり、 図面を参照 しながら説明するが、 本発明の技術思想から逸脱しない限り、 この実施 の形態について種々の変形が可能なことはいうまでもない。  An embodiment of the present invention will be described with reference to the drawings, taking a SiGe crystal as an example, but it can be said that various modifications can be made to this embodiment without departing from the technical idea of the present invention. Not even.
図 1は本発明の熱電素子の断面構造を示す概略説明図である。 図 1に おいて図 2と同一又は類似部材は同一の符号で示される。  FIG. 1 is a schematic explanatory view showing a cross-sectional structure of a thermoelectric element of the present invention. In FIG. 1, the same or similar members as those in FIG. 2 are denoted by the same reference numerals.
図 1において、 1 0は本発明に係る熱電素子で、 複数の熱電材料、 即 ち P型熱電半導体 3 2及び n型熱電半導体 3 4が、 高温側配線 3 6及び 低温側配線 3 8と電気的に接続された高温側接続部 3 2 a , 3 4 a及び 高温側電極 3 3 a , 3 5 a並びに低温側接続部 3 2 b , 3 4 b及び低温 側電極 3 3 b, 3 5 bを有し、 高温側配線 3 6には高温側基板 4 0が、 また低温側配線 3 8には低温側基板 4 2がそれぞれ連設されているとい う基本的構造は、 図 2に示した従来の熱電素子の構造と変るところはな い。 この構造において、 高温側基板 4 0と低温側基板 4 2との間に、 高 温側配線 3 6及び低温側配線 3 8を介して P型熱電半導体 3 2及び n型 熱電半導体 3 4が交互に配置される。 本発明における熱電材料、 即ち、 p型熱電半導体 3 2及び n型熱電半 導体 3 4としては S i G e結晶が好適に用いられる。 使用する S i G e 結晶は、 チヨクラルスキー法により作製され、 p型または n型ドーパン トを含有させた化学式 S i t.xG e χ ( 0 <X< 1 ) で表される S i G e 結晶である。 チヨクラルスキー法により、 Xのほぼ全域にわたって結晶 粒子の大きさが 5 X 1 0— 5mm3以上を有し、 熱電素子としての性能指 数の高い結晶 (多結晶または単結晶) が得られる (特願平 1 0— 3 3 5 8 9 4号) 。 得られた結晶を例えば 2 X 2 X 2 mm程度の大きさに分割 し、 n型 S i G e結晶 (n型熱電半導体) 3 2及び p型 S i G e結晶 (p型熱電半導体) 34として用いる。 In FIG. 1, reference numeral 10 denotes a thermoelectric element according to the present invention, in which a plurality of thermoelectric materials, that is, P-type thermoelectric semiconductors 32 and n-type thermoelectric semiconductors 34 are electrically connected to the high-temperature side wiring 36 and the low-temperature side wiring 38. High-temperature side connections 32a, 34a and high-temperature side electrodes 33a, 35a, low-temperature side connection 32b, 34b and low-temperature side electrodes 33b, 35b The basic structure in which a high-temperature side substrate 40 is connected to the high-temperature side wiring 36 and a low-temperature side substrate 42 is connected to the low-temperature side wiring 38 is shown in FIG. There is no difference from the structure of the conventional thermoelectric element. In this structure, the P-type thermoelectric semiconductor 32 and the n-type thermoelectric semiconductor 34 alternate between the high-temperature side substrate 40 and the low-temperature side substrate 42 via the high-temperature side wiring 36 and the low-temperature side wiring 38. Placed in As the thermoelectric material in the present invention, that is, the p-type thermoelectric semiconductor 32 and the n-type thermoelectric semiconductor 34, SiGe crystals are suitably used. The S i G e crystals used are prepared by Chiyokurarusuki method, p-type or Formula was contained n-type dopant preparative S i t. X G e χ S i represented by (0 <X <1) It is a G e crystal. The Chiyokurarusuki method, approximately the size of the crystal grains over the entire X has a 5 X 1 0- 5 mm 3 or more, the number of performance finger high crystallinity as thermoelectric elements (polycrystalline or monocrystalline) is obtained (Japanese Patent Application No. 10-33 358 904). The obtained crystal is divided into, for example, a size of about 2 × 2 × 2 mm, and n-type SiGe crystal (n-type thermoelectric semiconductor) 32 and p-type SiGe crystal (p-type thermoelectric semiconductor) 34 Used as
図 2に示したような従来の熱電素子 3 0の構造においては、 これらの P型及び n型熱電半導体 3 2, 3 4の間は、 けい酸ガラス等の断熱絶縁 体 5 4によって溶着固定されている。  In the structure of the conventional thermoelectric element 30 as shown in FIG. 2, the P-type and n-type thermoelectric semiconductors 32 and 34 are welded and fixed by a heat insulating insulator 54 such as silicate glass. ing.
しかし、 図 2の従来構造のように p型及び n型熱電半導体 3 2, 34 の間を固定してしまうと後述するような不都合が生ずることを考慮して. 本発明においては、 p型及び n型熱電半導体 3 2, 3 4の間を固定しな い構造、 例えば空洞 1 2を設けておく構造としたものである。 なお、 1 4は低温側基板 4 2に設けられた中空部で、 流体、 例えば空気等を導入 させることによって低温側基板 42の温度調節を行うことができる。 このような本発明特有の p型及び n型熱電半導体 3 2, 34の間を固 定しない構造を実現するためには、 図 1に示したように高温側基板 40 及び低温側基板 42に保持用突部 4 0 a, 4 2 aをそれぞれ形成 (パ夕 一二ング) し、 p型及び n型熱電半導体 3 2, 34並びに高温側及び低 温側配線 3 6, 3 8を保持用突部 4 0 a, 42 aを介して嵌着保持する ように構成すればよい。 これにより、 熱電材料、 即ち p型及び n型熱電 半導体 3 2 , 34の両端の電極部 3 3 a , 3 5 a及び 3 3 b, 3 5. bと 高温側及び低温側配線 3 6, 3 8とを、 図 2に示した従来構造のように 接合剤 4 4によって接合して一体化してしまう構造とは異なり、 一体化 することなく固定することができる。 However, taking into consideration that fixing the p-type and n-type thermoelectric semiconductors 32 and 34 as in the conventional structure of FIG. It has a structure in which the n-type thermoelectric semiconductors 32 and 34 are not fixed, for example, a structure in which a cavity 12 is provided. Reference numeral 14 denotes a hollow portion provided in the low-temperature substrate 42, and the temperature of the low-temperature substrate 42 can be adjusted by introducing a fluid, for example, air. In order to realize such a structure in which the p-type and n-type thermoelectric semiconductors 32, 34 unique to the present invention are not fixed, as shown in FIG. Forming protrusions 40a and 42a, respectively, to hold the p-type and n-type thermoelectric semiconductors 32 and 34 and the high-temperature and low-temperature wirings 36 and 38. What is necessary is just to comprise so that it may fit and hold via the part 40a and 42a. Thus, the thermoelectric material, that is, the electrode portions 33a, 35a and 33b, 35b at both ends of the p-type and n-type thermoelectric semiconductors 32, 34 are formed. Unlike the conventional structure shown in Fig. 2 in which the high-temperature side wiring and low-temperature side wiring 36, 38 are joined together with a bonding agent 44 as in the conventional structure shown in Fig. 2, they can be fixed without being integrated. it can.
このように、 熱電材料 3 2, 3 4の電極 3 3 a, 3 3 b及び 3 5 a, 3 5 bと配線 3 6, 3 8とを一体化することなく、 接触によりォーミツ クコンタクトをとる様にすれば、 熱サイクルを受けても接触部分が熱応 力を緩和するため、 熱膨張係数の差による破壊を起こすことなく、 安定 して導通が得られるという本発明の効果が得られる。  In this way, the electrodes 33a, 33b and 35a, 35b of the thermoelectric materials 32, 34 and the wirings 36, 38 are not integrated with the wirings 36, 38, but the ohmic contact is obtained by contact. In this manner, even when subjected to a thermal cycle, the contact portion relaxes the thermal stress, so that the effect of the present invention that stable conduction can be obtained without causing destruction due to a difference in thermal expansion coefficient is obtained.
また、 一体化せずに接触により良好なォーミックコンタクトをとるた めには、 高温側配線 3 6と接する熱電材料、 即ち、 p型熱電半導体 3 2 及び n型熱電半導体 3 4の表面に、 電極として T i、 W、 M o、 T aな どの高融点金属の合金や積層膜、 シリサイ ド等を形成しておくことが好 ましい。 また、 低抵抗率の熱電材料、 即ち、 p型熱電半導体 3 2及び n 型熱電半導体 3 4を用いることにより、 このような膜を形成することな くその表面を電極として配線と直接接触させてォーミックをとることも 可能であるが、 その場合には熱電材料、 即ち、 p型熱電半導体 3 2及び n型熱電半導体 3 4の表面に自然酸化膜が形成されていると良好なォー ミックコンタクトが得られにくくなるので、 フッ酸処理などにより表面 の自然酸化膜はできる限り除去しておくことが望ましい。  Also, in order to obtain a good ohmic contact by contact without being integrated, the thermoelectric material in contact with the high-temperature side wiring 36, that is, the surface of the p-type thermoelectric semiconductor 32 and the surface of the n-type thermoelectric semiconductor 34, It is preferable to form an alloy of a high melting point metal such as Ti, W, Mo and Ta, a laminated film, a silicide or the like as an electrode. Also, by using a low-resistivity thermoelectric material, that is, a p-type thermoelectric semiconductor 32 and an n-type thermoelectric semiconductor 34, the surface can be directly contacted with the wiring as an electrode without forming such a film. Although it is possible to take an ohmic contact, in that case, if a natural oxide film is formed on the surface of the thermoelectric material, that is, the p-type thermoelectric semiconductor 32 and the n-type thermoelectric semiconductor 34, a good ohmic contact is obtained. Therefore, it is desirable to remove the natural oxide film on the surface as much as possible by hydrofluoric acid treatment or the like.
高温側配線 3 6を構成する材料としては P G膜が好適である。 P G (パイログラフアイ ト) は、 化学的気相成長法によってグラフアイ ト層 を複数積層させて得た熱分解型グラフアイ トであり、 高温において電気 的な良導体であるため熱電効率を低下させることが少なく、 しかも熱線 の吸収体であるので、 外部からの熱を効率よく伝達することができる。 使用する P G膜の厚さは、 0 . 1〜 1 mm程度が適切であり、 低温側の 配線 3 8にも P Gを用いる場合には、 熱伝導を考慮して高温側の膜厚よ りも薄くすることが好ましい。 As a material for forming the high-temperature side wiring 36, a PG film is preferable. PG (Pyrographite) is a pyrolytic graphiteite obtained by laminating multiple graphiteite layers by chemical vapor deposition, and it is a good electrical conductor at high temperatures and therefore reduces thermoelectric efficiency. Since it is a low heat absorber, it can efficiently transfer external heat. It is appropriate that the thickness of the PG film used is about 0.1 to 1 mm.If PG is also used for the wiring 38 on the low temperature side, the thickness on the high temperature side should be considered in consideration of heat conduction. It is preferable that the thickness be smaller.
高温側基板 4 0 としては、 P B N板を用いることが好ましい。 P B N (パイロボロンナイ トライ ド) は、 化学的気相成長法によって窒化ホウ 素層を複数積層させて得た熱分解型窒化ホウ素層であり、 1 8 0 0 °Cま での高温で安定した絶縁体であり、 しかも高温でも剛性が高いため、 高 温側配線 3 6 と熱電材料、 即ち、 p型熱電半導体 3 2及び n型熱電半導 体 3 4の電極 3 3 a, 3 3 b及ぴ 3 5 a, 3 5 bとの接触不良を避ける ことができる上、 熱線に対して透明な材料であるため、 高温側配線 3 6 および熱電材料、 即ち、 p型熱電半導体 3 2及び n型熱電半導体 3 4を 効率よく高温にすることができる。 使用する P B N板の厚さは、 0 . 1 〜: L m m程度が適切である。 '  As the high temperature side substrate 40, it is preferable to use a PBN plate. PBN (pyroboron nitride) is a pyrolytic boron nitride layer obtained by stacking multiple boron nitride layers by chemical vapor deposition, and is stable at high temperatures up to 180 ° C. Because it is an insulator and has high rigidity even at high temperatures, the high-temperature side wiring 36 and the thermoelectric material, that is, the electrodes 33a, 33b and p-type thermoelectric semiconductor 32 and n-type thermoelectric semiconductor 34 electrodes不良 In addition to avoiding poor contact with 35a and 35b, and because it is a material that is transparent to heat rays, high-temperature side wiring 36 and thermoelectric materials, that is, p-type thermoelectric semiconductors 32 and n-type The thermoelectric semiconductor 34 can be efficiently heated to a high temperature. The thickness of the PBN plate to be used is preferably from 0.1 to: Lmm. '
尚、 低温側配線 3 8および低温側基板 4 2の材質としては高温側と同 様に P Gおよび P B Nを用いることもできるが、 上記した T i、 W、 M o、 T aなどの高融点金属の合金や積層膜、 シリサイ ド等のほか、 C u . A l、 A u、 N i、 P tなどの金属を用いることもできる。  PG and PBN can be used as the material of the low-temperature side wiring 38 and the low-temperature side substrate 42 as in the case of the high-temperature side, but the high melting point metal such as Ti, W, Mo, and Ta described above is used. In addition to alloys, laminated films, and silicides, metals such as Cu, Al, Au, Ni, and Pt can also be used.
また、 低温側の場合高温側に比べて熱歪が小さいので、 熱電材料と電 極材料や配線材料の組み合わせや温度により、 従来の様に一体化して作 製することもできる。 産業上の利用可能性  In addition, since the thermal strain at the low temperature side is smaller than that at the high temperature side, it can be integrated as in the past depending on the combination and temperature of the thermoelectric material, electrode material and wiring material. Industrial applicability
上述したごとく、 本発明によれば、 地上用の熱電素子として用いられ る際の高温側に加えられる熱サイクルに対し、 熱電材料の電極と配線と の接続部における耐久性を向上させることのできる構造を有し、 かつ、 優れた熱電性能を有する熱電素子が得られ、 熱電素子の用途を拡大する ことができる。  INDUSTRIAL APPLICABILITY As described above, according to the present invention, it is possible to improve the durability of a connection portion between an electrode and wiring of a thermoelectric material against a heat cycle applied to a high temperature side when used as a ground thermoelectric element. A thermoelectric element having a structure and excellent thermoelectric performance can be obtained, and the use of the thermoelectric element can be expanded.

Claims

請 求 の 範 囲 The scope of the claims
1 . 複数の熱電材料の電極と配線とが電気的に接続された接続部を有 し、 該電極と該配線および該接続部が低温側と高温側とに二分された構 造を有する熱電素子において、 前記接続部のうち、 少なくとも高温側の 接続部は、 配線と電極とが一体化されることなく、 接触により電気的に 接続されていることを特徴とする熱電素子。 1. A thermoelectric element having a connection part in which electrodes and wirings of a plurality of thermoelectric materials are electrically connected, and having a structure in which the electrodes, the wirings, and the connection parts are divided into a low-temperature side and a high-temperature side. 3. The thermoelectric element according to claim 1, wherein at least the high-temperature side connection portion of the connection portions is electrically connected by contact without integrating the wiring and the electrode.
2 . 少なくとも前記高温側の配線が、 P B N (パイロボロンナイ トライ ド) 板上に配線されることを特徴とする請求項 1に記載された熱電素子, 2. The thermoelectric element according to claim 1, wherein at least the high-temperature side wiring is wired on a PBN (pyroboron nitride) plate.
3 . 少なくとも前記高温側の配線が、 P G (パイログラフアイ ト) 膜で あることを特徴とする請求項 1または請求項 2に記載された熱電素子。3. The thermoelectric element according to claim 1, wherein at least the high-temperature-side wiring is a PG (pyrographite) film.
4 . 前記熱電材料がシリコン—ゲルマニウム系材料であることを特徴と する請求項 1から請求項 3のいずれか 1項に記載された熱電素子。 4. The thermoelectric element according to any one of claims 1 to 3, wherein the thermoelectric material is a silicon-germanium-based material.
5 . 前記シリコンーゲルマニウム系材料が単結晶または多結晶であるこ とを特徴とする請求項 4に記載された熱電素子。  5. The thermoelectric element according to claim 4, wherein the silicon-germanium-based material is single crystal or polycrystal.
PCT/JP2001/007362 2000-09-04 2001-08-28 Thermoelement WO2002021608A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000266610A JP2002076448A (en) 2000-09-04 2000-09-04 Thermoelectric element
JP2000-266610 2000-09-04

Publications (1)

Publication Number Publication Date
WO2002021608A1 true WO2002021608A1 (en) 2002-03-14

Family

ID=18753663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007362 WO2002021608A1 (en) 2000-09-04 2001-08-28 Thermoelement

Country Status (2)

Country Link
JP (1) JP2002076448A (en)
WO (1) WO2002021608A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4488778B2 (en) * 2003-07-25 2010-06-23 株式会社東芝 Thermoelectric converter
JP5105718B2 (en) * 2005-05-27 2012-12-26 株式会社東芝 Thermal-electrical direct conversion device
JP5881066B2 (en) * 2010-11-30 2016-03-09 学校法人東京理科大学 Thermoelectric conversion element and thermoelectric conversion module
JP5954103B2 (en) * 2012-10-19 2016-07-20 トヨタ自動車株式会社 Thermoelectric generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325685A (en) * 1991-04-24 1992-11-16 Shin Etsu Chem Co Ltd Production of thin film
JPH10144969A (en) * 1996-11-08 1998-05-29 Sumitomo Special Metals Co Ltd Thermoelectric conversion element
JPH10213360A (en) * 1997-01-30 1998-08-11 Yamaha Corp Thermoelectric conversion device
JPH1155974A (en) * 1997-07-28 1999-02-26 Gastar Corp Thermal power generation unit
JPH11220184A (en) * 1998-02-02 1999-08-10 Natl Aerospace Lab Thermoelectric conversion device
JPH11307825A (en) * 1998-04-21 1999-11-05 Yamaha Corp Thermoelectric module and its manufacture

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325685A (en) * 1991-04-24 1992-11-16 Shin Etsu Chem Co Ltd Production of thin film
JPH10144969A (en) * 1996-11-08 1998-05-29 Sumitomo Special Metals Co Ltd Thermoelectric conversion element
JPH10213360A (en) * 1997-01-30 1998-08-11 Yamaha Corp Thermoelectric conversion device
JPH1155974A (en) * 1997-07-28 1999-02-26 Gastar Corp Thermal power generation unit
JPH11220184A (en) * 1998-02-02 1999-08-10 Natl Aerospace Lab Thermoelectric conversion device
JPH11307825A (en) * 1998-04-21 1999-11-05 Yamaha Corp Thermoelectric module and its manufacture

Also Published As

Publication number Publication date
JP2002076448A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
US8841540B2 (en) High temperature thermoelectrics
JP5336373B2 (en) Thermoelectric conversion module
US20080023057A1 (en) Thermoelectric Conversion Module, and Thermoelectric Power Generating Device and Method, Exhaust Heat Recovery System, Solar Heat Utilization System, and Peltier Cooling and Heating System, Provided Therewith
CN106716655A (en) Thermo-compression bonding of thermoelectric materials
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP4873888B2 (en) Thermoelectric conversion module, and power generation device and cooling device using the same
JP2003092435A (en) Thermoelectric module and its manufacturing method
US20130139866A1 (en) Ceramic Plate
US20160247996A1 (en) Large footprint, high power density thermoelectric modules for high temperature applications
JP5653455B2 (en) Thermoelectric conversion member
JP2009081178A (en) Method of manufacturing thermoelectric conversion module
JP2011047127A (en) Window structure
JP2006237547A (en) Thermoelectric conversion module, power generator and cooler using the same
WO2002021608A1 (en) Thermoelement
JPH11330568A (en) Thermoelectric power generation device and its manufacture
CN111670505A (en) Thermoelectric module for generating electricity and corresponding production method
JP2003282972A (en) Thermoelectric element
JP4147800B2 (en) Method for manufacturing thermoelectric conversion device
JP3469811B2 (en) Line type thermoelectric conversion module
JP2003304006A (en) Thermoelectric conversion module and heat exchanger using the same
JP3763107B2 (en) Thermoelectric conversion module and manufacturing method thereof
JPH02198179A (en) Thermoelectric element and manufacture thereof
JPH0485973A (en) Thermoelectric generator
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP3007904U (en) Thermal battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase