JP2003304006A - Thermoelectric conversion module and heat exchanger using the same - Google Patents
Thermoelectric conversion module and heat exchanger using the sameInfo
- Publication number
- JP2003304006A JP2003304006A JP2002108813A JP2002108813A JP2003304006A JP 2003304006 A JP2003304006 A JP 2003304006A JP 2002108813 A JP2002108813 A JP 2002108813A JP 2002108813 A JP2002108813 A JP 2002108813A JP 2003304006 A JP2003304006 A JP 2003304006A
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric conversion
- type
- conversion element
- conversion module
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 96
- 239000004065 semiconductor Substances 0.000 claims abstract description 24
- 239000010409 thin film Substances 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims description 28
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 238000005304 joining Methods 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000000919 ceramic Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 5
- 229910052787 antimony Inorganic materials 0.000 claims description 4
- 238000003466 welding Methods 0.000 claims description 4
- 229910018989 CoSb Inorganic materials 0.000 claims description 3
- 229920002379 silicone rubber Polymers 0.000 claims description 3
- 229910020712 Co—Sb Inorganic materials 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- UFIKNOKSPUOOCL-UHFFFAOYSA-N antimony;cobalt Chemical compound [Sb]#[Co] UFIKNOKSPUOOCL-UHFFFAOYSA-N 0.000 abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 239000007789 gas Substances 0.000 description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 22
- 239000007772 electrode material Substances 0.000 description 11
- 229910052742 iron Inorganic materials 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000010248 power generation Methods 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000000428 dust Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000002918 waste heat Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000010314 arc-melting process Methods 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910018521 Al—Sb Inorganic materials 0.000 description 1
- 229910002909 Bi-Te Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical group [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- -1 for example Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体型熱電素子
を用いた熱電変換モジュールおよびそれを用いた熱交換
器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion module using a semiconductor type thermoelectric element and a heat exchanger using the same.
【0002】[0002]
【従来の技術】21世紀における資源の枯渇が予想される
今日、如何にエネルギーを有効に利用するかは極めて重
要な課題となっており、種々のシステムが考案されてい
る。その中でも、熱電素子は、これまで排熱として無駄
に環境中に捨てられていたエネルギーを回収する手段と
して期待されている。そのような熱電変換素子は、p型
半導体とn型半導体を互いに直列に接続したモジュール
として使用されている。2. Description of the Related Art Today, when resources are expected to be exhausted in the 21st century, how to effectively use energy has become an extremely important issue, and various systems have been devised. Among them, the thermoelectric element is expected as a means for recovering energy that has been wasted in the environment as waste heat. Such a thermoelectric conversion element is used as a module in which a p-type semiconductor and an n-type semiconductor are connected to each other in series.
【0003】従来、高い熱電変換効率を達成すべく、多
くの熱電変換半導体材料について研究がなされ、特に発
電効率の向上に関し多大な注力がなされている。Conventionally, in order to achieve high thermoelectric conversion efficiency, many thermoelectric conversion semiconductor materials have been studied, and much attention has been paid particularly to improvement of power generation efficiency.
【0004】しかしながら、実用の立場から熱電材料を
見ると、現在実用に供されているものはビスマス(Bi)-
テルル(Te)系(第3元素としてSb、セレン(Se)を入れた
ものも含む)であり、その他の材料は、特殊用途で作ら
れた実績はあるものの、工業生産ベースには乗っていな
い。However, looking at thermoelectric materials from a practical standpoint, the one currently in practical use is bismuth (Bi)-
Tellurium (Te) series (including Sb and selenium (Se) as the third element), and other materials have a track record of being manufactured for special purposes, but are not on an industrial production base. .
【0005】ところで、従来、廃熱ボイラーは熱交換器
を通して蒸気あるいは温水を選るのみの目的で設計され
ており、その運転に関わる電力は外部から導入してまか
なわれている。しかし、近年、この廃熱ボイラーに熱電
変換モジュールを組み込んで廃熱から電力を取り出す試
みがなされている。その場合、より高温の熱源を利用し
得るという点から、使用する熱電変換素子は、その可使
温度が高いほど望ましいものとなり、特に、300℃以上
の可使温度を有することが好ましいと言える。By the way, conventionally, the waste heat boiler is designed only for the purpose of selecting steam or hot water through a heat exchanger, and electric power related to its operation is externally supplied. However, in recent years, attempts have been made to incorporate a thermoelectric conversion module into this waste heat boiler to extract electric power from the waste heat. In that case, from the viewpoint that a higher temperature heat source can be utilized, the thermoelectric conversion element to be used is more desirable as the usable temperature is higher, and it can be said that it is particularly preferable to have a usable temperature of 300 ° C. or higher.
【0006】しかしながら、従来のBi-Te系熱電変換素
子は、その使用温度がせいぜい200℃であり、この要求
を満足することができない。しかも半導体材料を固定し
ている下地の電極材料或いは基板材料との接合材料及び
接合方法等が、従来のロウ材等による接合方法であっ
て、高温状況での使用に耐えて安定して大きな起電力を
得ることはできず、実用化に際しての大きな問題となっ
ていた。However, the conventional Bi-Te-based thermoelectric conversion element has an operating temperature of at most 200 ° C., and cannot meet this requirement. Moreover, the bonding material and bonding method with the underlying electrode material or substrate material that fixes the semiconductor material is a conventional bonding method using a brazing material, etc. It was not possible to obtain electric power, which was a big problem for practical use.
【0007】[0007]
【発明が解決しようとする課題】従来の熱電変換素子
は、半導体材料自体がその使用温度を200℃以下と限定
されており、しかも高い使用温度領域での半導体材料と
下地電極材料或いは基板材料との接合も充分ではなく安
定して大きな起電力を得ることができなかった。In the conventional thermoelectric conversion element, the operating temperature of the semiconductor material itself is limited to 200 ° C. or lower, and the semiconductor material and the base electrode material or the substrate material in a high operating temperature range are used. The joining of was not sufficient, and a large electromotive force could not be stably obtained.
【0008】したがって、本発明は、半導体材料、この
半導体材料とその下地の電極材料との接合材料や接合方
法を改善し、300℃以上の温度でも長時間にわたって充
分な熱電変換機能を示す熱電変換モジュールおよびそれ
を用いた熱交換器を提供することを課題とする。Therefore, the present invention improves the semiconductor material, the bonding material and the bonding method between this semiconductor material and the electrode material of the underlying layer, and exhibits a sufficient thermoelectric conversion function for a long time even at a temperature of 300 ° C. or higher. An object is to provide a module and a heat exchanger using the same.
【0009】[0009]
【課題を解決するための手段】本発明者等は上記課題を
達成しようとして、それ自体300℃以上の温度で使用可
能なフィルドスクッテルダイト系熱電変換半導体に着目
した。しかしながら、300℃以上の高温の使用に耐え、
素子の性能を変えることのない電極材料や導熱板を接合
する手段が従来無かった。加えて、熱電変換半導体素子
と電極材料とを接合できても大きな温度差をつけること
が必須条件の熱電変換モジュールでは、素子と電極の熱
望著係数に差がある場合、大きな熱応力が発生して、素
子の破壊あるいは接合部の破壊が生じる問題があること
がわかった。In order to achieve the above-mentioned object, the present inventors have focused on a filled skutterudite thermoelectric conversion semiconductor which can be used at a temperature of 300 ° C. or higher. However, it can withstand the use of high temperature above 300 ℃,
Conventionally, there has been no means for joining an electrode material or a heat conductive plate that does not change the performance of the element. In addition, even if the thermoelectric conversion semiconductor element and the electrode material can be joined, a large thermal stress is generated in the thermoelectric conversion module that requires a large temperature difference if there is a difference in the coefficient of thermal expansion between the element and the electrode. As a result, it was found that there was a problem that the element was destroyed or the junction was destroyed.
【0010】本発明者等は、これら多岐に亘る問題を解
決するために多くの実験を費やし、高温で使用可能なフ
ィルドスクッテルダイト系熱電変換素子を見出すと共
に、AlあるいはAl合金の箔あるいは薄板をフィルドスク
ッテルダイト系熱電変換素子と熱膨張係数が概ね熱膨張
係数が8x10-6/℃〜16x10-6/℃である鉄系材
料からなる電極板の間に挿入し550℃以上の温度に加
熱すると素子の熱電特性に影響を与えることなく高い接
合強度を得ることができることを見出した。The present inventors have spent many experiments to solve these various problems, have found a filled skutterudite thermoelectric conversion element that can be used at high temperatures, and have a foil or thin plate of Al or Al alloy. the filled skutterudite thermoelectric conversion element and the thermal expansion coefficient of approximately the thermal expansion coefficient is heated to 8x10 -6 / ℃ ~16x10 -6 / ℃ above insert 550 ° C. between the electrode plates made of an iron-based material is the temperature when It has been found that high bonding strength can be obtained without affecting the thermoelectric properties of the device.
【0011】また、電極材として鉄系材料、特にJIS
のSUS410で代表されるマルテンサイト系ステンレ
スを用いるとその熱膨張係数が500℃までの温度領域
で12x10-6/℃であるため、フィルドスクッテルダ
イト系材料の熱膨張係数にほぼ等しく、熱応力は発生し
ないか発生しても問題にならない大きさである。Further, an iron material as an electrode material, particularly JIS
The thermal expansion coefficient of martensitic stainless steel typified by SUS410 is 12 × 10 -6 / ° C in the temperature range up to 500 ° C, so that it is almost equal to the thermal expansion coefficient of the filled skutterudite material and the thermal stress Is a size that does not occur or does not matter even if it occurs.
【0012】本発明は、これらの知見に基づく。The present invention is based on these findings.
【0013】すなわち、本発明は、上記の課題を解決す
るために、請求項1の熱電変換モジュールは、高温側の
第1の平面と低温側の第2の平面を構成するように電極
部材により互いに直列に接続されかつ相互に対向して配
置されるp型熱電変換素子本体およびn型熱電変換素子
本体を備え、前記p型熱電変換素子本体はp型コバルト
(Co)−アンチモン(Sb)系半導体により構成され、前記n
型熱電変換素子本体はn型Co-Sb系半導体により構成さ
れ、前記電極部材は、熱膨張係数が8x10-6/℃〜1
6x10-6/℃の範囲にある材料により構成され前記熱
電変換素子本体と前記電極部材間に圧接されたアルミニ
ウム(Al)を主成分とする薄膜層が接合されたことを特徴
とする。ここで、薄膜層は、アルミニウム(Al)を主成分
とするもので、純粋なアルミニウムを含み、アルミニウ
ムに5重量%以下のアルミニウムと合金化する元素例え
ば、Si、Cu、Ni、Co、Fe等、或いは不可避的
に含まれる金属或いは半導体を含むものでも良い。That is, according to the present invention, in order to solve the above-mentioned problems, the thermoelectric conversion module according to claim 1 is configured by an electrode member so as to form a first plane on the high temperature side and a second plane on the low temperature side. A p-type thermoelectric conversion element body, which is connected to each other in series and arranged to face each other, is provided, and the p-type thermoelectric conversion element body is p-type cobalt.
(Co) -antimony (Sb) based semiconductor,
Type thermoelectric conversion element body is composed of an n-type Co-Sb based semiconductor, and the electrode member has a thermal expansion coefficient of 8 × 10 −6 / ° C. to 1
A thin film layer containing aluminum (Al) as a main component, which is made of a material in the range of 6 × 10 −6 / ° C. and is pressure-welded between the thermoelectric conversion element body and the electrode member, is bonded. Here, the thin film layer contains aluminum (Al) as a main component, contains pure aluminum, and is an element that alloys with aluminum at 5 wt% or less of aluminum, for example, Si, Cu, Ni, Co, Fe, etc. Alternatively, it may include a metal or semiconductor that is inevitably contained.
【0014】請求項2の熱電変換モジュールは、請求項
1において、前記薄膜層は、接合圧力200Kg/cm2
〜900Kg/cm2、接合温度500℃〜600℃で圧
接形成されたことを特徴とする。The thermoelectric conversion module according to claim 2 is the thermoelectric conversion module according to claim 1, wherein the thin film layer has a bonding pressure of 200 kg / cm 2.
It is characterized by being formed by pressure welding at a joining temperature of 500 ° C to 600 ° C.
【0015】請求項3の熱電変換モジュールは、請求項
1において、前記第1の平面および第2の平面のいずれ
か一方または両者の平面内にセラミックスあるいはシリ
コンゴムからなる絶縁性導熱板を備えることを特徴とす
る。A thermoelectric conversion module according to a third aspect of the present invention is the thermoelectric conversion module according to the first aspect, wherein an insulating heat conducting plate made of ceramics or silicon rubber is provided in one or both of the first plane and the second plane. Is characterized by.
【0016】請求項4の熱電変換モジュールは、請求項
1乃至請求項3のいずれか1項において、前記n型熱電
変換素子本体及び前記p型熱電変換素子本体がスクッテ
ルダイト型結晶構造を有するCoSb3基化合物結晶中の空
隙に元素を充填したフィルドスクッテルダイト構造を有
する化合物であることを特徴とする。A thermoelectric conversion module according to a fourth aspect is the thermoelectric conversion module according to any one of the first to third aspects, wherein the n-type thermoelectric conversion element body and the p-type thermoelectric conversion element body have a skutterudite type crystal structure. It is a compound having a filled skutterudite structure in which voids in a CoSb 3 -based compound crystal are filled with an element.
【0017】請求項5の熱電変換モジュールは、加熱面
と冷却面を有する熱交換器であって、前記加熱面と前記
冷却面との間に請求項1に記載の熱電変換モジュールを
備えていることを特徴とする熱交換器。A thermoelectric conversion module according to a fifth aspect is a heat exchanger having a heating surface and a cooling surface, and the thermoelectric conversion module according to the first aspect is provided between the heating surface and the cooling surface. A heat exchanger characterized by the above.
【0018】このセラミックス絶縁性導熱板は、窒化ア
ルミニウム、窒化ケイ素、炭化ケイ素またはアルミナに
より構成されることができる。The ceramic insulating heat conductive plate can be made of aluminum nitride, silicon nitride, silicon carbide or alumina.
【0019】さらに、本発明において、上述した電極部
材が、鉄系電極材料により構成され、この熱電変換素子
本体と電極部材の接合部に10μm厚さ以下のAl-Sb合金の
層が存在することが好ましい。Further, in the present invention, the above-mentioned electrode member is made of an iron-based electrode material, and an Al-Sb alloy layer having a thickness of 10 μm or less is present at the joint between the thermoelectric conversion element body and the electrode member. Is preferred.
【0020】[0020]
【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
【0021】図1は、本発明の一実施の形態に係わる熱
電変換モジュールを示す概略断面図である。FIG. 1 is a schematic sectional view showing a thermoelectric conversion module according to an embodiment of the present invention.
【0022】図1の熱電変換モジュール10は、複数のp
型コバルト−アンチモン系半導体からなるp型コバルト
−アンチモン系熱電変換素子本体11と、複数のn型コバ
ルト−アンチモン系半導体からなるn型コバルト−アン
チモン系熱電変換素子本体12とを交互に同一平面上にマ
トリックス上に並置して構成されている。一つのp型熱
電素子本体11には、n型熱電素子本体12が隣接してい
る。p型熱電素子本体11およびn型熱電素子本体12を構
成するコバルト−アンチモン系半導体としては、スクッ
テルダイト構造を有するCoSb3、RhSb3、IrSb3等を用い
ることができる。同様の構造を持つものとしてCoAs3が
あるが、ヒ素は毒性が強いため、ヒ素を含まない半導体
材料を使用することが望ましい。p型半導体にはFe、R
u、Os等のp型不純物、n型半導体にはPd、Pt、Ni等の
n型不純物でCoを置換している。さらに、熱電素子本体
は特性向上のため、熱伝導率が小さいことが好ましい。
このため上記スクッテルダイト系結晶構造を有する化合
物の結晶内空孔に重元素を充填することが好ましい。こ
うすることで、充填された重元素により格子振動が散乱
され、熱伝導率が低下し、熱電変換特性が向上する。The thermoelectric conversion module 10 of FIG.
P-type cobalt-antimony type thermoelectric conversion element body 11 made of type cobalt-antimony type semiconductor and n-type cobalt-antimony type thermoelectric conversion element body 12 made of a plurality of n-type cobalt-antimony type semiconductors are alternately arranged on the same plane. Are arranged side by side on a matrix. An n-type thermoelectric element body 12 is adjacent to one p-type thermoelectric element body 11. As the cobalt-antimony-based semiconductor forming the p-type thermoelectric element body 11 and the n-type thermoelectric element body 12, CoSb 3 , RhSb 3 , IrSb 3 or the like having a skutterudite structure can be used. CoAs 3 has a similar structure, but since arsenic is highly toxic, it is desirable to use a semiconductor material that does not contain arsenic. Fe, R for p-type semiconductors
Co is replaced with p-type impurities such as u and Os, and with n-type impurities such as Pd, Pt, and Ni for n-type semiconductors. Further, it is preferable that the thermoelectric element body has a small thermal conductivity in order to improve the characteristics.
Therefore, it is preferable to fill the intracavity voids of the compound having the skutterudite crystal structure with a heavy element. By doing so, the lattice vibration is scattered by the filled heavy element, the thermal conductivity is lowered, and the thermoelectric conversion characteristics are improved.
【0023】1つのp型熱電素子本体11とこれに隣接す
る1つのn型熱電素子本体12の上部には、それら素子を
接続する第1の電極部材13が設けられ、他方、1つのp
型熱電素子本体11とこれに隣接する1つのn型熱電素子
本体12の下部には、それらを共通に接続する第2の電極
部材14が設けられている。第1の電極部材13と第2の電
極部材14は、素子1個だけずれた状態で設けられる。こ
うして、両熱電素子本体11および12は、電気的に直列に
接続される。本実施の形態において、両電極部材13およ
び14は、いずれも鉄系電極(金属)材料で形成されてい
る。鉄系金属材料としては、JISのSUS410で代
表されるマルテンサイト系ステンレスが好ましいが、熱
膨張係数が8x10-6/℃〜16x10-6/℃の範囲に
あるものであれば、炭素鋼、合金鋼等でも構わない。A first electrode member 13 for connecting the one p-type thermoelectric element body 11 and one n-type thermoelectric element body 12 adjacent thereto is provided on the upper side, while one p-type thermoelectric element body 12 is provided.
A second electrode member 14 is provided below the type thermoelectric element body 11 and one n-type thermoelectric element body 12 adjacent to the type thermoelectric element body 11 to connect them in common. The first electrode member 13 and the second electrode member 14 are provided in a state of being displaced by one element. In this way, both thermoelectric element bodies 11 and 12 are electrically connected in series. In the present embodiment, both electrode members 13 and 14 are both made of an iron-based electrode (metal) material. The iron-based metal material, but martensitic stainless represented by SUS410 of JIS is preferred, as long as the thermal expansion coefficient is in the range of 8x10 -6 / ℃ ~16x10 -6 / ℃ , carbon steel, alloy Steel etc. may be used.
【0024】鉄系電極部材13および14は、蒸着、あるい
は溶射等の手法により形成することができる。しかしな
がら、鉄系材料の板を用いることが最も好ましい。この
鉄系の電極部材13、14とp型熱電変換素子本体11、n型
熱電変換素子本体12の間には、これら電極部材13、14と
p型熱電変換素子本体11、n型熱電変換素子本体12に圧
接されたアルミニウム(Al)を主成分とする薄膜層17が接
合されている。この薄膜層17を形成することに因って、
接合に使用するロウ材を用いる事が無くなり、接合がよ
り一層確実なものとなり、200℃を超える高温状態での
接合界面での熱的、電気的な損失が小さくなる。The iron-based electrode members 13 and 14 can be formed by a technique such as vapor deposition or thermal spraying. However, it is most preferable to use a plate of ferrous material. Between the iron-based electrode members 13 and 14 and the p-type thermoelectric conversion element body 11 and the n-type thermoelectric conversion element body 12, these electrode members 13 and 14 and the p-type thermoelectric conversion element body 11 and the n-type thermoelectric conversion element are provided. A thin film layer 17 containing aluminum (Al) as a main component is bonded to the main body 12 under pressure. Due to the formation of this thin film layer 17,
Since the brazing material used for joining is not used, the joining becomes more reliable, and the thermal and electrical loss at the joining interface in a high temperature state exceeding 200 ° C is reduced.
【0025】別の実施の形態として、電極材料の表面に
AlがコーティングされたAl被覆鉄鋼板を使用すること
も可能であり、この場合にはAlと鉄の接合は電極形状に
加工される以前の板状の電極材料の状態から元々十分で
あるので薄膜層17と電極部材13、14との接合強度が圧接
工程を経ることに因って変動する心配が無くなる。As another embodiment, it is also possible to use an Al-coated iron and steel plate in which the surface of the electrode material is coated with Al, in which case the Al-iron joint is formed before being processed into the electrode shape. Since the plate-like electrode material is already sufficient, the bonding strength between the thin film layer 17 and the electrode members 13 and 14 does not change due to the pressure welding process.
【0026】通常、第1の共通電極部材13の外側には、
これら電極部材13に共通に接合された上部絶縁性導熱板
15が設けられている。他方、第2の共通電極部材14の外
側には、これら電極部材14に共通に接合された下部絶縁
性導熱板16が設けられている。両導熱板15、16は、それ
ぞれ、セラミックス、好ましくは熱伝導性の良い窒化ア
ルミニウム、窒化ケイ素、炭化ケイ素またはアルミナに
より構成することができる。電極部材13および14を構成
する銀系金属材料は、フリットガラスを用いて、これら
セラミックス製導熱板15、16に対して良好な接合を達成
する。Usually, on the outside of the first common electrode member 13,
Upper insulating heat conductive plate commonly joined to these electrode members 13
15 are provided. On the other hand, on the outside of the second common electrode member 14, a lower insulating heat conductive plate 16 jointly joined to the electrode members 14 is provided. Both heat-conducting plates 15 and 16 can be made of ceramics, preferably aluminum nitride, silicon nitride, silicon carbide or alumina, which have good thermal conductivity. The silver-based metal material forming the electrode members 13 and 14 uses frit glass to achieve good bonding to the ceramic heat conductive plates 15 and 16.
【0027】図1に示す構成の熱電変換モジュールにお
いて、上部絶縁性導熱板15側を低温度(L)にし、かつ下
部絶縁性導熱板16側を低温度(H)にして上下絶縁性導熱
板15と16との間に温度差を与えると、第1の電極部材13
と第2の電極部材14との間に電位差が生じ、電極の終端
に負荷を接続すると、電力を取り出すことができる。In the thermoelectric conversion module having the structure shown in FIG. 1, the upper insulating heat conducting plate 15 side is set to a low temperature (L) and the lower insulating heat conducting plate 16 side is set to a low temperature (H), and the upper and lower insulating heat conducting plates are arranged. If a temperature difference is applied between 15 and 16, the first electrode member 13
A potential difference is generated between the second electrode member 14 and the second electrode member 14, and when a load is connected to the end of the electrode, electric power can be taken out.
【0028】本実施の形態の熱電変換モジュールは、熱
交換器に組み込むことができる。基本的に、この熱交換
機は、加熱面と冷却面とを有し、その加熱面と冷却面と
の間に本発明の熱電変換モジュールを組み込んだ構成を
有する。熱交換器の一例を図2に示す。この熱交換器20
は、中央にガス通路21を有し、そのまわりには外周器22
が設置されている。そして、ガス通路21に接して例えば
図1に示す構造の本発明の熱電変換モジュール10(電極
材料などの詳細構造は処理略する)が設けられている。
熱電変換モジュール10はガス通路21とともに外囲器22に
より囲まれ、外囲器22と熱電変換モジュール10との間に
は例えば水の流路23が構成されている。ガス通路21内に
は、例えばごみ焼却炉からの高温の排ガスが導入され、
他方水流路23内にはその一端から水導入管24を介して冷
却水が導入される。高温排ガスの熱は、熱電変換モジュ
ール10により奪われて水流路23内を流通する水を加熱
し、その結果水は、水排出管25から温水となって取り出
される。このとき、熱電変換モジュール10の一方の面は
水流路23内を流れる水により低温側となり、他方の面は
ガス通路21内を流れる高温排ガスにより高温となる。し
たがって、上に述べたように、熱電変換モジュール10か
ら電力が取り出される。The thermoelectric conversion module of this embodiment can be incorporated in a heat exchanger. Basically, this heat exchanger has a heating surface and a cooling surface, and has a structure in which the thermoelectric conversion module of the present invention is incorporated between the heating surface and the cooling surface. An example of the heat exchanger is shown in FIG. This heat exchanger 20
Has a gas passage 21 in the center and a peripheral device 22 around it.
Is installed. Further, a thermoelectric conversion module 10 of the present invention having a structure shown in FIG. 1 (for example, detailed structure of an electrode material is omitted for processing) is provided in contact with the gas passage 21.
The thermoelectric conversion module 10 is surrounded by an envelope 22 together with the gas passage 21, and a water flow path 23 is formed between the envelope 22 and the thermoelectric conversion module 10, for example. In the gas passage 21, for example, high-temperature exhaust gas from a refuse incinerator is introduced,
On the other hand, cooling water is introduced into the water flow path 23 from one end thereof via a water introduction pipe 24. The heat of the high-temperature exhaust gas is taken by the thermoelectric conversion module 10 to heat the water flowing in the water flow path 23, and as a result, the water is taken out from the water discharge pipe 25 as hot water. At this time, one surface of the thermoelectric conversion module 10 becomes a low temperature side due to the water flowing in the water flow path 23, and the other surface becomes a high temperature due to the high temperature exhaust gas flowing in the gas passage 21. Therefore, as described above, electric power is extracted from the thermoelectric conversion module 10.
【0029】図3は、本発明の熱交換器20を設けたごみ
焼却設備の一例を示す。図3に示すゴミ焼却設備30は、
ごみ焼却炉31、押込送風機32、押込送風機32から焼却炉
31へ供給される燃焼空気を加熱する通常の熱交換器33、
および二次押込送風機34を備える。熱交換器33には、焼
却炉31からの高温排ガスがラインL1および分岐ラインL2
を介して流入し、押込送風機32からラインL4を介して熱
交換器33に導入される空気がその高温ガスにより加熱さ
れ、ラインL3を介して焼却炉31の底部に導入される。FIG. 3 shows an example of a refuse incineration facility provided with the heat exchanger 20 of the present invention. The waste incineration facility 30 shown in FIG.
Waste incinerator 31, forced draft fan 32, forced draft fan 32 to incinerator
Ordinary heat exchanger 33 for heating the combustion air supplied to 31,
And a secondary forced air blower 34. In the heat exchanger 33, the high-temperature exhaust gas from the incinerator 31 is line L1 and branch line L2.
Air introduced via the blower fan 32 and introduced into the heat exchanger 33 via the line L4 is heated by the high-temperature gas and introduced into the bottom of the incinerator 31 via the line L3.
【0030】焼却炉31からの排ガスラインL1は、本発明
の熱交換器20に接続され、そこでは、上に述べたように
排ガスにより温水が発生するとともに、熱電変換モジュ
ールにより電力が発生する。熱交換器33を経た排ガスは
ラインL5を介して電気集塵機35に流入し、そこで塵埃が
除去される。熱交換器20を経た排ガスはラインL6を介し
てラインL5に合流し、熱交換器33を経た排ガスとともに
集塵機35に流入する。集塵機35により清浄化された排ガ
スは、系外に排出される。なお、焼却炉31からの排ガス
は、誘引通風機36の作用により系内を流通する。The exhaust gas line L1 from the incinerator 31 is connected to the heat exchanger 20 of the present invention, in which hot water is generated by the exhaust gas and electric power is generated by the thermoelectric conversion module, as described above. The exhaust gas that has passed through the heat exchanger 33 flows into the electrostatic precipitator 35 through the line L5, and the dust is removed there. The exhaust gas passing through the heat exchanger 20 joins the line L5 via the line L6, and flows into the dust collector 35 together with the exhaust gas passing through the heat exchanger 33. The exhaust gas cleaned by the dust collector 35 is discharged to the outside of the system. The exhaust gas from the incinerator 31 flows through the system by the action of the induced draft fan 36.
【0031】さらに、本発明の熱交換器は、汽水火力発
電設備のボイラー内水管もしくは水管フィン表面に設置
し、高温側をボイラー内側、低温側を水管側とすること
で、電力と蒸気タービンに送られる蒸気とが同時に得ら
れ、汽水火力発電設備の効率を改善することができる。Further, the heat exchanger of the present invention is installed on the surface of a boiler inner water pipe or a water pipe fin of a brackish water thermal power plant, and the high temperature side is the inside of the boiler and the low temperature side is the water pipe side, so that power and a steam turbine are provided. The steam to be sent can be obtained at the same time and the efficiency of the brackish water thermal power plant can be improved.
【0032】[0032]
【実施例】以下、本発明を実施例により説明するが、本
発明はそれらに限定されるものではない。
(実施例1)
(p型熱電材料焼結体の製造)純度99.998%のCo、純度99.
999%のSb、純度99.99%のCe、純度99.99%のFe金属を原料
とした。これを組成式Ce(Fe0.75Co0.25)4Sb12になるよ
うに秤量した。ただしSbは、次のアーク溶解行程での蒸
発があるため、所定の割合より重量で3%多くなるよう
秤量した。アーク炉内の水冷されている銅製のハ−スに
上記秤量原料を装填して、2×10-3Paの真空度まで真空
引きした後、純度99.999%の高純度Arを60kPaまで導入し
て減圧Ar雰囲気にして、ア−ク溶解した。溶解後、水冷
されている銅製のハ−スで急冷して得られた金属塊を、
石英管に10-4Pa以下の高真空で真空封入し、973Kで30時
間熱処理した。得られた金属塊を窒素雰囲気中で粉砕
し、内径20mmの金型を用い圧力100MPaで成形した。この
成形体を内径20mmのカーボン製モールドに充填し、Ar雰
囲気中、100MPa、680℃で1時間加圧焼結し、直径20mm円
盤状の焼結体を得た。400℃での抵抗率1.5×10-3Ωcm、
ゼーベック係数215μV/K、熱伝導率1.5W/mKであった。
(n型熱電材料焼結体の製造)純度99.998%のCo、純度99.
999%のSb、純度99.99%のCe、純度99.99%のPd金属を原料
とした。これを組成式Ce0.2(Pd0.03Co0.97)4Sb12になる
ように秤量した。ただしSbは、次のアーク溶解行程での
蒸発があるため、所定の割合より重量で3%多くなるよ
う秤量した。ア−ク炉内の水冷されている銅製のハ−ス
に上記秤量原料を装填して、2×10-3Paの真空度まで真
空引きした後、純度99.999%の高純度Arを60kPaまで導入
して減圧Ar雰囲気にして、ア−ク溶解した。溶解後、水
冷されている銅製のハ−スで急冷して得られた金属塊
を、石英管に10-4Pa以下の高真空で真空封入し、973Kで
30時間熱処理した。得られた金属塊を窒素雰囲気中で粉
砕し、内径20mmの金型を用い圧力100MPaで成形した。こ
の成形体を内径20mmのカーボン製モールドに充填し、Ar
雰囲気中、100MPa、680℃で1時間加圧焼結し、直径20mm
円盤状の焼結体を得た。400℃での抵抗率1.1×10-3Ωc
m、ゼーベック係数-250μV/K、熱伝導率3.6W/mKであっ
た。
(熱電変換モジュールの製造)上記、p型熱電材料焼結
体、n型熱電材料焼結体から、一辺が3mm長さ10mmの直方
体素子を切り出した。これを、幅3mm厚さ1mmのス
テンレス鋼製板が3mm間隔で直交して並べられた格子
の中にp型、n型を交互に置き、縦12横12列計72組
144本を正方形に配列した。該メッシュから現れる該素
子上下面に直列の回路が形成されるよう3mmx7mm厚さ10
μm厚さの純Al箔を配し、更に、該Al箔と同じ位置に3mm
x7mm厚さ0.5mmのSUS410製板を配備した。このSUS410製
板から電極材料が形成される。これをホットプレス内に
設置し、300kg/cm2の圧力を加えて550℃1時間アルゴン
雰囲気中で処理した。冷却後、該積層体を炉より取り出
し該ステンレス鋼製板をはずしたところ、図1で説明し
た形状であって、すべての層が十分な強度を有する結合
をなした熱電変換モジュールが形成されていた。ここ
で、p型熱電材料焼結体、n型熱電材料焼結体からp型熱
電変換素子本体11、n型熱電変換素子本体12が形成され
る。EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. (Example 1) (Production of p-type thermoelectric material sintered body) Co having a purity of 99.998% and a purity of 99.
Raw materials were 999% Sb, 99.99% purity Ce, and 99.99% purity Fe metal. This was weighed so that the composition formula was Ce (Fe 0.75 Co 0.25 ) 4 Sb 12 . However, since Sb is vaporized in the next arc melting process, Sb was weighed so as to be 3% by weight more than the predetermined ratio. The above-mentioned weighing raw material was loaded into a water-cooled copper hearth in an arc furnace, and after vacuuming to a vacuum degree of 2 × 10 -3 Pa, high-purity Ar with a purity of 99.999% was introduced up to 60 kPa. The arc was dissolved in a reduced pressure Ar atmosphere. After melting, the metal block obtained by quenching with a water-cooled copper hearth,
A quartz tube was vacuum-sealed under a high vacuum of 10 -4 Pa or less and heat-treated at 973K for 30 hours. The obtained metal lump was crushed in a nitrogen atmosphere and molded at a pressure of 100 MPa using a mold having an inner diameter of 20 mm. This molded body was filled in a carbon mold having an inner diameter of 20 mm and pressure-sintered at 100 MPa and 680 ° C. for 1 hour in an Ar atmosphere to obtain a disc-shaped sintered body having a diameter of 20 mm. Resistivity at 400 ℃ 1.5 × 10 -3 Ωcm,
The Seebeck coefficient was 215 μV / K and the thermal conductivity was 1.5 W / mK. (Manufacture of n-type thermoelectric material sintered body) Co with a purity of 99.998% and a purity of 99.
The raw materials were 999% Sb, 99.99% purity Ce, and 99.99% purity Pd metal. This was weighed so that the composition formula was Ce 0.2 (Pd 0.03 Co 0.97 ) 4 Sb 12 . However, since Sb is vaporized in the next arc melting process, Sb was weighed so as to be 3% by weight more than the predetermined ratio. After loading the above weighing raw material into a water-cooled copper hearth in an arc furnace and vacuuming to a vacuum degree of 2 × 10 -3 Pa, high-purity 99.999% pure Ar was introduced up to 60 kPa. Then, a reduced pressure Ar atmosphere was created and the arc was dissolved. After melting, the metal ingot obtained by quenching with a water-cooled copper hearth was vacuum-sealed in a quartz tube at a high vacuum of 10 -4 Pa or less, and at 973K.
Heat treated for 30 hours. The obtained metal lump was crushed in a nitrogen atmosphere and molded at a pressure of 100 MPa using a mold having an inner diameter of 20 mm. Fill this molded body into a carbon mold with an inner diameter of 20 mm, and
In the atmosphere, pressure sintering at 100MPa, 680 ℃ for 1 hour, diameter 20mm
A disc-shaped sintered body was obtained. Resistivity at 400 ℃ 1.1 × 10 -3 Ωc
m, Seebeck coefficient-250 μV / K, and thermal conductivity 3.6 W / mK. (Production of Thermoelectric Conversion Module) A rectangular parallelepiped element having a side length of 3 mm and a length of 10 mm was cut out from the p-type thermoelectric material sintered body and the n-type thermoelectric material sintered body. A ply type and an n type are alternately placed in a lattice in which stainless steel plates with a width of 3 mm and a thickness of 1 mm are arranged at an interval of 3 mm, and a total of 72 sets of 12 rows and 12 columns in length are set.
144 pieces were arranged in a square. 3mm x 7mm thickness 10 so that a series circuit is formed on the upper and lower surfaces of the element that emerge from the mesh
A pure Al foil with a thickness of μm is arranged, and 3 mm is placed at the same position as the Al foil.
A SUS410 plate with a thickness of x7 mm and a thickness of 0.5 mm was provided. The electrode material is formed from this SUS410 plate. This was placed in a hot press, a pressure of 300 kg / cm 2 was applied, and the treatment was performed at 550 ° C. for 1 hour in an argon atmosphere. After cooling, the laminated body was taken out of the furnace and the stainless steel plate was removed. As a result, a thermoelectric conversion module having the shape described in FIG. 1 and in which all layers were bonded with sufficient strength was formed. It was Here, the p-type thermoelectric conversion element body 11 and the n-type thermoelectric conversion element body 12 are formed from the p-type thermoelectric material sintered body and the n-type thermoelectric material sintered body.
【0033】該熱電変換モジュールについて高温側を50
0℃、低温側を25℃にし、負荷としてモジュール内部
抵抗と同抵抗値の負荷を繋ぎ、整合負荷条件で熱電特性
を測定したところ、発生した電圧は3.6V、電力は11Wで
あった。この条件で1000時間連続運転した後、室温に戻
し、再び同条件で運転を行った。この繰り返しを10回以
上合計運転時間10000時間以上後も性能は変わらず、ま
た破損したり形状が変化することもなかった。この様な
熱電変換モジュールをAランクとした。また、同一の試
験でこの繰り返しを8回〜10回未満で性能の低下を生じ
たものをBランク、高温側を300℃以上に設定しても動
作はするが、8回未満で性能の低下を生じたものをCラ
ンクとした。Regarding the thermoelectric conversion module, the high temperature side is 50
When the thermoelectric characteristics were measured under a matched load condition with 0 ° C., 25 ° C. on the low temperature side, a load having the same resistance value as the module internal resistance was connected as a load, the generated voltage was 3.6 V, and the power was 11 W. After continuously operating for 1000 hours under these conditions, the temperature was returned to room temperature and the operation was performed again under the same conditions. The performance did not change even after 10 times or more of this repetition for a total operating time of 10,000 hours or more, and there was no damage or change in shape. Such a thermoelectric conversion module was ranked A. Also, in the same test, if this performance is reduced 8 to less than 10 times and the performance is degraded, it will operate even if it is set to B rank and the high temperature side is set to 300 ° C or higher, but the performance is degraded if it is less than 8 times. What caused the above was designated as C rank.
【0034】この実施例の上述した熱電変換モジュール
に関して、これら電極部材13、14とp型熱電変換素子本
体11、n型熱電変換素子本体12に圧接されたアルミニウ
ム(Al)を主成分とする薄膜層17が接合されているが、こ
の圧接条件である接合温度と接合圧力を種々変えて熱電
変換モジュールを形成し、その性能を調べた結果が表1
である。Regarding the above-mentioned thermoelectric conversion module of this embodiment, a thin film containing aluminum (Al) as a main component, which is pressed against the electrode members 13 and 14 and the p-type thermoelectric conversion element body 11 and the n-type thermoelectric conversion element body 12. Although the layer 17 is bonded, the thermoelectric conversion module was formed by changing the bonding temperature and the bonding pressure, which are the pressure welding conditions, and the results of examining the performance are shown in Table 1.
Is.
【0035】[0035]
【表1】
この表1から、薄膜層17が電極部材13、14とp型熱電変
換素子本体11、n型熱電変換素子本体12間を強固に接合
できる条件を見つけることが出来た。[Table 1] From Table 1, it was possible to find the conditions under which the thin film layer 17 could firmly bond the electrode members 13, 14 to the p-type thermoelectric conversion element body 11 and the n-type thermoelectric conversion element body 12.
【0036】即ち、基本的な条件はスクッテルダイトの
主成分であるSbと顕著な反応を起こさない600℃以下
(望ましくは575℃以下)、500℃以上(望ましくは525
℃以上で)の接合温度、200kg/cm2以上、90
0kg/cm2以下の接合圧力を掛けることでBランク
以上の熱電変換モジュールを提供できる。特に、575℃
以下、525℃以上の接合温度、300kg/cm2以
上、700kg/cm2以下の接合圧力を掛けることで
Aランクの高性能熱電変換モジュールを提供できる。That is, the basic conditions are 600 ° C. or lower (desirably 575 ° C.) or 500 ° C. or higher (desirably 525) which does not significantly react with Sb which is the main component of skutterudite.
(Above ℃) bonding temperature, above 200kg / cm2, 90
A thermoelectric conversion module of rank B or higher can be provided by applying a bonding pressure of 0 kg / cm 2 or lower. Especially, 575 ℃
Hereinafter, a high-performance thermoelectric conversion module of rank A can be provided by applying a joining temperature of 525 ° C. or more and a joining pressure of 300 kg / cm 2 or more and 700 kg / cm 2 or less.
【0037】以上の結果は接合時間を2時間に設定した
結果であるが、接合時間を5分〜3時間の範囲であれは
同様の結果を得ることができる。The above results are the results when the bonding time is set to 2 hours, but similar results can be obtained when the bonding time is in the range of 5 minutes to 3 hours.
【0038】さらに、上記条件ではこのAl被覆鉄鋼板と
絶縁材であるAlNあるいはSi3N4とも良く接合し一気に
全ての接合が出来てしまうのも大きなメリットである。Further, under the above conditions, it is also a great merit that the Al-coated iron and steel plate and the insulating material AlN or Si3N4 are well bonded and all the bonding can be performed at once.
【0039】以上の実施例では、モジュール化が望まれ
ていたフィルドスクッテルダイト系の発電素子を用いた
モジュールの作製が可能になると共に、実用的に十分な
耐久性と特性を備えた熱電変換モジュールが提供され
る。よってモジュールを熱交換器に組み込むことによっ
て、効率の高いコジェネ用熱交換器を提供でき、ゴミ焼
却装置のボイラーに利用すれば従来捨て去っていたエネ
ルギーを大量に回収できるようになり、環境負荷低減に
多大な貢献をすることになる。
(実施例2)以下の実施例では、実施例1と異なる部分
を中心に説明するが、同一の構成に関しては、その詳細
な説明を省略する。実施例1の熱電変換モジュールを耐
熱鋼平板と耐食鋼平板の間に並べ、高温側となる耐熱鋼
と接する部位には0.5mm厚さのAlN製絶縁板を挟み、低温
側となる耐食鋼と接する部位には厚さ0.5mmの高熱伝導
性シリコンゴム(例えは、信越化学製商品名TC-50TX)
を挟み込んだ上で配置し両平板で固定した積層板を作製
した。この際、各モジュールから出ている出力端子は直
列に結合されていた。これにより該積層板の耐熱鋼側を
高温部、耐食鋼側を冷却部とした熱電変換モジュール付
き熱交換器が得られた。この熱電変換モジュール付き熱
交換器は、例えば図2に示すように冷却側に水を流通さ
せる流路23を設け、これを図3に示すようにごみ焼却炉
31に設置することにより、蒸気と熱水が得られかつ発電
が行えるボイラーとすることができる。ここで、32は押
込送風機、33は通常の熱交換器、34は二次押込送風機、
35は集塵機、36は誘引通風機である。また、L1は焼却
炉31からの排気ガスを熱電変換モジュール付き熱交換器
20に導入するガス管路、L2は焼却炉31からの排気ガス
を通常の熱交換器33に導入する管路、L3は熱交換器33
で熱せられた空気を焼却炉31に導入するガス管路、L4
は送風機32からの空気を熱交換器33に導入する管路、L
5は熱交換器33を通過した排気ガスを集塵機35に導入す
る管路である。図3において熱交換器33に直接本発明
の熱電発電モジュールを設置しても良い。
(実施例3)実施例2の熱交換器を汽水火力発電設備の
ボイラー内水管もしくは水管フィン表面に設置し、耐熱
鋼平板側をボイラー内側、冷却水を水管側とすること
で、電力と蒸気タービンに送られる蒸気とが同時に得ら
れ、かつ効率が改善された汽水火力発電設備を得ること
ができた。すなわち、蒸気タービンのみにより発電する
汽水火力発電設備の発電効率をηα、熱交換器の熱電変
換効率をητとすると、ηα =ητ +(1-ητ ) ηρで
あり、ηρの発電効率の汽水火力発電設備にητなる熱
電変換効率の熱交換器を設置することにより、(1-ητ
ρ) ητだけ発電効率を向上することができる。In the above examples, a module using a filled skutterudite power generation element, which has been desired to be modularized, can be manufactured, and thermoelectric conversion with practically sufficient durability and characteristics is possible. Modules are provided. Therefore, by incorporating the module into the heat exchanger, it is possible to provide a highly efficient heat exchanger for cogeneration, and if it is used in the boiler of a refuse incinerator, it is possible to recover a large amount of energy that was previously discarded, reducing the environmental load. It will make a great contribution. (Embodiment 2) In the following embodiment, the description will focus on the parts different from the first embodiment, but the detailed description of the same configuration will be omitted. The thermoelectric conversion modules of Example 1 were arranged between a heat-resistant steel plate and a corrosion-resistant steel plate, and an AlN insulating plate having a thickness of 0.5 mm was sandwiched between the heat-resistant steel plate on the high temperature side and the corrosion-resistant steel plate on the low temperature side. 0.5mm thick high thermal conductivity silicone rubber (for example, Shin-Etsu Chemical trade name TC-50TX)
A laminated plate was prepared by sandwiching and sandwiching the plate and fixing it with both flat plates. At this time, the output terminals from each module were connected in series. As a result, a heat exchanger with a thermoelectric conversion module was obtained in which the heat-resistant steel side of the laminate was the high temperature part and the corrosion-resistant steel side was the cooling part. This heat exchanger with thermoelectric conversion module is provided with, for example, a flow path 23 for circulating water on the cooling side as shown in FIG. 2, and this is provided with a waste incinerator as shown in FIG.
By installing in 31, the boiler can obtain steam and hot water and can generate electricity. Here, 32 is a forced draft blower, 33 is a normal heat exchanger, 34 is a secondary forced draft blower,
Reference numeral 35 is a dust collector, and 36 is an induced draft fan. Further, L1 is a heat exchanger with a thermoelectric conversion module for the exhaust gas from the incinerator 31.
20 is a gas pipeline, L2 is a pipeline that introduces the exhaust gas from the incinerator 31 into a normal heat exchanger 33, and L3 is a heat exchanger 33.
L4, a gas line for introducing the air heated in the incinerator 31
Is a conduit for introducing air from the blower 32 into the heat exchanger 33, L
Reference numeral 5 is a conduit for introducing the exhaust gas that has passed through the heat exchanger 33 into the dust collector 35. In FIG. 3, the thermoelectric generator module of the present invention may be installed directly on the heat exchanger 33. (Embodiment 3) The heat exchanger of Embodiment 2 is installed on the surface of a boiler inner water pipe or water pipe fin of a steam-fired power plant, and the heat-resistant steel flat plate side is the inside of the boiler and the cooling water is the water pipe side, so that power and steam can be obtained. The steam sent to the turbine was obtained at the same time, and the steam-fired power generation facility with improved efficiency could be obtained. That is, if the power generation efficiency of the brackish water power generation facility that generates power only by the steam turbine is ηα and the thermoelectric conversion efficiency of the heat exchanger is ητ, then ηα = ητ + (1-ητ ) ηρ, and by installing a heat exchanger with a thermoelectric conversion efficiency of ητ in a brackish water power plant with a power generation efficiency of ηρ, (1-ητ
The power generation efficiency can be improved by ρ) ητ.
【0040】[0040]
【発明の効果】上記構成によって、300℃以上の温度で
も長時間にわたって充分な熱電変換機能を示す熱電変換
モジュールおよびそれを用いた熱交換器を提供すること
ができる。With the above structure, it is possible to provide a thermoelectric conversion module that exhibits a sufficient thermoelectric conversion function for a long time even at a temperature of 300 ° C. or higher, and a heat exchanger using the same.
【図1】 本発明の一実施形態に関わる熱電変換モジュ
ールを示す概略断面図。FIG. 1 is a schematic sectional view showing a thermoelectric conversion module according to an embodiment of the present invention.
【図2】 本発明の熱交換器の一例を示す概略断面図。FIG. 2 is a schematic sectional view showing an example of a heat exchanger of the present invention.
【図3】 本発明の熱交換器を設置したごみ焼却炉の概
略構成図。FIG. 3 is a schematic configuration diagram of a refuse incinerator in which the heat exchanger of the present invention is installed.
10…熱電変換モジュール 11…p型熱電変換素子本体 12…n型熱電変換素子本体 13…第1の電極部材 14…第2の電極部材 15,16…絶縁性導熱板 17…接合層 20…熱交換器 21…ガス通路 22…外囲器 23…流路 24…導入管 25…排出管 31…ごみ焼却炉 32…押込送風機 33…通常の熱交換器 34…二次押込送風機 35…集塵機 36…誘引通風機 10 ... Thermoelectric conversion module 11 ... p type thermoelectric conversion element body 12 ... n type thermoelectric conversion element body 13 ... First electrode member 14 ... Second electrode member 15, 16… Insulating heat conductive plate 17 ... Bonding layer 20 ... Heat exchanger 21 ... Gas passage 22 ... Enclosure 23 ... Channel 24 ... Introduction pipe 25 ... Discharge pipe 31 ... Garbage incinerator 32 ... Push blower 33 ... Ordinary heat exchanger 34 ... Secondary forced air blower 35 ... dust collector 36 ... Induction fan
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 35/34 H01L 35/34 H02N 11/00 H02N 11/00 A ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 35/34 H01L 35/34 H02N 11/00 H02N 11/00 A
Claims (5)
を構成するように電極部材により互いに直列に接続され
かつ相互に対向して配置されるp型熱電変換素子本体お
よびn型熱電変換素子本体を備え、前記p型熱電変換素
子本体はp型コバルト(Co)−アンチモン(Sb)系半導体に
より構成され、前記n型熱電変換素子本体はn型Co-Sb
系半導体により構成され、前記電極部材は、熱膨張係数
が8x10-6/℃〜16x10-6/℃の範囲にある材料
により構成され、前記熱電変換素子本体と前記電極部材
間に圧接されたアルミニウム(Al)を主成分とする薄膜層
が接合されたことを特徴とする熱電変換モジュール。1. A p-type thermoelectric conversion element body, which is connected in series with each other by electrode members so as to form a first plane on the high temperature side and a second plane on the low temperature side, and is arranged to face each other, and n. Type thermoelectric conversion element body, the p-type thermoelectric conversion element body is made of p-type cobalt (Co) -antimony (Sb) based semiconductor, and the n-type thermoelectric conversion element body is n-type Co-Sb.
Is constituted by a system semiconductor, aluminum said electrode member, the coefficient of thermal expansion is made of a material in the range of 8x10 -6 / ℃ ~16x10 -6 / ℃ , is pressed between the electrode members and the thermoelectric conversion element main body A thermoelectric conversion module, wherein a thin film layer containing (Al) as a main component is joined.
〜900Kg/cm2、接合温度500℃〜600℃で圧
接形成されたことを特徴とする請求項1に記載の熱電変
換モジュール。2. The thin film layer has a bonding pressure of 200 kg / cm2.
The thermoelectric conversion module according to claim 1, wherein the thermoelectric conversion module is formed by pressure welding at a joining temperature of 500 ° C to 600 ° C at a joining temperature of about 900 Kg / cm 2.
ずれか一方または両者の平面内にセラミックス或いはシ
リコンゴムからなる絶縁性導熱板を備えることを特徴と
する請求項1に記載の熱電変換モジュール。3. The thermoelectric generator according to claim 1, wherein an insulating heat conducting plate made of ceramics or silicon rubber is provided in either or both of the first plane and the second plane. Conversion module.
電変換素子本体がスクッテルダイト型結晶構造を有する
CoSb3基化合物結晶中の空隙に元素を充填したフィルド
スクッテルダイト構造を有する化合物であることを特徴
とする請求項1乃至請求項3のいずれか1項に記載の熱
電変換モジュール。4. The n-type thermoelectric conversion element body and the p-type thermoelectric conversion element body have a skutterudite type crystal structure.
The thermoelectric conversion module according to any one of claims 1 to 3, which is a compound having a filled skutterudite structure in which the voids in the CoSb 3 -based compound crystal are filled with an element.
て、前記加熱面と前記冷却面との間に請求項1乃至請求
項4のいずれか1項に記載の熱電変換モジュールを備え
ていることを特徴とする熱交換器。5. A heat exchanger having a heating surface and a cooling surface, comprising the thermoelectric conversion module according to any one of claims 1 to 4 between the heating surface and the cooling surface. A heat exchanger characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002108813A JP2003304006A (en) | 2002-04-11 | 2002-04-11 | Thermoelectric conversion module and heat exchanger using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002108813A JP2003304006A (en) | 2002-04-11 | 2002-04-11 | Thermoelectric conversion module and heat exchanger using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003304006A true JP2003304006A (en) | 2003-10-24 |
Family
ID=29392447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002108813A Pending JP2003304006A (en) | 2002-04-11 | 2002-04-11 | Thermoelectric conversion module and heat exchanger using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003304006A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006089847A (en) * | 2004-04-21 | 2006-04-06 | Showa Denko Kk | Rare earth alloy, producing process thereof and thermoelectric conversion material |
CN100348755C (en) * | 2003-12-25 | 2007-11-14 | 同济大学 | Method for synthesizing tin white cobalt series thermoelectric material |
KR100819852B1 (en) | 2006-12-22 | 2008-04-07 | 한국기계연구원 | Micro thermoelectric module and method of fabricating the same |
KR100853749B1 (en) | 2006-11-29 | 2008-08-22 | 요업기술원 | Unit module for thermoelectric generation and Thermoelectric set including the same and Method of making the same |
CN100524867C (en) * | 2007-08-10 | 2009-08-05 | 中国科学院上海硅酸盐研究所 | Method for manufacturing cobalt stibium antimonide based thermoelectric device |
US8006741B2 (en) | 2004-04-21 | 2011-08-30 | Showa Denko K.K. | Process for producing thermoelectric semiconductor alloy, thermoelectric conversion module, thermoelectric power generating device, rare earth alloy, producing process thereof, thermoelectric conversion material, and thermoelectric conversion system using filled skutterudite based alloy |
DE102012017556A1 (en) | 2011-09-08 | 2013-03-14 | Hitachi Chemical Co., Ltd. | THERMOELECTRIC CONVERTER MODULE AND MANUFACTURING METHOD THEREFOR |
WO2020100717A1 (en) * | 2018-11-16 | 2020-05-22 | 株式会社 安永 | Stannide thermoelectric conversion element and stannide thermoelectric conversion module |
-
2002
- 2002-04-11 JP JP2002108813A patent/JP2003304006A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100348755C (en) * | 2003-12-25 | 2007-11-14 | 同济大学 | Method for synthesizing tin white cobalt series thermoelectric material |
JP2006089847A (en) * | 2004-04-21 | 2006-04-06 | Showa Denko Kk | Rare earth alloy, producing process thereof and thermoelectric conversion material |
US8006741B2 (en) | 2004-04-21 | 2011-08-30 | Showa Denko K.K. | Process for producing thermoelectric semiconductor alloy, thermoelectric conversion module, thermoelectric power generating device, rare earth alloy, producing process thereof, thermoelectric conversion material, and thermoelectric conversion system using filled skutterudite based alloy |
US8171980B2 (en) | 2004-04-21 | 2012-05-08 | Showa Denko K.K. | Process for producing thermoelectric semiconductor alloy, thermoelectric conversion module, thermoelectric power generating device, rare earth alloy, producing process thereof, thermoelectric conversion material, and thermoelectric conversion system using filled skutterudite based alloy |
KR100853749B1 (en) | 2006-11-29 | 2008-08-22 | 요업기술원 | Unit module for thermoelectric generation and Thermoelectric set including the same and Method of making the same |
KR100819852B1 (en) | 2006-12-22 | 2008-04-07 | 한국기계연구원 | Micro thermoelectric module and method of fabricating the same |
CN100524867C (en) * | 2007-08-10 | 2009-08-05 | 中国科学院上海硅酸盐研究所 | Method for manufacturing cobalt stibium antimonide based thermoelectric device |
DE102012017556A1 (en) | 2011-09-08 | 2013-03-14 | Hitachi Chemical Co., Ltd. | THERMOELECTRIC CONVERTER MODULE AND MANUFACTURING METHOD THEREFOR |
WO2020100717A1 (en) * | 2018-11-16 | 2020-05-22 | 株式会社 安永 | Stannide thermoelectric conversion element and stannide thermoelectric conversion module |
JP2020087997A (en) * | 2018-11-16 | 2020-06-04 | 株式会社安永 | Stannide-based thermoelectric conversion device and stannide-based thermoelectric conversion module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6759586B2 (en) | Thermoelectric module and heat exchanger | |
JP5422383B2 (en) | Thermoelectric conversion module, heat exchanger using the same, thermoelectric temperature control device, and thermoelectric power generator | |
KR100926851B1 (en) | Thermoelectric conversion module, heat exchanger using same, and thermoelectric power generating system | |
JP4908426B2 (en) | Thermoelectric conversion module and heat exchanger and thermoelectric generator using the same | |
US20080023057A1 (en) | Thermoelectric Conversion Module, and Thermoelectric Power Generating Device and Method, Exhaust Heat Recovery System, Solar Heat Utilization System, and Peltier Cooling and Heating System, Provided Therewith | |
Matsubara | Development of a high efficient thermoelectric stack for a waste exhaust heat recovery of vehicles | |
JP2009081287A (en) | Thermoelectric conversion module and heat exchanger using the same, thermoelectric temperature controller, and thermoelectric generator | |
WO2002023643A1 (en) | Thermoelectric conversion element | |
JP2003309294A (en) | Thermoelectric module | |
JP2003092435A (en) | Thermoelectric module and its manufacturing method | |
JP2009081178A (en) | Method of manufacturing thermoelectric conversion module | |
KR102022429B1 (en) | Cooling thermoelectric moudule and method of manufacturing method of the same | |
JP2003304006A (en) | Thermoelectric conversion module and heat exchanger using the same | |
JP3526558B2 (en) | Thermoelectric conversion module and heat exchanger using the same | |
JP3954291B2 (en) | Thermoelectric conversion module and heat exchanger using the same | |
JP2003234516A (en) | Thermoelectric module | |
JP3526559B2 (en) | Thermoelectric conversion module and heat exchanger using the same | |
JP2003332637A (en) | Thermoelectric material and thermoelectric module using the same | |
WO2002021608A1 (en) | Thermoelement | |
JP4056129B2 (en) | Thermoelectric conversion module and manufacturing method thereof | |
JP4182208B2 (en) | Manufacturing method of heat exchanger with power generation function | |
JP2001230458A (en) | Thermoelectric conversion module and its manufacturing method | |
JP2009087984A (en) | Thermoelectric conversion material and thermoelectric conversion element using the same | |
JPH11340523A (en) | Thermoelectric transducing system | |
Caillat et al. | Thermoelectric unicouple used for power generation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050207 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050415 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050606 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070803 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071001 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080722 |