JP2002325470A - Automotive thermoelectric power generating device - Google Patents

Automotive thermoelectric power generating device

Info

Publication number
JP2002325470A
JP2002325470A JP2001123996A JP2001123996A JP2002325470A JP 2002325470 A JP2002325470 A JP 2002325470A JP 2001123996 A JP2001123996 A JP 2001123996A JP 2001123996 A JP2001123996 A JP 2001123996A JP 2002325470 A JP2002325470 A JP 2002325470A
Authority
JP
Japan
Prior art keywords
temperature side
temperature
side member
conversion module
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001123996A
Other languages
Japanese (ja)
Inventor
Masaru Oishi
勝 大石
Michio Morishita
道夫 森下
Toshikatsu Miki
俊克 三木
Shigenobu Nomura
重信 野村
Takeshi Umemoto
毅 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi Technology Licensing Organization Ltd
Sango Co Ltd
TS Precision Co Ltd
Original Assignee
Yamaguchi Technology Licensing Organization Ltd
Sango Co Ltd
Teijin Seiki Precision Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi Technology Licensing Organization Ltd, Sango Co Ltd, Teijin Seiki Precision Co Ltd filed Critical Yamaguchi Technology Licensing Organization Ltd
Priority to JP2001123996A priority Critical patent/JP2002325470A/en
Publication of JP2002325470A publication Critical patent/JP2002325470A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve a power generating efficiency of an automotive thermoelectric power generating device, by a method where at least either one junction among a junction between a low-temperature side element and a thermoelectric transducer module or the junction between the thermoelectric transducer module and a high temperature side element being fixed tightly. SOLUTION: This automotive thermoelectric power generating device comprises a thermoelectric transducer module 11, a low-temperature side element 9 brought into contact with the low-temperature side surface of the thermoelectric transducer module 11, and a high-temperature side element 12 brought into contact with the high-temperature side surface of the thermoelectric transducer module 11. At least either the contact among the contact 19 between the low temperature side element 9 and the thermoelectric transducer module 11 or the contact 20 between the thermoelectric transducer module 11 and the high temperature side element 12 firmly bonded over the whole contact region via an adhesive between.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車用熱電発電
装置に関するもので、より詳しくは、熱電変換素子を用
いて、自動車の内燃機関から排出される排気ガスの熱エ
ネルギーを電気エネルギーとして回収する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric generator for an automobile, and more particularly, to recovering thermal energy of exhaust gas discharged from an internal combustion engine of an automobile as electric energy using a thermoelectric conversion element. Related to the device.

【0002】[0002]

【従来の技術】従来、N型半導体とP型半導体を用い、
高温源と低温源の温度差によって熱エネルギーを電気エ
ネルギーに変換する熱発電素子が知られており、この熱
発電素子の高温源側と低温源側に電気絶縁板を密着させ
て熱電変換モジュールを構成し、この熱電変換モジュー
ルを用いて内燃機関から排出される排気ガスの熱エネル
ギーを電気エネルギーとして回収する熱電発電装置が、
例えば特開平11−122960号公報に開示されてい
る。
2. Description of the Related Art Conventionally, an N-type semiconductor and a P-type semiconductor have been used.
A thermoelectric generator that converts thermal energy into electric energy by a temperature difference between a high-temperature source and a low-temperature source is known. A thermoelectric conversion module is formed by closely attaching an electric insulating plate to the high-temperature source side and the low-temperature source side of the thermoelectric element. A thermoelectric generator configured and configured to recover thermal energy of exhaust gas discharged from an internal combustion engine as electric energy using the thermoelectric conversion module,
For example, it is disclosed in JP-A-11-122960.

【0003】この熱電発電装置は、図21に示すよう
に、内部に集熱フィン101を設けて該内部に排気ガス
を流通させるインナーシェル(高温側部材)102と、
該インナーシェル102の上面側と下面側の外部に配置
した前記の熱電変換モジュール103,104と、該熱
電変換モジュール103及び104の外部に配置された
アッパアウターシェル(低温側部材)105及びロアア
ウターシェル106(低温側部材)とからなり、前記ア
ッパアウターシェル105とロアアウターシェル106
とをボルト107で締め付けて、前記熱電変換モジュー
ル103及び104をインナーシェル102とアッパア
ウターシェル105及びロアアウターシェル106で挟
持し、熱電変換モジュール103及び104をアッパア
ウターシェル105及びロアアウターシェル106に密
着させるようにしている。
As shown in FIG. 21, this thermoelectric generator has an inner shell (high temperature side member) 102 in which a heat collecting fin 101 is provided and exhaust gas is circulated therein.
The thermoelectric conversion modules 103 and 104 disposed outside the upper and lower surfaces of the inner shell 102, an upper outer shell (low-temperature member) 105 and a lower outer disposed outside the thermoelectric conversion modules 103 and 104. The upper outer shell 105 and the lower outer shell 106.
Are tightened with bolts 107, the thermoelectric conversion modules 103 and 104 are sandwiched between the inner shell 102, the upper outer shell 105 and the lower outer shell 106, and the thermoelectric conversion modules 103 and 104 are connected to the upper outer shell 105 and the lower outer shell 106. I try to make them adhere.

【0004】この熱電発電装置においては、内燃機関の
排気ガスの熱によって、集熱フィン101及びインナー
シェル102を介して熱電変換モジュール103及び1
04の高温側端面が加熱され、アッパアウターシェル1
04及びロアアウターシェル106からの放熱により熱
電変換モジュール103,104の低温側端面が冷却さ
れ、熱電変換モジュール103及び104の高温側端面
と低温側端面との温度差により熱起電力が発生し(ゼー
ベック効果)、発電される。
In this thermoelectric generator, the heat of exhaust gas from the internal combustion engine heats the thermoelectric conversion modules 103 and 1 via the heat collecting fins 101 and the inner shell 102.
04 is heated on the high temperature side end face, and the upper outer shell 1
The low-temperature-side end faces of the thermoelectric conversion modules 103 and 104 are cooled by heat radiation from the lower and outer shells 104, and a thermoelectromotive force is generated due to a temperature difference between the high-temperature and low-temperature end faces of the thermoelectric conversion modules 103 and 104 ( Seebeck effect), power is generated.

【0005】[0005]

【発明が解決しようとする課題】前記熱電発電装置にお
いては、大電力を得るために熱発電素子の面積を大きく
している。そのため、前記のように、周囲にのみ設けた
ボルト107の締着により熱電変換モジュール103,
104に対してインナーシェル102とアウターシェル
105,106を挟持的に密着させるものにおいては、
高温下にあって熱歪の大きいインナーシェル102と熱
電変換モジュール103,104との間において隙間が
発生して密着不良が生じ、熱電変換モジュール103,
104への熱伝導が妨げられ、発電効率が低下するとい
う問題がある。
In the thermoelectric generator, the area of the thermoelectric generator is increased in order to obtain a large power. Therefore, as described above, the thermoelectric conversion module 103,
In the case where the inner shell 102 and the outer shells 105 and 106 are tightly attached to the inner shell 104,
A gap is generated between the inner shell 102 and the thermoelectric conversion modules 103 and 104, which are under high temperature and have large thermal strain, causing poor adhesion, and the thermoelectric conversion modules 103 and 104
There is a problem that heat conduction to the heat transfer 104 is hindered and power generation efficiency is reduced.

【0006】この問題を解決する技術として、従来、図
22に示すように、熱電変換モジュール201と、その
両面に配置した高温側部材202と低温側部材203と
に夫々挿通部204を形成し、ボルトなどの固定手段2
05を挿通して密着させるようにしたものが、例えば特
開平11−55974号公報に開示されている。
As a technique for solving this problem, as shown in FIG. 22, conventionally, a thermoelectric conversion module 201 and a high-temperature side member 202 and a low-temperature side member 203 disposed on both sides thereof are formed with insertion portions 204, respectively. Fixing means 2 such as bolts
05 is inserted and brought into close contact with each other, for example, as disclosed in JP-A-11-55974.

【0007】しかし、この技術においても、固定手段2
05から遠い部分においては、その密着性が弱いため、
全域において密着性を高めるためには、多数の固定手段
205が必要になる問題がある。
However, even in this technique, the fixing means 2
In areas far from 05, its adhesion is weak,
There is a problem that a large number of fixing means 205 are required in order to enhance the adhesion in the whole area.

【0008】そこで本発明は、前記の問題を解決する自
動車用熱電発電装置を提供することを目的とするもので
ある。
Accordingly, an object of the present invention is to provide a thermoelectric generator for an automobile which solves the above problems.

【0009】[0009]

【課題を解決するための手段】前記の問題を解決するた
めに、請求項1記載の第1の発明は、熱電変換モジュー
ルと、熱電変換モジュールの低温側面に接触させた低温
側部材と、熱電変換モジュールの高温側面に接触させた
高温側部材とからなる熱電発電装置において、低温側部
材と熱電変換モジュールの接触部及び熱電変換モジュー
ルと高温側部材の接触部のうち少なくとも一方が、接触
部全域にわたって接合剤を介して固着されていることを
特徴とするものである。
According to a first aspect of the present invention, there is provided a thermoelectric conversion module, a low-temperature side member in contact with a low-temperature side surface of the thermoelectric conversion module, and a thermoelectric conversion module. In a thermoelectric generator including a high-temperature member in contact with a high-temperature side surface of a conversion module, at least one of a contact portion between the low-temperature member and the thermoelectric conversion module and a contact portion between the thermoelectric conversion module and the high-temperature member is in the entire contact portion. And is fixed via a bonding agent.

【0010】請求項2記載の第2の発明は、前記第1の
発明において、熱電変換モジュールと、熱電変換モジュ
ールの低温側に配置された低温側部材と、熱電変換モジ
ュールの高温側に配置された高温側部材と、前記熱電変
換モジュールと前記低温側部材の間と熱電変換モジュー
ルと高温側部材の間の少なくとも一方の間に配置された
絶縁部材とからなる熱電発電装置であって、低温側部材
と高温側部材と熱電変換モジュールと絶縁部材の接触部
のうち少なくとも1つの接触部が、その接触部全域にわ
たって接合剤を介して固着されていることを特徴とする
ものである。
According to a second aspect of the present invention, in the first aspect, the thermoelectric conversion module, a low-temperature side member disposed on the low temperature side of the thermoelectric conversion module, and a high temperature side member disposed on the thermoelectric conversion module. A high temperature side member, and an insulating member disposed between the thermoelectric conversion module and the low temperature side member and at least one between the thermoelectric conversion module and the high temperature side member. At least one contact portion among the contact portion of the member, the high temperature side member, the thermoelectric conversion module, and the insulating member is fixed via a bonding agent over the entire contact portion.

【0011】請求項3記載の第3の発明は、前記第2の
発明において、前記低温側部材または高温側部材または
絶縁部材の熱電変換モジュールに対する接合が、熱電変
換モジュールにおける各電極部のみで行われているもの
である。
According to a third aspect of the present invention, in the second aspect, the joining of the low-temperature side member, the high-temperature side member, or the insulating member to the thermoelectric conversion module is performed only by each electrode portion in the thermoelectric conversion module. It is what is being done.

【0012】請求項4記載の第4の発明は、前記第2又
は第3の発明において、前記低温側部材と絶縁部材との
接合、または高温側部材と絶縁部材との接合が、全面接
着されているものである。
According to a fourth aspect of the present invention, in the second or third aspect, the bonding between the low-temperature side member and the insulating member or the bonding between the high-temperature side member and the insulating member is entirely bonded. Is what it is.

【0013】請求項5記載の第5の発明は、前記第1乃
至4のいずれかに記載の発明において、前記高温側部材
に集熱フィンが、一体又は別体に形成されているもので
ある。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, a heat collecting fin is formed integrally or separately on the high temperature side member. .

【0014】請求項6記載の第6の発明は、前記第1乃
至5のいずれかに記載の発明において、前記高温側部材
を、内部に高温媒体が流れる筒体の一部を形成するよう
にしたものである。
According to a sixth aspect of the present invention, in the first aspect of the invention, the high temperature side member is formed so as to form a part of a cylindrical body through which a high temperature medium flows. It was done.

【0015】請求項7記載の第7の発明は、前記第6の
発明において、前記高温側部材と前記筒体とが、固定手
段によりフローティング結合されているものである。
According to a seventh aspect of the present invention, in the sixth aspect, the high temperature side member and the cylindrical body are floating-coupled by a fixing means.

【0016】請求項8記載の第8の発明は、前記第6又
は第7の発明において、前記筒体の内部を流れる高温媒
体の流れ方向に対して、集熱フィンが傾斜して配列され
ているものである。
According to an eighth aspect of the present invention, in the sixth or seventh aspect, the heat collecting fins are arranged to be inclined with respect to the flow direction of the high-temperature medium flowing inside the cylindrical body. Is what it is.

【0017】請求項9記載の第9の発明は、前記第6乃
至第8のいずれかの発明において、前記筒体の上流部で
は耐熱性の高い集熱フィンが配列され、下流部では熱伝
導性の高い集熱フィンが配列されているものである。
According to a ninth aspect of the present invention, in any one of the sixth to eighth aspects, heat collecting fins having high heat resistance are arranged in an upstream portion of the cylindrical body, and heat conduction fins are formed in a downstream portion. Highly heat-collecting fins are arranged.

【0018】請求項10記載の第10の発明は、前記第
6乃至第9のいずれかの発明において、前記筒体の上流
部に集熱性が小さい集熱フィンを配列し、下流部に集熱
性が大きい集熱フィンを配列したものである。
According to a tenth aspect of the present invention, in any one of the sixth to ninth aspects, a heat collecting fin having a small heat collecting property is arranged on an upstream portion of the cylindrical body, and a heat collecting fin is formed on a downstream portion. Are arranged with large heat collecting fins.

【0019】請求項11記載の第11の発明は、前記第
6乃至第10のいずれかの発明において、筒体における
前記高温側部材が装着される部分以外の部分に、空隙を
もたせて遮熱カバーを設けて断熱部を形成したものであ
る。
According to an eleventh aspect of the present invention, in any one of the sixth to tenth aspects, a heat shield is provided by providing a gap in a portion other than a portion where the high temperature side member is mounted in the cylindrical body. A heat insulating part is formed by providing a cover.

【0020】請求項12記載の第12の発明は、前記第
11の発明において、前記空隙に断熱材を充填して断熱
部を形成したものである。
According to a twelfth aspect of the present invention, in the eleventh aspect, the gap is filled with a heat insulating material to form a heat insulating portion.

【0021】[0021]

【作用、効果】請求項1記載の発明によれば、低温側部
材と熱電変換モジュールの接触部、熱電変換モジュール
と高温側部材の接触部のうち少なくとも一方が、接触部
全域にわたって接合固着されることにより、その接合部
における熱歪による密着不良が解消され、各部の接触熱
抵抗を大幅に低減することができ、発電効率が向上す
る。
According to the first aspect of the present invention, at least one of the contact portion between the low-temperature-side member and the thermoelectric conversion module and the contact portion between the thermoelectric-conversion module and the high-temperature side member are bonded and fixed over the entire contact portion. Thus, poor adhesion due to thermal strain at the joint is eliminated, the contact thermal resistance of each part can be significantly reduced, and power generation efficiency is improved.

【0022】請求項2乃至4記載の発明によれば、絶縁
部材を介在するものにおいても前記請求項1記載の発明
と同様の作用、効果を発揮できる。この場合、熱電変換
モジュールにおける電極相互の間隔は極めて短いため、
前記のように各電極部で固着することにより、接合固着
が熱電変換モジュールの略全面で行われた状態となり、
前記のような発電効率が向上する。また、請求項4のよ
うに全面接着することにより、発電効率が向上する。
According to the second to fourth aspects of the invention, the same operation and effect as those of the first aspect of the invention can be exerted even with an insulating member interposed therebetween. In this case, since the interval between the electrodes in the thermoelectric conversion module is extremely short,
By being fixed at each electrode portion as described above, a state in which bonding and fixing has been performed on substantially the entire surface of the thermoelectric conversion module,
The power generation efficiency as described above is improved. Further, by adhering the entire surface as in claim 4, the power generation efficiency is improved.

【0023】請求項5記載の発明によれば、高温側部材
に集熱フィンを形成することにより、集熱性能が向上す
る。また、集熱フィンを別体に形成することにより、集
熱フィンの設計自由度が向上する。
According to the fifth aspect of the present invention, the heat collecting performance is improved by forming the heat collecting fin on the high temperature side member. Further, by forming the heat collecting fins separately, the degree of freedom in designing the heat collecting fins is improved.

【0024】請求項6記載の発明によれば、前記高温側
部材が、内部に高温媒体が流れる筒体の一部を形成して
いることにより、高温側部材と筒体とが別体であるもの
(2枚重ね)に比べ、高温媒体の熱が直接高温側部材に
伝わり、熱電変換モジュールへの熱伝導が向上する。
According to the sixth aspect of the present invention, the high temperature side member forms a part of a cylindrical body through which the high temperature medium flows, so that the high temperature side member and the cylindrical body are separate bodies. As compared with the case of two (two-layer), the heat of the high-temperature medium is directly transmitted to the high-temperature side member, and the heat conduction to the thermoelectric conversion module is improved.

【0025】請求項7記載の発明によれば、フローティ
ング結合により、高温側部材と筒体との熱歪の差(熱膨
脹差)が吸収され、高温側部材と筒体の変形が防止でき
る。
According to the seventh aspect of the present invention, the difference in thermal strain (difference in thermal expansion) between the high temperature side member and the cylindrical body is absorbed by the floating connection, and the deformation of the high temperature side member and the cylindrical body can be prevented.

【0026】請求項8記載の発明によれば、高温媒体の
流れ方向に対して、集熱フィンが傾斜して配列されるこ
とにより、高温媒体からの集熱性能が向上する。
According to the eighth aspect of the present invention, the heat collecting fins are arranged to be inclined with respect to the flow direction of the high temperature medium, so that the performance of collecting heat from the high temperature medium is improved.

【0027】請求項9記載の発明によれば、材質の異な
る集熱フィンが高温媒体の温度域に合わせて最適に配列
されるため、耐久性が向上し、かつ熱電モジュールの総
合出力が向上する。
According to the ninth aspect of the present invention, since the heat collecting fins of different materials are optimally arranged in accordance with the temperature range of the high-temperature medium, the durability is improved and the total output of the thermoelectric module is improved. .

【0028】請求項10記載の発明によれば、集熱フィ
ンの配列を粗にしたり高さを低くして集熱性を小さくし
たものや、集熱フィンの配列を密にしたり高さを長くし
て集熱性を大きくしたものを、高温媒体の温度域に合わ
せて最適に配列して、熱電モジュールの総合出力を向上
させることができる。
According to the tenth aspect of the present invention, the arrangement of the heat collecting fins is made rough or the height is reduced to reduce the heat collecting property, or the arrangement of the heat collecting fins is made dense or the height is increased. The heat collection performance is increased, and the heat collection performance is optimally arranged in accordance with the temperature range of the high-temperature medium, so that the total output of the thermoelectric module can be improved.

【0029】請求項11記載の発明によれば、筒体にお
ける高温側部材が装着される部分以外の部分に空隙によ
る断熱部を設けたことにより、該断熱部がエアギャップ
構造となり、該部での放熱を抑えて、筒体内の高温媒体
の熱を効率的に熱電素子へ伝導させ、発電効率を向上さ
せることができる。
According to the eleventh aspect of the present invention, the heat insulating portion is provided with an air gap in a portion other than the portion where the high temperature side member is mounted in the cylindrical body, so that the heat insulating portion has an air gap structure. , The heat of the high-temperature medium in the cylinder can be efficiently conducted to the thermoelectric element, and the power generation efficiency can be improved.

【0030】請求項12記載の発明によれば、前記の空
隙に断熱材を充填したことにより、一層発電効率を向上
させることができる。
According to the twelfth aspect of the present invention, the power generation efficiency can be further improved by filling the gap with a heat insulating material.

【0031】[0031]

【発明の実施の形態】図1乃至図20に示す実施例に基
づいて本発明の実施の形態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the embodiments shown in FIGS.

【0032】図1乃至図3は第1実施例を示す。FIGS. 1 to 3 show a first embodiment.

【0033】図1は本発明の熱電発電装置を自動車の排
気系に適用したもので、該図1において、1は熱電発電
装置で、一体型ユニット7を、内部に内燃機関から放出
された高温媒体(排気ガス)が流れる流路を有する筒体
2に装着して構成されている。該筒体2の一端にはフラ
ンジ3を有する上流側コーン4が設けられ、筒体2の他
端にはフランジ5を有する下流側コーン6が設けられて
いる。そして、フランジ3を図示しない上流側排気管に
接続し、フランジ5を図示しない下流側排気管に接続し
て、内燃機関から放出された高温媒体(排気ガス)が上
流側コーン4から筒体2内に流入し、下流側コーン6か
ら放出するようになっている。
FIG. 1 shows a thermoelectric generator according to the present invention applied to an exhaust system of an automobile. In FIG. 1, reference numeral 1 denotes a thermoelectric generator, which integrates an integrated unit 7 into a high-temperature unit discharged from an internal combustion engine. It is configured to be mounted on a cylindrical body 2 having a flow path through which a medium (exhaust gas) flows. An upstream cone 4 having a flange 3 is provided at one end of the cylindrical body 2, and a downstream cone 6 having a flange 5 is provided at the other end of the cylindrical body 2. Then, the flange 3 is connected to an upstream exhaust pipe (not shown), and the flange 5 is connected to a downstream exhaust pipe (not shown), so that the high-temperature medium (exhaust gas) discharged from the internal combustion engine flows from the upstream cone 4 to the cylindrical body 2. And discharged from the downstream cone 6.

【0034】前記筒体2の平面部には後述する一体型ユ
ニット7が複数適宜間隔を有して配設され、該複数の一
体型ユニット7は夫々ボルト8などにより筒体2に装着
されている。前記各一体型ユニット7には後述する低温
側部材9を有し、該各低温側部材9は冷却パイプ10で
連通され、該冷却パイプ10を通じて各低温側部材9内
に低温媒体、例えばエンジンの冷却水を流すことによ
り、低温側部材9が冷却されるようになっている。な
お、この冷却パイプ10の連通経路は任意である。
A plurality of integral units 7 to be described later are disposed on the flat portion of the cylinder 2 at appropriate intervals, and the plurality of integral units 7 are mounted on the cylinder 2 by bolts 8 or the like. I have. Each of the integrated units 7 has a low-temperature-side member 9 described below, and each of the low-temperature-side members 9 is communicated with a cooling pipe 10. By flowing the cooling water, the low temperature side member 9 is cooled. The communication path of the cooling pipe 10 is arbitrary.

【0035】また、図1においては、前記一体型ユニッ
ト7は筒体2の対向する平面部(図1において筒体2の
表面側と下面側)に設けられているが、図3に示すよう
に片面側のみ装着してもよい。
In FIG. 1, the integrated unit 7 is provided on the opposing flat surface of the cylindrical body 2 (the front side and the lower side of the cylindrical body 2 in FIG. 1), as shown in FIG. May be attached to only one side.

【0036】前記一体型ユニット7の第1実施例につい
て図2により説明する。
A first embodiment of the integrated unit 7 will be described with reference to FIG.

【0037】図2において一体型ユニット7は、熱電変
換モジュール11と、該熱電変換モジュール11の一面
に接触固定して配置した低温側部材9と、熱電変換モジ
ュール11の他面に接触固定して配置した高温側部材1
2とからなる。
In FIG. 2, the integrated unit 7 comprises a thermoelectric conversion module 11, a low-temperature side member 9 arranged in contact with and fixed to one surface of the thermoelectric conversion module 11, and a thermoelectric conversion module 11 in contact with and fixed to the other surface of the thermoelectric conversion module 11. High temperature side member 1 placed
Consists of two.

【0038】図2に示す実施例は、その熱電変換モジュ
ール11として図2(b)に示すような、P型半導体及
びN型半導体からなる熱電素子13を所望数並設すると
ともに電極13a間を絶縁基盤13bで絶縁して構成さ
れているタイプを使用した場合である。
In the embodiment shown in FIG. 2, a desired number of thermoelectric elements 13 composed of a P-type semiconductor and an N-type semiconductor as shown in FIG. This is the case where a type insulated by the insulating base 13b is used.

【0039】前記低温側部材9内は櫛状に形成されて、
この櫛間に低温媒体通路16が形成され、該低温媒体通
路16に、前記のように冷却パイプ10によって冷却水
等の低温媒体を流通させることにより、低温側部材9が
冷却されるようになっている。該低温側部材9の材質
は、アルミニウム製とし、その熱電変換モジュール11
との固着面側に、電気絶縁性をもたせるためにアルマイ
ト処理を施して図2(a)(c)に示すように電気絶縁
層14が形成されている。この電気絶縁層14は低温側
部材9に含まれる。
The inside of the low temperature side member 9 is formed in a comb shape.
A low-temperature medium passage 16 is formed between the combs. The low-temperature medium member 16 is cooled by flowing a low-temperature medium such as cooling water through the cooling pipe 10 through the low-temperature medium passage 16 as described above. ing. The material of the low temperature side member 9 is made of aluminum, and the thermoelectric conversion module 11 is made of aluminum.
2 (a) and 2 (c), the electrical insulating layer 14 is formed by applying an alumite treatment on the side of the fixing surface to provide electrical insulation. The electric insulating layer 14 is included in the low-temperature side member 9.

【0040】前記高温側部材12は平板で形成され、該
高温側部材12における前記熱電変換モジュール11と
反対側の面には櫛状の集熱フィン17が一体形成されて
おり、該集熱フィン17により熱を効率よく高温側部材
12に吸収するようになっている。また、該高温側部材
12と集熱フィン17はステンレス材で一体形成され、
高温側部材12における熱電変換モジュール11との固
着面側には、該面での電気絶縁性をもたせるために電気
絶縁処理が施されて図2(a)(c)に示すように電気
絶縁層15が形成されている。この電気絶縁層15は高
温側部材12に含まれる。
The high temperature side member 12 is formed of a flat plate, and a comb-shaped heat collecting fin 17 is integrally formed on a surface of the high temperature side member 12 opposite to the thermoelectric conversion module 11. 17 allows heat to be efficiently absorbed by the high temperature side member 12. The high temperature side member 12 and the heat collecting fins 17 are integrally formed of stainless steel,
The surface of the high-temperature side member 12 on which the thermoelectric conversion module 11 is fixed is subjected to an electrical insulation treatment so as to provide electrical insulation on the surface, and an electrical insulation layer is formed as shown in FIGS. 15 are formed. The electric insulating layer 15 is included in the high temperature side member 12.

【0041】前記低温側部材9における熱電モジュール
11と接触させる面は、熱電モジュール11の低温側面
の全域にわたる大きさの面に形成されている。また、高
温側部材12は熱電変換モジュール11の高温側面の全
域よりも大きく形成されて、熱電変換モジュール11の
高温側面の全域に接触する面と、該面より側方へ突出し
た取付部12aとからなり、該取付部12aに取付穴1
8が形成されている。
The surface of the low-temperature side member 9 to be brought into contact with the thermoelectric module 11 is formed over the entire low-temperature side surface of the thermoelectric module 11. The high-temperature side member 12 is formed to be larger than the entire high-temperature side surface of the thermoelectric conversion module 11, and has a surface that contacts the entire high-temperature side surface of the thermoelectric conversion module 11, and a mounting portion 12 a protruding laterally from the surface. And a mounting hole 1 in the mounting portion 12a.
8 are formed.

【0042】前記低温側部材9、より詳しくは電気絶縁
層14の面は熱電変換モジュール11の低温側面に接触
配置され、これら相互が接触する接触部19は、図2
(c)に示すように、その熱電変換モジュール11の電
極13a部のみにおいて低温はんだ付けや、ロー付け
や、接着などによる接合材(接着剤)19aで密着固定
(剛結合)されている。
The surface of the low-temperature side member 9, more specifically, the surface of the electrical insulating layer 14 is disposed in contact with the low-temperature side surface of the thermoelectric conversion module 11, and the contact portions 19 that come into contact with each other are shown in FIG.
As shown in (c), only the electrode 13a of the thermoelectric conversion module 11 is tightly fixed (rigidly bonded) with a bonding material (adhesive) 19a by low-temperature soldering, brazing, bonding or the like.

【0043】前記の低温ハンダ付けは、例えば、すず−
鉛系合金はんだなどの低温用の接合剤(接合材)を使用
し、また、ロー付けは、例えば銀ろう、銅ろう、ニッケ
ルろうの接合剤(接合材)を使用し、更にアルミナ接着
剤などの電気絶縁性接着剤を使用する。
The low-temperature soldering is performed, for example, by using tin-
Uses a low-temperature bonding agent (joining material) such as lead-based alloy solder. For brazing, use a silver brazing, copper brazing or nickel brazing bonding agent (joining material), and further use an alumina adhesive or the like. Use an electrically insulating adhesive.

【0044】前記のような接合により、熱電変換モジュ
ール11の電極13aと接合剤19aが密着し、該接合
剤19aと電気絶縁層14が密着し、更に該電気絶縁層
14と低温側部材9が密着して、熱電変換モジュール1
1と低温側部材9が接合剤19aを介して全域にわたっ
て相互に密着された状態となる。すなわち、隣接する電
極13a相互の間隔は極めて少ないため、熱電変換モジ
ュール11と低温側部材9の相互は、全域にわたって、
略全面において密着された状態になり、これらの間での
熱伝導効率が高くなる。また、隣接する電極13a間も
絶縁される。
By the above-described bonding, the electrode 13a of the thermoelectric conversion module 11 and the bonding agent 19a are in close contact, the bonding agent 19a is in close contact with the electric insulating layer 14, and the electric insulating layer 14 and the low-temperature side member 9 are in contact with each other. Close contact, thermoelectric conversion module 1
1 and the low temperature side member 9 are brought into close contact with each other over the entire area via the bonding agent 19a. That is, since the interval between the adjacent electrodes 13a is extremely small, the mutual between the thermoelectric conversion module 11 and the low-temperature side member 9 is
Almost all surfaces are in close contact with each other, and the heat transfer efficiency between them is increased. Further, the space between the adjacent electrodes 13a is also insulated.

【0045】また、前記の高温側部材12、より詳しく
は電気絶縁層15の面は熱電変換モジュール11の高温
側面に接触配置され、これら相互が接触する接触部20
も、図2(c)に示すように、熱電変換モジュール11
の電極13a部のみにおいて、前記と同様の材料による
低温はんだ付けや、ロー付けや、接着などによる接合材
(接着剤)20aで密着固定(剛結合)されている。
The surface of the high-temperature side member 12, more specifically, the surface of the electrical insulating layer 15 is arranged in contact with the high-temperature side surface of the thermoelectric conversion module 11, and these contact portions 20 contact each other.
Also, as shown in FIG. 2C, the thermoelectric conversion module 11
Only the electrode 13a is tightly fixed (rigidly bonded) with a bonding material (adhesive) 20a by low-temperature soldering, brazing, bonding, or the like using the same material as described above.

【0046】前記のような接合により、熱電変換モジュ
ール11の電極13aと接合剤20aが密着し、該接合
剤20aと電気絶縁層15が密着し、更に、該電気絶縁
層15と高温側部材12が密着して、熱電変換モジュー
ル11と高温側部材12が接合剤20aを介して全域に
わたって相互に密着された状態になる。すなわち、隣接
する電極13a相互の間隔は極めて少ないため、熱電変
換モジュール11と高温側部材12の相互は全域にわた
って略全面において密着された状態になり、これらの間
での熱伝導効率が高くなる。また、隣接する電極13a
間も絶縁される。
By the above-described bonding, the electrode 13a of the thermoelectric conversion module 11 and the bonding agent 20a come into close contact with each other, the bonding agent 20a comes into close contact with the electric insulating layer 15, and the electric insulating layer 15 and the high-temperature side member 12 Are brought into close contact, and the thermoelectric conversion module 11 and the high-temperature side member 12 are brought into close contact with each other over the entire area via the bonding agent 20a. That is, since the interval between the adjacent electrodes 13a is extremely small, the thermoelectric conversion module 11 and the high-temperature-side member 12 are in close contact with each other over substantially the entire area, and the heat conduction efficiency therebetween is increased. In addition, the adjacent electrode 13a
It is insulated between them.

【0047】以上のように、熱電変換モジュール11に
対して低温側部材9及び高温側部材12を接合面全域に
わたって接合剤19a,20aで密着固定したので、そ
の接合面(接触部)全域が強固に密着接合され、これら
の部材の熱歪による前記の接合部(接触部)の密着不良
が発生することを防止できる。
As described above, since the low-temperature side member 9 and the high-temperature side member 12 are tightly fixed to the thermoelectric conversion module 11 with the bonding agents 19a and 20a over the entire bonding surface, the entire bonding surface (contact portion) is firm. To prevent the occurrence of poor adhesion at the joint (contact portion) due to thermal strain of these members.

【0048】前記の実施例では、高温側部材12と低温
側部材9を共に熱電変換モジュール11に密着固定した
が、高温側部材12と低温側部材9との温度差が著しく
大きく両者の熱膨脹量の差が著しく大きい場合には、熱
電変換モジュール11に対して、高温側部材12と低温
側部材9のどちらか一方のみ固着させ、他方は固着せず
に接触させる構造にするとよい。このように、一方を固
着せずに接触させただけにすることで、この固着しない
側の部材間が相互にスライド可能になり、高温側部材1
2と低温側部材9との熱膨脹量の差が吸着され、熱電変
換モジュール11の変形を防止することができる。
In the above embodiment, both the high temperature side member 12 and the low temperature side member 9 are fixed to the thermoelectric conversion module 11 in close contact. However, the temperature difference between the high temperature side member 12 and the low temperature side member 9 is remarkably large and the thermal expansion amount of both members is large. When the difference is extremely large, only one of the high temperature side member 12 and the low temperature side member 9 may be fixed to the thermoelectric conversion module 11 and the other may be contacted without being fixed. In this way, by simply contacting one side without fixing, the members on the non-fixed side can slide relative to each other, and the high-temperature side member 1 can be slid.
The difference in the amount of thermal expansion between the low temperature side member 9 and the low temperature side member 9 is adsorbed, and the deformation of the thermoelectric conversion module 11 can be prevented.

【0049】前記のように構成された一体型ユニット7
は、図3に示すように前記筒体2に装着される。すなわ
ち図3に示すように、一体型ユニット7における高温側
部材12に形成した集熱フィン17を、筒体2の開口部
側から筒体2の高温媒体通路21に挿入し、高温側部材
12の取付部12aを筒体2の表面に載置し、取付部1
2aに形成した取付穴18を通じてボルト8により高温
側部材12を筒体2に装着する。これにより、高温側部
材12が、内部に高温媒体が流れる筒体2の一部を形成
する。なお、この装着構造において、前記取付穴18の
内径を前記のボルト8の外径よりも大きくして、筒体2
と高温側部材12とが相対的にスライド可能なフローテ
ィング構造にすると、筒体2と高温側部材12との熱歪
(熱膨脹差)が吸収され、高温側部材12と筒体2の熱
変形を防止できる。
The integrated unit 7 configured as described above
Is mounted on the cylindrical body 2 as shown in FIG. That is, as shown in FIG. 3, the heat collecting fins 17 formed on the high temperature side member 12 of the integrated unit 7 are inserted into the high temperature medium passage 21 of the cylinder 2 from the opening side of the cylinder 2, and Is mounted on the surface of the cylindrical body 2, and the mounting portion 1
The high temperature side member 12 is mounted on the cylindrical body 2 with the bolt 8 through the mounting hole 18 formed in 2a. Thereby, the high temperature side member 12 forms a part of the cylindrical body 2 in which the high temperature medium flows. In this mounting structure, the inner diameter of the mounting hole 18 is made larger than the outer diameter of the bolt 8 so that the cylindrical body 2
When the floating structure in which the high temperature side member 12 and the high temperature side member 12 are relatively slidable is formed, thermal distortion (difference in thermal expansion) between the cylindrical body 2 and the high temperature side member 12 is absorbed, and thermal deformation of the high temperature side member 12 and the cylindrical body 2 is prevented. Can be prevented.

【0050】以上のように、一体型ユニット7を筒体2
に装着した構造において、筒体2内の高温媒体通路21
内に高温媒体である排気ガスが流れると、その熱が集熱
フィン17で収熱されて高温側部材12に伝熱し、熱電
変換モジュール11の高温側面(接触部20)が加熱さ
れる。一方、低温側部材9の低温媒体通路16には前記
のように冷却媒体が流れて熱電変換モジュール11の低
温側面(接触部19)が冷却される。これにより、熱電
変換モジュール11の高温側面と低温側面との間に温度
差が生じて、熱電素子13に電圧が生じ(ゼーベック効
果)、熱起電力が発生して発電される。
As described above, the integrated unit 7 is
High temperature medium passage 21 in the cylinder 2
When the exhaust gas, which is a high-temperature medium, flows into the inside, the heat is collected by the heat collecting fins 17 and transferred to the high-temperature side member 12, and the high-temperature side surface (contact portion 20) of the thermoelectric conversion module 11 is heated. On the other hand, the cooling medium flows through the low-temperature medium passage 16 of the low-temperature side member 9 as described above, and the low-temperature side surface (contact portion 19) of the thermoelectric conversion module 11 is cooled. As a result, a temperature difference occurs between the high-temperature side surface and the low-temperature side surface of the thermoelectric conversion module 11, a voltage is generated in the thermoelectric element 13 (Seebeck effect), and a thermoelectromotive force is generated to generate power.

【0051】このとき、本発明においては、前記のよう
に、高温側部材12と低温側部材9が熱電変換モジュー
ル11に全域で、かつ略全面にわたって密着しているこ
とにより、熱伝導効率が高くなり、発電効率が高くな
る。
At this time, in the present invention, as described above, the high-temperature side member 12 and the low-temperature side member 9 are in close contact with the thermoelectric conversion module 11 over the entire area and almost the entire surface, so that the heat conduction efficiency is high. Power generation efficiency is increased.

【0052】前記筒体2に排気ガスを流通させて熱電変
換モジュールの出力について実験したところ、前記従来
のように熱電変換モジュールをボルトの締結によって挟
持するものにおいては、図23に示すAの特性であった
が、本発明のように接合剤で固定したものにおいては、
図23に示すBの特性が得られた。この結果からも本発
明においては、従来のものに比べて発電効力が高いこと
が分かる。
An experiment was conducted on the output of the thermoelectric conversion module by flowing exhaust gas through the cylindrical body 2. In the case of the conventional thermoelectric conversion module in which the thermoelectric conversion module was clamped by bolts, the characteristic shown in FIG. However, in those fixed with a bonding agent as in the present invention,
The characteristic B shown in FIG. 23 was obtained. These results also show that the present invention has higher power generation efficiency than the conventional one.

【0053】更に、本発明においては、高温側部材12
を後述する筒体2に、ボルト等で装着する際のメンテナ
ンス性が向上する。
Further, in the present invention, the high temperature side member 12
Can be improved when bolts or the like are attached to the cylinder 2 described below.

【0054】図4は第2実施例を示す。本第2実施例
は、熱電変換モジュール11として前記図2(b)のタ
イプを使用する場合における低温側部材9と高温側部材
12の他の例を示す。すなわち、低温側部材9と高温側
部材12を夫々電気絶縁性のある、例えば窒化アルミで
形成し、これらを前記図2(b)に示す熱電変換モジュ
ール11に接触部19,20で前記と同様に全面接着し
たものである。すなわち、図2(c)における電気絶縁
層14,15がない状態で前記の接合剤19a,20a
により接合したものである。その他の構造は前記第1実
施例と同様である。この実施例においても前記と同様の
効果を奏する。
FIG. 4 shows a second embodiment. The second embodiment shows another example of the low-temperature side member 9 and the high-temperature side member 12 when the type shown in FIG. 2B is used as the thermoelectric conversion module 11. That is, the low-temperature side member 9 and the high-temperature side member 12 are each formed of an electrically insulating material, for example, aluminum nitride, and are formed on the thermoelectric conversion module 11 shown in FIG. The whole surface is adhered. That is, the bonding agents 19a and 20a are formed without the electric insulating layers 14 and 15 in FIG.
Are joined together. Other structures are the same as in the first embodiment. This embodiment also has the same effect as described above.

【0055】図5は第3実施例を示す。本第3実施例
は、熱電変換モジュール11として前記図2(b)のタ
イプを使用する場合における低温側部材9と高温側部材
12の更に他の例を示すもので、すなわち、低温側部材
9の接合面と熱電変換モジュール11の接合面との間及
び高温側部材12の接合面と熱電変換モジュール11の
接合面との間にアルミナ絶縁板、ポリイミドシートなど
の絶縁シートや窒化アルミニウム板などからなる絶縁部
材14A,15Aを介在させ、各々の接合面を全域にわ
たって接合剤を介して固着(剛結合)したものである。
すなわち、図5(b)に示すように、絶縁部材14A,
15Aにおける電極13aに位置する部分にメタライズ
層14A′,15A′を設け、該メタライズ層14
A′,15A′と電極13aとを低温はんだ付けや、ロ
ー付けや、接着などの接合剤19a,20aで接着し、
また、絶縁部材14Aと低温側部材9および絶縁部材1
5Aと高温側部材12を低温はんだ付けや、ロー付け
や、接着などによる接合剤19b,20bで全面接着し
たものである。本実施例においても前記第1実施例と同
様の効果を有するとともに、低温側部材9と高温側部材
12において、前記のようなアルマイト処理や電気絶縁
処理を施すことなく高温側部材並びに低温側部材として
非絶縁性の材質を使用することができる。
FIG. 5 shows a third embodiment. The third embodiment shows still another example of the low-temperature side member 9 and the high-temperature side member 12 when the type shown in FIG. 2B is used as the thermoelectric conversion module 11, that is, the low-temperature side member 9. Between the joint surface of the thermoelectric conversion module 11 and the joint surface of the high-temperature side member 12 and the joint surface of the thermoelectric conversion module 11 from an insulating sheet such as an alumina insulating plate, a polyimide sheet, or an aluminum nitride plate. Insulating members 14A and 15A are interposed, and the respective joining surfaces are fixed (rigidly connected) via a bonding agent over the entire area.
That is, as shown in FIG.
Metallized layers 14A 'and 15A' are provided at portions of the metallized layers 14A 'and 15A'
A ', 15A' and the electrode 13a are bonded with bonding agents 19a, 20a such as low-temperature soldering, brazing, bonding, etc.
Further, the insulating member 14A, the low temperature side member 9 and the insulating member 1
5A and the high-temperature side member 12 are bonded together by bonding agents 19b, 20b by low-temperature soldering, brazing, bonding or the like. In this embodiment, the same effects as those of the first embodiment are obtained, and the high-temperature side member and the low-temperature side member are not subjected to the alumite treatment or the electric insulation treatment in the low-temperature side member 9 and the high-temperature side member 12 as described above. A non-insulating material can be used.

【0056】図6は第4実施例を示す。本第4実施例
は、熱電変換モジュール11として、図6(b)に示す
ようなP型半導体及びN型半導体からなる熱電素子13
を所望数並設するとともに電極13aの外面に絶縁基盤
13cを接着して設けて構成されているタイプを使用し
た場合における低温側部材9と高温側部材12の実施例
を示す。このようなタイプの熱電変換モジュール11
は、その両面が既に絶縁基盤13cで絶縁されているた
め、図6に示す本第4実施例では、低温側部材9と高温
側部材12を絶縁処理を施さない非絶縁性の材料で形成
したものである。また、熱電変換モジュール11に対す
る低温側部材9及び高温側部材12の接触部19,20
は前記と同様に、低温はんだ付け、ロー付け、接着など
の接合剤で全面接着されている。その他の構造は前記第
1実施例と同様である。この実施例においても前記第1
実施例と同様の効果を有するとともに低温側部材9と高
温側部材12に絶縁処理を施す必要はなく、また前記の
絶縁部材14A,15Aも必要としない。
FIG. 6 shows a fourth embodiment. In the fourth embodiment, a thermoelectric element 13 made of a P-type semiconductor and an N-type semiconductor as shown in FIG.
An example of the low-temperature side member 9 and the high-temperature side member 12 in the case where a type in which a desired number of are arranged and an insulating substrate 13c is provided by bonding the insulating substrate 13c to the outer surface of the electrode 13a is used. Thermoelectric conversion module 11 of this type
In the fourth embodiment shown in FIG. 6, the low-temperature side member 9 and the high-temperature side member 12 are formed of a non-insulating material that is not subjected to an insulation treatment because both surfaces are already insulated by the insulating base 13c. Things. Also, contact portions 19 and 20 of the low-temperature member 9 and the high-temperature member 12 with the thermoelectric conversion module 11.
Are bonded together with a bonding agent such as low-temperature soldering, brazing, or bonding in the same manner as described above. Other structures are the same as in the first embodiment. Also in this embodiment, the first
It has the same effect as the embodiment, and it is not necessary to perform insulation treatment on the low-temperature side member 9 and the high-temperature side member 12, and the insulating members 14A and 15A are not required.

【0057】図7は第5実施例を示す。本第5実施例
は、熱電変換モジュール11として、図7(b)に示す
ようなP型半導体及びN型半導体からなる熱電素子13
を所望数並設するとともに一方の面に絶縁基盤13cを
接着して設け、他方の面には絶縁基盤が設けられていな
いタイプを使用する場合における低温側部材9と高温側
部材12の実施例を示す。このようなタイプの熱電変換
モジュール11を使用する場合は、その絶縁基盤13b
を有しない側にポリイミドシートやアルミナ絶縁板や窒
化アルミニウム板などの絶縁部材14Bを介在して低温
側部材9又は高温側部材12を配置する。そして、この
熱電変換モジュール11における絶縁基盤13cを有し
ない側においては、前記図2(c)に示すような接着に
より、低温側部材9または高温側部材12と固着し、ま
た、熱電変換モジュール11における絶縁基盤13cを
有する側においては、前記図5(b)に示すような接着
により高温側部材12または低温側部材9と固着する。
その他の構造は前記第1実施例と同様である。この実施
例においても前記第1実施例と同様の効果を有するとと
もに低温側部材9及び高温側部材12に前記のような絶
縁処理を施す必要はなく、非絶縁性の材料を使用するこ
とができる。
FIG. 7 shows a fifth embodiment. In the fifth embodiment, a thermoelectric element 13 made of a P-type semiconductor and an N-type semiconductor as shown in FIG.
Of the low-temperature side member 9 and the high-temperature side member 12 in the case of using a type in which a desired number is arranged side by side and an insulating base 13c is provided on one side by bonding and an insulating base is not provided on the other side. Is shown. When using the thermoelectric conversion module 11 of this type, the insulating substrate 13b
The low-temperature-side member 9 or the high-temperature-side member 12 is disposed on the side not having the above through an insulating member 14B such as a polyimide sheet, an alumina insulating plate, or an aluminum nitride plate. On the side of the thermoelectric conversion module 11 that does not have the insulating substrate 13c, the thermoelectric conversion module 11 is fixed to the low-temperature member 9 or the high-temperature member 12 by bonding as shown in FIG. On the side having the insulating substrate 13c, the member is fixed to the high-temperature member 12 or the low-temperature member 9 by bonding as shown in FIG.
Other structures are the same as in the first embodiment. This embodiment also has the same effect as the first embodiment, and it is not necessary to perform the above-described insulation treatment on the low-temperature member 9 and the high-temperature member 12, and a non-insulating material can be used. .

【0058】なお、図7に示す実施例において、低温側
部材9を窒化アルミニウムで形成し、絶縁部材14Bを
廃止してもよい。この絶縁部材14Bを廃止した側の接
合は、電極13a部において前記のように接合し、電極
間の絶縁を保持する。
In the embodiment shown in FIG. 7, the low-temperature side member 9 may be formed of aluminum nitride, and the insulating member 14B may be omitted. The joining on the side where the insulating member 14B is omitted is joined at the electrode 13a as described above, and the insulation between the electrodes is maintained.

【0059】図8は第6実施例を示す。本第8実施例
は、前記図2に示す実施例の一体型ユニット7における
高温側部材12と集熱フィン17とを別体で形成し、該
高温側部材12と集熱フィン17とをロー付け等により
固着したものである。このように、高温側部材12と集
熱フィン17とを別体に形成することにより、集熱フィ
ン17の設計自由度が向上する。
FIG. 8 shows a sixth embodiment. In the eighth embodiment, the high temperature side member 12 and the heat collecting fins 17 in the integrated unit 7 of the embodiment shown in FIG. It is fixed by attaching. In this way, by forming the high temperature side member 12 and the heat collecting fins 17 separately, the degree of freedom in designing the heat collecting fins 17 is improved.

【0060】その他の構造は、前記第1実施例と同様で
あるため、同一部分には前記と同一の符号を付してその
説明を省略する。
Since other structures are the same as those of the first embodiment, the same parts are denoted by the same reference numerals as those described above, and description thereof will be omitted.

【0061】本第2実施例の一体型ユニット7において
も前記と同様の作用、効果を発揮できる。なお、図4乃
至図7に示す実施例の高温側部材12も前記図8に示す
ように集熱フィン17を別体で形成してもよい。
The same operation and effect as described above can be achieved in the integrated unit 7 of the second embodiment. The heat collecting fins 17 may be formed separately from the high temperature side member 12 of the embodiment shown in FIGS. 4 to 7 as shown in FIG.

【0062】図9及び図10は前記の一体型ユニット7
の配列と集熱フィン17の配列の実施例を示す。
FIGS. 9 and 10 show the integrated unit 7.
And an example of the arrangement of the heat collecting fins 17 are shown.

【0063】図9の実施例は、前記の一体型ユニット7
を複数個、筒体2の内部を流れる高温媒体の流れ方向
(矢印方向)に略平行して配置して筒体に装着するとと
もに、各一体型ユニット7の集熱フィン17を、高温媒
体の流れ方向に対して傾斜して配列したものである。図
9の実施例では、一体型ユニット7が高温媒体の流れ方
向に4個配置されているとともに2列配置されている。
また、各集熱フィン17の傾斜方向は、隣接する集熱フ
ィン17に対して図9のように反対方向になっている。
The embodiment shown in FIG.
Are arranged substantially parallel to the flow direction (arrow direction) of the high-temperature medium flowing inside the cylindrical body 2 and mounted on the cylindrical bodies, and the heat collecting fins 17 of each integrated unit 7 are They are arranged obliquely to the flow direction. In the embodiment shown in FIG. 9, four integrated units 7 are arranged in the flow direction of the high-temperature medium and arranged in two rows.
Further, the inclination direction of each heat collecting fin 17 is opposite to the adjacent heat collecting fin 17 as shown in FIG.

【0064】図10の実施例は、集熱フィン17を、高
温側部材12の側端面12bと平行に形成した一体型ユ
ニット7を用い、この一体型ユニット7自体を高温媒体
の流れ方向(矢印方向)に対して傾斜して筒体2に装着
したものである。
The embodiment shown in FIG. 10 uses an integrated unit 7 in which the heat collecting fins 17 are formed in parallel with the side end surface 12b of the high-temperature member 12, and the integrated unit 7 itself is moved in the flow direction of the high-temperature medium (arrow). Direction) and attached to the cylinder 2.

【0065】この図9及び図10の実施例のように、集
熱フィン17を高温媒体の流れ方向(矢印方向)に対し
て傾斜して配置することにより、高温媒体からの集熱性
能が向上する。
As in the embodiment shown in FIGS. 9 and 10, the heat collecting fins 17 are arranged to be inclined with respect to the flow direction (the direction of the arrow) of the high-temperature medium, so that the performance of collecting heat from the high-temperature medium is improved. I do.

【0066】図11は前記一体型ユニット7における集
熱フィン17として、筒体2の上流部に配置される一体
型ユニット7Aにおいては耐熱性の高い集熱フィン17
Aを使用し、下流部に配置される一体型ユニット7Bに
おいては熱伝導性の高い集熱フィン17Bを使用したも
のである。
FIG. 11 shows the heat collecting fins 17 of the integrated unit 7 as the heat collecting fins 17 having high heat resistance in the integrated unit 7A arranged upstream of the cylindrical body 2.
A, the heat collecting fins 17B having high thermal conductivity are used in the integrated unit 7B disposed downstream.

【0067】すなわち、高温媒体が比較的高温である上
流部では、耐熱性の高い、例えばステンレス製の集熱フ
ィン17Aを配列し、比較的低温である下流部では、熱
伝導製の高い、例えばアルミニウム製の集熱フィン17
Bを配列する。このように、高温媒体の温度域に適した
集熱フィンを配列することにより、一体型ユニット7
A,7Bの耐久性の向上と、熱電変換モジュールの総合
出力の向上を図ることができる。
That is, the heat collecting fins 17A made of, for example, stainless steel having high heat resistance are arranged in the upstream portion where the high-temperature medium is relatively high temperature, and the heat collecting fins 17A made of high heat conductive material are formed in the downstream portion having relatively low temperature. Aluminum heat collecting fins 17
Arrange B. Thus, by arranging the heat collecting fins suitable for the temperature range of the high temperature medium, the integrated unit 7
It is possible to improve the durability of A and 7B and the overall output of the thermoelectric conversion module.

【0068】図12は、前記一体型ユニット7における
集熱フィン17として、筒体2の上流部に配置される一
体型ユニット7Cにおいては、その集熱フィン17Cを
粗に配置し、下流側に配置される一体型ユニット7Dに
おいては、その集熱フィン17Dを密に配置したもので
ある。すなわち、高温媒体が比較的高温である上流部で
は集熱フィン17Cのピッチを大きく設定して集熱性が
小さい集熱フィンとし、比較的低温である下流部では集
熱フィン17Dのピッチを小さく設定して集熱性が大き
い集熱フィンとし、高温媒体の温度域に適合した集熱フ
ィンとして、熱電変換モジュールの総合出力を向上させ
たものである。
FIG. 12 shows that the heat collecting fins 17C of the integrated unit 7 are arranged roughly in the integrated unit 7C arranged upstream of the cylindrical body 2, and the heat collecting fins 17C are arranged downstream. In the integrated unit 7D to be arranged, the heat collecting fins 17D are densely arranged. That is, the pitch of the heat collecting fins 17C is set to be large in the upstream portion where the high temperature medium is relatively high, and the heat collecting fin is set to be small in the downstream portion where the heat collecting property is small. As a result, the overall output of the thermoelectric conversion module is improved as a heat collecting fin having a large heat collecting property and a heat collecting fin adapted to the temperature range of the high-temperature medium.

【0069】なお、図示しないが、集熱フィン17のピ
ッチの大小に関係なく、集熱フィン17の高さを、上流
部では短くして集熱性の小さい集熱フィンとし、下流部
では長くして集熱性の大きい集熱フィンとし、高温媒体
の温度域に適合した集熱フィンとしてもよい。
Although not shown, regardless of the pitch of the heat collecting fins 17, the height of the heat collecting fins 17 is made shorter at the upstream portion to make the heat collecting fins small in heat collecting capability and longer at the downstream portion. The heat collecting fin may be a heat collecting fin having a large heat collecting property, and may be a heat collecting fin suitable for the temperature range of the high-temperature medium.

【0070】図13は前記の筒体2において、高温媒体
の流通方向と直交する方向の両側に断熱部22を設けた
ものである。
FIG. 13 shows a structure in which heat insulating portions 22 are provided on both sides in the direction perpendicular to the flowing direction of the high-temperature medium in the cylindrical body 2.

【0071】この断熱部22は、図13に示すように、
遮熱カバー23によって空隙24を形成してエアギャッ
プ構造とし、該空隙24で断熱を行う構造としてもよ
く、また、該空隙24内に断熱材を充填して形成しても
よい。また、図13の実施例では、一体型ユニット7が
2列に配置されているため、筒体2の中央部にも断熱部
22が設けられている。
As shown in FIG. 13, the heat insulating portion 22
A gap 24 may be formed by the heat shield cover 23 to form an air gap structure, and the gap 24 may be configured to provide heat insulation. Alternatively, the gap 24 may be filled with a heat insulating material. In the embodiment of FIG. 13, since the integrated units 7 are arranged in two rows, the heat insulating part 22 is also provided at the center of the cylindrical body 2.

【0072】このように断熱部22を設けることによ
り、筒体2内からの熱電素子側以外への放熱を抑え、発
電効率を向上させることができる。また、前記のような
空隙24に断熱材を充填すると、より一層発電効率が向
上する。
By providing the heat insulating portion 22 in this manner, heat radiation from inside the tubular body 2 to a portion other than the thermoelectric element side can be suppressed, and the power generation efficiency can be improved. Further, when the gap 24 is filled with a heat insulating material, the power generation efficiency is further improved.

【0073】図14は、前記一体型ユニット7における
高温側部材12を筒体2に固着せず、筒体2に対して摺
動可能に装置してフローティング構造としたものであ
る。
FIG. 14 shows a floating structure in which the high temperature side member 12 of the integrated unit 7 is not fixed to the cylinder 2 but is slidable with respect to the cylinder 2.

【0074】すなわち、図14(b)で拡大図示するよ
うに、一体型ユニット7における高温側部材12の端部
を筒体2の表面に摺動可能に載置し、押え付け板25の
一端部を前記高温側部材12の端部の表面に係止させ、
該押え付け板25を前記のボルト8により筒体2に止着
して、高温側部材12と筒体2とを、これらの熱膨脹差
によって相対的に摺動できるようにして、熱膨脹差によ
る変形を防止したものである。
That is, as shown in an enlarged view in FIG. 14B, the end of the high-temperature side member 12 of the integrated unit 7 is slidably mounted on the surface of the cylindrical body 2, and one end of the pressing plate 25. Part is locked to the surface of the end of the high temperature side member 12,
The holding plate 25 is fixed to the cylinder 2 by the bolt 8 so that the high-temperature side member 12 and the cylinder 2 can be relatively slid by the difference in thermal expansion between them, so that the deformation due to the difference in thermal expansion. Is prevented.

【0075】図15は前記の筒体2と、該筒体2に対す
る前記一体型ユニット7の搭載の他の例を示すものであ
る。
FIG. 15 shows another example of the cylinder 2 and mounting of the integrated unit 7 on the cylinder 2.

【0076】すなわち、筒体2の横断面形状を略正方形
に形成し、その筒体2の四面に、夫々前記の一体型ユニ
ット7を装着したものである。
That is, the cross-sectional shape of the cylindrical body 2 is formed to be substantially square, and the above-mentioned integrated unit 7 is mounted on each of the four surfaces of the cylindrical body 2.

【0077】なお、この搭載例に限定することなく、高
温側部材12の形状、一体型ユニット7の搭載位置及び
数は任意である。
It should be noted that the shape of the high-temperature side member 12, the mounting position and the number of the integrated units 7 are arbitrary, without being limited to this mounting example.

【0078】図16は一体型ユニット7の配列の他の例
を示す。
FIG. 16 shows another example of the arrangement of the integrated units 7.

【0079】前記図9乃至図12は、一体型ユニット7
を2列×4列配置したが、この図16に示すものは一体
型ユニット7を3列×6列配置したものである。
FIGS. 9 to 12 show an integrated unit 7.
Are arranged in 2 rows × 4 rows, however, the one shown in FIG. 16 has the integrated units 7 arranged in 3 rows × 6 rows.

【0080】このように、一体型ユニット7の列数は一
定に限るものではなく、列数は一体型ユニット7及び筒
体2の大きさに応じて任意に設定するものである。
As described above, the number of rows of the integrated unit 7 is not limited to a fixed number, and the number of rows is arbitrarily set according to the sizes of the integrated unit 7 and the cylinder 2.

【0081】図17は、前記の一体型ユニット7の1個
の形状を、筒体2の幅と略同等の長さを有する長方形に
形成して、高温媒体の流れ方向に4列装着したものであ
る。この長方形の大きさ、個数、向きは図17のものに
限定するものではなく、任意に設定するものである。
FIG. 17 shows a single unit 7 formed in a rectangular shape having a length substantially equal to the width of the cylindrical body 2 and mounted in four rows in the flow direction of the high-temperature medium. It is. The size, number, and orientation of the rectangles are not limited to those shown in FIG. 17, but may be set arbitrarily.

【0082】図18は、前記の一体型ユニット7を自動
車の排気管26に搭載した実施例を示す。
FIG. 18 shows an embodiment in which the integrated unit 7 is mounted on an exhaust pipe 26 of an automobile.

【0083】排気管26は金属製の断面円形の管であ
り、途中に触媒27及び消音器28が接続されている。
本実施例では、触媒27の後流位置に前記一体型ユニッ
ト7と同様の一体型ユニット7Eが搭載され、消音器2
8の前方位置に前記一体型ユニット7と同様の一体型ユ
ニット7Fが搭載されている。
The exhaust pipe 26 is a metal pipe having a circular cross section, and a catalyst 27 and a muffler 28 are connected on the way.
In the present embodiment, an integrated unit 7E similar to the integrated unit 7 is mounted downstream of the catalyst 27,
An integrated unit 7F similar to the integrated unit 7 is mounted at a front position of the unit 8.

【0084】前記のように一体型ユニット7E,7Fを
排気管26に搭載するには、例えば図19に示すように
排気管26に膨出座29を形成して一体型ユニット7E
を装着したり、また、図20に示すように排気管26に
つぶし座30を形成して一体型ユニット7Fを装着す
る。
To mount the integrated units 7E and 7F on the exhaust pipe 26 as described above, for example, as shown in FIG.
20. Also, as shown in FIG. 20, the crush seat 30 is formed in the exhaust pipe 26, and the integrated unit 7F is mounted.

【0085】このように前記の一体型ユニット7を排気
管26に直接装着しても前記と同様に発電することがで
きる。
As described above, even when the integrated unit 7 is directly mounted on the exhaust pipe 26, power can be generated in the same manner as described above.

【0086】なお、排気ガスが比較的高温となる部分に
配置される一体型ユニット7Eにおいては、Si−Te
系の熱電素子(使用域600℃以上)を使用し、排気ガ
スが比較的低温となる部分の一体型ユニット7Fにおい
ては、Zn−Te系の熱電素子(使用域200〜600
℃)を使用する。
In the integrated unit 7E disposed in a portion where the exhaust gas becomes relatively hot, the Si-Te
In the integrated unit 7F in which the exhaust gas is at a relatively low temperature, a Zn-Te-based thermoelectric element (operating range of 200 to 600 ° C.) is used.
° C).

【0087】また、図示しないが、前記の低温側部材を
フィン式にしてもよい。
Although not shown, the low-temperature side member may be a fin type.

【0088】[0088]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱電発電装置を示す斜視図。FIG. 1 is a perspective view showing a thermoelectric generator of the present invention.

【図2】(a)は本発明の熱電発電装置における一体型
ユニットの第1実施例を示す縦断面図、(b)は(a)
に使用される熱電変換モジュールのタイプを示す図、
(c)は熱電変換モジュールに対する低温側部材と高温
側部材の接合を示す拡大断面図。
FIG. 2 (a) is a longitudinal sectional view showing a first embodiment of an integrated unit in the thermoelectric generator of the present invention, and FIG. 2 (b) is (a)
Diagram showing the type of thermoelectric conversion module used for
(C) is an enlarged sectional view showing the joining of the low-temperature member and the high-temperature member to the thermoelectric conversion module.

【図3】図2の一体型ユニットを筒体に装着した状態を
示す縦断面図。
FIG. 3 is a longitudinal sectional view showing a state where the integrated unit of FIG. 2 is mounted on a cylindrical body.

【図4】本発明の一体型ユニットの第2実施例を示す縦
断面図。
FIG. 4 is a longitudinal sectional view showing a second embodiment of the integrated unit of the present invention.

【図5】本発明の一体型ユニットの第3実施例を示すも
ので、(a)は縦断面図、(b)は熱電変換モジュール
に対する低温側部材と高温側部材の接合を示す拡大断面
図。
5A and 5B show a third embodiment of the integrated unit according to the present invention, wherein FIG. 5A is a longitudinal sectional view, and FIG. 5B is an enlarged sectional view showing the joining of a low-temperature member and a high-temperature member to the thermoelectric conversion module. .

【図6】(a)は本発明の一体型ユニットの第4実施例
を示す縦断面図、(b)は(a)に使用される熱電変換
モジュールのタイプを示す図。
FIG. 6A is a longitudinal sectional view showing a fourth embodiment of the integrated unit according to the present invention, and FIG. 6B is a view showing the type of the thermoelectric conversion module used in FIG.

【図7】(a)は本発明の一体型ユニットの第5実施例
を示す縦断面図、(b)は(a)に使用される熱電変換
モジュールのタイプを示す図。
7A is a longitudinal sectional view showing a fifth embodiment of the integrated unit according to the present invention, and FIG. 7B is a view showing the type of the thermoelectric conversion module used in FIG.

【図8】本発明の一体型ユニットの第6実施例であって
筒体に装着した状態を示す縦断面図。
FIG. 8 is a longitudinal sectional view showing a state in which the integrated unit according to the sixth embodiment of the present invention is mounted on a cylindrical body.

【図9】本発明の一体型ユニットの配列状態の例を示す
図。
FIG. 9 is a view showing an example of an arrangement state of the integrated units of the present invention.

【図10】本発明の一体型ユニットの配列状態の他の例
を示す図。
FIG. 10 is a view showing another example of the arrangement of the integrated units according to the present invention.

【図11】本発明における一体型ユニットの他の配列状
態を示すもので、上流部に耐熱性の高い集熱フィンを配
置し、下流部に熱伝導性の高い集熱フィンを配置した実
施例を示す図。
FIG. 11 shows another arrangement state of the integrated unit according to the present invention, in which a heat collecting fin having high heat resistance is arranged at an upstream portion and a heat collecting fin having high heat conductivity is arranged at a downstream portion. FIG.

【図12】本発明における一体型ユニットの他の配列状
態を示すもので、上流部に粗の集熱フィンを配置し、下
流部に密の集熱フィンを配置した実施例を示す図。
FIG. 12 is a view showing another arrangement state of the integrated unit according to the present invention, showing an embodiment in which coarse heat collecting fins are arranged in an upstream portion and dense heat collecting fins are arranged in a downstream portion.

【図13】本発明において、断熱部を設けた実施例を示
す断面図。
FIG. 13 is a sectional view showing an embodiment in which a heat insulating portion is provided in the present invention.

【図14】本発明において、高温側部材をフローティン
グ構造で筒体に取り付けた実施例を示すもので、(a)
は断面図、(b)は(a)における取付部の拡大断面
図。
14A and 14B show an embodiment in which the high temperature side member is attached to a cylindrical body by a floating structure in the present invention, and FIG.
FIG. 2 is a cross-sectional view, and FIG.

【図15】本発明において、筒体を略正方形の断面と
し、この四面に一体型ユニットを配置した実施例を示す
断面図。
FIG. 15 is a cross-sectional view showing an embodiment in which the cylindrical body has a substantially square cross section and an integrated unit is arranged on the four sides in the present invention.

【図16】本発明において、一体型ユニットの更に他の
配列状態を示す図。
FIG. 16 is a view showing still another arrangement state of the integrated unit in the present invention.

【図17】本発明において、一体型ユニットの更に他の
配列状態を示す図。
FIG. 17 is a view showing still another arrangement state of the integrated unit in the present invention.

【図18】本発明の装置を自動車の排気管に装着した実
施例を示す図。
FIG. 18 is a view showing an embodiment in which the device of the present invention is mounted on an exhaust pipe of an automobile.

【図19】図18におけるA−A線断面図で、排気管に
対する一体型ユニットの装着方法の一例を示す図。
FIG. 19 is a sectional view taken along line AA in FIG. 18, showing an example of a method of mounting the integrated unit on the exhaust pipe.

【図20】図18におけるB−B線断面図で、排気管に
対する一体型ユニットの装着方法の他の例を示す図。
20 is a sectional view taken along the line BB in FIG. 18, showing another example of a method of mounting the integrated unit on the exhaust pipe.

【図21】従来の熱電発電装置を示す断面図。FIG. 21 is a sectional view showing a conventional thermoelectric generator.

【図22】他の従来の熱電発電装置を示す断面図。FIG. 22 is a sectional view showing another conventional thermoelectric generator.

【図23】本発明と従来の技術による熱電変換モジュー
ルの出力特性を示す図。
FIG. 23 is a diagram showing output characteristics of a thermoelectric conversion module according to the present invention and a conventional technique.

【符号の説明】[Explanation of symbols]

1 熱電発電装置 2 筒体 7,7A〜7D 一体型ユニット 9 低温側部材 11 熱電変換モジュール 12 高温側部材 13 熱電素子 14,15 電気絶縁層 14A,14B,15A 絶縁部材 17,17A〜17D 集熱フィン 19,20 接触部 22 断熱部 23 遮熱カバー 24 空隙 25 フローティング結合するための押え付け板 DESCRIPTION OF SYMBOLS 1 Thermoelectric generator 2 Cylindrical body 7, 7A-7D Integrated type unit 9 Low-temperature side member 11 Thermoelectric conversion module 12 High-temperature side member 13 Thermoelectric element 14, 15 Electric insulation layer 14A, 14B, 15A Insulation member 17, 17A-17D Heat collection Fin 19, 20 Contact part 22 Heat insulation part 23 Heat shield cover 24 Air gap 25 Holding plate for floating connection

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大石 勝 愛知県西加茂郡三好町大字三好字八和田山 5番地35 株式会社三五八和田山工場内 (72)発明者 森下 道夫 愛知県西加茂郡三好町大字三好字八和田山 5番地35 株式会社三五八和田山工場内 (72)発明者 三木 俊克 山口県宇部市東小羽山町2丁目8−2 (72)発明者 野村 重信 山口県岩国市日の出町2−36 帝人製機プ レシジョン株式会社本社工場内 (72)発明者 梅本 毅 山口県岩国市日の出町2−36 帝人製機プ レシジョン株式会社本社工場内 Fターム(参考) 3D038 BA00 BB01 BC00  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Masaru Oishi 5-35 Hachidayama, Miyoshi-machi, Miyoshi-cho, Nishikamo-gun, Aichi Pref. 35 Inside the Yamahachiwadayama Plant (72) Michio Morishita Miyoshi Morishita, Aichi Prefecture 5-35, Machihachi-Wadayama, Machimachi-cho 35-35 Inside the Mihachiwadayama Plant (72) Inventor Toshikatsu Miki 2-8-2 Higashi Kobayama-cho, Ube City, Yamaguchi Prefecture 2-36 Inside Teijin Machinery Precision Co., Ltd. Headquarters Factory (72) Inventor Takeshi Umemoto 2-36 Hinodemachi, Iwakuni-shi, Yamaguchi Prefecture Teijin Machinery Precision Co., Ltd. Headquarters Factory F-term (reference) 3D038 BA00 BB01 BC00

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 熱電変換モジュールと、熱電変換モジュ
ールの低温側面に接触させた低温側部材と、熱電変換モ
ジュールの高温側面に接触させた高温側部材とからなる
熱電発電装置において、低温側部材と熱電変換モジュー
ルの接触部及び熱電変換モジュールと高温側部材の接触
部のうち少なくとも一方が、接触部全域にわたって接合
剤を介して固着されていることを特徴とする自動車用熱
電発電装置。
1. A thermoelectric generator comprising a thermoelectric conversion module, a low-temperature member in contact with a low-temperature side of the thermoelectric conversion module, and a high-temperature member in contact with a high-temperature side of the thermoelectric conversion module. At least one of a contact portion of a thermoelectric conversion module and a contact portion of a thermoelectric conversion module and a high-temperature-side member is fixed via a bonding agent over the entire contact portion.
【請求項2】 熱電変換モジュールと、熱電変換モジュ
ールの低温側に配置された低温側部材と、熱電変換モジ
ュールの高温側に配置された高温側部材と、前記熱電変
換モジュールと前記低温側部材の間と熱電変換モジュー
ルと高温側部材の間の少なくとも一方の間に配置された
絶縁部材とからなる熱電発電装置であって、低温側部材
と高温側部材と熱電変換モジュールと絶縁部材の接触部
のうち少なくとも1つの接触部が、その接触部全域にわ
たって接合剤を介して固着されていることを特徴とする
自動車用熱電発電装置。
2. A thermoelectric conversion module, a low-temperature member disposed on the low-temperature side of the thermoelectric conversion module, a high-temperature member disposed on the high-temperature side of the thermoelectric conversion module, and the thermoelectric conversion module and the low-temperature member. And a thermoelectric generator comprising an insulating member disposed between at least one of the thermoelectric conversion module and the high temperature side member, wherein the low temperature side member, the high temperature side member, the thermoelectric conversion module and the contact portion of the insulating member. A thermoelectric generator for a vehicle, wherein at least one of the contact portions is fixed through a bonding agent over the entire contact portion.
【請求項3】 前記低温側部材または高温側部材または
絶縁部材の熱電変換モジュールに対する接合が、熱電変
換モジュールにおける各電極部のみで行われている請求
項2記載の自動車用熱電発電装置。
3. The thermoelectric generator for a vehicle according to claim 2, wherein the low-temperature side member, the high-temperature side member, or the insulating member is joined to the thermoelectric conversion module only at each electrode portion of the thermoelectric conversion module.
【請求項4】 前記低温側部材と絶縁部材との接合、ま
たは高温側部材と絶縁部材との接合が、全面接着されて
いる請求項2又は3記載の自動車用熱電発電装置。
4. The thermoelectric generator for an automobile according to claim 2, wherein the bonding between the low-temperature side member and the insulating member or the bonding between the high-temperature side member and the insulating member is entirely adhered.
【請求項5】 前記高温側部材に集熱フィンが、一体又
は別体に形成されている請求項1乃至4のいずれかに記
載の自動車用熱電発電装置。
5. The thermoelectric generator for a vehicle according to claim 1, wherein heat collecting fins are formed integrally or separately on the high temperature side member.
【請求項6】 前記高温側部材を、内部に高温媒体が流
れる筒体の一部を形成するようにした請求項1乃至5の
いずれかに記載の自動車用熱電発電装置。
6. The thermoelectric generator for an automobile according to claim 1, wherein the high-temperature-side member forms a part of a cylindrical body in which a high-temperature medium flows.
【請求項7】 前記高温側部材と前記筒体とが、固定手
段によりフローティング結合されている請求項6記載の
自動車用熱電発電装置。
7. The thermoelectric generator for an automobile according to claim 6, wherein the high-temperature-side member and the cylindrical body are floating-coupled by fixing means.
【請求項8】 前記筒体の内部を流れる高温媒体の流れ
方向に対して、集熱フィンが傾斜して配列されている請
求項6又は7記載の自動車用熱電発電装置。
8. The thermoelectric generator for an automobile according to claim 6, wherein heat collecting fins are arranged to be inclined with respect to the flow direction of the high-temperature medium flowing inside the cylindrical body.
【請求項9】 前記筒体の上流部では耐熱性の高い集熱
フィンが配列され、下流部では熱伝導性の高い集熱フィ
ンが配列されている請求項6乃至8のいずれかに記載の
自動車用熱電発電装置。
9. The heat collecting fin according to claim 6, wherein heat collecting fins having high heat resistance are arranged in an upstream portion of the cylindrical body, and heat collecting fins having high heat conductivity are arranged in a downstream portion. Thermoelectric generator for automobiles.
【請求項10】 前記筒体の上流部に集熱性が小さい集
熱フィンを配列し、下流部に集熱性が大きい集熱フィン
を配列した請求項6乃至9のいずれかに記載の自動車用
熱電発電装置。
10. The automotive thermoelectric device according to claim 6, wherein heat collecting fins having a small heat collecting property are arranged at an upstream portion of said cylindrical body, and heat collecting fins having a large heat collecting property are arranged at a downstream portion. Power generator.
【請求項11】 筒体における前記高温側部材が装着さ
れる部分以外の部分に、空隙をもたせて遮熱カバーを設
けて断熱部を形成した請求項6乃至10のいずれかに記
載の自動車用熱電発電装置。
11. The automobile according to claim 6, wherein a heat insulating cover is formed by providing a heat shield cover with a gap in a portion other than a portion where the high temperature side member is mounted in the cylindrical body. Thermoelectric generator.
【請求項12】 前記空隙に断熱材を充填して断熱部を
形成した請求項11記載の自動車用熱電発電装置。
12. The thermoelectric generator for an automobile according to claim 11, wherein a heat insulating material is filled in the gap to form a heat insulating portion.
JP2001123996A 2001-04-23 2001-04-23 Automotive thermoelectric power generating device Withdrawn JP2002325470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001123996A JP2002325470A (en) 2001-04-23 2001-04-23 Automotive thermoelectric power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001123996A JP2002325470A (en) 2001-04-23 2001-04-23 Automotive thermoelectric power generating device

Publications (1)

Publication Number Publication Date
JP2002325470A true JP2002325470A (en) 2002-11-08

Family

ID=18973462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001123996A Withdrawn JP2002325470A (en) 2001-04-23 2001-04-23 Automotive thermoelectric power generating device

Country Status (1)

Country Link
JP (1) JP2002325470A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165457A (en) * 2004-12-10 2006-06-22 Ishikawajima Harima Heavy Ind Co Ltd Thermoelectric module, thermoelectric unit and method for fixing thermoelectric module
JP2007165560A (en) * 2005-12-13 2007-06-28 Mazda Motor Corp Waste heat generator
JP2008078222A (en) * 2006-09-19 2008-04-03 Denso Corp Thermoelectric transducer
EP1925806A2 (en) 2006-11-24 2008-05-28 Behr GmbH & Co. KG System with an organic Rankine cycle for operating at least one expansion machine, heat exchanger for operating one expansion machine, method for operating at least one expansion machine
DE102005005077B4 (en) * 2004-02-05 2009-01-02 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Thermoelectric generator for an internal combustion engine
JP2009133259A (en) * 2007-11-30 2009-06-18 Yamaha Corp Tail pipe lighting device
JP2009273273A (en) * 2008-05-08 2009-11-19 Rinnai Corp Thermal power generator
WO2010036914A2 (en) * 2008-09-25 2010-04-01 Energy Recovery Technology, Llc. Vehicle energy recovery system
WO2010090350A1 (en) * 2009-02-05 2010-08-12 ティーエス ヒートロニクス株式会社 Electric generator
DE102009025033A1 (en) 2009-06-10 2010-12-16 Behr Gmbh & Co. Kg Thermoelectric device and method of manufacturing a thermoelectric device
WO2011082803A3 (en) * 2009-12-17 2011-10-13 Faurecia Emissions Control Technologies, Germany Gmbh Thermoelectric module, assembly comprising the module, thermoelectric generator unit and exhaust gas conducting device comprising a generator unit
DE102010054433A1 (en) * 2010-12-14 2012-06-14 Friedrich Boysen Gmbh & Co. Kg Apparatus for converting heat energy into electrical energy, has thermoelectric module having hot side to cover apertures that are formed in outer wall of heat carrier fluid heating channel
DE102010054432A1 (en) * 2010-12-14 2012-06-14 Friedrich Boysen Gmbh & Co. Kg Device for converting thermal energy into electrical energy
DE102010056170A1 (en) * 2010-12-24 2012-06-28 Volkswagen Ag Thermoelectric heat exchange
US8495884B2 (en) 2001-02-09 2013-07-30 Bsst, Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
JP2013543656A (en) * 2010-09-29 2013-12-05 ヴァレオ システム テルミク Thermoelectric devices, in particular thermoelectric devices for generating current in automobiles
US8656710B2 (en) 2009-07-24 2014-02-25 Bsst Llc Thermoelectric-based power generation systems and methods
JP2014524543A (en) * 2011-08-25 2014-09-22 シーメンス アクチエンゲゼルシヤフト Gas turbine device, power plant and method of operating the power plant
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
JP2015117884A (en) * 2013-12-18 2015-06-25 大阪瓦斯株式会社 Water heater
US9157359B2 (en) 2012-09-28 2015-10-13 Empire Technology Development Llc Exhaust energy recovery for engines
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
JP2018166368A (en) * 2017-03-28 2018-10-25 三菱電機エンジニアリング株式会社 Thermoelectric generator
JP2018206881A (en) * 2017-06-01 2018-12-27 株式会社三五 Heat receiving unit and electrothermal power generation device with heat receiving unit
JP2021100835A (en) * 2019-12-24 2021-07-08 本田技研工業株式会社 undercover
DE102021111928A1 (en) 2021-05-07 2022-11-10 Rheinmetall Landsysteme Gmbh Exhaust silencer system, protected vehicle and method

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8495884B2 (en) 2001-02-09 2013-07-30 Bsst, Llc Thermoelectric power generating systems utilizing segmented thermoelectric elements
DE102005005077B4 (en) * 2004-02-05 2009-01-02 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Thermoelectric generator for an internal combustion engine
JP2006165457A (en) * 2004-12-10 2006-06-22 Ishikawajima Harima Heavy Ind Co Ltd Thermoelectric module, thermoelectric unit and method for fixing thermoelectric module
US9006556B2 (en) 2005-06-28 2015-04-14 Genthem Incorporated Thermoelectric power generator for variable thermal power source
JP2007165560A (en) * 2005-12-13 2007-06-28 Mazda Motor Corp Waste heat generator
JP2008078222A (en) * 2006-09-19 2008-04-03 Denso Corp Thermoelectric transducer
EP1925806A2 (en) 2006-11-24 2008-05-28 Behr GmbH & Co. KG System with an organic Rankine cycle for operating at least one expansion machine, heat exchanger for operating one expansion machine, method for operating at least one expansion machine
JP2009133259A (en) * 2007-11-30 2009-06-18 Yamaha Corp Tail pipe lighting device
JP2009273273A (en) * 2008-05-08 2009-11-19 Rinnai Corp Thermal power generator
WO2010036914A3 (en) * 2008-09-25 2010-07-01 Energy Recovery Technology, Llc. Vehicle energy recovery system
WO2010036914A2 (en) * 2008-09-25 2010-04-01 Energy Recovery Technology, Llc. Vehicle energy recovery system
WO2010090350A1 (en) * 2009-02-05 2010-08-12 ティーエス ヒートロニクス株式会社 Electric generator
DE102009025033A1 (en) 2009-06-10 2010-12-16 Behr Gmbh & Co. Kg Thermoelectric device and method of manufacturing a thermoelectric device
US9276188B2 (en) 2009-07-24 2016-03-01 Gentherm Incorporated Thermoelectric-based power generation systems and methods
US8656710B2 (en) 2009-07-24 2014-02-25 Bsst Llc Thermoelectric-based power generation systems and methods
WO2011082803A3 (en) * 2009-12-17 2011-10-13 Faurecia Emissions Control Technologies, Germany Gmbh Thermoelectric module, assembly comprising the module, thermoelectric generator unit and exhaust gas conducting device comprising a generator unit
JP2013543656A (en) * 2010-09-29 2013-12-05 ヴァレオ システム テルミク Thermoelectric devices, in particular thermoelectric devices for generating current in automobiles
DE102010054432A1 (en) * 2010-12-14 2012-06-14 Friedrich Boysen Gmbh & Co. Kg Device for converting thermal energy into electrical energy
CN103261613A (en) * 2010-12-14 2013-08-21 波森公司 Device for converting thermal energy to electrical energy
DE102010054433A1 (en) * 2010-12-14 2012-06-14 Friedrich Boysen Gmbh & Co. Kg Apparatus for converting heat energy into electrical energy, has thermoelectric module having hot side to cover apertures that are formed in outer wall of heat carrier fluid heating channel
DE102010054432B4 (en) 2010-12-14 2023-02-09 Friedrich Boysen Gmbh & Co. Kg Device for converting thermal energy into electrical energy, as well as system and exhaust system with such a device
US9905745B2 (en) 2010-12-14 2018-02-27 Friedrich Boysen Gmbh & Co. Kg Device for converting thermal energy to electrical energy
DE102010056170A1 (en) * 2010-12-24 2012-06-28 Volkswagen Ag Thermoelectric heat exchange
US9293680B2 (en) 2011-06-06 2016-03-22 Gentherm Incorporated Cartridge-based thermoelectric systems
US9006557B2 (en) 2011-06-06 2015-04-14 Gentherm Incorporated Systems and methods for reducing current and increasing voltage in thermoelectric systems
JP2014524543A (en) * 2011-08-25 2014-09-22 シーメンス アクチエンゲゼルシヤフト Gas turbine device, power plant and method of operating the power plant
US9806247B2 (en) 2011-08-25 2017-10-31 Siemens Aktiengesellschaft Gas turbine arrangement, power plant and method for the operation thereof
US9306143B2 (en) 2012-08-01 2016-04-05 Gentherm Incorporated High efficiency thermoelectric generation
US9157359B2 (en) 2012-09-28 2015-10-13 Empire Technology Development Llc Exhaust energy recovery for engines
JP2015117884A (en) * 2013-12-18 2015-06-25 大阪瓦斯株式会社 Water heater
JP2018166368A (en) * 2017-03-28 2018-10-25 三菱電機エンジニアリング株式会社 Thermoelectric generator
JP2018206881A (en) * 2017-06-01 2018-12-27 株式会社三五 Heat receiving unit and electrothermal power generation device with heat receiving unit
JP2021100835A (en) * 2019-12-24 2021-07-08 本田技研工業株式会社 undercover
JP7048566B2 (en) 2019-12-24 2022-04-05 本田技研工業株式会社 undercover
DE102021111928A1 (en) 2021-05-07 2022-11-10 Rheinmetall Landsysteme Gmbh Exhaust silencer system, protected vehicle and method

Similar Documents

Publication Publication Date Title
JP2002325470A (en) Automotive thermoelectric power generating device
TWI301333B (en) Thermoelectric device and method of manufacturing the same
US20030140957A1 (en) Thermoelectric module
US20140261608A1 (en) Thermal Interface Structure for Thermoelectric Devices
JP5065077B2 (en) Thermoelectric generator
JP2004104041A (en) Thermoelectric converting device and method for manufacturing the same
JP2775410B2 (en) Thermoelectric module
JP2010245265A (en) Thermoelectric module
JP2006303037A (en) Thermoelectric power generator
JP4131029B2 (en) Thermoelectric conversion module
JP2008035595A (en) Thermal power generation equipment and its manufacturing method
JP2007154698A (en) Heat transferring part
JP4622585B2 (en) Cascade module for thermoelectric conversion
JP2004088057A (en) Thermoelectric module
JP2011129552A (en) Thermal power generation module
JP4082090B2 (en) Waste heat power generator
JPH11330568A (en) Thermoelectric power generation device and its manufacture
JP2000286463A (en) Thermoelectric conversion module
KR101365850B1 (en) Device for generating electric energy from a heat-conducting material
JP2003179273A (en) Thermoelectric converting device
US20140305480A1 (en) Thermoelectric generator to engine exhaust manifold assembly
JP3165129B2 (en) Thermoelectric conversion module block for thermoelectric generation
JP3469812B2 (en) Thermoelectric conversion module and thermoelectric conversion module block
JP3469811B2 (en) Line type thermoelectric conversion module
JP2016092017A (en) Thermoelectric module

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080701