WO2010090350A1 - Electric generator - Google Patents

Electric generator Download PDF

Info

Publication number
WO2010090350A1
WO2010090350A1 PCT/JP2010/052121 JP2010052121W WO2010090350A1 WO 2010090350 A1 WO2010090350 A1 WO 2010090350A1 JP 2010052121 W JP2010052121 W JP 2010052121W WO 2010090350 A1 WO2010090350 A1 WO 2010090350A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin
plate heat
thermoelectric conversion
shaped plate
heat device
Prior art date
Application number
PCT/JP2010/052121
Other languages
French (fr)
Japanese (ja)
Inventor
貴弘 小田
Original Assignee
ティーエス ヒートロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーエス ヒートロニクス株式会社 filed Critical ティーエス ヒートロニクス株式会社
Priority to JP2010549551A priority Critical patent/JP5478518B2/en
Publication of WO2010090350A1 publication Critical patent/WO2010090350A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction

Definitions

  • the present invention relates to a power generation apparatus that can increase a power generation amount using a thermoelectric conversion element and a thin plate heat device between a heat source and a cooling mechanism of the present apparatus.
  • thermoelectric conversion elements are roughly classified into thermoelectric conversion elements and Peltier elements.
  • a thermoelectric conversion element is an element that directly converts thermal energy into electric power by using a Seebeck effect that generates a thermoelectromotive force between both ends by giving a temperature difference to both ends of the thermoelectric conversion element.
  • thermoelectric conversion element different thermoelectric conversion materials of a P-type semiconductor and an N-type semiconductor are placed in parallel, the elements are electrically connected in series, and an external load is connected to form a closed circuit.
  • the Peltier element is a closed circuit in which P-type semiconductor and N-type semiconductor different thermoelectric conversion materials are placed in parallel, the elements are electrically connected in series, and an external load is connected.
  • a current is passed through the circuit in one direction, heat is released or absorbed at the junction between the P-type semiconductor and the N-type semiconductor depending on the current direction. This phenomenon is called the Peltier effect.
  • the current direction is changed, heat dissipation and heat absorption are reversed.
  • thermoelectric conversion element In the Peltier element, the direction of the joint is aligned, and when a direct current is passed, one side of the Peltier element becomes the heat absorption side, that is, the low temperature side, and the other side becomes the heat dissipation side, that is, the high temperature side. In many cases, the heat absorption side is used for cooling or temperature control.
  • the thermoelectric conversion element and the Peltier element have almost the same basic configuration, depending on whether the Seebeck effect is used to generate power or the element is fed and cooled by the Peltier effect.
  • solder layers 3 for bonding are formed on both ends of a pillar 1 made of a P-type semiconductor and a pillar 2 made of an N-type semiconductor, and the pillars are alternately arranged.
  • the solder layer 3 is melted and bonded by reflowing with the insulating substrate 4 having the upper and lower electrode layers 5 formed between the aligned columns.
  • the power conducting wire 7 is connected to the lead electrode portion 6 at the end of the Peltier element A to complete the thermoelectric conversion element A.
  • the endothermic side A1 of the thermoelectric conversion element A is attached to the heat source 8 via a material having a high thermal conductivity (not shown) such as heat conduction grease as shown in FIG.
  • the heat absorption side of the thermoelectric conversion element A absorbs heat, and the cooling side A2 of the thermoelectric conversion element A is cooled.
  • thermoelectric conversion element A power generation device in which a thermoelectric conversion element and a heat pipe are combined is disclosed in Japanese Patent Laid-Open No. 2001-282396.
  • a method is disclosed in which one end of the heat pipe is brought into contact with a heat source, one surface of the thermoelectric conversion element is brought into contact with the other end of the heat pipe, and the other surface of the thermoelectric conversion element is brought into contact with a cooling mechanism.
  • the surface area for arranging the thermoelectric conversion element cannot be secured, and the heat resistance of the portion that transports heat is increased by making the cross-sectional shape of the heat pipe square. The temperature of the contact surface does not rise, and sufficient power generation cannot be obtained.
  • Japanese Patent Application Laid-Open No. 2008-143432 There is one disclosed in Japanese Patent Application Laid-Open No. 2008-143432.
  • thermoelectric conversion element Since the cross section of a normal heat pipe is circular and the contact surface of the thermoelectric conversion element is a flat surface, the heat pipe is crushed and formed into a flat surface, or a heat receiving plate is placed between the heat pipe and the thermoelectric conversion element. It is common to provide it. However, in this method, the temperature of the contact surface with the thermoelectric conversion element does not rise as described above, and a sufficient amount of power generation cannot be obtained. Further, in order to bend the heat pipe, a bend R having a diameter of at least about 3 times is necessary, and when the space is narrow, it is necessary to reduce the diameter of the pipe. Therefore, the amount of heat transport is small, and the contact surface with the thermoelectric conversion element is small, so that a sufficient amount of power generation cannot be obtained.
  • thermoelectric conversion element in order to increase the contact area with the thermoelectric conversion element, it is necessary to arrange a plurality of heat pipes in parallel. However, it is difficult to obtain flatness with the same shape, and it is difficult to increase the contact area.
  • the power generator described above in the prior art has the following problems because it has the above-described configuration and operation. That is, there is a problem that when the thermoelectric conversion element is sandwiched between the heat source and the cooling mechanism, a sufficient amount of power generation cannot be obtained.
  • the power generator according to the present invention was invented to solve the above-mentioned problems.
  • the high temperature side of the power generator is concerned.
  • the purpose is to efficiently convert the heat into electric power, which is constituted by the following configuration and means. That is, according to the first aspect of the present invention, a thin plate heat device with a built-in thin tunnel heat pipe, a standing portion and a bottom portion of the thin plate heat device are attached with heat conductive grease and direct current is applied. It is characterized by comprising a plurality of thermoelectric conversion elements provided with each lead wire to be taken out.
  • the thin L-shaped plate heat device having the small-diameter tunnel heat pipe built therein and the standing portion and the bottom portion of the thin L-shaped plate heat device are adhered with the heat conductive grease. And it comprised with the several thermoelectric conversion element provided with each lead wire which takes out a direct current, It is characterized by the above-mentioned.
  • a thin U-shaped plate heat device having a small tunnel heat pipe and a U-shaped portion of the thin U-shaped plate heat device are adhered to the inside of the U-shaped portion with heat conductive grease.
  • the thin tunnel heat pipe is incorporated between the other thin and substantially Z-shaped plate heat device and the other thin and substantially Z-shaped plate heat device. And a plurality of thermoelectric conversion elements each having a lead wire attached with heat conductive grease and taking out a direct current.
  • one thin substantially S-shaped plate heat device having a small tunnel heat pipe and another thin substantially S-shaped plate heat device orthogonal to the one thin substantially S-shaped plate heat device.
  • thermoelectric conversion elements provided.
  • the thin plate heat device which incorporated the small diameter tunnel heat pipe, and the at least 1 thermoelectric conversion element of this thin plate heat device.
  • at least one portion of the thin plate heat device is bent into a predetermined shape.
  • the invention according to claim 8 is characterized in that the other surface of the adhesion surface of the thermoelectric conversion element is adhered to the second thin plate heat device.
  • a thin plate heat device having a small-diameter tunnel heat pipe built therein, and a thin plate heat device that is attached to a standing part and a bottom part of the thin plate heat device with heat conductive grease, and a direct current
  • a power generation apparatus comprising a plurality of thermoelectric conversion elements each having a lead wire for taking out an electric current.
  • a thin L-shaped plate heat device having a small-diameter tunnel heat pipe built therein, and the thin L-shaped plate heat device are attached to the standing portion and the bottom portion with heat conductive grease.
  • a power generation device comprising a plurality of thermoelectric conversion elements each having a lead wire attached and taking out a direct current.
  • a thin U-shaped plate heat device having a small tunnel heat pipe and a U-shaped portion of the thin U-shaped plate heat device are adhered to the inside of the U-shaped portion with heat conductive grease.
  • a power generation device comprising a plurality of thermoelectric conversion elements each having a lead wire attached and taking out a direct current. Since this structure is adopted, in addition to the effect of the invention of claim 1, since the thin U-shaped plate heat device is provided, it becomes possible to arrange more thermoelectric conversion elements, and to reduce the power generation amount. It has the effect of increasing.
  • a thin tunnel heat pipe is incorporated between the other thin and substantially Z-shaped plate heat device and the other thin and substantially Z-shaped plate heat device.
  • a plurality of thermoelectric conversion elements each having a lead wire that is attached with heat conductive grease and takes out a direct current. Since it was such a structure, in addition to the effect of the invention of claim 1, since the other thin and substantially Z-shaped plate heat device was provided, the heat of the heat source was diffused by the thin plate heat device.
  • a plurality of thermoelectric conversion elements are disposed on the thin plate heat device, and the thermoelectric conversion element is further thermally connected to a cooling mechanism on a surface opposite to the surface in contact with the thin plate heat device.
  • one thin substantially S-shaped plate heat device having a small-diameter tunnel heat pipe and another thin shape perpendicular to the one thin substantially S-shaped plate heat device.
  • a power generation device comprising a plurality of thermoelectric conversion elements provided with wires.
  • thermoelectric conversion elements are arranged on the thin plate heat device to increase the power generation amount.
  • FIG. 1 is a perspective view showing a power generator as an embodiment of the power generator according to the present invention.
  • FIG. 2 is a perspective view of the thermoelectric conversion element in which a part of the insulating heat transfer plate of the thermoelectric conversion element applied to the power generation apparatus according to the present invention is broken.
  • FIG. 3 is a plan view of a thin plate heat device applied to the power generator according to the present invention.
  • FIG. 4 is a partially enlarged horizontal sectional view showing the internal structure of one example of the thin plate heat device of FIG.
  • FIG. 5 is a vertical sectional view showing another example of a thin plate heat device applied to the power generation apparatus according to the present invention.
  • FIG. 6 is a perspective view showing a power generation device as Example 1 of the power generation device according to the present invention.
  • FIG. 7 is a front view which shows the electric power generating apparatus as Example 2 of the electric power generating apparatus which concerns on this invention.
  • FIG. 8 is a perspective view showing a power generator as a third embodiment of the power generator according to the present invention.
  • FIG. 9 is a diagram showing a configuration of a thermoelectric conversion element used in a heat conduction device in the prior art.
  • FIG. 10 is a perspective view showing an example of a heat conduction device in the prior art.
  • FIG. 11 shows the fourth embodiment.
  • FIG. 12 is a diagram showing the first embodiment.
  • FIG. 13 is a diagram showing the second embodiment.
  • FIG. 14 is a diagram showing the third embodiment.
  • FIG. 15 is a diagram showing the fourth embodiment.
  • Thermoelectric conversion element B1 to B5 Thermoelectric conversion element c DC current direction E Power generation device F Power generation device G Power generation device H Power generation device 9 Load 10a Insulation heat transfer plate 10b Insulation heat transfer plate 11 Electrode layer 11a Lower electrode 11b Upper electrode 12 P type Semiconductor element 13 N-type semiconductor element 14 Lead wire 15 Thin plate heat device 15A Thin plate 15B Heat receiving portion 15C Heat radiation portion 16 Loop type meandering small diameter tunnel heat pipe 16a Working fluid 16b Reflux pipe 17 Thin plate heat device 18 Unit thin plate 18a Long Measured meandering groove 19 Flat thin plate 20 Thin L-shaped plate heat device 21 Heat conduction grease 22 Heat source 23 Cooling mechanism 24 Thin U-shaped plate heat device 25 Heat source 26 Cooling mechanism 27 Thin Type plate heat device 27A One thin and substantially Z-shaped plate heat device 27A1 Bottom portion of one thin and substantially Z-shaped plate heat device 27B The other thin and substantially Z-shaped plate heat device 27B1 The other thin and substantially Z-shaped plate heat device 27B1
  • FIG. 1 is a perspective view showing a power generation device E as an embodiment of the power generation device according to the present invention.
  • the thermoelectric conversion element B is composed of two conductors made of different materials, and when a temperature difference occurs between the thermoelectric conversion elements, current flows through the two conductors due to the Seebeck effect and operates as a power generator. As shown in FIG.
  • thermoelectric conversion element B the basic configuration of the thermoelectric conversion element B is that a P-type semiconductor element 12 and an N-type semiconductor element are interposed between two insulating heat transfer plates 10a and 10b made of ceramics or the like via an electrode layer 11. 13 are alternately connected and arranged, and are electrically connected in series and thermally connected in parallel.
  • the insulated heat transfer plate 10 b becomes a heat absorption surface
  • the insulated heat transfer plate 10 a becomes a cooling surface
  • thermoelectric conversion element B When a temperature difference is applied to the insulating heat transfer plates 10a and 10b, the thermoelectric conversion element B is a metal N-type semiconductor having different Fermi levels via the electrodes 11a and 11b in contact with the insulating heat transfer plates 10a and 10b.
  • An electric field due to the movement of holes is generated between the P-type semiconductor 12 and the P-type semiconductor 12, and passes through the N-type semiconductor 13 from the lower electrode 11a connected to the lower side of the N-type semiconductor 13 and passes through the upper electrode 11b.
  • An electromotive force is generated in the lower electrode 11a of the type semiconductor 12.
  • FIG. 3 is a plan view of the thin plate heat device 15 partially cut away
  • FIG. 4 is a diagram showing the internal structure of the thin plate heat device 15, which is a partially enlarged horizontal sectional view in FIG. is there.
  • the thin plate heat device 15 is designed to smoothly transport a large amount of heat.
  • the thin plate heat device 15 contains a loop-type meandering small-diameter tunnel heat pipe 16. As shown in FIG. Flow in the direction D to the path 16b.
  • the loop meandering small diameter tunnel heat pipe 16 of the plate heat device 15 needs to have sufficient strength against the internal pressure of the hydraulic fluid 16a.
  • the thin plate heat device 15 satisfying such various conditions is provided with the loop-shaped meandering thin tunnel heat pipe 16 described above in the thin plate 15A.
  • a group of such unit pairs of loop-shaped meandering small-diameter tunnel heat pipes 16 are connected and communicated with each other, and are configured to be planar and integrated.
  • the group of loop-type meandering small diameter tunnel heat pipes 16 integrated in this way is hermetically sealed together and vacuum degassed, and then a predetermined amount of a predetermined two-phase condensable hydraulic fluid is enclosed. It is made up of heat pipes.
  • 15B indicates the position of the heat receiving portion
  • 15C indicates the position of the heat radiating portion.
  • Reference numeral 17 denotes a thin plate heat device, which is a welded laminate of unit thin plates 18 and flat thin plates 19 made of a metal having good thermal conductivity.
  • a series of long meandering narrow grooves 18a are formed on the welding surface of the unit thin plate 18 in advance.
  • the long meandering narrow groove 18a may be formed by any means such as cutting, electric discharge machining, or press molding.
  • the long meandering narrow groove 18a is configured as a closed meandering narrow diameter by stacking, and a predetermined amount of a predetermined working fluid 16a is enclosed in the tight meandering narrow diameter, and the meandering narrow diameter tunnel heat pipe 16 is configured.
  • FIG. 5 shows an example in which unit thin plates 18 in which long meandering narrow grooves 18a are formed and simple flat thin plates 19 in which no narrow grooves are formed are laminated.
  • the loop-shaped meandering thin tunnel heat pipe 16 built in the unit thin plate 18 can reduce the radius of curvature of the turn portion to the limit. And it becomes possible to arrange with high density at a pitch that is just the sum of the groove width of about 1 mm to the width of the narrow groove, and it is possible to incorporate a multi-turn thin pipe heat pipe. Therefore, it is possible to construct a plate-type heat pipe with high performance and a small thickness.
  • a thin tube heat pipe when a thin tube heat pipe is incorporated instead of a meandering thin tube heat pipe with an outer diameter of 3 mm and an inner diameter of 2 mm, it is possible to incorporate a 2 mm diameter narrow tube with a pitch of 3 mm, and 33 tubes are arranged in a width of 100 mm. It is possible to construct a plate-type heat pipe having a thickness of 5 mm.
  • the advantage is that less resistance is generated when the hydraulic fluid 16a is circulated and vibrated.
  • the loop type meandering narrow tunnel heat pipe 16 and the long meandering narrow groove 18a incorporated in the thin plate heat devices 15 and 17 can flow the hydraulic fluid 16a in any installation condition, arrangement form or holding posture.
  • the common advantage is that it has active characteristics.
  • the thin plate heat devices 15 and 17 incorporating the loop type meandering thin tunnel heat pipe 16 and the like solve all the problems of the conventional thermoelectric element composed only of the thermoelectric conversion element A. is there.
  • the loop type meandering narrow tunnel heat pipe 16 and the long meandering narrow groove 18a incorporated in the thin plate heat devices 15, 17 The weight and wrinkle are becoming ignorable, and further reduction in size and weight is required, and the present invention can cope with this.
  • the configuration of the power generator E according to the present invention will be described in detail with reference to FIG. FIG.
  • FIG. 1 is a perspective view showing an example of a power generation apparatus E according to the present invention, and illustrates a configuration in which a heat source and a cooling mechanism described later are provided for the sake of understanding.
  • B is each thermoelectric conversion element
  • 20 is a thin L-shaped plate heat device.
  • the thin L-shaped plate heat device 20 is formed by bending a metal flat plate into an L shape, and a plurality of thermoelectric conversion elements B are attached to one side of the thin L-shaped plate heat device 20 as shown in FIG. .
  • four thermoelectric conversion elements B are attached, and three or more thermoelectric conversion elements B are attached to the standing part and three base parts.
  • thermoelectric conversion elements B When all the thermoelectric conversion elements B are bonded to the thin L-shaped plate heat device 20, all four bonding surfaces in the plurality of thermoelectric conversion elements B, that is, the insulating heat transfer plate 10b side shown in FIG. For example, it arrange
  • the mounting position, design conditions, arrangement form, holding posture, etc. of the power generator E according to the present invention are not limited to the heat absorption surface side but the cooling surface side depending on the purpose of use. Also good.
  • the endothermic surface side of each thermoelectric conversion element B is used as the sticking surface.
  • one insulating heat transfer plate (corresponding to the insulating heat transfer plate 10a shown in FIG.
  • each thermoelectric conversion element B is used as a metal flat plate of the thin L-shaped plate heat device 20 (shown in FIGS. 3 and 5).
  • the thermoelectric conversion element B and the thin L-shaped plate heat device 20 are slid against each other so as not to seal bubbles in the heat conductive grease 21 filled in the gap and so that the thickness of the heat conductive grease 21 does not increase. Weld together.
  • the heat conductive grease 21 a silicone grease or the like kneaded with metal fine powder such as zinc oxide, or silver paint, which has a high heat conductivity and is effective as a coating agent for obtaining good heat conduction, is adopted.
  • the thin L-shaped plate heat device 20 is not limited to this shape, and may have various shapes such as a rectangular shape and a square shape depending on the installation location and design conditions of the power generation apparatus E according to the present invention. It doesn't matter.
  • Reference numeral 22 denotes a heat source that absorbs heat by installing the power generation device E according to the present invention. In FIG.
  • the power generation apparatus E and the heat source 22 according to the present invention are illustrated separately from each other, but in the embodiment, the heat source 22 is connected to the other side of the thin L-shaped plate heat device 20, that is, a metal flat plate ( The thin plate 15A and the flat thin plate 19 shown in FIGS. At that time, the heat conduction grease 21 and the like are interposed and adhered, and the heat source 22 and the thin L-shaped plate heat device 20 are thermally integrated.
  • Reference numeral 23 denotes a cooling mechanism for encouraging the power generation of the thermoelectric conversion element by the heat absorbed from the heat source 22 by the power generation apparatus E according to the present invention. In FIG.
  • thermoelectric conversion elements B and the bottom portion that are erected and arranged are arranged.
  • the other insulating heat transfer plate corresponding to the insulating heat transfer plate 10b shown in FIG. 2
  • the heat conduction grease 21 or the like is interposed between the cooling mechanism 23 and the thermoelectric conversion element B so as to be thermally integrated.
  • the loop type meandering tunnel heat pipe 16 and the long meandering narrow groove 18a improve the transport performance as the number of meandering patterns increases.
  • 30 turns or more are required in a width of 100 (mm).
  • the cooling mechanism 23 is thermally connected to the insulated heat transfer plate 10b of the thermoelectric conversion element B.
  • thermoelectric conversion element B is thermally connected to the insulated heat transfer plate 10b of the thermoelectric conversion element B.
  • the basic configuration of the thermoelectric conversion element B is that P-type semiconductor elements 12 and N-type semiconductor elements 13 are alternately connected and arranged between two insulating heat transfer plates 10a, 10b made of ceramics or the like via electrode layers 11. It is electrically connected in series and thermally connected in parallel.
  • the thermoelectric conversion element B is a metal N-type semiconductor having different Fermi levels via the electrodes 11a and 11b in contact with the insulating heat transfer plates 10a and 10b.
  • An electric field due to the movement of holes is generated between the P-type semiconductor 12 and the P-type semiconductor 12, and passes through the N-type semiconductor 13 from the lower electrode 11a connected to the lower side of the N-type semiconductor 13 and passes through the upper electrode 11b.
  • An electromotive force is generated in the lower electrode 11a of the type semiconductor 12. That is, the power generation apparatus E according to the present invention can be applied to various types of automobile equipment and building equipment.
  • FIG. 6 is a perspective view showing a power generator F according to the present invention.
  • B is the thermoelectric conversion element
  • 24 is a thin U-shaped plate heat device.
  • the thin U-shaped plate heat device 24 is formed by bending a metal flat plate into a U shape, and a plurality of thermoelectric conversion elements B are arranged inside the U-shaped portion of the thin U-shaped plate heat device 24 as shown in FIG. Affix.
  • three thermoelectric conversion elements B are attached to the inside of the left and right vertical directions of the thin U-shaped plate heat device 24, respectively, and one horizontal direction is placed inside the bottom surface of the thin U-shaped plate heat device 24.
  • thermoelectric conversion element B is stuck and a total of seven thermoelectric conversion elements B are disposed.
  • the thermoelectric conversion element B and the thin U-shaped plate heat device 24 are bonded to each other through the heat conductive grease 21 as described above to obtain good heat conduction.
  • the letter-shaped plate heat devices 24 are slid and pressed together.
  • Reference numeral 25 denotes a heat source to be absorbed by the power generation device F according to the present invention.
  • the power generation device F and the heat source 25 according to the present invention are brought into close contact with each other through the heat conduction grease 21 and the like, and the heat source 25 and the thin U-shaped plate heat device 24 are thermally integrated.
  • Reference numeral 26 denotes a cooling mechanism which should promote the power generation of the thermoelectric conversion element by the heat absorbed from the heat source 25 by the power generation apparatus E according to the present invention.
  • the power generation device F and the cooling mechanism 26 according to the present invention have one thermoelectric conversion disposed horizontally with the inner surface of each of the three thermoelectric conversion elements B disposed in the left and right vertical positions. Adhere to the upper surface of the element B. At that time, the heat conduction grease 21 or the like is interposed between the cooling mechanism 26 and the thermoelectric conversion element B so as to be thermally integrated.
  • movement, etc. which were mentioned above is substantially the same as description of embodiment of the electric power generating apparatus which concerns on this invention, attaches
  • Reference numeral 27 denotes a thin plate heat device applied to the second embodiment, which is composed of a combination of one thin substantially Z-shaped plate heat device 27A and the other thin substantially Z-shaped plate heat device 27B.
  • a plurality of, for example, four thermoelectric conversion elements B are interposed between the two.
  • the other thin and substantially Z-shaped plate heat devices 27A and 27B are each formed by bending a metal flat plate into a substantially Z shape, and a plurality of thermoelectric conversion elements B are pasted inside each as shown in FIG. To wear.
  • 28 is a heat source
  • 29 is a cooling mechanism
  • the bottom surface portion 27A1 of one thin and substantially Z-shaped plate heat device 27A is in close contact / joining.
  • the other thin and substantially Z-shaped plate heat device 27B has the upper surface portion 27B1 in close contact with and bonded thereto.
  • the thermoelectric conversion elements B are in close contact with the front and back surfaces of the thermoelectric conversion elements B and the other thin and substantially Z-shaped plate heat devices 27A and 27B with heat conduction grease interposed therebetween.
  • the configuration of Example 2 is the same as that of the embodiment shown in FIG. 1, and the other thin, substantially Z-shaped plate heat device 27B is interposed between the plurality of thermoelectric conversion elements B and the low temperature side member 23. The added technical idea.
  • Reference numeral 30 denotes a thin plate heat device applied to the third embodiment, which is composed of one thin substantially S-shaped plate heat device 30A and the other thin substantially S-shaped plate heat device 30B combined orthogonally thereto. Is done. A plurality of, for example, five thermoelectric conversion elements B1 to B5 are interposed between the front and back surfaces of one thin and substantially S-shaped plate heat device 30A, 30B. On the other hand, the other thin and substantially S-shaped plate heat devices 30A and 30B are formed by bending a metal flat plate into a substantially S-shape, respectively, and as shown in FIG.
  • thermoelectric conversion element B1 is interposed between the upper surface of the lower side 30a of one thin and substantially S-shaped plate heat device 30A and the lower surface of the lower side 30d of the other thin and substantially S-shaped plate heat device 30B. Further, a thermoelectric conversion element B2 is interposed between the upper surface of the lower side 30d of the other thin substantially S-shaped plate heat device 30B and the lower surface of the intermediate side 30b of the one thin substantially S-shaped plate heat device 30A.
  • thermoelectric conversion element B3 is interposed between the upper surface of the intermediate side 30b of one thin and substantially S-shaped plate heat device 30A and the lower surface of the intermediate side 30e of the other thin and substantially S-shaped plate heat device 30B.
  • thermoelectric conversion element B4 is interposed between the upper surface of the intermediate side 30e of the other thin substantially S-shaped plate heat device 30B and the lower surface of the upper side 30c of one thin substantially S-shaped plate heat device 30A.
  • thermoelectric conversion element B5 is interposed between the upper surface of the upper side 30c of one thin and substantially S-shaped plate heat device 30A and the lower surface of the upper side 30f of the other thin and substantially S-shaped plate heat device 30B.
  • thermoelectric conversion elements B1 to B5 are thermally conductive in the same manner as the configuration examples of the above-described embodiments. Adhere with grease 21 or the like interposed. Although it is made compact by having comprised in this way, it can thermally conduct to each thermoelectric conversion element B1 thru
  • 31 is a heat source
  • 32 is a cooling mechanism
  • the heat source 31 is attached to the lower surface of the lower side 30a of one thin and substantially S-shaped plate heat device 30A with the heat conduction grease 21 or the like interposed therebetween.
  • the low temperature side member 32 is attached to the upper surface of the upper side 30f of the other thin and substantially S-shaped plate heat device 30B with the heat conduction grease 21 or the like interposed therebetween.
  • the lead wires 14 provided in the thermoelectric conversion elements B1, B4, and B5 are drawn out to the front of the power generation device H, and the leads provided in the thermoelectric conversion elements B2 and B3.
  • the wire 14 is drawn out to the rear of the power generator H.
  • movement, etc. which were mentioned above is substantially the same as description of embodiment of the electric power generating apparatus which concerns on this invention, attaches
  • the power generation apparatus G is thermally connected to a heat source, for example, one thin plate heat device 171 connected with grease, and the other thin plate heat device 172 connected to a cooling mechanism, for example, grease, etc. A combination of these is laminated. A plurality of, for example, four thermoelectric conversion elements B are interposed between the two.
  • the configuration of Example 4 is the same as that of the embodiment shown in FIG. 7 except that the technical idea of stacking the configurations is added.
  • movement, etc. which were mentioned above is substantially the same as description of embodiment of the electric power generating apparatus which concerns on this invention, attaches
  • Embodiment 1 In FIG. 12, a combustion chamber 131, a piping 132 for sending exhaust gas from the combustion chamber, a piping 133 for feeding water surrounding the combustion chamber, a piping 134 for sending warm water warmed by the combustion chamber, and the like.
  • a combustion chamber 131 In FIG. 12, a combustion chamber 131, a piping 132 for sending exhaust gas from the combustion chamber, a piping 133 for feeding water surrounding the combustion chamber, a piping 134 for sending warm water warmed by the combustion chamber, and the like.
  • the boiler between the one thin plate heat device 135 thermally connected to the piping for sending exhaust gas and the other thin plate heat device 136 thermally connected to the pipe for feeding water, This is a facility in which at least one power generation device in which at least one connected thermoelectric conversion element 137 is arranged is installed.
  • Embodiment 2 In FIG.
  • one thin plate heat device thermally connected to the incinerator wall surface 143 or piping for sending exhaust gas 144 and at least one power generation device in which at least one thermoelectric conversion element 147 is thermally connected is disposed between the heat sink 145 and the other thin plate heat device 146 that is thermally connected to the heat sink 145.
  • one thin plate heat device 153 thermally connected to the piping for sending exhaust gas and heat sink 154 are heated.
  • thermoelectric conversion element 156 thermally connected between the other thin plate heat devices 155 connected in general.
  • Embodiment 4 In FIG. 15, in an automobile motor constituted by a motor 161, a pipe 162 for supplying a coolant to the motor, a pipe 163 for sending a warmed coolant, and the like, one of the motors is thermally connected to the pipe for sending the coolant. Power generation apparatus in which at least one thermoelectric conversion element 166 is disposed between the thin plate heat device 164 and the other thin plate heat device 165 that is thermally connected to the pipe that supplies the coolant. This is a product with at least one installed.

Abstract

Disclosed is an electric generator capable of generating a sufficient amount of power when a thermoelectric conversion element is sandwiched between a heat source and a cooling mechanism. The electric generator is configured from thin-plate heat devices in which small-diameter tunnel heat pipes have been formed and at least one thermoelectric conversion element adhered to said thin-plate heat devices, and is mounted between a heat source and a cooling mechanism.

Description

発電装置Power generator
 本発明は本装置の熱源と冷却機構の間に於いて、熱電変換素子及び薄型プレートヒートデバイスを用いて発電量を増やすことを可能にする発電装置に関する。 The present invention relates to a power generation apparatus that can increase a power generation amount using a thermoelectric conversion element and a thin plate heat device between a heat source and a cooling mechanism of the present apparatus.
 従来、この種の発電装置に用いる熱電変換素子の技術の一例としては図9に示す特開2003−282972号公開特許公報に開示されたものがある。これについて説明すれば、熱電素子は大きく分類して熱電変換素子とペルチェ素子に分けられる。熱電変換素子は、熱電変換素子の両端に温度差を与えることで両端間に熱起電力を発生するゼーベック効果を利用して熱エネルギーを直接電力に変換する素子である。熱電変換素子によれば、P型半導体とN型半導体の相異なる熱電変換材料を熱的に並列に置き、素子を電気的に直列に接続して外部に負荷を接続して閉回路を構成することで回路に電流が流れ、電力として取り出すことができる。
 また、ペルチェ素子は、P型半導体とN型半導体の相異なる熱電変換材料を熱的に並列に置き、素子を電気的に直列に接続して外部に負荷を接続して閉回路を構成し、回路に一方向に電流を流したときにP型半導体とN型半導体の接合部においては電流方向に依存して熱が放出、あるいは吸収される。この現象はペルチェ効果と呼ばれ、電流方向を変えると放熱と吸熱が逆転する。ペルチェ素子においてはこの接合部の方向をそろえて形成してあり、直流電流を流すとペルチェ素子の一方側が吸熱側すなわち低温側となり、他方側が放熱側すなわち高温側となる。多くはこの吸熱側を用いて冷却、あるいは温度制御に利用されている。上記熱電変換素子とペルチェ素子は上記ゼーベック効果を用いて発電するか、あるいは素子に給電してペルチェ効果により冷却させるかの違いで、基本的な構成はほぼ同一である。
 熱電変換素子AはP型半導体からなる柱1とN型半導体からなる柱2の両端に接合用の半田層3を形成し、前記柱を交互に配列する。一方、絶縁基板4の所望の位置に電極層5をメタライズ形成した後、上記整列させた柱に上下電極層5を形成した絶縁基板4で挟み込んだ状態でリフローさせ半田層3を溶解して接合させる。その後、ペルチェ素子Aの端部の引き出し電極部6に電力導線7を接続して熱電変換素子Aが完成する。そして、該熱電変換素子Aの吸熱側A1を図10に示すように熱源8に例えば熱伝導グリス等の熱伝導度の高い物質(図示せず)を介して貼着して、熱源8からの熱を熱電変換素子Aの吸熱側が吸熱し、熱電変換素子Aの冷却側A2を冷却する。
 熱電変換素子とヒートパイプを組み合わせた発電装置は特開2001−282396号公開特許公報に開示されたものがある。ヒートパイプの一端側を熱源と接触させ、該ヒートパイプの他端に熱電変換素子の一面側を接触させ、且つ、熱電変換素子の他面側を冷却機構に接触させる方法が明記されている。しかし、この方法では、熱電変換素子を配置するための表面積が確保できず、且つ、ヒートパイプの断面形状を四角にすることで熱を輸送する部分の熱抵抗が増すため、熱電変換素子との接触面の温度が上がらず、十分な発電量が得られない。
 特開2008−143432公開特許公報に開示されたものがある。通常のヒートパイプの断面は円形であり、また、熱電変換素子の接触面は平面であるため、ヒートパイプをつぶし、平面に成形するか、もしくはヒートパイプと熱電変換素子との間に受熱板を設けることが一般的である。しかし、この方法では、上記と同様に熱電変換素子との接触面の温度が上がらず、十分な発電量が得られない。また、ヒートパイプは曲げるために、直径が少なくとも約3倍の曲げRが必要で、スペースが狭い場合はパイプの径を小さくする必要がある。そのため、熱の輸送量も小さく、且つ、熱電変換素子との接触面が小さくなり、十分な発電量が得られない。さらに熱電変換素子との接触面積を大きくするために、複数のヒートパイプを並列に配置する必要があるが、同じ形状で平面度を出すことが困難であり、接触面積を増やすことが難しい。
特開2003−282972号公開特許公報 特開2001−282396号公開特許公報 特開2008−143432号公開特許公報
Conventionally, as an example of the technology of the thermoelectric conversion element used for this kind of power generation device, there is one disclosed in Japanese Patent Application Laid-Open No. 2003-282972 shown in FIG. Explaining this, thermoelectric elements are roughly classified into thermoelectric conversion elements and Peltier elements. A thermoelectric conversion element is an element that directly converts thermal energy into electric power by using a Seebeck effect that generates a thermoelectromotive force between both ends by giving a temperature difference to both ends of the thermoelectric conversion element. According to the thermoelectric conversion element, different thermoelectric conversion materials of a P-type semiconductor and an N-type semiconductor are placed in parallel, the elements are electrically connected in series, and an external load is connected to form a closed circuit. As a result, a current flows through the circuit and can be taken out as electric power.
In addition, the Peltier element is a closed circuit in which P-type semiconductor and N-type semiconductor different thermoelectric conversion materials are placed in parallel, the elements are electrically connected in series, and an external load is connected. When a current is passed through the circuit in one direction, heat is released or absorbed at the junction between the P-type semiconductor and the N-type semiconductor depending on the current direction. This phenomenon is called the Peltier effect. When the current direction is changed, heat dissipation and heat absorption are reversed. In the Peltier element, the direction of the joint is aligned, and when a direct current is passed, one side of the Peltier element becomes the heat absorption side, that is, the low temperature side, and the other side becomes the heat dissipation side, that is, the high temperature side. In many cases, the heat absorption side is used for cooling or temperature control. The thermoelectric conversion element and the Peltier element have almost the same basic configuration, depending on whether the Seebeck effect is used to generate power or the element is fed and cooled by the Peltier effect.
In the thermoelectric conversion element A, solder layers 3 for bonding are formed on both ends of a pillar 1 made of a P-type semiconductor and a pillar 2 made of an N-type semiconductor, and the pillars are alternately arranged. On the other hand, after the electrode layer 5 is metallized at a desired position on the insulating substrate 4, the solder layer 3 is melted and bonded by reflowing with the insulating substrate 4 having the upper and lower electrode layers 5 formed between the aligned columns. Let Thereafter, the power conducting wire 7 is connected to the lead electrode portion 6 at the end of the Peltier element A to complete the thermoelectric conversion element A. Then, the endothermic side A1 of the thermoelectric conversion element A is attached to the heat source 8 via a material having a high thermal conductivity (not shown) such as heat conduction grease as shown in FIG. The heat absorption side of the thermoelectric conversion element A absorbs heat, and the cooling side A2 of the thermoelectric conversion element A is cooled.
A power generation device in which a thermoelectric conversion element and a heat pipe are combined is disclosed in Japanese Patent Laid-Open No. 2001-282396. A method is disclosed in which one end of the heat pipe is brought into contact with a heat source, one surface of the thermoelectric conversion element is brought into contact with the other end of the heat pipe, and the other surface of the thermoelectric conversion element is brought into contact with a cooling mechanism. However, in this method, the surface area for arranging the thermoelectric conversion element cannot be secured, and the heat resistance of the portion that transports heat is increased by making the cross-sectional shape of the heat pipe square. The temperature of the contact surface does not rise, and sufficient power generation cannot be obtained.
There is one disclosed in Japanese Patent Application Laid-Open No. 2008-143432. Since the cross section of a normal heat pipe is circular and the contact surface of the thermoelectric conversion element is a flat surface, the heat pipe is crushed and formed into a flat surface, or a heat receiving plate is placed between the heat pipe and the thermoelectric conversion element. It is common to provide it. However, in this method, the temperature of the contact surface with the thermoelectric conversion element does not rise as described above, and a sufficient amount of power generation cannot be obtained. Further, in order to bend the heat pipe, a bend R having a diameter of at least about 3 times is necessary, and when the space is narrow, it is necessary to reduce the diameter of the pipe. Therefore, the amount of heat transport is small, and the contact surface with the thermoelectric conversion element is small, so that a sufficient amount of power generation cannot be obtained. Further, in order to increase the contact area with the thermoelectric conversion element, it is necessary to arrange a plurality of heat pipes in parallel. However, it is difficult to obtain flatness with the same shape, and it is difficult to increase the contact area.
Japanese Patent Laid-Open No. 2003-282972 Japanese Patent Laid-Open No. 2001-282396 Japanese Patent Laid-Open No. 2008-143432
 従来の技術に於ける前述した発電装置は上述した構成、作用であるので次の問題点が存在した。すなわち、熱電変換素子を熱源と冷却機構の間に挟みこもうとしたとき、十分な発電量を得ることができないという問題があった。 The power generator described above in the prior art has the following problems because it has the above-described configuration and operation. That is, there is a problem that when the thermoelectric conversion element is sandwiched between the heat source and the cooling mechanism, a sufficient amount of power generation cannot be obtained.
 本発明に係る発電装置は叙上の問題点を解決すべく発明したものであり、発電装置を狭隘な取付け場所や種々の発熱部材に取付けた場合に於いて、当該発電装置に於ける高温側の熱を効率的に電力に変換することを目的としたものであって、次の構成、手段から成立する。
 すなわち、請求項1記載の発明によれば、細径トンネルヒートパイプを内蔵した薄型プレートヒートデバイスと、該薄型プレートヒートデバイスの立設部位及び底辺部位に熱伝導グリスで貼着されかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする。
 請求項2記載の発明によれば、細径トンネルヒートパイプを内蔵した薄型L字状プレートヒートデバイスと、該薄型L字状プレートヒートデバイスの立設部位及び底辺部位に熱伝導グリスで貼着されかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする。
 請求項3記載の発明によれば、細径トンネルヒートパイプを内蔵した薄型U字状プレートヒートデバイスと、該薄型U字状プレートヒートデバイスのU字状部の内側に熱伝導グリスで貼着されかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする。
 請求項4記載の発明によれば、細径トンネルヒートパイプを内蔵した一方、他方の薄型略Z字状プレートヒートデバイスと、該一方、他方の薄型略Z字状プレートヒートデバイス間に介装すると共に熱伝導グリスで貼着しかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする。
 請求項5記載の発明によれば、細径トンネルヒートパイプを内蔵した一つの薄型略S字状プレートヒートデバイス及び該一つの薄型略S字状プレートヒートデバイスに直交させてなる他の薄型略S字状プレートヒートデバイスと、一つの及び他の薄型略S字状プレートヒートデバイスの上辺、下辺及び中間辺の間に介装すると共に熱伝導グリスで貼着しかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする。
 請求項6記載の発明によれば、細径トンネルヒートパイプを内蔵した薄型プレートヒートデバイスと、該薄型プレートヒートデバイスの少なくとも一つの熱電変換素子とで構成したことを特徴とする。
 請求項7記載の発明によれば、前記薄型プレートヒートデバイスの少なくとも1箇所を所定の形状に曲げたことを特徴とする。
 請求項8記載の発明によれば、前記熱電変換素子の前記密着面の他方面を第2の薄型プレートヒートデバイスに密着させたことを特徴とする。
The power generator according to the present invention was invented to solve the above-mentioned problems. When the power generator is attached to a narrow installation place or various heat generating members, the high temperature side of the power generator is concerned. The purpose is to efficiently convert the heat into electric power, which is constituted by the following configuration and means.
That is, according to the first aspect of the present invention, a thin plate heat device with a built-in thin tunnel heat pipe, a standing portion and a bottom portion of the thin plate heat device are attached with heat conductive grease and direct current is applied. It is characterized by comprising a plurality of thermoelectric conversion elements provided with each lead wire to be taken out.
According to the second aspect of the present invention, the thin L-shaped plate heat device having the small-diameter tunnel heat pipe built therein and the standing portion and the bottom portion of the thin L-shaped plate heat device are adhered with the heat conductive grease. And it comprised with the several thermoelectric conversion element provided with each lead wire which takes out a direct current, It is characterized by the above-mentioned.
According to the third aspect of the present invention, a thin U-shaped plate heat device having a small tunnel heat pipe and a U-shaped portion of the thin U-shaped plate heat device are adhered to the inside of the U-shaped portion with heat conductive grease. And it comprised with the several thermoelectric conversion element provided with each lead wire which takes out a direct current, It is characterized by the above-mentioned.
According to the fourth aspect of the present invention, the thin tunnel heat pipe is incorporated between the other thin and substantially Z-shaped plate heat device and the other thin and substantially Z-shaped plate heat device. And a plurality of thermoelectric conversion elements each having a lead wire attached with heat conductive grease and taking out a direct current.
According to the fifth aspect of the present invention, one thin substantially S-shaped plate heat device having a small tunnel heat pipe and another thin substantially S-shaped plate heat device orthogonal to the one thin substantially S-shaped plate heat device. Each lead wire that is interposed between the upper side, the lower side, and the middle side of one and other thin and substantially S-shaped plate heat devices and is attached with heat conductive grease and extracts a direct current It is characterized by comprising a plurality of thermoelectric conversion elements provided.
According to invention of Claim 6, it comprised by the thin plate heat device which incorporated the small diameter tunnel heat pipe, and the at least 1 thermoelectric conversion element of this thin plate heat device.
According to the invention of claim 7, at least one portion of the thin plate heat device is bent into a predetermined shape.
The invention according to claim 8 is characterized in that the other surface of the adhesion surface of the thermoelectric conversion element is adhered to the second thin plate heat device.
 本発明に係る発電装置は上述した構成を有するので次の効果がある。
 すなわち、請求項1に記載した本発明によれば、細径トンネルヒートパイプを内蔵した薄型プレートヒートデバイスと、該薄型プレートヒートデバイスの立設部位及び底辺部位に熱伝導グリスで貼着されかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする発電装置を提供する。
 このような構成としたので、熱源の熱を薄型プレートヒートデバイスにより拡散し、拡散された該薄型プレートヒートデバイス上に複数の熱電変換素子を配設して、発電量を増加させるという効果がある。
 請求項2に記載した本発明によれば、細径トンネルヒートパイプを内蔵した薄型L字状プレートヒートデバイスと、該薄型L字状プレートヒートデバイスの立設部位及び底辺部位に熱伝導グリスで貼着されかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする発電装置を提供する。
 このような構成としたので、請求項1記載の発明の効果に加えて、狭隘な場所に設置可能であり、その利用範囲は極めて広いという効果がある。
 請求項3に記載した本発明によれば、細径トンネルヒートパイプを内蔵した薄型U字状プレートヒートデバイスと、該薄型U字状プレートヒートデバイスのU字状部の内側に熱伝導グリスで貼着されかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする発電装置を提供する。
 このような構成としたので、請求項1記載の発明の効果に加えて、薄型U字状プレートヒートデバイスを備えたので、 さらに多くの熱電変換素子を配設することが可能となり、発電量を増すという効果がある。
 請求項4に記載した本発明によれば、細径トンネルヒートパイプを内蔵した一方、他方の薄型略Z字状プレートヒートデバイスと、該一方、他方の薄型略Z字状プレートヒートデバイス間に介装すると共に熱伝導グリスで貼着しかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする発電装置を提供する。
 このような構成としたので、請求項1記載の発明の効果に加えて、一方、他方の薄型略Z字状プレートヒートデバイスを備えたので、熱源の熱を薄型プレートヒートデバイスにより拡散し、拡散された該薄型プレートヒートデバイス上に複数の熱電変換素子を配設し、さらに、該熱電変換素子の該薄型プレートヒートデバイスと接触した一面とは反対の面にさらに冷却機構と熱的に接続された薄型プレートヒートデバイスと接触させることにより、熱源を効率よく冷却するとともに、発電量を増加させるという効果がある。
 請求項5に記載した本発明によれば、細径トンネルヒートパイプを内蔵した一つの薄型略S字状プレートヒートデバイス及び該一つの薄型略S字状プレートヒートデバイスに直交させてなる他の薄型略S字状プレートヒートデバイスと、一つの及び他の薄型略S字状プレートヒートデバイスの上辺、下辺及び中間辺の間に介装すると共に熱伝導グリスで貼着しかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする発電装置を提供する。このような構成としたので、請求項1記載の発明の効果に加えて、一つの薄型略S字状プレートヒートデバイス及び該一つの薄型略S字状プレートヒートデバイスに直交させてなる他の薄型略S字状プレートヒートデバイスを備えたので、本装置のコンパクト化を実現し、狭隘な場所であっても更に多くの熱電変換素子を配設することが可能となり、発電量を増加させるという効果がある。
 請求項6に記載した本発明によれば、熱源の熱を薄型プレートヒートデバイスにより拡散し、薄型プレートヒートデバイス上に複数の熱電変換素子を配設して、発電量を増加させるという効果がある。
 請求項7に記載した本発明によれば、請求項1記載の発明の効果に加えて、熱源が狭小な場所に設置されている場合でも可能であり、その利用範囲は極めて広いという効果がある。
 請求項8に記載した本発明によれば、請求項1記載の発明の効果に加えて、薄型プレートヒートデバイスを少なくとも2枚備えたので、一方を高温、他方を低温にすることにより温度差がつきやすくなり、発電量をさらに増すという効果がある。
Since the power generator according to the present invention has the above-described configuration, the following effects are obtained.
That is, according to the present invention described in claim 1, a thin plate heat device having a small-diameter tunnel heat pipe built therein, and a thin plate heat device that is attached to a standing part and a bottom part of the thin plate heat device with heat conductive grease, and a direct current Provided is a power generation apparatus comprising a plurality of thermoelectric conversion elements each having a lead wire for taking out an electric current.
With such a configuration, the heat of the heat source is diffused by the thin plate heat device, and a plurality of thermoelectric conversion elements are disposed on the diffused thin plate heat device to increase the amount of power generation. .
According to the second aspect of the present invention, a thin L-shaped plate heat device having a small-diameter tunnel heat pipe built therein, and the thin L-shaped plate heat device are attached to the standing portion and the bottom portion with heat conductive grease. Provided is a power generation device comprising a plurality of thermoelectric conversion elements each having a lead wire attached and taking out a direct current.
With such a configuration, in addition to the effect of the first aspect of the invention, there is an effect that it can be installed in a narrow place and its use range is extremely wide.
According to the third aspect of the present invention, a thin U-shaped plate heat device having a small tunnel heat pipe and a U-shaped portion of the thin U-shaped plate heat device are adhered to the inside of the U-shaped portion with heat conductive grease. Provided is a power generation device comprising a plurality of thermoelectric conversion elements each having a lead wire attached and taking out a direct current.
Since this structure is adopted, in addition to the effect of the invention of claim 1, since the thin U-shaped plate heat device is provided, it becomes possible to arrange more thermoelectric conversion elements, and to reduce the power generation amount. It has the effect of increasing.
According to the fourth aspect of the present invention, a thin tunnel heat pipe is incorporated between the other thin and substantially Z-shaped plate heat device and the other thin and substantially Z-shaped plate heat device. And a plurality of thermoelectric conversion elements each having a lead wire that is attached with heat conductive grease and takes out a direct current.
Since it was such a structure, in addition to the effect of the invention of claim 1, since the other thin and substantially Z-shaped plate heat device was provided, the heat of the heat source was diffused by the thin plate heat device. A plurality of thermoelectric conversion elements are disposed on the thin plate heat device, and the thermoelectric conversion element is further thermally connected to a cooling mechanism on a surface opposite to the surface in contact with the thin plate heat device. The contact with the thin plate heat device has the effect of efficiently cooling the heat source and increasing the amount of power generation.
According to the present invention as set forth in claim 5, one thin substantially S-shaped plate heat device having a small-diameter tunnel heat pipe and another thin shape perpendicular to the one thin substantially S-shaped plate heat device. Each lead that is interposed between the upper side, the lower side, and the middle side of the substantially S-shaped plate heat device and one and other thin, substantially S-shaped plate heat devices, and is attached with heat conductive grease and takes out a direct current. Provided is a power generation device comprising a plurality of thermoelectric conversion elements provided with wires. Since it was set as such a structure, in addition to the effect of the invention of Claim 1, one thin substantially S-shaped plate heat device and another thin shape formed orthogonally to this one thin substantially S-shaped plate heat device Since it is equipped with a substantially S-shaped plate heat device, this device can be made compact and more thermoelectric conversion elements can be installed even in confined spaces, resulting in an increase in power generation. There is.
According to the present invention described in claim 6, there is an effect that the heat of the heat source is diffused by the thin plate heat device, and a plurality of thermoelectric conversion elements are arranged on the thin plate heat device to increase the power generation amount. .
According to the present invention described in claim 7, in addition to the effect of the invention described in claim 1, it is possible even when the heat source is installed in a narrow place, and there is an effect that the use range is extremely wide. .
According to the present invention described in claim 8, in addition to the effect of the invention described in claim 1, since at least two thin plate heat devices are provided, a temperature difference is caused by setting one to a high temperature and the other to a low temperature. It is easy to attach and has the effect of further increasing power generation.
 図1は本発明に係る発電装置の実施の形態としての発電装置を示す斜視図である。
 図2は本発明に係る発電装置に適用する熱電変換素子の絶縁伝熱板の一部を破断した熱電変換素子の斜視図である。
 図3は本発明に係る発電装置に適用する薄型プレートヒートデバイスの平面図である。
 図4は図3の薄型プレートヒートデバイスの一つの例の内部構造を示す部分拡大水平断面図である。
 図5は本発明に係る発電装置に適用する薄型プレートヒートデバイスの他の例を示す垂直断面図である。
 図6は本発明に係る発電装置の実施例1としての発電装置を示す斜視図である。
 図7は本発明に係る発電装置の実施例2としての発電装置を示す正面図である。
 図8は本発明に係る発電装置の実施例3としての発電装置を示す斜視図である。
 図9は従来の技術に於ける熱伝導装置に用いる熱電変換素子の構成を示す図である。
 図10は従来の技術に於ける熱伝導装置の一例を示す斜視図である。
 図11は実施例4を示す図である。
 図12は実施態様1を示す図である。
 図13は実施態様2を示す図である。
 図14は実施態様3を示す図である。
 図15は実施態様4を示す図である。
FIG. 1 is a perspective view showing a power generator as an embodiment of the power generator according to the present invention.
FIG. 2 is a perspective view of the thermoelectric conversion element in which a part of the insulating heat transfer plate of the thermoelectric conversion element applied to the power generation apparatus according to the present invention is broken.
FIG. 3 is a plan view of a thin plate heat device applied to the power generator according to the present invention.
FIG. 4 is a partially enlarged horizontal sectional view showing the internal structure of one example of the thin plate heat device of FIG.
FIG. 5 is a vertical sectional view showing another example of a thin plate heat device applied to the power generation apparatus according to the present invention.
FIG. 6 is a perspective view showing a power generation device as Example 1 of the power generation device according to the present invention.
FIG. 7: is a front view which shows the electric power generating apparatus as Example 2 of the electric power generating apparatus which concerns on this invention.
FIG. 8 is a perspective view showing a power generator as a third embodiment of the power generator according to the present invention.
FIG. 9 is a diagram showing a configuration of a thermoelectric conversion element used in a heat conduction device in the prior art.
FIG. 10 is a perspective view showing an example of a heat conduction device in the prior art.
FIG. 11 shows the fourth embodiment.
FIG. 12 is a diagram showing the first embodiment.
FIG. 13 is a diagram showing the second embodiment.
FIG. 14 is a diagram showing the third embodiment.
FIG. 15 is a diagram showing the fourth embodiment.
 B     熱電変換素子
 B1~B5 熱電変換素子
 c     直流電流方向
 E     発電装置
 F     発電装置
 G     発電装置
 H     発電装置
 9     負荷
 10a   絶縁伝熱板
 10b   絶縁伝熱板
 11    電極層
 11a   下部電極
 11b   上部電極
 12    P型半導体素子
 13    N型半導体素子
 14    リード線
 15    薄型プレートヒートデバイス
 15A   薄型プレート
 15B   受熱部
 15C   放熱部
 16    ループ型蛇行細径トンネルヒートパイプ
 16a   作動液
 16b   還流管路
 17    薄型プレートヒートデバイス
 18    単位薄板
 18a   長尺蛇行細溝
 19    平薄板
 20    薄型L字状プレートヒートデバイス
 21    熱伝導グリス
 22    熱源
 23    冷却機構
 24    薄型U字状プレートヒートデバイス
 25    熱源
 26    冷却機構
 27    薄型プレートヒートデバイス
 27A   一方の薄型略Z字状プレートヒートデバイス
 27A1  一方の薄型略Z字状プレートヒートデバイスの底面部
 27B   他方の薄型略Z字状プレートヒートデバイス
 27B1  他方の薄型略Z字状プレートヒートデバイスの上面部
 28    熱源
 29    冷却機構
 30    薄型プレートヒートデバイス
 30A   一方の薄型S字状プレートヒートデバイス
 30B   他方の薄型S字状プレートヒートデバイス
 30a   一方の薄型S字状プレートヒートデバイスの下辺
 30b   一方の薄型S字状プレートヒートデバイスの中間辺
 30c   一方の薄型S字状プレートヒートデバイスの上辺
 30d   他方の薄型S字状プレートヒートデバイスの下辺
 30e   他方の薄型S字状プレートヒートデバイスの中間辺
 30f   他方の薄型S字状プレートヒートデバイスの上辺
 131   燃焼室
 132   排気ガスを送り出す配管
 133   水を送り込む配管
 134   温水を送り出す配管
 135   薄型プレートヒートデバイス
 136   薄型プレートヒートデバイス
 137   熱電変換素子
 141   焼却炉
 142   排気ガスを送り出す配管
 143   焼却炉壁面
 144   薄型プレートヒートデバイス
 145   ヒートシンク
 146   薄型プレートヒートデバイス
 147   熱電変換素子
 151   焼成炉
 152   排気ガスを送り出す配管
 153   薄型プレートヒートデバイス
 154   ヒートシンク
 155   薄型プレートヒートデバイス
 156   熱電変換素子
 161   モーター
 162   冷却液を供給する配管
 163   冷却液を送り出す配管
 164   薄型プレートヒートデバイス
 165   薄型プレートヒートデバイス
 166   熱電変換素子
 171   薄型プレートヒートデバイス
 172   薄型プレートヒートデバイス
B Thermoelectric conversion element B1 to B5 Thermoelectric conversion element c DC current direction E Power generation device F Power generation device G Power generation device H Power generation device 9 Load 10a Insulation heat transfer plate 10b Insulation heat transfer plate 11 Electrode layer 11a Lower electrode 11b Upper electrode 12 P type Semiconductor element 13 N-type semiconductor element 14 Lead wire 15 Thin plate heat device 15A Thin plate 15B Heat receiving portion 15C Heat radiation portion 16 Loop type meandering small diameter tunnel heat pipe 16a Working fluid 16b Reflux pipe 17 Thin plate heat device 18 Unit thin plate 18a Long Measured meandering groove 19 Flat thin plate 20 Thin L-shaped plate heat device 21 Heat conduction grease 22 Heat source 23 Cooling mechanism 24 Thin U-shaped plate heat device 25 Heat source 26 Cooling mechanism 27 Thin Type plate heat device 27A One thin and substantially Z-shaped plate heat device 27A1 Bottom portion of one thin and substantially Z-shaped plate heat device 27B The other thin and substantially Z-shaped plate heat device 27B1 The other thin and substantially Z-shaped plate heat device 27B1 Upper surface portion of device 28 Heat source 29 Cooling mechanism 30 Thin plate heat device 30A One thin S-shaped plate heat device 30B The other thin S-shaped plate heat device 30a The lower side 30b of one thin S-shaped plate heat device 30b One thin Intermediate side 30c of the S-shaped plate heat device Upper side 30d of one thin S-shaped plate heat device Lower side 30e of the other thin S-shaped plate heat device 30e Intermediate side 30f of the other thin S-shaped plate heat device Upper side of the other thin S-shaped plate heat device 131 Combustion chamber 132 Pipe for sending exhaust gas 133 Pipe for feeding water 134 Pipe for sending hot water 135 Thin plate heat device 136 Thin plate heat device 137 Thermoelectric conversion element 141 Incinerator 142 Exhaust gas 143 Incinerator wall surface 144 Thin plate heat device 145 Heat sink 146 Thin plate heat device 147 Thermoelectric conversion element 151 Firing furnace 152 Exhaust gas delivery pipe 153 Thin plate heat device 154 Heat sink 155 Thin plate heat device 156 Thermoelectric conversion element 161 Motor 162 Piping for supplying coolant 163 Piping for delivering coolant 164 Thin plate heat device Scan 165 thin plate heat device 166 thermoelectric conversion element 171 thin plate heat device 172 thin plate heat device
 以下、本発明に係る発電装置に於ける実施の形態について添付図面に基づき詳細に説明する。
 図1は本発明に係る発電装置の実施の形態としての発電装置Eを示す斜視図である。
 本発明に係る発電装置Eに於ける実施の形態の説明に先立ち、先ず本発明に係る発電装置Eに適用する熱電変換素子の動作原理について図2に基づいて詳細に説明する。
 熱電変換素子Bは、異なる材料でつくられた2つの導体からなり、熱電変換素子間に温度差が生じた際にゼーベック効果により2つの導体に電流が流れ発電装置として動作する。熱電変換素子Bの基本的構成は、図2に示すように、2枚のセラミックス等の絶縁伝熱板10a、10bの間に、電極層11を介してP型半導体素子12及びN型半導体素子13が交互に接続・配置されており、電気的には直列に、熱的には並列に接続される。絶縁伝熱板10bが吸熱面になり、絶縁伝熱板10aが冷却面になり、リード線14の矢印方向に電流が流れる。
 熱電変換素子Bは、絶縁伝熱板10aと10bに温度差が加わると、該絶縁伝熱板10aと10bと接触している電極11aと11bを介して、フェルミ準位の異なる金属N型半導体13とP型半導体12との間に、正孔の移動による電界が発生し、N型半導体13の下側に接続した下部電極11aからN型半導体13を通過して上部電極11bを通ってP型半導体12の下部電極11aへの起電力が起こる。
 次に、本発明に係る発電装置Eに適用する薄型プレートヒートデバイスの一つの例について、図3及び図4に基づき詳細に説明する。
図3は薄型プレートヒートデバイス15であってその一部を切欠した平面図、図4は薄型プレートヒートデバイス15の内部構造を示す図であって、図3に於いてその部分拡大水平断面図である。
 薄型プレートヒートデバイス15は大きな熱量を円滑に輸送するように設計されている。また薄型プレートヒートデバイス15の内部はループ型蛇行細径トンネルヒートパイプ16を内蔵しておりこのループ型蛇行細径トンネルヒートパイプ16の内部に封入した図4に示すように作動液16aが還流管路16bにD方向に流送する。そしてこの作動液16aの内圧に対して該プレートヒートデバイス15のループ型蛇行細径トンネルヒートパイプ16が十分な強度を有する必要がある。このような各種の条件を満足する薄型プレートヒートデバイス15は薄型プレート15A内に前述したループ型蛇行細径トンネルヒートパイプ16を備えてある。
 そして、こような単位対のループ型蛇行細径トンネルヒートパイプ16の群は相互に連結連通されて、平面状に構成されて一体化されてある。このように一体化されたループ型蛇行細径トンネルヒートパイプ16の群は、一括して密閉封止され且つ真空脱気された上で所定の二相凝縮性作動液の所定量が封入されてヒートパイプ化されて、構成されている。図4において15Bは受熱部の位置を示し、15Cは放熱部の位置を示す。
 次に、本発明に係る発電装置Eに適用する薄型プレートヒートデバイスの他の例について図5に基づき詳細に説明する。17は薄型プレートヒートデバイスであって、熱伝導性の良好な金属からなる単位薄板18及び平薄板19の溶接積層体でなる。単位薄板18の溶接面には積層に先立って予め一連の長尺蛇行細溝18aが形成されてある。該長尺蛇行細溝18aの形成は切削、放電加工、プレス成形等何れの手段によってなされたものであっても良い。長尺蛇行細溝18aは積層により密閉蛇行細径として構成され、この密閉蛇行細径に所定の作動液16aの所定量が封入されて蛇行細径トンネルヒートパイプ16として構成されてある。
 図5は長尺蛇行細溝18aが形成されてある単位薄板18と細溝が形成されていない単なる平薄板19とが積層されてある例である。
単位薄板18に内蔵したループ型蛇行細径トンネルヒートパイプ16はターン部の曲率半径を極限に至るまで小さくできる。そして細溝幅に溝山の幅1mm程度を加算しただけのピッチで高密度に配接することが可能となり、多数ターンの細管ヒートパイプを内蔵することが出来る。従って高性能で且つ厚さの薄いプレート形ヒートパイプを構成することが可能になる。一例としては外径3mm内径2mmの蛇行細管ヒートパイプに替えて細管ヒートパイプを内蔵する場合は径2mmの細管をピッチ3mmで内蔵することが可能であり、100mm幅の中に33本を配設した厚さ5mmのプレート形ヒートパイプを構成することが可能となる。そして作動液16aの循環及び振動に際して無駄な抵抗の発生が少ないことが利点である。
 薄型プレートヒートデバイス15、17に内蔵しているループ型蛇行細径トンネルヒートパイプ16や長尺蛇行細溝18aは何れもどのような設置条件や配置形態又は保持姿勢でも作動液16aの流送が活発に作動する特性があることを共通の利点としている。従って本発明ではこれらのループ型蛇行細径トンネルヒートパイプ16等を内蔵する薄型プレートヒートデバイス15、17は、従来の熱電変換素子Aのみでなる熱電素子が具有する問題点をすべて解決するものである。加えてIT業界等に於ける機器の小型化、軽量化及び高密度集積化により、薄型プレートヒートデバイス15、17に内蔵されるループ型蛇行細径トンネルヒートパイプ16や長尺蛇行細溝18aはその重量と雖も無視出来なくなりつつあり、一層の小型軽量化が要求され、本発明はこれに対処できる。
 次に本発明に係る発電装置Eに於ける構成について、図1に基づいて詳細に説明する。図1は本発明に係る発電装置Eの一例を示す斜視図であって、理解のために後述する熱源及び冷却機構を配備した構成について図示している。Bは各前記熱電変換素子であり、20は薄型L字状プレートヒートデバイスである。薄型L字状プレートヒートデバイス20は金属平板をL字状に曲げ加工してあり、図1に示すように薄型L字状プレートヒートデバイス20の一方側に複数の熱電変換素子Bを貼着する。ここでは4個の熱電変換素子Bを貼着しており、その立設部位に3個の、底辺部位に1個又は複数個の熱電変換素子Bを貼着する。全ての熱電変換素子Bを前記薄型L字状プレートヒートデバイス20に貼着するとき複数の熱電変換素子Bに於ける4個の全ての貼着面つまり図2に示す絶縁伝熱版10bの側が例えば吸熱面側になるように配設する。
 尚、本発明に係る発電装置Eの取り付け位置や設計条件、配置形態又は保持姿勢等はその使用目的により複数の熱電変換素子Bの貼着面を吸熱面側に限定せず冷却面側にしてもよい。この例では各熱電変換素子Bの吸熱面側を貼着面とする。具体的には各熱電変換素子Bの一方の絶縁伝熱板(図2に示す絶縁伝熱板10aに相当)を前記薄型L字状プレートヒートデバイス20の金属平板(図3、図5に示す薄型プレート15A、平薄板19に相当)に貼着する。各熱電変換素子Bと薄型L字状プレートヒートデバイス20の貼着面は微小な隙間(図示せず)が存在するが、その隙間に熱伝導率の良好な粘着物例えば熱伝導グリス21や接着剤を塗布・充填する。このとき、該隙間に充填した熱伝導グリス21に気泡を封止しないように、また熱伝導グリス21の厚さが厚くならないように熱電変換素子Bと薄型L字状プレートヒートデバイス20を互いに摺り合わせて圧接する。尚、熱伝導グリス21は酸化亜鉛等の金属微粉末を混練したシリコーングリス等や銀ペイントのような熱伝導率が大きく良好な熱伝導を得る上で塗布剤として有効なものを採用する。
尚、本発明は上記薄型L字状プレートヒートデバイス20をこの形状に限定せず、本発明に係る発電装置Eの設置場所や設計条件等により平板状でなる矩形や正方形等各種の形状であっても差支えない。
 22は本発明に係る発電装置Eを設置することによって吸熱する熱源である。図1に於いて本発明に係る発電装置Eと熱源22は離間して図示しているが、実施形態に於いては熱源22を薄型L字状プレートヒートデバイス20の他方側、つまり金属平板(図3、図5に示す薄型プレート15A、平薄板19に相当)に密着させる。その際は前記熱伝導グリス21等を介在させて密着させ、熱源22と薄型L字状プレートヒートデバイス20を熱的に一体化する。
 23は本発明に係る発電装置Eによって熱源22から吸収した熱を熱電変換素子の発電を促すための冷却機構である。図1に於いて本発明に係る発電装置Eと冷却機構23は離間して図示しているが、実施形態に於いては立設・配設された3個の各熱電変換素子B及び底辺部位に配設された1個の熱電変換素子Bの他方の絶縁伝熱板(図2に示す絶縁伝熱板10bに相当)に密着させる。その際は前記熱伝導グリス21等を介在させて密着させ、冷却機構23と前記熱電変換素子Bを熱的に一体化する。
 次に本発明に係る発電装置Eの実施の形態に於ける動作等を説明する。図1に於いて
熱源22から熱が薄型L字状プレートヒートデバイス20の他方側、つまり薄型プレート15A、単位薄板18(図3、図5に示す)に熱伝導する。そこで、薄型L字状プレートヒートデバイス20のループ型蛇行細径トンネルヒートパイプ16や長尺蛇行細溝18aに封入された作動液16aが潜熱を摂取して蒸発する。その蒸気は該薄型L字状プレートヒートデバイス20のループ型蛇行細径トンネルヒートパイプ16や長尺蛇行細溝18aを介して蒸発部(図示せず)から送出される。一方、液相の作動液16aは蒸発部(図示せず)の内周面に供給されると共に潜熱として熱を輸送することができる。この輸送速度が高速であって、効率よく輸送される。
 前記ループ型蛇行細径トンネルヒートパイプ16や長尺蛇行細溝18aは、蛇行パターン数が多い程輸送性能を向上させる。トップヒートモードに於ける性能がボトムヒートモードのときの性能と大差なく良好に作動させるためには100(mm)幅の中に30ターン以上が必要とされる。
 而して前記薄型L字状プレートヒートデバイス20の一方側、つまり金属平板(図3、図5に示す薄型プレート15A、平薄板19に相当)に高速かつ効率的に輸送された熱は4個の熱電変換素子Bの絶縁伝熱板10aに熱的に接続され、一方、冷却機構23は熱電変換素子Bの絶縁伝熱板10bへと熱的に接続される。熱電変換素子Bの基本的構成は、2枚のセラミックス等の絶縁伝熱板10a、10bの間に、電極層11を介してP型半導体素子12及びN型半導体素子13が交互に接続・配置されており、電気的には直列に、熱的には並列に接続される。熱電変換素子Bは、絶縁伝熱板10aと10bに温度差が加わると、該絶縁伝熱板10aと10bと接触している電極11aと11bを介して、フェルミ準位の異なる金属N型半導体13とP型半導体12との間に、正孔の移動による電界が発生し、N型半導体13の下側に接続した下部電極11aからN型半導体13を通過して上部電極11bを通ってP型半導体12の下部電極11aへの起電力が起こる。
すなわち、本発明に係る発電装置Eは各種の自動車機器や建築設備機器に応用できる。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a power generator according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a perspective view showing a power generation device E as an embodiment of the power generation device according to the present invention.
Prior to the description of the embodiment of the power generation apparatus E according to the present invention, the operation principle of the thermoelectric conversion element applied to the power generation apparatus E according to the present invention will be described in detail with reference to FIG.
The thermoelectric conversion element B is composed of two conductors made of different materials, and when a temperature difference occurs between the thermoelectric conversion elements, current flows through the two conductors due to the Seebeck effect and operates as a power generator. As shown in FIG. 2, the basic configuration of the thermoelectric conversion element B is that a P-type semiconductor element 12 and an N-type semiconductor element are interposed between two insulating heat transfer plates 10a and 10b made of ceramics or the like via an electrode layer 11. 13 are alternately connected and arranged, and are electrically connected in series and thermally connected in parallel. The insulated heat transfer plate 10 b becomes a heat absorption surface, the insulated heat transfer plate 10 a becomes a cooling surface, and a current flows in the direction of the arrow of the lead wire 14.
When a temperature difference is applied to the insulating heat transfer plates 10a and 10b, the thermoelectric conversion element B is a metal N-type semiconductor having different Fermi levels via the electrodes 11a and 11b in contact with the insulating heat transfer plates 10a and 10b. An electric field due to the movement of holes is generated between the P-type semiconductor 12 and the P-type semiconductor 12, and passes through the N-type semiconductor 13 from the lower electrode 11a connected to the lower side of the N-type semiconductor 13 and passes through the upper electrode 11b. An electromotive force is generated in the lower electrode 11a of the type semiconductor 12.
Next, one example of a thin plate heat device applied to the power generation apparatus E according to the present invention will be described in detail based on FIG. 3 and FIG.
FIG. 3 is a plan view of the thin plate heat device 15 partially cut away, and FIG. 4 is a diagram showing the internal structure of the thin plate heat device 15, which is a partially enlarged horizontal sectional view in FIG. is there.
The thin plate heat device 15 is designed to smoothly transport a large amount of heat. The thin plate heat device 15 contains a loop-type meandering small-diameter tunnel heat pipe 16. As shown in FIG. Flow in the direction D to the path 16b. The loop meandering small diameter tunnel heat pipe 16 of the plate heat device 15 needs to have sufficient strength against the internal pressure of the hydraulic fluid 16a. The thin plate heat device 15 satisfying such various conditions is provided with the loop-shaped meandering thin tunnel heat pipe 16 described above in the thin plate 15A.
A group of such unit pairs of loop-shaped meandering small-diameter tunnel heat pipes 16 are connected and communicated with each other, and are configured to be planar and integrated. The group of loop-type meandering small diameter tunnel heat pipes 16 integrated in this way is hermetically sealed together and vacuum degassed, and then a predetermined amount of a predetermined two-phase condensable hydraulic fluid is enclosed. It is made up of heat pipes. In FIG. 4, 15B indicates the position of the heat receiving portion, and 15C indicates the position of the heat radiating portion.
Next, another example of the thin plate heat device applied to the power generation apparatus E according to the present invention will be described in detail with reference to FIG. Reference numeral 17 denotes a thin plate heat device, which is a welded laminate of unit thin plates 18 and flat thin plates 19 made of a metal having good thermal conductivity. Prior to lamination, a series of long meandering narrow grooves 18a are formed on the welding surface of the unit thin plate 18 in advance. The long meandering narrow groove 18a may be formed by any means such as cutting, electric discharge machining, or press molding. The long meandering narrow groove 18a is configured as a closed meandering narrow diameter by stacking, and a predetermined amount of a predetermined working fluid 16a is enclosed in the tight meandering narrow diameter, and the meandering narrow diameter tunnel heat pipe 16 is configured.
FIG. 5 shows an example in which unit thin plates 18 in which long meandering narrow grooves 18a are formed and simple flat thin plates 19 in which no narrow grooves are formed are laminated.
The loop-shaped meandering thin tunnel heat pipe 16 built in the unit thin plate 18 can reduce the radius of curvature of the turn portion to the limit. And it becomes possible to arrange with high density at a pitch that is just the sum of the groove width of about 1 mm to the width of the narrow groove, and it is possible to incorporate a multi-turn thin pipe heat pipe. Therefore, it is possible to construct a plate-type heat pipe with high performance and a small thickness. As an example, when a thin tube heat pipe is incorporated instead of a meandering thin tube heat pipe with an outer diameter of 3 mm and an inner diameter of 2 mm, it is possible to incorporate a 2 mm diameter narrow tube with a pitch of 3 mm, and 33 tubes are arranged in a width of 100 mm. It is possible to construct a plate-type heat pipe having a thickness of 5 mm. The advantage is that less resistance is generated when the hydraulic fluid 16a is circulated and vibrated.
The loop type meandering narrow tunnel heat pipe 16 and the long meandering narrow groove 18a incorporated in the thin plate heat devices 15 and 17 can flow the hydraulic fluid 16a in any installation condition, arrangement form or holding posture. The common advantage is that it has active characteristics. Therefore, in the present invention, the thin plate heat devices 15 and 17 incorporating the loop type meandering thin tunnel heat pipe 16 and the like solve all the problems of the conventional thermoelectric element composed only of the thermoelectric conversion element A. is there. In addition, due to miniaturization, weight reduction, and high density integration of equipment in the IT industry etc., the loop type meandering narrow tunnel heat pipe 16 and the long meandering narrow groove 18a incorporated in the thin plate heat devices 15, 17 The weight and wrinkle are becoming ignorable, and further reduction in size and weight is required, and the present invention can cope with this.
Next, the configuration of the power generator E according to the present invention will be described in detail with reference to FIG. FIG. 1 is a perspective view showing an example of a power generation apparatus E according to the present invention, and illustrates a configuration in which a heat source and a cooling mechanism described later are provided for the sake of understanding. B is each thermoelectric conversion element, and 20 is a thin L-shaped plate heat device. The thin L-shaped plate heat device 20 is formed by bending a metal flat plate into an L shape, and a plurality of thermoelectric conversion elements B are attached to one side of the thin L-shaped plate heat device 20 as shown in FIG. . Here, four thermoelectric conversion elements B are attached, and three or more thermoelectric conversion elements B are attached to the standing part and three base parts. When all the thermoelectric conversion elements B are bonded to the thin L-shaped plate heat device 20, all four bonding surfaces in the plurality of thermoelectric conversion elements B, that is, the insulating heat transfer plate 10b side shown in FIG. For example, it arrange | positions so that it may become an endothermic surface side.
Note that the mounting position, design conditions, arrangement form, holding posture, etc. of the power generator E according to the present invention are not limited to the heat absorption surface side but the cooling surface side depending on the purpose of use. Also good. In this example, the endothermic surface side of each thermoelectric conversion element B is used as the sticking surface. Specifically, one insulating heat transfer plate (corresponding to the insulating heat transfer plate 10a shown in FIG. 2) of each thermoelectric conversion element B is used as a metal flat plate of the thin L-shaped plate heat device 20 (shown in FIGS. 3 and 5). A thin plate 15A and a flat thin plate 19). There are minute gaps (not shown) on the bonding surfaces of each thermoelectric conversion element B and the thin L-shaped plate heat device 20, and an adhesive having a good thermal conductivity, such as heat conduction grease 21 or adhesion, is present in the gap. Apply and fill the agent. At this time, the thermoelectric conversion element B and the thin L-shaped plate heat device 20 are slid against each other so as not to seal bubbles in the heat conductive grease 21 filled in the gap and so that the thickness of the heat conductive grease 21 does not increase. Weld together. As the heat conductive grease 21, a silicone grease or the like kneaded with metal fine powder such as zinc oxide, or silver paint, which has a high heat conductivity and is effective as a coating agent for obtaining good heat conduction, is adopted.
In the present invention, the thin L-shaped plate heat device 20 is not limited to this shape, and may have various shapes such as a rectangular shape and a square shape depending on the installation location and design conditions of the power generation apparatus E according to the present invention. It doesn't matter.
Reference numeral 22 denotes a heat source that absorbs heat by installing the power generation device E according to the present invention. In FIG. 1, the power generation apparatus E and the heat source 22 according to the present invention are illustrated separately from each other, but in the embodiment, the heat source 22 is connected to the other side of the thin L-shaped plate heat device 20, that is, a metal flat plate ( The thin plate 15A and the flat thin plate 19 shown in FIGS. At that time, the heat conduction grease 21 and the like are interposed and adhered, and the heat source 22 and the thin L-shaped plate heat device 20 are thermally integrated.
Reference numeral 23 denotes a cooling mechanism for encouraging the power generation of the thermoelectric conversion element by the heat absorbed from the heat source 22 by the power generation apparatus E according to the present invention. In FIG. 1, the power generation device E and the cooling mechanism 23 according to the present invention are shown apart from each other, but in the embodiment, each of the three thermoelectric conversion elements B and the bottom portion that are erected and arranged are arranged. Are attached to the other insulating heat transfer plate (corresponding to the insulating heat transfer plate 10b shown in FIG. 2) of one thermoelectric conversion element B. At that time, the heat conduction grease 21 or the like is interposed between the cooling mechanism 23 and the thermoelectric conversion element B so as to be thermally integrated.
Next, operation | movement etc. in embodiment of the electric power generating apparatus E which concern on this invention are demonstrated. In FIG. 1, heat is conducted from the heat source 22 to the other side of the thin L-shaped plate heat device 20, that is, the thin plate 15A and the unit thin plate 18 (shown in FIGS. 3 and 5). Therefore, the working fluid 16a enclosed in the loop-shaped meandering narrow tunnel heat pipe 16 and the long meandering narrow groove 18a of the thin L-shaped plate heat device 20 ingests latent heat and evaporates. The steam is sent out from an evaporation section (not shown) through the loop-shaped meandering thin tunnel heat pipe 16 and the long meandering narrow groove 18a of the thin L-shaped plate heat device 20. On the other hand, the liquid-phase working fluid 16a is supplied to the inner peripheral surface of the evaporation section (not shown) and can transport heat as latent heat. This transportation speed is high, and it is transported efficiently.
The loop type meandering tunnel heat pipe 16 and the long meandering narrow groove 18a improve the transport performance as the number of meandering patterns increases. In order for the performance in the top heat mode to operate satisfactorily without much difference from the performance in the bottom heat mode, 30 turns or more are required in a width of 100 (mm).
Thus, four heats are transported at high speed and efficiently to one side of the thin L-shaped plate heat device 20, that is, a metal flat plate (corresponding to the thin plate 15A and the flat thin plate 19 shown in FIGS. 3 and 5). The cooling mechanism 23 is thermally connected to the insulated heat transfer plate 10b of the thermoelectric conversion element B. On the other hand, the cooling mechanism 23 is thermally connected to the insulated heat transfer plate 10b of the thermoelectric conversion element B. The basic configuration of the thermoelectric conversion element B is that P-type semiconductor elements 12 and N-type semiconductor elements 13 are alternately connected and arranged between two insulating heat transfer plates 10a, 10b made of ceramics or the like via electrode layers 11. It is electrically connected in series and thermally connected in parallel. When a temperature difference is applied to the insulating heat transfer plates 10a and 10b, the thermoelectric conversion element B is a metal N-type semiconductor having different Fermi levels via the electrodes 11a and 11b in contact with the insulating heat transfer plates 10a and 10b. An electric field due to the movement of holes is generated between the P-type semiconductor 12 and the P-type semiconductor 12, and passes through the N-type semiconductor 13 from the lower electrode 11a connected to the lower side of the N-type semiconductor 13 and passes through the upper electrode 11b. An electromotive force is generated in the lower electrode 11a of the type semiconductor 12.
That is, the power generation apparatus E according to the present invention can be applied to various types of automobile equipment and building equipment.
 次に本発明に係る発電装置の実施例1である発電装置Fを図6に基づいて詳細に説明する。
 図6は本発明に係る発電装置Fを示す斜視図である。Bは前記熱電変換素子であり、24は薄型U字状プレートヒートデバイスである。薄型U字状プレートヒートデバイス24は金属平板をU字状に曲げ加工してあり、図6に示すように薄型U字状プレートヒートデバイス24のU字状部の内側に複数の熱電変換素子Bを貼着する。ここでは薄型U字状プレートヒートデバイス24の左・右縦方向の内側にそれぞれ3個の熱電変換素子Bを貼着し、薄型U字状プレートヒートデバイス24の底面の内側に水平方向1個の熱電変換素子Bを貼着し、合計7個の熱電変換素子Bを配設している。熱電変換素子Bと薄型U字状プレートヒートデバイス24を貼着するときは前記熱伝導グリス21を介して貼着し、上述の通り、良好な熱伝導を得るために熱電変換素子Bと薄型U字状プレートヒートデバイス24を互いに摺り合わせて圧接する。
 25は本発明に係る発電装置Fによって吸熱するべき熱源である。図6に於いて本発明に係る発電装置Fと熱源25は前記熱伝導グリス21等を介在させて密着させ、熱源25と薄型U字状プレートヒートデバイス24を熱的に一体化する。
 26は本発明に係る発電装置Eによって熱源25から吸収した熱を熱電変換素子の発電を促すべき冷却機構である。図6に於いて本発明に係る発電装置Fと冷却機構26は、左・右縦位置に配設された各々3個の熱電変換素子Bの内側面と水平に配設した1個の熱電変換素子Bの上面に密着させる。その際は前記熱伝導グリス21等を介在させて密着させ、冷却機構26と前記熱電変換素子Bを熱的に一体化する。
 尚、上述した構成や動作等の説明は本発明に係る発電装置の実施の形態の説明と略同一であり、同一番号、同一符号を付し、その説明を省略する。
Next, a power generator F that is Embodiment 1 of the power generator according to the present invention will be described in detail with reference to FIG.
FIG. 6 is a perspective view showing a power generator F according to the present invention. B is the thermoelectric conversion element, and 24 is a thin U-shaped plate heat device. The thin U-shaped plate heat device 24 is formed by bending a metal flat plate into a U shape, and a plurality of thermoelectric conversion elements B are arranged inside the U-shaped portion of the thin U-shaped plate heat device 24 as shown in FIG. Affix. Here, three thermoelectric conversion elements B are attached to the inside of the left and right vertical directions of the thin U-shaped plate heat device 24, respectively, and one horizontal direction is placed inside the bottom surface of the thin U-shaped plate heat device 24. The thermoelectric conversion element B is stuck and a total of seven thermoelectric conversion elements B are disposed. When the thermoelectric conversion element B and the thin U-shaped plate heat device 24 are bonded, the thermoelectric conversion element B and the thin U-shaped plate heat device 24 are bonded to each other through the heat conductive grease 21 as described above to obtain good heat conduction. The letter-shaped plate heat devices 24 are slid and pressed together.
Reference numeral 25 denotes a heat source to be absorbed by the power generation device F according to the present invention. In FIG. 6, the power generation device F and the heat source 25 according to the present invention are brought into close contact with each other through the heat conduction grease 21 and the like, and the heat source 25 and the thin U-shaped plate heat device 24 are thermally integrated.
Reference numeral 26 denotes a cooling mechanism which should promote the power generation of the thermoelectric conversion element by the heat absorbed from the heat source 25 by the power generation apparatus E according to the present invention. In FIG. 6, the power generation device F and the cooling mechanism 26 according to the present invention have one thermoelectric conversion disposed horizontally with the inner surface of each of the three thermoelectric conversion elements B disposed in the left and right vertical positions. Adhere to the upper surface of the element B. At that time, the heat conduction grease 21 or the like is interposed between the cooling mechanism 26 and the thermoelectric conversion element B so as to be thermally integrated.
In addition, description of the structure, operation | movement, etc. which were mentioned above is substantially the same as description of embodiment of the electric power generating apparatus which concerns on this invention, attaches | subjects the same number and the same code | symbol, and abbreviate | omits the description.
 次に本発明に係る発電装置の実施例2である発電装置Gを図7に基づいて詳細に説明する。
 27は当該実施例2に適用した薄型プレートヒートデバイスであって、一方の薄型略Z字状プレートヒートデバイス27Aと他方の薄型略Z字状プレートヒートデバイス27Bとの組合せで構成される。この両者間に複数、例えば4個の熱電変換素子Bを介装してある。該一方、他方の薄型略Z字状プレートヒートデバイス27A、27Bはそれぞれ金属平板を略Z字状に曲げ加工してあって図7に示すようにそれぞれの内側に複数の熱電変換素子Bを貼着する。
 尚、図中28は熱源、29は冷却機構であって、一方の薄型略Z字状プレートヒートデバイス27Aの底面部27A1を密着・接合させている。また、他方の薄型略Z字状プレートヒートデバイス27Bは上面部27B1を密着・接合させている。そして、各熱電変換素子Bの表・裏面と一方、他方の薄型略Z字状プレートヒートデバイス27A、27Bとの間には熱伝導グリス等を介在させて密着する。
 尚、実施例2の構成は図1に示す実施の形態のものの構成に於いて、複数の熱電変換素子Bと低温側部材23との間に他方の薄型略Z字状プレートヒートデバイス27Bを介在させた技術思想を付加したものである。
 また、上述した構成や動作等の説明は本発明に係る発電装置の実施の形態の説明と略同一であり、同一番号、同一符号を付し、その説明を省略する。
Next, a power generator G that is a second embodiment of the power generator according to the present invention will be described in detail with reference to FIG.
Reference numeral 27 denotes a thin plate heat device applied to the second embodiment, which is composed of a combination of one thin substantially Z-shaped plate heat device 27A and the other thin substantially Z-shaped plate heat device 27B. A plurality of, for example, four thermoelectric conversion elements B are interposed between the two. On the other hand, the other thin and substantially Z-shaped plate heat devices 27A and 27B are each formed by bending a metal flat plate into a substantially Z shape, and a plurality of thermoelectric conversion elements B are pasted inside each as shown in FIG. To wear.
In the figure, 28 is a heat source, 29 is a cooling mechanism, and the bottom surface portion 27A1 of one thin and substantially Z-shaped plate heat device 27A is in close contact / joining. The other thin and substantially Z-shaped plate heat device 27B has the upper surface portion 27B1 in close contact with and bonded thereto. The thermoelectric conversion elements B are in close contact with the front and back surfaces of the thermoelectric conversion elements B and the other thin and substantially Z-shaped plate heat devices 27A and 27B with heat conduction grease interposed therebetween.
The configuration of Example 2 is the same as that of the embodiment shown in FIG. 1, and the other thin, substantially Z-shaped plate heat device 27B is interposed between the plurality of thermoelectric conversion elements B and the low temperature side member 23. The added technical idea.
Moreover, description of the structure, operation | movement, etc. which were mentioned above is substantially the same as description of embodiment of the electric power generating apparatus which concerns on this invention, attaches | subjects the same number and the same code | symbol, and abbreviate | omits the description.
 次に本発明に係る発電装置の実施例3である発電装置Hを図8に基づいて詳細に説明する。
 30は当該実施例3に適用した薄型プレートヒートデバイスであって、一方の薄型略S字状プレートヒートデバイス30Aと、それに直交して組み合わせた他方の薄型略S字状プレートヒートデバイス30Bとで構成される。この両者間に複数の、例えば5個の熱電変換素子B1ないしB5のそれぞれを一方、他方の薄型略S字状プレートヒートデバイス30A、30Bの各表・裏面間に介装した構成である。一方、他方の薄型略S字状プレートヒートデバイス30A、30Bは金属平板をそれぞれ略S字状に曲げ加工してあって、図8に示すように一方、他方の薄型略S字状プレートヒートデバイス30A、30Bが互いに交差するように配置する。そして一方の薄型略S字状プレートヒートデバイス30Aの下辺30aの上面と他方の薄型略S字状プレートヒートデバイス30Bの下辺30dの下面との間に熱電変換素子B1を介装する。
 また、他方の薄型略S字状プレートヒートデバイス30Bの下辺30dの上面と一方の薄型略S字状プレートヒートデバイス30Aの中間辺30bの下面との間に熱電変換素子B2を介装する。
 また、一方の薄型略S字状プレートヒートデバイス30Aの中間辺30bの上面と他方の薄型略S字状プレートヒートデバイス30Bの中間辺30eの下面との間に熱電変換素子B3を介装する。
 また、他方の薄型略S字状プレートヒートデバイス30Bの中間辺30eの上面と一方の薄型略S字状プレートヒートデバイス30Aの上辺30cの下面との間に熱電変換素子B4を介装する。
 さらに、一方の薄型略S字状プレートヒートデバイス30Aの上辺30cの上面と他方の薄型略S字状プレートヒートデバイス30Bの上辺30fの下面との間に熱電変換素子B5を介装する。そして、前記一方、他方の薄型略S字状プレートヒートデバイス30A、30Bの各上、下面と各熱電変換素子B1ないしB5の表・裏面とは前述した各実施例の構成例と同様に熱伝導グリス21等を介在させて貼着する。このように構成したことでコンパクト化される一方、他方の薄型略S字状プレートヒートデバイス30A、30Bから各熱電変換素子B1ないしB5に熱伝導することができる。
尚、図中31は熱源、32は冷却機構であって、熱源31は一方の薄型略S字状プレートヒートデバイス30Aの下辺30aの下面に前記熱伝導グリス21等を介在させて貼着する。また、低温側部材32は他方の薄型略S字状プレートヒートデバイス30Bの上辺30fの上面に前記熱伝導グリス21等を介在させて貼着する。また、当実施例3に於いて熱電変換素子B1、B4及びB5に配設されたリード線14は本発電装置Hの前方に引出され、また、熱電変換素子B2及びB3に配設されたリード線14は本発電装置Hの後方に引出された構成となる。また、上述した構成や動作等の説明は本発明に係る発電装置の実施の形態の説明と略同一であり、同一番号、同一符号を付し、その説明を省略する。
以上、実施例では熱電変換素子として半導体を用いた場合を説明してきたが、異なる金属同士を接触させても同様に発電装置を構成することができる。
Next, a power generation apparatus H that is Embodiment 3 of the power generation apparatus according to the present invention will be described in detail with reference to FIG.
Reference numeral 30 denotes a thin plate heat device applied to the third embodiment, which is composed of one thin substantially S-shaped plate heat device 30A and the other thin substantially S-shaped plate heat device 30B combined orthogonally thereto. Is done. A plurality of, for example, five thermoelectric conversion elements B1 to B5 are interposed between the front and back surfaces of one thin and substantially S-shaped plate heat device 30A, 30B. On the other hand, the other thin and substantially S-shaped plate heat devices 30A and 30B are formed by bending a metal flat plate into a substantially S-shape, respectively, and as shown in FIG. 30A and 30B are arranged so as to cross each other. A thermoelectric conversion element B1 is interposed between the upper surface of the lower side 30a of one thin and substantially S-shaped plate heat device 30A and the lower surface of the lower side 30d of the other thin and substantially S-shaped plate heat device 30B.
Further, a thermoelectric conversion element B2 is interposed between the upper surface of the lower side 30d of the other thin substantially S-shaped plate heat device 30B and the lower surface of the intermediate side 30b of the one thin substantially S-shaped plate heat device 30A.
Further, a thermoelectric conversion element B3 is interposed between the upper surface of the intermediate side 30b of one thin and substantially S-shaped plate heat device 30A and the lower surface of the intermediate side 30e of the other thin and substantially S-shaped plate heat device 30B.
Further, a thermoelectric conversion element B4 is interposed between the upper surface of the intermediate side 30e of the other thin substantially S-shaped plate heat device 30B and the lower surface of the upper side 30c of one thin substantially S-shaped plate heat device 30A.
Further, a thermoelectric conversion element B5 is interposed between the upper surface of the upper side 30c of one thin and substantially S-shaped plate heat device 30A and the lower surface of the upper side 30f of the other thin and substantially S-shaped plate heat device 30B. The upper and lower surfaces of the one and the other thin and substantially S-shaped plate heat devices 30A and 30B and the front and back surfaces of the thermoelectric conversion elements B1 to B5 are thermally conductive in the same manner as the configuration examples of the above-described embodiments. Adhere with grease 21 or the like interposed. Although it is made compact by having comprised in this way, it can thermally conduct to each thermoelectric conversion element B1 thru | or B5 from the other thin substantially S-shaped plate heat device 30A, 30B.
In the figure, 31 is a heat source, 32 is a cooling mechanism, and the heat source 31 is attached to the lower surface of the lower side 30a of one thin and substantially S-shaped plate heat device 30A with the heat conduction grease 21 or the like interposed therebetween. Further, the low temperature side member 32 is attached to the upper surface of the upper side 30f of the other thin and substantially S-shaped plate heat device 30B with the heat conduction grease 21 or the like interposed therebetween. In the third embodiment, the lead wires 14 provided in the thermoelectric conversion elements B1, B4, and B5 are drawn out to the front of the power generation device H, and the leads provided in the thermoelectric conversion elements B2 and B3. The wire 14 is drawn out to the rear of the power generator H. Moreover, description of the structure, operation | movement, etc. which were mentioned above is substantially the same as description of embodiment of the electric power generating apparatus which concerns on this invention, attaches | subjects the same number and the same code | symbol, and abbreviate | omits the description.
As mentioned above, although the Example demonstrated the case where the semiconductor was used as a thermoelectric conversion element, even if it makes different metals contact, a power generation device can be comprised similarly.
 次に本発明に係る発電装置の実施例4である発電装置Gを図11に基づいて詳細に説明する。
 当該発電装置Gは熱源に対して熱的、例えばグリス等で接続された一方の薄型プレートヒートデバイス171と冷却機構に対して熱的、例えばグリス等で接続された他方の薄型プレートヒートデバイス172との組合せを積層した構成される。この両者間にそれぞれ複数、例えば4個の熱電変換素子Bを介装してある。
 尚、実施例4の構成は図7に示す実施の形態のものの構成に於いて、該構成を積層させた技術思想を付加したものである。
また、上述した構成や動作等の説明は本発明に係る発電装置の実施の形態の説明と略同一であり、同一番号、同一符号を付し、その説明を省略する。
Next, a power generator G that is Embodiment 4 of the power generator according to the present invention will be described in detail with reference to FIG.
The power generation apparatus G is thermally connected to a heat source, for example, one thin plate heat device 171 connected with grease, and the other thin plate heat device 172 connected to a cooling mechanism, for example, grease, etc. A combination of these is laminated. A plurality of, for example, four thermoelectric conversion elements B are interposed between the two.
The configuration of Example 4 is the same as that of the embodiment shown in FIG. 7 except that the technical idea of stacking the configurations is added.
Moreover, description of the structure, operation | movement, etc. which were mentioned above is substantially the same as description of embodiment of the electric power generating apparatus which concerns on this invention, attaches | subjects the same number and the same code | symbol, and abbreviate | omits the description.
 以下に本発明の実施態様の例を示す。
 実施態様1
 図12において、燃焼室131と該燃焼室からの排気ガスを送り出す配管132、及び該燃焼室の周りを取り囲む水を送り込む配管133と該燃焼室により温められた温水を送り出す配管134等により構成されるボイラーにおいて、排気ガスを送り出す配管に熱的に接続された一方の薄型プレートヒートデバイス135と、水を送り込む配管に熱的に接続された他方の薄型プレートヒートデバイス136との間に熱的に接続された少なくとも1つの熱電変換素子137を配置した発電装置を少なくとも1つ設置した設備である。
 実施態様2
 図13において、焼却炉141と該焼却炉からの排気ガスを送り出す配管142等を有する設備において、該焼却炉壁面143、あるいは排気ガスを送り出す配管に熱的に接続された一方の薄型プレートヒートデバイス144と、ヒートシンク145に熱的に接続された他方の薄型プレートヒートデバイス146との間に熱的に接続された少なくとも1つの熱電変換素子147を配置した発電装置を少なくとも1つ設置した設備である。
 実施態様3
 図14において、焼成炉151と該焼成炉からの排気ガスを送り出す配管152等を有する設備において、排気ガスを送り出す配管に熱的に接続された一方の薄型プレートヒートデバイス153と、ヒートシンク154に熱的に接続された他方の薄型プレートヒートデバイス155との間に熱的に接続された少なくとも1つの熱電変換素子156を配置した発電装置を少なくとも1つ設置した設備である。
 実施態様4
 図15において、モーター161と該モーターに冷却液を供給する配管162と温められた冷却液を送り出す配管163等で構成された自動車用モーターにおいて、冷却液を送り出す配管に熱的に接続された一方の薄型プレートヒートデバイス164と、冷却液を供給する配管に熱的に接続された他方の薄型プレートヒートデバイス165との間に熱的に接続された少なくとも1つの熱電変換素子166を配置した発電装置を少なくとも1つ設置した製品である。
Examples of embodiments of the present invention are shown below.
Embodiment 1
In FIG. 12, a combustion chamber 131, a piping 132 for sending exhaust gas from the combustion chamber, a piping 133 for feeding water surrounding the combustion chamber, a piping 134 for sending warm water warmed by the combustion chamber, and the like. In the boiler, between the one thin plate heat device 135 thermally connected to the piping for sending exhaust gas and the other thin plate heat device 136 thermally connected to the pipe for feeding water, This is a facility in which at least one power generation device in which at least one connected thermoelectric conversion element 137 is arranged is installed.
Embodiment 2
In FIG. 13, in a facility having an incinerator 141 and piping 142 for sending exhaust gas from the incinerator, etc., one thin plate heat device thermally connected to the incinerator wall surface 143 or piping for sending exhaust gas 144 and at least one power generation device in which at least one thermoelectric conversion element 147 is thermally connected is disposed between the heat sink 145 and the other thin plate heat device 146 that is thermally connected to the heat sink 145. .
Embodiment 3
In FIG. 14, in a facility having a firing furnace 151 and piping 152 for sending exhaust gas from the firing furnace, etc., one thin plate heat device 153 thermally connected to the piping for sending exhaust gas and heat sink 154 are heated. It is the installation which installed at least 1 electric power generating apparatus which has arrange | positioned the at least 1 thermoelectric conversion element 156 thermally connected between the other thin plate heat devices 155 connected in general.
Embodiment 4
In FIG. 15, in an automobile motor constituted by a motor 161, a pipe 162 for supplying a coolant to the motor, a pipe 163 for sending a warmed coolant, and the like, one of the motors is thermally connected to the pipe for sending the coolant. Power generation apparatus in which at least one thermoelectric conversion element 166 is disposed between the thin plate heat device 164 and the other thin plate heat device 165 that is thermally connected to the pipe that supplies the coolant. This is a product with at least one installed.

Claims (8)

  1. 細径トンネルヒートパイプを内蔵した薄型プレートヒートデバイスと、該薄型プレートヒートデバイスの立設部位及び底辺部位に熱伝導グリスで貼着されかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする発電装置。 Thin plate heat device with built-in thin tunnel heat pipe, and a plurality of thermoelectric conversion elements each having a lead wire attached to the standing part and bottom part of the thin plate heat device with heat conductive grease and taking out a direct current A power generator characterized by comprising the above.
  2. 複数の細径トンネルヒートパイプを内蔵した薄型L字状プレートヒートデバイスと、該薄型L字状プレートヒートデバイスの立設部位及び底辺部位に熱伝導グリスで貼着されかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする発電装置。 Thin L-shaped plate heat device incorporating a plurality of small-diameter tunnel heat pipes, and each lead wire that is attached to the standing part and the bottom part of the thin L-shaped plate heat device with heat conductive grease and extracts a direct current A power generator comprising: a plurality of thermoelectric conversion elements including
  3. 細径トンネルヒートパイプを内蔵した薄型U字状プレートヒートデバイスと、該薄型U字状プレートヒートデバイスのU字状部の内側に熱伝導グリスで貼着されかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする発電装置。 A thin U-shaped plate heat device with a built-in thin tunnel heat pipe, and each lead wire attached with heat conductive grease inside the U-shaped portion of the thin U-shaped plate heat device and taking out a direct current And a plurality of thermoelectric conversion elements.
  4. 細径トンネルヒートパイプを内蔵した一方、他方の薄型略Z字状プレートヒートデバイスと、該一方、他方の薄型略Z字状プレートヒートデバイス間に介装すると共に熱伝導グリスで貼着しかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする発電装置。 A thin tunnel heat pipe is built in, while the other thin and substantially Z-shaped plate heat device is interposed between the other thin and substantially Z-shaped plate heat device, and is attached with heat conductive grease, and DC A power generator comprising: a plurality of thermoelectric conversion elements each having a lead wire for taking out an electric current.
  5. 細径トンネルヒートパイプを内蔵した一つの薄型略S字状プレートヒートデバイス及び該一つの薄型略S字状プレートヒートデバイスに直交させてなる他の薄型略S字状プレートヒートデバイスと、一つの及び他の薄型略S字状プレートヒートデバイスの上辺、下辺及び中間辺の間に介装すると共に熱伝導グリスで貼着しかつ直流電流を取り出す各リード線を備えた複数の熱電変換素子とで構成したことを特徴とする発電装置。 One thin substantially S-shaped plate heat device incorporating a thin tunnel heat pipe, another thin substantially S-shaped plate heat device orthogonal to the one thin substantially S-shaped plate heat device, one and It is composed of a plurality of thermoelectric conversion elements each having a lead wire that is interposed between the upper side, the lower side, and the middle side of another thin and substantially S-shaped plate heat device and that is attached with thermal conductive grease and that extracts a direct current. A power generation device characterized by that.
  6. 細径トンネルヒートパイプを内蔵した薄型プレートヒートデバイスと、該薄型プレートヒートデバイスの少なくとも一つの熱電変換素子とで構成したことを特徴とする発電装置。 A power generator comprising a thin plate heat device having a small tunnel heat pipe and at least one thermoelectric conversion element of the thin plate heat device.
  7. 前記薄型プレートヒートデバイスの少なくとも1箇所を所定の形状に曲げたことを特徴とする請求項1に記載の発電装置 The power generator according to claim 1, wherein at least one portion of the thin plate heat device is bent into a predetermined shape.
  8. 前記熱電変換素子の前記密着面の他方面を第2の薄型プレートヒートデバイスに密着させたことを特徴とする請求項1または2に記載の発電装置 The power generator according to claim 1 or 2, wherein the other surface of the contact surface of the thermoelectric conversion element is in close contact with a second thin plate heat device.
PCT/JP2010/052121 2009-02-05 2010-02-05 Electric generator WO2010090350A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010549551A JP5478518B2 (en) 2009-02-05 2010-02-05 Power generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009024777 2009-02-05
JP2009-024777 2009-02-05

Publications (1)

Publication Number Publication Date
WO2010090350A1 true WO2010090350A1 (en) 2010-08-12

Family

ID=42542231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052121 WO2010090350A1 (en) 2009-02-05 2010-02-05 Electric generator

Country Status (2)

Country Link
JP (1) JP5478518B2 (en)
WO (1) WO2010090350A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080059A (en) * 2010-03-08 2012-04-19 Fujitsu Ltd Thermoelectric power generation device
DE102012003471A1 (en) * 2012-02-21 2013-08-22 E.G.O. Elektro-Gerätebau GmbH Heat generator assembly for gas heater, has thermal coupling portion which is provided with two lateral heat transfer surfaces which are not parallel to the hot element and cold element
JP2014515914A (en) * 2011-03-31 2014-07-03 ヴァレオ システム テルミク Thermoelectric assembly and apparatus for generating current, particularly in motor vehicles
WO2015101408A1 (en) * 2013-12-31 2015-07-09 Ortwin Gerrit Siebelder Device and method for directly converting thermal energy into electrical energy
WO2017017876A1 (en) * 2015-07-28 2017-02-02 パナソニックIpマネジメント株式会社 Thermoelectric device and thermoelectric conversion unit
JP2019213402A (en) * 2018-06-07 2019-12-12 横河電機株式会社 Temperature difference power generator and measurement system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004245A (en) * 1999-06-18 2001-01-12 Daikin Ind Ltd Thermoelectric converter
JP2002325470A (en) * 2001-04-23 2002-11-08 Sango Co Ltd Automotive thermoelectric power generating device
JP2004039966A (en) * 2002-07-05 2004-02-05 Public Works Research Institute Thermoelectric element snow melting system and thermoelectric element power generation system
JP2005287090A (en) * 2004-03-26 2005-10-13 Denso Corp Thermoelectric generator
JP2007311656A (en) * 2006-05-19 2007-11-29 Toyota Motor Corp Thermoelectric module
JP2008045409A (en) * 2006-08-10 2008-02-28 Toyota Motor Corp Exhaust emission control system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4363501B2 (en) * 1998-11-17 2009-11-11 アクトロニクス株式会社 Modular composite heat sink
JP2002134799A (en) * 2000-10-19 2002-05-10 Komatsu Ltd Silicon substrate, manufacturing method therefor, thermoelectric module, and semiconductor laser device
JP2004020007A (en) * 2002-06-14 2004-01-22 Komatsu Ltd Electronic temperature control cabinet
JP4229738B2 (en) * 2003-03-25 2009-02-25 ナブテスコ株式会社 Heat pipe type heat dissipation unit
JP2005310847A (en) * 2004-04-16 2005-11-04 Tokyo Gas Co Ltd Mobile phone with thermoelectric converting element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004245A (en) * 1999-06-18 2001-01-12 Daikin Ind Ltd Thermoelectric converter
JP2002325470A (en) * 2001-04-23 2002-11-08 Sango Co Ltd Automotive thermoelectric power generating device
JP2004039966A (en) * 2002-07-05 2004-02-05 Public Works Research Institute Thermoelectric element snow melting system and thermoelectric element power generation system
JP2005287090A (en) * 2004-03-26 2005-10-13 Denso Corp Thermoelectric generator
JP2007311656A (en) * 2006-05-19 2007-11-29 Toyota Motor Corp Thermoelectric module
JP2008045409A (en) * 2006-08-10 2008-02-28 Toyota Motor Corp Exhaust emission control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080059A (en) * 2010-03-08 2012-04-19 Fujitsu Ltd Thermoelectric power generation device
JP2014515914A (en) * 2011-03-31 2014-07-03 ヴァレオ システム テルミク Thermoelectric assembly and apparatus for generating current, particularly in motor vehicles
DE102012003471A1 (en) * 2012-02-21 2013-08-22 E.G.O. Elektro-Gerätebau GmbH Heat generator assembly for gas heater, has thermal coupling portion which is provided with two lateral heat transfer surfaces which are not parallel to the hot element and cold element
WO2015101408A1 (en) * 2013-12-31 2015-07-09 Ortwin Gerrit Siebelder Device and method for directly converting thermal energy into electrical energy
WO2017017876A1 (en) * 2015-07-28 2017-02-02 パナソニックIpマネジメント株式会社 Thermoelectric device and thermoelectric conversion unit
JPWO2017017876A1 (en) * 2015-07-28 2017-07-27 パナソニックIpマネジメント株式会社 Thermoelectric device and thermoelectric conversion unit
JP2019213402A (en) * 2018-06-07 2019-12-12 横河電機株式会社 Temperature difference power generator and measurement system
US11839156B2 (en) 2018-06-07 2023-12-05 Yokogawa Electric Corporation Temperature difference power generation apparatus and measurement system

Also Published As

Publication number Publication date
JP5478518B2 (en) 2014-04-23
JPWO2010090350A1 (en) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5478518B2 (en) Power generator
JP2636119B2 (en) Thermoelectric element sheet and manufacturing method thereof
JP4488778B2 (en) Thermoelectric converter
JP5336373B2 (en) Thermoelectric conversion module
TWI299581B (en) Thermoelectric device and method of manufacturing the same
JP5065077B2 (en) Thermoelectric generator
JP2004350479A (en) Thermoelectric conversion power generating unit and tunnel type furnace equipped with same
US20060042675A1 (en) Thermoelectric device and method of manufacturing the same
ITMI990347A1 (en) SOLID STATE THERMOELECTRIC DEVICE
JP5395577B2 (en) Thermoelectric conversion module
KR102434261B1 (en) Heat conversion device
JP4663469B2 (en) Heat exchanger
CN102738378A (en) Thermoelectric cluster, method for operating same, device for connecting an active element in said cluster to a thermoelectric drive, generator (variants) and heat pump (variants) based thereon
JP7171725B2 (en) heat converter
JP2011035305A (en) Heat exchanger
US20220069190A1 (en) Thermoelectric device
CN102891248B (en) Flexible thermoelectric conversion system and manufacturing method thereof
JP2016092027A (en) Thermoelectric module
WO2018180131A1 (en) Thermoelectric power generation cell and thermoelectric power generation module
JP2020522880A (en) Heat converter
KR20100003494A (en) Thermoelectric cooling device with flexible copper band wire
JP5800992B2 (en) Battery temperature control device and battery device
JP7293116B2 (en) Thermoelectric sintered bodies and thermoelectric elements
JP3175039B2 (en) Thermoelectric conversion module, laminated thermoelectric conversion device, thermoelectric power generation subunit, and power generation system
JP2011082272A (en) Thermoelectric cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010549551

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738676

Country of ref document: EP

Kind code of ref document: A1