JP2775410B2 - Thermoelectric module - Google Patents

Thermoelectric module

Info

Publication number
JP2775410B2
JP2775410B2 JP7186714A JP18671495A JP2775410B2 JP 2775410 B2 JP2775410 B2 JP 2775410B2 JP 7186714 A JP7186714 A JP 7186714A JP 18671495 A JP18671495 A JP 18671495A JP 2775410 B2 JP2775410 B2 JP 2775410B2
Authority
JP
Japan
Prior art keywords
module
thermoelectric
inner tube
tube
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7186714A
Other languages
Japanese (ja)
Other versions
JPH0936439A (en
Inventor
淳 山本
敏隆 太田
忠良 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7186714A priority Critical patent/JP2775410B2/en
Publication of JPH0936439A publication Critical patent/JPH0936439A/en
Application granted granted Critical
Publication of JP2775410B2 publication Critical patent/JP2775410B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱電変換素子を用いた
熱電発電モジュールに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric power generation module using a thermoelectric conversion element.

【0002】[0002]

【従来の技術】p型とn型の2種類の熱電変換素子(以
下、単に熱電素子という)を電気的には直列に、熱的に
は並列に接続し、各接合部間に温度差を与えた場合、起
電力が発生し、外部に負荷を接続すると電流が流れて電
気的出力を得ることができる。このように熱電素子を用
いて熱エネルギーから電気エネルギーに変換する原理は
既に公知である。
2. Description of the Related Art Two types of p-type and n-type thermoelectric conversion elements (hereinafter simply referred to as thermoelectric elements) are electrically connected in series and thermally in parallel, and the temperature difference between the junctions is reduced. When applied, an electromotive force is generated, and when an external load is connected, a current flows and an electrical output can be obtained. The principle of converting thermal energy into electrical energy using a thermoelectric element is already known.

【0003】図7は、従来の熱電発電モジュールの使用
例を示す斜視図で、従来の熱電発電モジュール(以下、
単にモジュールという)1は内部に熱電素子(図示せ
ず)を2次元的に配置し、各熱電素子を電気絶縁性の平
板で固定したモジュール構成をとっていた。このため温
度差を出すための熱源に高温あるいは低温の流体2を用
いる場合、円筒形流体経路3の外側の側面4に平面を形
成し、モジュール1を取り付ける固定用部材5をねじ6
で締め付けて固定する構成となっていた。
FIG. 7 is a perspective view showing an example of use of a conventional thermoelectric generation module.
The module 1 has a module configuration in which thermoelectric elements (not shown) are two-dimensionally arranged inside and each thermoelectric element is fixed by an electrically insulating flat plate. For this reason, when a high or low temperature fluid 2 is used as a heat source for generating a temperature difference, a flat surface is formed on the outer side surface 4 of the cylindrical fluid path 3, and the fixing member 5 for mounting the module 1 is connected to the screw 6.
It was configured to be tightened and fixed.

【0004】次に、平板型のモジュール1の熱による歪
について図8の側面図を参照しながら説明する。
Next, the distortion of the flat module 1 due to heat will be described with reference to the side view of FIG.

【0005】熱電素子では、高さ数mm程度の熱電素子
11の間に、数十〜100℃以上の温度差を与えること
が必要となる。原理的には熱電素子(p,n素子対)1
1とそれらを結ぶ金属製の電極部分があれば、発電・冷
却を行うことができるが、電極を強固に固定して機械的
な強度を増すことを目的として、通常は両側から絶縁性
高熱伝導基板(以下、単に基板という)12で挟み込む
ような構成を取ることが多い(図8(a))。この場
合、取り扱いが非常にラクになるというメリットがある
が、反面、実際に温度差をつけて使用する際には高温側
の基板12Aと低温側の基板12Bの熱膨張の違いから
モジュール1全体に亘って図8(b)に示すような歪が
生じることになる。
In the thermoelectric element, it is necessary to provide a temperature difference of several tens to 100 ° C. or more between the thermoelectric elements 11 having a height of about several mm. In principle, thermoelectric element (p, n element pair) 1
Power generation and cooling can be performed if there is a metal electrode part connecting them to each other. However, in order to increase the mechanical strength by firmly fixing the electrodes, usually an insulating high heat conduction from both sides In many cases, such a configuration is adopted that it is sandwiched between substrates (hereinafter simply referred to as substrates) 12 (FIG. 8A). In this case, there is a merit that handling becomes very easy, but on the other hand, when actually used with a difference in temperature, the difference in thermal expansion between the high-temperature side substrate 12A and the low-temperature side substrate 12B causes the entire module 1 8 (b) occurs over the entire range.

【0006】モジュール1の反りを1次元方向だけの簡
単なモデルを例にとって説明する。
The warpage of the module 1 will be described using a simple model in only one dimension as an example.

【0007】図8(a)のようなモジュール1の両端に
温度差ΔTを与えた場合、高温側基板12Aは ΔL=αΔT・L だけの熱膨張を受ける。ここで、αは基板の熱膨張率,
Lは基板の長さである。
When a temperature difference ΔT is applied to both ends of the module 1 as shown in FIG. 8A, the high-temperature side substrate 12A undergoes thermal expansion of ΔL = αΔT · L. Where α is the coefficient of thermal expansion of the substrate,
L is the length of the substrate.

【0008】低温側の基板12Bの温度はT0 で、長さ
Lに変化がないとすると、式(1)に示すように高温側
の基板12Aは曲率半径ρで湾曲した歪みを生じる。こ
こで、dは両基板12A,12B間の距離である。
Assuming that the temperature of the substrate 12B on the low temperature side is T 0 and the length L does not change, the substrate 12A on the high temperature side generates a distortion with a radius of curvature ρ as shown in equation (1). Here, d is the distance between both substrates 12A and 12B.

【0009】[0009]

【数1】 曲率半径は、ρ=|d2 y/dx2-1であるから式
(2)に示すように積分により、
(Equation 1) Since the radius of curvature is ρ = | d 2 y / dx 2 | −1 , integration as shown in Expression (2) gives

【0010】[0010]

【数2】 が得られる。ここで、C,Dは定数である。境界条件、
x=0→y=0,x=L/2→dy/dx=0より最終
的に両基板12A,12Bの形状は、式(3)に示すよ
うに、
(Equation 2) Is obtained. Here, C and D are constants. boundary condition,
From x = 0 → y = 0, x = L / 2 → dy / dx = 0 Finally, the shapes of both substrates 12A and 12B are as shown in Expression (3).

【0011】[0011]

【数3】 となることがわかる。x=L/2(中央)における基板
のy方向変位量をδとすると、式(4)に示すように、
(Equation 3) It turns out that it becomes. Assuming that the displacement amount of the substrate in the y direction at x = L / 2 (center) is δ, as shown in Expression (4),

【0012】[0012]

【数4】 で表され、変位が小さい場合には温度差に比例した変位
がえられることが分かる。
(Equation 4) It can be seen that when the displacement is small, a displacement proportional to the temperature difference can be obtained.

【0013】実際にモジュール1を発電・冷却の目的で
使用する際には、熱源とモジュール1の間を密着させて
熱抵抗を小さくする必要があり、式(4)で表されるよ
うな歪みが生じると効率が大幅に低下する。
When the module 1 is actually used for the purpose of power generation and cooling, it is necessary to closely contact the heat source and the module 1 to reduce the thermal resistance, and the distortion as expressed by the equation (4) is required. When this occurs, the efficiency is greatly reduced.

【0014】この様なことから実際にモジュール1を使
用するときには図7に示すようにねじ6による締め付け
などにより、かなり大きな(〜10kg/cm2 )圧力を外
部から加える構造を持つことが常識となっている。しか
しながら、このことはシステムを作る際に余分なコスト
の増加や、構造がモジュール1だけの時に比べて大形化
することによる適用範囲の限定化、など熱電素子が本来
持っているメリットを十分に発揮できない原因となって
いる。
From the above, when the module 1 is actually used, it is common knowledge that a considerably large (〜1010 kg / cm 2 ) pressure is applied from the outside by tightening with a screw 6 as shown in FIG. Has become. However, this can fully take advantage of the inherent advantages of thermoelectric elements, such as an increase in extra cost when constructing a system, and a limited range of application due to a larger structure compared to the case where only the module 1 is used. It is a cause that cannot be exhibited.

【0015】[0015]

【発明が解決しようとする課題】ところで、従来の平板
型のモジュール1の構成では、図8(b)に示す様にモ
ジュール1内部に熱流束と垂直方向に剪断応力が不可避
的に生じるため、モジュール1に反りが生じ、ときには
モジュール1の破損につながるなど信頼性の点で問題で
あった。
By the way, in the structure of the conventional flat plate type module 1, as shown in FIG. 8 (b), a shear stress inevitably occurs in the module 1 in a direction perpendicular to the heat flux. There was a problem in reliability in that the module 1 was warped, sometimes leading to breakage of the module 1.

【0016】また、モジュール1の受熱面積を増やすこ
とを目的として、図9(特公昭60−84979号公報
参照)に示す従来の「発電モジュール」においては、低
温流体21に臨む筒体22の一端部と高温流体23に臨
む筒体24の間に、熱電素子25を巻回して収納したモ
ジュール構成が提案されているが、信頼性と熱電素子2
5に生じる内部応力に関する点については未解決のまま
である。
In order to increase the heat receiving area of the module 1, in a conventional “power generation module” shown in FIG. 9 (Japanese Patent Publication No. 60-84979), one end of a cylindrical body 22 facing a low-temperature fluid 21. A module configuration in which a thermoelectric element 25 is wound and housed between a portion and a cylindrical body 24 facing the high-temperature fluid 23 has been proposed.
The point regarding the internal stress generated in 5 remains unresolved.

【0017】このように、従来のモジュール構成では、
熱源である流体の経路とモジュール1はそれぞれ別の要
素として構成されるため、部品点数が多く、また、お互
いの部品の熱交換をよくするために熱伝導グリースや、
図7に示すように素子の締め付け用固定部材5など必要
とした、複雑な発電システム構成となっている。このこ
とは未利用熱エネルギーを回収して発電システムを構成
するといった、大量にモジュールを利用する例では、非
常にコスト面,施工面で不都合であり、よりシンプルな
構成のモジュールが必要となっている。
Thus, in the conventional module configuration,
Since the fluid path as the heat source and the module 1 are each configured as separate elements, the number of parts is large, and in order to improve the heat exchange between the parts, heat conduction grease,
As shown in FIG. 7, a complicated power generation system configuration is required, such as a fixing member 5 for fastening elements. This is very inconvenient in terms of cost and construction in the case of using a large number of modules, such as collecting unused thermal energy to construct a power generation system, and requires a module with a simpler configuration. I have.

【0018】図8に示すような従来の平板型のモジュー
ル1においては、両面温度差を与えることによりセラミ
ックスなどでできている基板12に熱膨張の差が生じ
て、電極,はんだ接合部,熱電素子11の各構成部品に
剪断応力が加わるため、熱サイクルによるモジュール1
の構成をとる限りにおいて、熱電素子に剪断応力を加え
ないような、有効な手段は見当たらない。
In the conventional flat plate type module 1 as shown in FIG. 8, a difference in thermal expansion occurs in the substrate 12 made of ceramics or the like by giving a temperature difference between both sides, so that electrodes, solder joints, thermoelectric Since a shear stress is applied to each component of the element 11, the module 1
As long as the configuration is adopted, there is no effective means that does not apply shear stress to the thermoelectric element.

【0019】本発明は、上記従来の問題点を解決するた
めになされたもので、高温流体を熱源として利用する熱
電発電モジュールと流体経路とを一体に形成することに
より、固定用部材などを必要としない簡単な構成の熱電
発電モジュールを得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and requires a fixing member or the like by integrally forming a thermoelectric power generation module using a high-temperature fluid as a heat source and a fluid path. It is an object of the present invention to obtain a thermoelectric power generation module having a simple configuration.

【0020】[0020]

【課題を解決するための手段】本発明は、内部が高温流
体の流体経路となる電気的絶縁性の内管と、前記内管と
同一軸心で前記内管との間に所定の空隙部が形成される
電気的絶縁性の外管とから成る2重円筒体と、前記内管
前記外管の対向面上に夫々連続的に形成されて配設さ
れた内側電極及び外側電極と、前記内側電極と前記外側
電極との間に電気的に並列に接続され、両端に生ずる温
度差で発電を行う複数個の熱電変換素子とを備えたもの
である。
The present invention SUMMARY OF] is a predetermined air gap between the inner tube inside the electrical insulation comprising a fluid path of the hot fluid, and the inner tube in the same axis as the inner pipe and the double cylinder consisting of an outer tube, respectively are continuously formed on the opposite surface of the outer tube and the inner tube is disposed in the electrically insulating but which is formed
Inner and outer electrodes, the inner electrode and the outer electrode
And a plurality of thermoelectric conversion elements that are electrically connected in parallel between the electrodes and generate electric power based on a temperature difference generated between both ends.

【0021】そして、複数個の電極および熱電変換素子
は回転対称形に配設されたものである。
The plurality of electrodes and the thermoelectric conversion elements are arranged in a rotationally symmetric manner.

【0022】[0022]

【作用】本発明においては、熱電発電モジュールの内管
内に高温の流体を流した場合、外管から周囲に放熱し、
各素子には温度差が加わり電力を取り出すことができ
る。内管は流体経路であると同時に熱電素子の基板も兼
ねているため、従来のモジュールに比べて熱損失が少な
く、熱電素子に大きな温度差を与えることができ、発電
効率の向上をもたらす。また、内管は熱膨張して熱電素
子に対して圧縮応力を加えるため、電気的,熱的な接触
状態の向上につながる。このときの圧縮応力については
熱電素子の圧縮強度以下になるように設計すれば、素子
破壊の問題は生じない。
In the present invention, when a high-temperature fluid flows through the inner tube of the thermoelectric power generation module, heat is radiated from the outer tube to the surroundings,
Electric power can be taken out by applying a temperature difference to each element. Since the inner tube serves as a fluid path and also serves as a substrate for the thermoelectric element, the heat loss is smaller than in the conventional module, a large temperature difference can be given to the thermoelectric element, and the power generation efficiency is improved. Further, since the inner tube thermally expands and applies a compressive stress to the thermoelectric element, the electrical and thermal contact state is improved. If the compressive stress at this time is designed to be equal to or less than the compressive strength of the thermoelectric element, the problem of element destruction does not occur.

【0023】また、回転対称形に電極と熱電素子を配置
することにより、熱膨張は等方的に熱電素子に伝えられ
るため、従来モジュールの破壊の原因となっていた素子
内部の剪断応力は、本発明の熱電発電モジュールの構成
では生じない。
Further, by arranging the electrode and the thermoelectric element in a rotationally symmetrical manner, thermal expansion is transmitted to the thermoelectric element isotropically, so that the shear stress inside the element, which has conventionally caused the module to break, is: This does not occur in the configuration of the thermoelectric generation module of the present invention.

【0024】[0024]

【実施例】【Example】

〔実施例1〕図1,2は本発明の第1の実施例を示すも
ので、本発明の基本構成図でもあり、図1は横断面図、
図2は一部破断縦断面図で、図2は図1より縮小して示
してある。これらの図において、31は熱電発電モジュ
ール(以下、単にモジュールという)で、内部が高温流
体経路となる内管32と、内管32の熱を放出せしめる
外管33とからなる。内管32と外管33とは同一軸心
で所定の空隙部が両者間に形成され、いずれも熱伝導率
が高く、機械的,熱的な強度を持ち、電気的に絶縁性を
有するものである。内管32の外周面32aと外管33
の内周面33aに複数個の電極35を形成し、これらの
電極35のうち、それぞれ一方の面側の電極35の端部
に一方の面が、他方の面側の電極35の端部に他方の面
を挟み込む形で、p型とn型の熱電素子36の両面を機
械的,電気的に接合する。なお、内管32と外管33で
2重円筒体34が形成されている。各熱電素子36は電
極35により電気的に直列に接続され、各熱電素子36
と電極35は回転対称形に交互に配置され、その終端は
電気出力端子37として2重円筒体34の外部に取り出
される。各熱電素子36と電極35は内管32の外周面
32aと外管33の内周面33aに密着しており、内管
32内部の流体経路38を流れる高温流体39の熱をよ
く伝達する。図1ではモジュール31の一断面を示して
あるが、このような熱電素子36の配置は2重円筒体3
4の長手方向にも数列続く。図2に示すようにモジュー
ル31の長手方向の終端では内管32と外管33とが支
持体40により機械的に固定されていて、内管32と外
管33に温度差が与えられても、熱電素子36に剪断応
力を与えない構成になっている。
[Embodiment 1] FIGS. 1 and 2 show a first embodiment of the present invention, which is also a basic configuration diagram of the present invention. FIG.
FIG. 2 is a partially cutaway longitudinal sectional view, and FIG. 2 is shown smaller than FIG. In these figures, reference numeral 31 denotes a thermoelectric power generation module (hereinafter, simply referred to as a module), which includes an inner tube 32 having a high-temperature fluid path inside, and an outer tube 33 for releasing heat of the inner tube 32. The inner tube 32 and the outer tube 33 have the same axial center and a predetermined gap is formed therebetween. Both have high thermal conductivity, have mechanical and thermal strength, and have electrical insulation. It is. Outer peripheral surface 32a of inner tube 32 and outer tube 33
A plurality of electrodes 35 are formed on the inner peripheral surface 33a of the electrode 35. Of these electrodes 35, one surface is provided at an end of the electrode 35 on one surface and the other is provided at an end of the electrode 35 on the other surface. Both sides of the p-type and n-type thermoelectric elements 36 are mechanically and electrically joined with the other surface sandwiched therebetween. The inner tube 32 and the outer tube 33 form a double cylinder 34. Each thermoelectric element 36 is electrically connected in series by an electrode 35, and each thermoelectric element 36
And the electrodes 35 are alternately arranged in a rotationally symmetric manner, and the terminal ends thereof are taken out of the double cylinder 34 as electric output terminals 37. The thermoelectric elements 36 and the electrodes 35 are in close contact with the outer peripheral surface 32a of the inner tube 32 and the inner peripheral surface 33a of the outer tube 33, and transmit heat of the high-temperature fluid 39 flowing through the fluid path 38 inside the inner tube 32 well. Although FIG. 1 shows one cross section of the module 31, such an arrangement of the thermoelectric elements 36 is equivalent to that of the double cylindrical body 3.
4 continue in the longitudinal direction. As shown in FIG. 2, at the longitudinal end of the module 31, the inner tube 32 and the outer tube 33 are mechanically fixed by the support 40, and even if a temperature difference is given to the inner tube 32 and the outer tube 33, , So that no shear stress is applied to the thermoelectric element 36.

【0025】なお、上記において各熱電素子36と電極
35を回転対称形に配置すると熱膨張が等方向に伝えら
れるためにモジュールが破壊されるような剪断応力は働
かなくなる。しかし、必ずしも回転対称形でなくとも熱
応力が2重円筒体34にできるだけ均等に加わるように
電極35や各熱電素子36の寸法や間隔を選ぶことによ
り実用上は十分に構成にすることができる。
In the above, when the thermoelectric elements 36 and the electrodes 35 are arranged in a rotationally symmetrical manner, the thermal expansion is transmitted in the same direction, so that the shear stress that would destroy the module does not work. However, even if it is not necessarily a rotationally symmetric shape, a practically sufficient configuration can be obtained by selecting the dimensions and intervals of the electrodes 35 and the thermoelectric elements 36 so that thermal stress is applied to the double cylinder 34 as evenly as possible. .

【0026】また、モジュール31の両端は、モジュー
ル31を管体(図示せず)に接続するとき、その着脱操
作を容易にするため、右ねじ41Aと左ねじ41Bが形
成されている。
At both ends of the module 31, a right-hand screw 41A and a left-hand screw 41B are formed to facilitate the attaching and detaching operation when the module 31 is connected to a tube (not shown).

【0027】次に、本発明による2重円筒体34に熱電
素子36を並べたモジュール31について、図1を参照
しながら歪と応力状態について説明する。
Next, a description will be given of the strain and stress state of the module 31 in which the thermoelectric elements 36 are arranged in the double cylinder 34 according to the present invention, with reference to FIG.

【0028】内管32および外管33の肉厚は直線に比
べて十分小さいものとすると、内圧pがあるとき、内管
32の円周方向の応力は式(5)に示すように、
Assuming that the thicknesses of the inner tube 32 and the outer tube 33 are sufficiently smaller than the straight line, when there is an internal pressure p, the circumferential stress of the inner tube 32 is expressed by the following equation (5).

【0029】[0029]

【数5】 で表される。はじめ、内管32と外管33は同じ温度T
0 であり、この状態では各管32,33にも熱電素子3
6にも全く応力がかかっていないものとする。
(Equation 5) It is represented by First, the inner tube 32 and the outer tube 33 have the same temperature T.
In this state, the thermoelectric elements 3
No stress is applied to 6 at all.

【0030】各管32,33の構成材料(例えば、アル
ミニウム)の熱伝導率は熱電素子36の熱伝導率よりも
2桁近く大きいため、各管32,33の材料内部では温
度分布は均一であるものと考えられる。内管32に高温
流体(例えば100℃の熱水)39を流したときの内管
32の温度をT0 +ΔT、外管33の温度をT0 とする
と、内管32は熱膨張のための半径r1を大きくしよう
とする。内管32が単独の場合は、δ1 =α1 r1 ΔT
だけ外側に膨張するが、外管33と熱電素子36により
押えつけられているため、式(6)に示すように内管3
2内部では円周方向に
Since the thermal conductivity of the constituent material (for example, aluminum) of each tube 32, 33 is nearly two orders of magnitude higher than the thermal conductivity of the thermoelectric element 36, the temperature distribution is uniform inside the material of each tube 32, 33. Probably. Assuming that the temperature of the inner tube 32 when a high-temperature fluid (for example, hot water of 100 ° C.) 39 flows through the inner tube 32 is T 0 + ΔT and the temperature of the outer tube 33 is T 0 , the inner tube 32 is used for thermal expansion. the radius r 1 tries to increase. When the inner tube 32 is single, δ 1 = α 1 r 1 ΔT
Only the outer tube 33 expands outward, but is pressed down by the outer tube 33 and the thermoelectric element 36.
2 in the circumferential direction

【0031】[0031]

【数6】 という圧縮応力が働き、熱電素子36には式(7)に示
すように直径方向に
(Equation 6) Compressive stress acts on the thermoelectric element 36 in the diametrical direction as shown in equation (7).

【0032】[0032]

【数7】 といった圧縮応力が働く。また、式(5)の関係から外
管33の内部には
(Equation 7) Such compressive stress works. In addition, from the relationship of Expression (5), the inside of the outer tube 33 is

【0033】[0033]

【数8】 なる円周方向の引っ張り応力がかかる。なお、E1は内
管32を構成している材料のヤング率を示す。
(Equation 8) Circumferential tensile stress is applied. Incidentally, E 1 represents the Young's modulus of the material constituting the inner tube 32.

【0034】図1,図2から明らかなように熱電素子3
6自体には図7,8の平板型のモジュール1の時に見ら
れるような剪断応力は全くかからず、熱電素子36の剪
断破壊がなくなるため、図7,8の平板型のモジュール
1に比べてモジュール31の信頼性が著しく向上する。
また、熱電素子36に対して圧縮力がかかるため、熱電
素子と管壁の間の熱抵抗を小さくする効果が生じ、図8
(a),(b)に示すような、平板型のモジュール1で
常に必要とした締め付けの外部構造が、不必要となると
いうことも利点が大きい。
As apparent from FIGS. 1 and 2, the thermoelectric element 3
6 itself does not receive any shear stress as in the case of the flat module 1 of FIGS. 7 and 8, and the shear breakage of the thermoelectric element 36 is eliminated. Thus, the reliability of the module 31 is significantly improved.
Further, since a compressive force is applied to the thermoelectric element 36, the effect of reducing the thermal resistance between the thermoelectric element and the pipe wall is produced, and FIG.
There is a great advantage in that the external structure for tightening, which is always required in the flat-plate type module 1 as shown in (a) and (b), becomes unnecessary.

【0035】〔実施例2〕図3は、本発明の第2の実施
例を示す横断面図で、図1,図2の基本構成に基づいて
作成した具体例であり、図1と同一符号は同一部分を示
す。内管32と外管33には陽極酸化と封孔処理により
絶縁被覆加工を施したアルミニウム等の高熱伝導率材料
を使用し、内管32の内側の内周面32bや外管33の
外側の外周面33bの形状は、熱交換効率を高めるよう
な表面積が大きい形状にするとよい。また、放熱の方式
は、空気を用いて周囲に放熱する以外、例えば冷却用の
液体を流して放熱する方式でもよい。外管33は1点の
部品である必要はなく、円筒を数等分して組み合わせ、
円筒形に固定する方式でもよい。熱電素子36は、25
0℃までの間で熱電変換効率が優れているビスマステル
ル系熱電半導体素子であり、p型素子とn型素子を図1
と同様回転対称形に配置する。図3では円周方向にp
型,n型を交互に並べているが、電気的に直列接続にな
るならば、奥行き方向(長手方向)にp型とn型を繰り
返し配置してもよい。金属の接着や溶射法等によって作
製した電極35(材料:銅,アルミニウムなど)により
これらの熱電素子36を電気的に直列接続し、最終的な
電気出力を電気出力端子37から得る。
[Embodiment 2] FIG. 3 is a cross-sectional view showing a second embodiment of the present invention, which is a specific example created based on the basic structure of FIGS. Indicates the same part. The inner tube 32 and the outer tube 33 are made of a material having a high thermal conductivity, such as aluminum, which has been subjected to insulation coating by anodic oxidation and sealing, and the inner peripheral surface 32 b inside the inner tube 32 and the outer surface outside the outer tube 33 are used. The shape of the outer peripheral surface 33b may be a shape having a large surface area so as to enhance the heat exchange efficiency. In addition to the method of dissipating heat to the surroundings using air, for example, a method of dissipating heat by flowing a cooling liquid may be used. The outer tube 33 does not need to be a single part, but is divided into equal parts and combined.
It may be a method of fixing in a cylindrical shape. The thermoelectric element 36 is 25
This is a bismuth telluride-based thermoelectric semiconductor element having excellent thermoelectric conversion efficiency up to 0 ° C., and a p-type element and an n-type element are shown in FIG.
It is arranged in a rotationally symmetrical form as in. In FIG. 3, p
The type and the n-type are alternately arranged, but if they are electrically connected in series, the p-type and the n-type may be repeatedly arranged in the depth direction (longitudinal direction). These thermoelectric elements 36 are electrically connected in series by electrodes 35 (material: copper, aluminum, etc.) produced by metal bonding, thermal spraying, or the like, and a final electric output is obtained from an electric output terminal 37.

【0036】このように熱電素子36と電極35の配置
を、必要とする電気出力に応じて2重円筒体34の長手
方向に数列比べて作製し、各電気出力端子37を電気的
に直列、あるいは並列に接続して、1つのモジュールの
電気出力とする。
In this way, the arrangement of the thermoelectric elements 36 and the electrodes 35 is made by comparing several rows in the longitudinal direction of the double cylinder 34 according to the required electric output, and the electric output terminals 37 are electrically connected in series. Alternatively, they are connected in parallel to provide an electric output of one module.

【0037】また、長手方向の熱膨張による歪みを抑制
するために、内管32と外管33は終端で強固に固定す
る。
In order to suppress distortion due to thermal expansion in the longitudinal direction, the inner tube 32 and the outer tube 33 are firmly fixed at the ends.

【0038】終端にはねじ部(図2の右ねじ41A,左
ねじ41B参照)を設け、熱源からの流体経路38との
接続を容易にすることで熱電発電モジュール31を交換
可能な部品として取り扱いやすくする。
At the end, a threaded portion (see right-hand thread 41A and left-hand thread 41B in FIG. 2) is provided to facilitate connection with the fluid path 38 from the heat source so that the thermoelectric power generation module 31 is handled as a replaceable part. Make it easier.

【0039】また、外管33には放熱を促進するための
フィン41が放射状に設けられている。
Further, the outer tube 33 is provided with fins 41 for promoting heat radiation in a radial manner.

【0040】〔実施例3〕図4は、本発明の第3の実施
例を示す横断面図である。この実施例が第1の実施例と
異なるところは熱電素子36が全部並列に接続されてい
る点である。そのため熱電素子36に接続される電極3
5は図1のように内側と外側とが交互に配置されるので
はなく、連続的に形成されている。
Embodiment 3 FIG. 4 is a cross-sectional view showing a third embodiment of the present invention. This embodiment differs from the first embodiment in that the thermoelectric elements 36 are all connected in parallel. Therefore, the electrode 3 connected to the thermoelectric element 36
5 is formed continuously instead of being alternately arranged inside and outside as shown in FIG.

【0041】なお、図1の第1の実施例と図4の第3の
実施例とを組合せた直並列接続も可能なことは云うまで
もない。そして、図4の実施例においても図3の第2の
実施例のようにして具体化することができる。
It goes without saying that a series-parallel connection in which the first embodiment of FIG. 1 and the third embodiment of FIG. 4 are combined is also possible. The embodiment of FIG. 4 can be embodied as in the second embodiment of FIG.

【0042】〔使用例〕図5,図6は、それぞれ本発明
の熱電発電モジュール31の使用例を示す構成図で、図
5はボイラーに使用した場合、図6は自動車等の排気管
に使用した場合を示す。
[Examples of Use] FIGS. 5 and 6 are configuration diagrams showing examples of use of the thermoelectric power generation module 31 of the present invention. FIG. 5 shows a case where the module is used for a boiler, and FIG. The following shows the case.

【0043】図5において、51はボイラーで、配管部
52を介してラジエータ53が並列に接続されており、
これらのラジエータ53と直列に本発明によるモジュー
ル31が接続されている。そして、モジュール31の内
管(図1に示す)32には高温流体39としてボイラー
51の加熱水(温水)または蒸気が流通している。
In FIG. 5, reference numeral 51 denotes a boiler, and a radiator 53 is connected in parallel through a pipe section 52.
The module 31 according to the present invention is connected in series with these radiators 53. Heated water (hot water) or steam of the boiler 51 flows as a high-temperature fluid 39 through the inner tube (shown in FIG. 1) 32 of the module 31.

【0044】図6において、61はマフラで、自動車等
の排気管62に取り付けられており、マフラ61の排気
側の配管部63に本発明によるモジュール31が取り付
けられている。
In FIG. 6, reference numeral 61 denotes a muffler which is attached to an exhaust pipe 62 of an automobile or the like, and a module 31 according to the present invention is attached to a piping portion 63 on the exhaust side of the muffler 61.

【0045】そして、モジュール31の内管(図1に示
す)32には高温流体39として排気ガスが流通してい
る。
Exhaust gas flows as a high-temperature fluid 39 through the inner tube (shown in FIG. 1) 32 of the module 31.

【0046】[0046]

【発明の効果】以上説明したように、本発明は、内部が
高温流体の流体経路となる電気的絶縁性の内管と、この
内管と同一軸心で前記内管との間に所定の空隙部が形成
される電気的絶縁性の外管とからなる2重円筒体と、前
記内管と外管の対向面上に配設した複数個の電極と、こ
れらの電極に接続され両端に生ずる温度差で発電を行う
複数個の熱電変換素子とを備えたので、従来のモジュー
ルの問題点であった熱応力に起因するモジュールの破損
を防ぐことができ、信頼性の向上がえられる。また、流
体経路とモジュールを形成する2重円筒体とを一体化す
ることにより熱伝達損失を減らし、発電効率の向上を図
ることができ、さらにはモジュール締め付け用外部部品
の不必要等、部品点数や施工の削減など実際的な応用を
容易にすることができる利点を有する。
As described above, according to the present invention, a predetermined space is provided between an inner pipe having an electrically insulating inside and serving as a fluid path for a high-temperature fluid, and the inner pipe having the same axis as the inner pipe. A double cylindrical body including an electrically insulating outer tube having a void portion formed therein, a plurality of electrodes disposed on opposing surfaces of the inner tube and the outer tube, and both ends connected to these electrodes; Since a plurality of thermoelectric conversion elements that generate electric power at the generated temperature difference are provided, it is possible to prevent breakage of the module due to thermal stress, which is a problem of the conventional module, and to improve reliability. In addition, by integrating the fluid path and the double cylinder forming the module, heat transfer loss can be reduced and power generation efficiency can be improved. Furthermore, the number of parts such as the necessity of external parts for fastening the module is eliminated. This has the advantage that practical applications such as reduction of construction and construction can be facilitated.

【0047】また、複数個の電極ならびに熱電交換素子
とを回転対称形に配設したので、熱膨張は等方向に熱電
素子に伝えられるため熱電変換素子内部に剪断応力が生
じない利点を有する。
Further, since the plurality of electrodes and the thermoelectric exchange element are arranged in a rotationally symmetrical manner, the thermal expansion is transmitted to the thermoelectric element in the same direction, so that there is an advantage that no shear stress is generated inside the thermoelectric conversion element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の構成を示す横断面図で
ある。
FIG. 1 is a cross-sectional view showing a configuration of a first exemplary embodiment of the present invention.

【図2】本発明の第1の実施例の構成を示す一部破断縦
断面図である。
FIG. 2 is a partially broken longitudinal sectional view showing the configuration of the first embodiment of the present invention.

【図3】本発明の第2の実施例を示す横断面図である。FIG. 3 is a transverse sectional view showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す横断面図である。FIG. 4 is a cross sectional view showing a third embodiment of the present invention.

【図5】本発明の熱電発電モジュールの一使用例を示す
構成図である。
FIG. 5 is a configuration diagram showing an example of use of the thermoelectric generation module of the present invention.

【図6】本発明の熱電発電モジュールの他の使用例を示
す構成図である。
FIG. 6 is a configuration diagram showing another example of use of the thermoelectric generation module of the present invention.

【図7】従来の熱電発電モジュールの使用例を示す斜視
図である。
FIG. 7 is a perspective view showing an example of use of a conventional thermoelectric generation module.

【図8】平板型の熱電発電モジュールの歪の説明図であ
る。
FIG. 8 is an explanatory diagram of distortion of a flat thermoelectric generation module.

【図9】従来の熱電発電モジュールの一例を示す一部破
断側面図である。
FIG. 9 is a partially cutaway side view showing an example of a conventional thermoelectric generation module.

【符号の説明】[Explanation of symbols]

31 熱電発電モジュール 32 内管 32a 外周面 33 外管 33a 内周面 34 2重円筒体 35 電極 36 熱電変換素子 37 電気出力端子 38 流体経路 39 高温流体 31 thermoelectric power generation module 32 inner tube 32a outer peripheral surface 33 outer tube 33a inner peripheral surface 34 double cylindrical body 35 electrode 36 thermoelectric conversion element 37 electric output terminal 38 fluid path 39 high temperature fluid

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−254082(JP,A) 特公 昭38−7278(JP,B1) (58)調査した分野(Int.Cl.6,DB名) H01L 35/32 H01L 35/30 H02N 11/00──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-254082 (JP, A) JP-B-38-7278 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 35/32 H01L 35/30 H02N 11/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内部が高温流体の流体経路となる電気
的絶縁性の内管と、前記内管と同一軸心で前記内管との
間に所定の空隙部が形成される電気的絶縁性の外管とか
成る2重円筒体と、前記内管と前記外管の対向面上に
夫々連続的に形成されて配設された内側電極及び外側電
極と、前記内側電極と前記外側電極との間に電気的に並
列に接続され、両端に生ずる温度差で発電を行う複数個
の熱電変換素子とを備えたことを特徴とする熱電発電モ
ジュール。
1. A electrically insulative predetermined gap portion between the inner and the inner tube of the electrical insulation as a fluid path of the hot fluid, and the inner tube in the same axis as the inner pipe is formed and the double cylinder consisting of an outer tube, on the facing surface of the outer tube and the inner tube
The inner electrode and the outer electrode which are formed and disposed continuously, respectively.
A pole and an electrical connection between the inner electrode and the outer electrode.
A thermoelectric power generation module comprising: a plurality of thermoelectric conversion elements connected to a row and configured to generate power by a temperature difference generated at both ends.
JP7186714A 1995-07-24 1995-07-24 Thermoelectric module Expired - Lifetime JP2775410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7186714A JP2775410B2 (en) 1995-07-24 1995-07-24 Thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7186714A JP2775410B2 (en) 1995-07-24 1995-07-24 Thermoelectric module

Publications (2)

Publication Number Publication Date
JPH0936439A JPH0936439A (en) 1997-02-07
JP2775410B2 true JP2775410B2 (en) 1998-07-16

Family

ID=16193359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7186714A Expired - Lifetime JP2775410B2 (en) 1995-07-24 1995-07-24 Thermoelectric module

Country Status (1)

Country Link
JP (1) JP2775410B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107525A1 (en) * 2002-06-14 2003-12-24 明総合研究所有限会社 Power producing device
US7868242B2 (en) 2004-07-01 2011-01-11 Universal Entertainment Corporation Thermoelectric conversion module
JP2012010459A (en) * 2010-06-23 2012-01-12 Ihi Corp Exhaust gas utilization generator and power generation system
WO2012018053A1 (en) 2010-08-04 2012-02-09 北海道特殊飼料株式会社 Thermoelectric electricity generating device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336373B2 (en) 2007-07-20 2013-11-06 株式会社ユニバーサルエンターテインメント Thermoelectric conversion module
DE102008058779A1 (en) * 2008-11-24 2010-05-27 Emitec Gesellschaft Für Emissionstechnologie Mbh Module for a thermoelectric generator and a thermoelectric generator
JP2010136507A (en) * 2008-12-03 2010-06-17 Ihi Plant Construction Co Ltd Heat exchanger incorporating cold thermal power generation element
DE102009058676A1 (en) * 2009-12-16 2011-06-22 Behr GmbH & Co. KG, 70469 heat exchangers
JP5703585B2 (en) * 2010-04-13 2015-04-22 富士通株式会社 Thermoelectric conversion element and manufacturing method thereof
JP5692893B2 (en) * 2010-06-29 2015-04-01 トクデン株式会社 Induction heating roller device
DE102010034708A1 (en) * 2010-08-18 2012-02-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Tubular thermoelectric module and method for its production
JP5609419B2 (en) * 2010-08-23 2014-10-22 富士通株式会社 Thermoelectric conversion device and sensing device
DE102010035151A1 (en) * 2010-08-23 2012-02-23 Emitec Gesellschaft Für Emissionstechnologie Mbh Semiconductor element for a thermoelectric module and method for its production
DE102011016808A1 (en) 2011-04-13 2012-10-18 Emitec Gesellschaft Für Emissionstechnologie Mbh Device with a heat exchanger for a thermoelectric generator of a motor vehicle
US20140224296A1 (en) * 2011-09-20 2014-08-14 The Regents Of The University Of California Nanowire composite for thermoelectrics
JP6132285B2 (en) 2013-06-11 2017-05-24 北海道特殊飼料株式会社 Thermoelectric generator
DE102013212817A1 (en) 2013-07-01 2015-01-08 Schaeffler Technologies Gmbh & Co. Kg Thermal generator for motor vehicles
KR101688595B1 (en) * 2014-10-21 2016-12-22 국민대학교 산학협력단 Heat sink module apparatus
CN106602932A (en) * 2016-12-27 2017-04-26 江苏大学 Cylindrical heat source thermoelectric generation device
KR102109486B1 (en) * 2018-02-12 2020-05-13 한국표준과학연구원 Multi-multi-array themoeletric generator and its generating system
CN108493322B (en) * 2018-05-07 2023-12-26 河南城建学院 Thermocouple unit of annular thermoelectric material generator and annular thermoelectric material generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254082A (en) * 1985-04-30 1986-11-11 Suzuki Motor Co Ltd Power generator utilizing exhaust heat

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107525A1 (en) * 2002-06-14 2003-12-24 明総合研究所有限会社 Power producing device
US7868242B2 (en) 2004-07-01 2011-01-11 Universal Entertainment Corporation Thermoelectric conversion module
JP2012010459A (en) * 2010-06-23 2012-01-12 Ihi Corp Exhaust gas utilization generator and power generation system
WO2012018053A1 (en) 2010-08-04 2012-02-09 北海道特殊飼料株式会社 Thermoelectric electricity generating device

Also Published As

Publication number Publication date
JPH0936439A (en) 1997-02-07

Similar Documents

Publication Publication Date Title
JP2775410B2 (en) Thermoelectric module
US3129116A (en) Thermoelectric device
US6894215B2 (en) Thermoelectric module
JP2002325470A (en) Automotive thermoelectric power generating device
US9293679B2 (en) Thermoelectric module for a thermoelectric generator of a vehicle and vehicle having thermoelectric modules
JP2005317648A (en) Thermoelectric conversion module
JP2010245265A (en) Thermoelectric module
JPH10234194A (en) Waste-heat power generation apparatus
JPH0448150Y2 (en)
JP5191926B2 (en) Thermoelectric generator
JP3442862B2 (en) Thermoelectric generation unit
JP2004088057A (en) Thermoelectric module
JPH08335722A (en) Thermoelectric conversion module
JP4082090B2 (en) Waste heat power generator
JP2884070B2 (en) Thermoelectric conversion module
JP3062754B1 (en) Thermoelectric generation module
KR101724847B1 (en) Thermoelectric Generation Device for vehicle
JP2003179274A (en) Thermoelectric converting device
JPH0992890A (en) Thermoelectric converter
US11316091B2 (en) Thermoelectric module, frame for the same, and vehicle including the thermoelectric module
JPH09199764A (en) Thermoelectric generator module
KR20110130550A (en) Thermoelectric generator using exhaust heat and manufacturing method thereof
JPH08204242A (en) Thermoelectric converter
JP2659775B2 (en) Thermoelectric energy direct conversion device
JP2566330B2 (en) Thermoelectric power generation method and apparatus

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term