JP2659775B2 - Thermoelectric energy direct conversion device - Google Patents

Thermoelectric energy direct conversion device

Info

Publication number
JP2659775B2
JP2659775B2 JP63303967A JP30396788A JP2659775B2 JP 2659775 B2 JP2659775 B2 JP 2659775B2 JP 63303967 A JP63303967 A JP 63303967A JP 30396788 A JP30396788 A JP 30396788A JP 2659775 B2 JP2659775 B2 JP 2659775B2
Authority
JP
Japan
Prior art keywords
thermoelectric
energy
thermoelectric energy
conversion device
outside
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63303967A
Other languages
Japanese (ja)
Other versions
JPH02151087A (en
Inventor
清一 田辺
正義 村田
啓 納富
啓一 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63303967A priority Critical patent/JP2659775B2/en
Publication of JPH02151087A publication Critical patent/JPH02151087A/en
Application granted granted Critical
Publication of JP2659775B2 publication Critical patent/JP2659775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は直接熱発電装置や電子冷凍装置などの熱電エ
ネルギ直接変換装置に関する。
Description: TECHNICAL FIELD The present invention relates to a thermoelectric energy direct conversion device such as a direct thermoelectric generator or an electronic refrigerator.

〔従来の技術〕 熱電エネルギ直接変換装置とは2種の材料の接合点の
温度差によって熱起電力を発生する材料を利用して熱エ
ネルギと電気エネルギとを直接に変換する装置である。
[Prior Art] A thermoelectric energy direct conversion device is a device that directly converts heat energy and electric energy by using a material that generates a thermoelectromotive force due to a temperature difference between junctions of two materials.

従来の例は次の通りである。 A conventional example is as follows.

柱状の熱電素子が同一平面内に配置され、それらが直
接に、あるいは、第三の材料を介して交互に接続された
ものが第四及び第五の電気を流さない材料で出来た2枚
の平板にはさまれた構造をしている。
The columnar thermoelectric elements are arranged in the same plane, and they are connected directly or alternately via a third material. It has a structure sandwiched between flat plates.

このような構造のものでは、第一の平板の外側を高熱
源とし、第二の平板の外側を低熱源とすれば、隣接する
熱電素子接合部に誘起された温度差によって起電力が発
生し、外部回路と隣接すると電気が流れ発電装置として
作動する。
In such a structure, if the outside of the first flat plate is used as a high heat source and the outside of the second flat plate is used as a low heat source, an electromotive force is generated due to a temperature difference induced at the adjacent thermoelectric element junction. When it is adjacent to an external circuit, electricity flows and operates as a power generation device.

又、外部から適切に通電すると、2枚の平板の温度に
差を誘起し、冷却器として作動させる構造となすことも
可能である。
Further, when a current is appropriately supplied from the outside, a temperature difference between the two flat plates may be induced to operate as a cooler.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来のモジュール構成方法には熱交換の面から次の問
題点があった。
The conventional module construction method has the following problems in terms of heat exchange.

(1) 高熱源と低熱源の絶対温度が常温から離れる程
製造時及び不使用時と運転時との温度差が大きく熱膨張
対策及び熱応力対策で複雑な構造を余儀なくされてい
る。
(1) As the absolute temperature of the high heat source and the low heat source deviates from the room temperature, the temperature difference between the time of manufacture and non-use and the time of operation is large, and a complicated structure is inevitably required for measures against thermal expansion and thermal stress.

(2) エネルギ変換装置としては高熱源と低熱源との
温度差が大きい程好ましくその努力が払われている。と
ころで平板構造物の両面に大きな温度差をつけるために
は熱膨張対策及び熱応力対策で複雑な構造を余儀なくさ
れ信頼性、耐久性の点に問題があった。
(2) As the energy conversion device, the greater the temperature difference between the high heat source and the low heat source, the more preferable efforts are made. By the way, in order to provide a large temperature difference between both surfaces of the flat plate structure, a complicated structure is inevitably required for measures against thermal expansion and thermal stress, and there is a problem in reliability and durability.

(3) 装置コンパクト化の一手段として熱源圧力上昇
がなされているが、そのための機械的強度確保は特に平
板の端部に於て多大な応力を発生することとなり信頼性
及び耐久性を損なっていた。
(3) The heat source pressure is raised as a means of reducing the size of the apparatus. However, securing mechanical strength for this purpose generates a large amount of stress particularly at the end of the flat plate, which impairs reliability and durability. Was.

本発明の課題は、上記従来の問題点を解消することが
できる熱電エネルギ直接変換装置を提供することであ
る。
An object of the present invention is to provide a thermoelectric energy direct conversion device that can solve the above-mentioned conventional problems.

〔課題を解決するための手段〕[Means for solving the problem]

本発明による熱電エネルギ直接変換装置は、2種の材
料の接合点の温度差によって、熱起電力を発生する。
The thermoelectric energy direct conversion device according to the present invention generates a thermoelectromotive force due to a temperature difference at a junction of two materials.

本願第1の発明は、2種の材料の接合点の温度差によ
って、熱起電力を発生する例えばBi2Te3,ZnSb及びFeSi2
などの半導体の組合せ等を利用して熱エネルギを電気エ
ネルギに、又は電気エネルギを熱エネルギに直接変換す
る熱電エネルギ変換素子を有する熱電エネルギ直接変換
装置において、 第三の材料でできたパイプの外側に、前述の熱電エネ
ルギ変換素子をリング状に、又軸方向に交互に配列し、
且つ、電気的に直列に接続させ、更に前記パイプの外側
の熱電エネルギ変換素子に外側からスリットを前記パイ
プの軸方向に沿って設けたことを特徴とする熱電エネル
ギ直接変換装置である。
The first invention of the present application is a device which generates a thermoelectromotive force due to a temperature difference between two kinds of materials, for example, Bi 2 Te 3 , ZnSb and FeSi 2
In a thermoelectric energy direct conversion device having a thermoelectric energy conversion element for converting heat energy to electric energy or directly converting electric energy to heat energy by using a combination of semiconductors such as the above, the outside of a pipe made of a third material In addition, the above-mentioned thermoelectric energy conversion elements are arranged in a ring shape and alternately in the axial direction,
The thermoelectric energy direct conversion device is characterized in that the thermoelectric energy conversion device is electrically connected in series, and a slit is provided in the thermoelectric energy conversion element outside the pipe from the outside along the axial direction of the pipe.

本願第2の発明は、2種の材料の接合点の温度差によ
って、熱起電力を発生する例えばBi2Te3,ZnSb及びFeSi2
などの半導体の組合せ等を利用して熱エネルギを電気エ
ネルギに、又は電気エネルギを熱エネルギに直接変換す
る熱電エネルギ変換素子を有する熱電エネルギ直接変換
装置において、 第三の材料でできたパイプの外側に、前述の熱電エネ
ルギ変換素子をリング状に、又軸方向に交互に配列し、
且つ、電気的に直列に接続させ、更に前記熱電エネルギ
変換素子の外側にじゃばら状の金属片を介して第二のパ
イプを設けたことを特徴とする熱電エネルギ直接変換装
置である。例えば、熱交換用管の外側に、熱電エネルギ
変換素子を円環状に、又管軸方向に交互に配列し、且
つ、電気的に、管軸方向に直列に接続させたり、また
は、熱交換用管の外表面に電気的絶縁物質をコーティン
グしたものの上に、前記のように、熱電エネルギ変換素
子を設けたものである。
The second invention of the present application relates to a method of generating a thermoelectromotive force due to a temperature difference between junctions of two materials, for example, Bi 2 Te 3 , ZnSb and FeSi 2
In a thermoelectric energy direct conversion device having a thermoelectric energy conversion element for converting heat energy to electric energy or directly converting electric energy to heat energy by using a combination of semiconductors such as the above, the outside of a pipe made of a third material In addition, the above-mentioned thermoelectric energy conversion elements are arranged in a ring shape and alternately in the axial direction,
The thermoelectric energy direct conversion device is characterized in that the thermoelectric energy conversion device is electrically connected in series, and a second pipe is provided outside of the thermoelectric energy conversion element via a brittle metal piece. For example, on the outside of the heat exchange tube, the thermoelectric energy conversion elements are arranged in a ring shape and alternately in the tube axis direction, and are electrically connected in series in the tube axis direction. As described above, a thermoelectric energy conversion element is provided on an outer surface of a tube coated with an electrically insulating material.

〔作用〕[Action]

本発明によれば、前述の問題点である熱交換に伴う発
生応力は軸対称という点でかなり軽減され、性能をそれ
程損う事なく、信頼性及び耐久性を確保することが可能
である。
According to the present invention, the stress generated due to the heat exchange, which is the aforementioned problem, is considerably reduced in terms of axial symmetry, and it is possible to secure reliability and durability without significantly impairing the performance.

〔実施例〕〔Example〕

以下、本発明の実施例を図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の第一実施例を示す要部の部分断面図
である。
FIG. 1 is a partial sectional view of a main part showing a first embodiment of the present invention.

第1図において、Cu,Fe,SUS,Ni,Tiなどのチューブ05
の外表面に、電気的に絶縁性の高い物質、例えば、Al2O
3,AlN、サイアロン、ダイヤモンドなどの薄膜06をCVD
法、PVD法、溶射法などでほゞ全長に亘って形成させ
る。
In FIG. 1, a tube 05 of Cu, Fe, SUS, Ni, Ti, etc.
On the outer surface of the substrate, a material having high electrical insulation, for example, Al 2 O
3 , CVD of thin film 06 of AlN, Sialon, diamond, etc.
It is formed over almost the entire length by a method such as a PVD method or a thermal spraying method.

次に熱電素子間高温側接合部04を、例えば、Si,Cuな
どで縞状に形成させる。ついでn型半導体01とP型半導
体02を熱電素子間高温側接合部04の外表面に形成させ
る。なおn型半導体01とP型半導体02の形成順序は逆に
する場合もある。
Next, the high temperature side junction portion 04 between the thermoelectric elements is formed in a stripe shape using, for example, Si, Cu or the like. Next, an n-type semiconductor 01 and a p-type semiconductor 02 are formed on the outer surface of the high-temperature side junction 04 between the thermoelectric elements. The order of forming the n-type semiconductor 01 and the p-type semiconductor 02 may be reversed.

次にチューブ側空洞部07を熱的及び電気的に絶縁性の
高い物質、例えば、多孔性Al2O3、ゼオライトなどで充
たす。
Next, the tube side cavity 07 is filled with a substance having high thermal and electrical insulation properties, for example, porous Al 2 O 3 , zeolite, or the like.

さらに、熱電素子間低温側接合部03を例えばSi,Cuな
どで縞状に形成させる。
Further, the low-temperature side junction portion 03 between the thermoelectric elements is formed in a stripe shape using, for example, Si, Cu, or the like.

最後に外側空洞部08をチューブ側空洞部と同様に熱的
及び電気的に絶縁性の高い物質例えば多孔性Al2O3、ゼ
オライトなどで充たす。
Finally, the outer cavity 08 is filled with a thermally and electrically insulating material, such as porous Al 2 O 3 or zeolite, similarly to the tube-side cavity.

又、電気を取出すためのリード線09及び10を両端に設
ける。
Lead wires 09 and 10 for extracting electricity are provided at both ends.

このように構成されたチューブ状熱電変換装置はその
内外に温度に差のある流体を流すことにより電気を発生
し、前記リード線09,10より電気を取出すことができ
る。
The tubular thermoelectric converter configured as described above generates electricity by flowing a fluid having a difference in temperature between inside and outside thereof, and can extract electricity from the lead wires 09 and 10.

なお熱電素子対としてのn型半導体01およびP型半導
体02としては例えば次のようなものがある。
The following are examples of the n-type semiconductor 01 and the p-type semiconductor 02 as the thermoelectric element pair.

SiGe,Bi2Te3,Bi2Se3,Bi2Se,PbTe,GeTe,GeTeBi,AgSbTe
2,InAs,InAsP,CuTe3S,CrSi2,MnSi,FeSi2,CoSi,Sb2Te3 第2実施例は、図を省略するが、第1図に於て、高熱
源をチューブ内に、低熱源をチューブ外としたが、それ
の逆の実施例である。
SiGe, Bi 2 Te 3 , Bi 2 Se 3 , Bi 2 Se, PbTe, GeTe, GeTeBi, AgSbTe
2 , InAs, InAsP, CuTe 3 S, CrSi 2 , MnSi, FeSi 2 , CoSi, Sb 2 Te 3 In the second embodiment, although the figure is omitted, a high heat source is placed in a tube in FIG. Although the low heat source is outside the tube, this is the opposite embodiment.

第2図は、本発明の第3の実施例を示す部分断面図で
あり、これは、第1図のA−A断面に若干手を加えて示
したものであり、手の加え方は熱交換用チューブ05の外
側に第1図と同様に、熱電素子を円環状に形成させたあ
と、軸方向に4ケ所スリット11を入れ、これにより内外
温度差による熱応力を軽減でき信頼性及び耐久性をさら
に向上させることゝなる。
FIG. 2 is a partial cross-sectional view showing a third embodiment of the present invention, which is obtained by slightly modifying the cross section AA in FIG. As shown in FIG. 1, a thermoelectric element is formed in an annular shape on the outside of the replacement tube 05, and four slits 11 are formed in the axial direction, thereby reducing thermal stress due to a difference in temperature between inside and outside, thereby improving reliability and durability. This further improves the performance.

なお、第2図の例では、熱電素子チューブ側接合部04
までスリットを入れてあるが、これを熱電素子01,02ま
でと浅くする場合、あるいは、電気絶縁体06までと深く
する場合もある。さらにスリット数も4ケ所としたが、
その数は任意に選べる。又、スリットの空洞部に弾力性
に富み、且つ、熱的、電気的に絶縁性の高い材料で埋め
ることもある。
Note that, in the example of FIG.
Although a slit is formed, the slit may be formed as shallow as the thermoelectric elements 01 and 02, or as deep as the electric insulator 06 in some cases. In addition, the number of slits was four,
The number can be chosen arbitrarily. Further, the cavity of the slit may be filled with a material having high elasticity and high thermal and electrical insulation.

第3図は、本発明の第4実施例を示す部分断面図であ
り、熱交換用チューブ05の外表面に、第1図と同様に熱
電素子を円環状に形成させたあと、第二の熱交用チュー
プ12の中に全体を入れるが、熱伝達の低下を防止するた
めにじゃばら状の金属片13を入れたものである。その他
は第1図について説明したものと同一である。
FIG. 3 is a partial sectional view showing a fourth embodiment of the present invention, in which a thermoelectric element is formed in an annular shape on the outer surface of the heat exchange tube 05 in the same manner as in FIG. The whole is placed in a tube for heat exchange 12, but a bristle-shaped metal piece 13 is inserted in order to prevent a decrease in heat transfer. Others are the same as those described with reference to FIG.

〔発明の効果〕〔The invention's effect〕

以上述べた如く、本発明によれば、各種の熱源、特に
温度差の大きな、または、圧力の高い、あるいは不純物
の多い熱源に対して従来のものより信頼性及び耐久性共
に向上させることができ、より経済的な熱電直接変換装
置を提供できる。
As described above, according to the present invention, various heat sources, particularly a large temperature difference, or a high pressure, or a heat source containing many impurities can be improved in both reliability and durability as compared with the conventional one. A more economical thermoelectric direct conversion device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係る熱電直接変換装置の要
部の部分断面図、第2図は第1図のものに、スリットを
入れた本発明の第3実施例の部分断面図、第3図は本発
明の第4実施例の部分断面図である。 01……n型半導体、02……P型半導体、03……熱電素子
間低温側接合部、04……熱電素子間高温側接合部、05…
…チューブ。
FIG. 1 is a partial cross-sectional view of a main part of a thermoelectric direct conversion device according to one embodiment of the present invention, and FIG. 2 is a partial cross-sectional view of a third embodiment of the present invention in which a slit is added to that of FIG. FIG. 3 is a partial sectional view of a fourth embodiment of the present invention. 01: n-type semiconductor, 02: P-type semiconductor, 03: low-temperature junction between thermoelectric elements, 04: high-temperature junction between thermoelectric elements, 05:
…tube.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩本 啓一 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎研究所内 (56)参考文献 実開 昭61−194769(JP,U) 実開 昭61−146965(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Keiichi Iwamoto 1-1, Akunouramachi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Research Laboratory (56) References Open to the public Showa 61-1994769 (JP, U) 61-146965 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2種の材料の接合点の温度差によって、熱
起電力を発生する例えばBi2Te3,ZnSb及びFeSi2などの半
導体の組合せ等を利用して熱エネルギを電気エネルギ
に、又は電気エネルギを熱エネルギに直接変換する熱電
エネルギ変換素子を有する熱電エネルギ直接変換装置に
おいて、 第三の材料でできたパイプの外側に、前述の熱電エネル
ギ変換素子をリング状に、又軸方向に交互に配列し、且
つ、電気的に直列接続させ、更に前記パイプの外側の熱
電エネルギ変換素子に外側からスリットを前記パイプの
軸方向に沿って設けたことを特徴とする熱電エネルギ直
接変換装置。
1. A method for converting thermal energy into electric energy by using a combination of semiconductors such as Bi 2 Te 3 , ZnSb and FeSi 2 which generates a thermoelectromotive force by a temperature difference between junctions of two materials. Alternatively, in a thermoelectric energy direct conversion device having a thermoelectric energy conversion element for directly converting electric energy to heat energy, the above-mentioned thermoelectric energy conversion element is formed in a ring shape and in the axial direction outside a pipe made of a third material. A thermoelectric energy direct conversion device characterized in that the thermoelectric energy conversion elements are alternately arranged and electrically connected in series, and further, slits are provided in the thermoelectric energy conversion element outside the pipe from the outside along the axial direction of the pipe.
【請求項2】2種の材料の接合点の温度差によって、熱
起電力を発生する例えばBi2Te3,ZnSb及びFeSi2などの半
導体の組合せ等を利用して熱エネルギを電気エネルギ
に、又は電気エネルギを熱エネルギに直接変換する熱電
エネルギ変換素子を有する熱電エネルギ直接変換装置に
おいて、 第三の材料でできたパイプの外側に、前述の熱電エネル
ギ変換素子をリング状に、又軸方向に交互に配列し、且
つ、電気的に直列に接続させ、更に前記熱電エネルギ変
換素子の外側にじゃばら状の金属片を介して第二のパイ
プを設けたことを特徴とする熱電エネルギ直接変換装
置。
2. Thermal energy is converted into electric energy by using a combination of semiconductors such as Bi 2 Te 3 , ZnSb and FeSi 2 which generates a thermoelectromotive force by a temperature difference between junctions of two kinds of materials. Alternatively, in a thermoelectric energy direct conversion device having a thermoelectric energy conversion element for directly converting electric energy to heat energy, the above-mentioned thermoelectric energy conversion element is formed in a ring shape and in the axial direction outside a pipe made of a third material. A thermoelectric energy direct conversion device, wherein the thermoelectric energy conversion devices are alternately arranged and electrically connected in series, and a second pipe is provided outside the thermoelectric energy conversion element via a bristle-shaped metal piece.
JP63303967A 1988-12-02 1988-12-02 Thermoelectric energy direct conversion device Expired - Lifetime JP2659775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63303967A JP2659775B2 (en) 1988-12-02 1988-12-02 Thermoelectric energy direct conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63303967A JP2659775B2 (en) 1988-12-02 1988-12-02 Thermoelectric energy direct conversion device

Publications (2)

Publication Number Publication Date
JPH02151087A JPH02151087A (en) 1990-06-11
JP2659775B2 true JP2659775B2 (en) 1997-09-30

Family

ID=17927437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63303967A Expired - Lifetime JP2659775B2 (en) 1988-12-02 1988-12-02 Thermoelectric energy direct conversion device

Country Status (1)

Country Link
JP (1) JP2659775B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095881B2 (en) 2010-07-30 2012-12-12 パナソニック株式会社 Pipe-shaped thermoelectric power generation device and manufacturing method thereof, thermoelectric generator, method of generating electricity using thermoelectric generator, and method of generating electricity using thermoelectric generator
DE102010050395A1 (en) * 2010-11-03 2012-05-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelectric module for a thermoelectric generator of a vehicle
DE102011008378A1 (en) 2011-01-12 2012-07-12 Emitec Gesellschaft Für Emissionstechnologie Mbh Thermoelectric module with means for compensating thermal expansion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61146965U (en) * 1985-03-04 1986-09-10
JPS61194769U (en) * 1985-05-29 1986-12-04

Also Published As

Publication number Publication date
JPH02151087A (en) 1990-06-11

Similar Documents

Publication Publication Date Title
US6958443B2 (en) Low power thermoelectric generator
JP4949841B2 (en) Thermoelectric conversion module
JP5336373B2 (en) Thermoelectric conversion module
US20040177876A1 (en) Spatially optimized thermoelectric module
JP4881919B2 (en) Thermoelectric generator with thermoelectric element
JP4956188B2 (en) Thermoelectric conversion module
CN101587934A (en) Diaphragm type thermoelectric converting component and manufacturing method thereof
US20040177877A1 (en) Geometrically optimized thermoelectric module
US20050236028A1 (en) Heat to cooling converter
US20070084497A1 (en) Solid state direct heat to cooling converter
JP2009081286A (en) Thermoelectric conversion module
US11393969B2 (en) Thermoelectric generation cell and thermoelectric generation module
JP2659775B2 (en) Thermoelectric energy direct conversion device
JP2011134940A (en) Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same
JPH05315657A (en) Thermoelectric converting element and thermoelectric converter
JP7313660B2 (en) Thermoelectric conversion module
JP2001520806A (en) Voltage source for semiconductor components
KR20180128186A (en) Thermoelectric module
Caillat et al. High efficiency segmented thermoelectric unicouples
CN214959331U (en) Flow meter
JPS63110680A (en) Thermal power generating device
JP3056047B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
JP2017152618A (en) Thermoelectric module and manufacturing method thereof and thermoelectric device
KR20190044236A (en) Thermoelectric element and thermoelectric conversion device comprising the same
CN115347817A (en) Flow meter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12