JPH05315657A - Thermoelectric converting element and thermoelectric converter - Google Patents

Thermoelectric converting element and thermoelectric converter

Info

Publication number
JPH05315657A
JPH05315657A JP4118758A JP11875892A JPH05315657A JP H05315657 A JPH05315657 A JP H05315657A JP 4118758 A JP4118758 A JP 4118758A JP 11875892 A JP11875892 A JP 11875892A JP H05315657 A JPH05315657 A JP H05315657A
Authority
JP
Japan
Prior art keywords
heat
thermoelectric
thermoelectric conversion
type
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4118758A
Other languages
Japanese (ja)
Inventor
Masashi Oda
将史 小田
Mitsuo Hayashibara
光男 林原
Asako Koyanagi
阿佐子 小柳
Osamu Shiono
修 塩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4118758A priority Critical patent/JPH05315657A/en
Publication of JPH05315657A publication Critical patent/JPH05315657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To improve a synthetic thermoelectric conversion efficiency by joining p-type or n-type thermoelectric semiconductors to both sides of the material being a good heat conductor and being an electric insulator, in an element which converts heat to electricity or electricity to heat. CONSTITUTION:P-type thermoelectric semiconductors 21 and 22 or n-type thermoelectric semiconductors 31 and 32 are joined to both sides of the material being a good heat conductor and being an electric insulator through an electrodes 5. The power generated by the temperature difference between a thermal source 6 and a material 1 is taken out from the electrodes 5 provided to both ends of the p-type thermoelectric semiconductor 21 or an n-type thermoelectric semiconductor 31, and the power generated by the temperature difference between the material 1 and a heat source 7 is taken out of the electrodes 5 provided at both ends of the p-type thermoelectric semiconductor 22 or an n-type thermoelectric semiconductor 32, and are supplied to different loads, respectively. Since the thermoelectric semiconductors different in composition are junctioned thermally, the deterioration of the thermoelectric semiconductor by the heat can be prevented by the selection of the material 1, and high thermoelectric conversion efficiency can be maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高効率の熱電変換素子
とそれを用いた熱電変換装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly efficient thermoelectric conversion element and a thermoelectric conversion device using the same.

【0002】[0002]

【従来の技術】熱電変換素子は、エネルギー(ENERGY)
1987年9月号47頁等に記載のように棒状あるいは
板状のp型熱電変換半導体とn型熱電変換半導体をそれ
ぞれの一端で、直接、あるいは導体を介して接合し、他
端に電極を接合したもので(図13,図14)、ゼーベ
ック効果により熱を電気に、ペルチェ効果,トムソン効
果により電気を熱に、直接、変換するものが知られてい
る。
2. Description of the Related Art Thermoelectric conversion elements use energy (ENERGY)
As described in September 1987, p. 47, etc., a rod-shaped or plate-shaped p-type thermoelectric conversion semiconductor and an n-type thermoelectric conversion semiconductor are joined at one end directly or through a conductor, and an electrode is provided at the other end. It is known that they are joined (FIGS. 13 and 14) and directly convert heat into electricity by the Seebeck effect and electricity into heat by the Peltier effect and Thomson effect.

【0003】[0003]

【発明が解決しようとする課題】熱電変換素子を熱発電
用の素子として使用する場合、一般に高温端と低温端の
間の温度差が大きいほど熱起電力は大きくなる。従来の
棒状の熱電変換素子の場合、高温端と低温端の間の温度
差を得るため素子の熱流方向に長くとられている。熱電
変換材料は一般に金属に比べて大きな電気抵抗を有する
ため、熱電変換素子を負荷につないだとき、熱電変換素
子の内部抵抗によるジュール発熱が大きくなり、熱電変
換効率が下がる。また、板状の熱電変換材料を使用した
熱電変換素子の場合、高温源と低温源が非常に接近して
いるため、高温源から低温源への輻射伝熱による熱損失
を抑えることが困難で、投入熱量に対する発電電力の割
合で定義される総合熱電変換効率が低下する。
When the thermoelectric conversion element is used as an element for thermoelectric generation, generally, the larger the temperature difference between the high temperature end and the low temperature end, the larger the thermoelectromotive force. In the case of the conventional rod-shaped thermoelectric conversion element, it is long in the heat flow direction of the element in order to obtain the temperature difference between the high temperature end and the low temperature end. Since a thermoelectric conversion material generally has a larger electric resistance than a metal, when the thermoelectric conversion element is connected to a load, Joule heat generation due to the internal resistance of the thermoelectric conversion element increases, and the thermoelectric conversion efficiency decreases. Further, in the case of a thermoelectric conversion element using a plate-shaped thermoelectric conversion material, since the high temperature source and the low temperature source are very close to each other, it is difficult to suppress heat loss due to radiative heat transfer from the high temperature source to the low temperature source. , The total thermoelectric conversion efficiency defined by the ratio of the generated power to the input heat amount decreases.

【0004】熱電変換半導体素子を発電用の素子として
利用する場合、高温源と低温源の位置を入れ替えても発
電を行うことができるが、流れる電流の向きは逆向きと
なるため、バッテリの充電等電流の向きが一定でなけれ
ばならない用途では使用できない。
When the thermoelectric conversion semiconductor element is used as an element for power generation, power can be generated even if the positions of the high temperature source and the low temperature source are exchanged, but the flowing current is in the opposite direction, so the battery is charged. It cannot be used in applications where the direction of equal current must be constant.

【0005】熱電変換半導体素子を冷却用の素子として
使用する場合、棒状材料を使ったときは先に述べたよう
な素子内部の抵抗によるジュール発熱が大きくなり、板
状材料を使ったときは、発熱部から吸熱部への熱輻射に
よる熱の逆流で発熱部が冷却され吸熱部が加熱されると
いった問題が起こり、冷却効率が低下する。
When the thermoelectric conversion semiconductor element is used as an element for cooling, when the rod-shaped material is used, the Joule heat generation due to the internal resistance of the element becomes large as described above, and when the plate-shaped material is used, The backflow of heat due to the heat radiation from the heat generating portion to the heat absorbing portion causes a problem that the heat generating portion is cooled and the heat absorbing portion is heated, and the cooling efficiency is reduced.

【0006】本発明の第一の目的は、高い総合熱電変換
効率を持つ熱電変換素子を提供することにある。
A first object of the present invention is to provide a thermoelectric conversion element having a high total thermoelectric conversion efficiency.

【0007】本発明の第二の目的は、高い総合熱電変換
効率を持つ熱電変換半導体素子を用いた熱電変換モジュ
ール装置を提供することにある。
A second object of the present invention is to provide a thermoelectric conversion module device using a thermoelectric conversion semiconductor element having a high total thermoelectric conversion efficiency.

【0008】本発明の第三の目的は、高温源と低温源が
入れ替わった場合でも、負荷には同じ方向に電流が流れ
るような熱電変換装置を提供することにある。
A third object of the present invention is to provide a thermoelectric conversion device in which a current flows through the load in the same direction even when the high temperature source and the low temperature source are switched.

【0009】[0009]

【課題を解決するための手段】本発明の第一の目的は、
熱を電気にあるいは電気を熱に、直接、変換する素子に
おいて、熱の良導体であり電気絶縁体である材料の両端
に、p型あるいはn型の熱電半導体を接合した構成とす
ることにより達成できる。
The first object of the present invention is to:
In an element that directly converts heat into electricity or electricity into heat, it can be achieved by bonding a p-type or n-type thermoelectric semiconductor to both ends of a material that is a good conductor of heat and an electrical insulator. ..

【0010】本発明の第一の目的は、熱を電気にあるい
は電気を熱に直接変換する素子において、ヒートパイプ
の両端に、p型あるいはn型の熱電半導体を接合した構
成とすることによっても達成できる。
The first object of the present invention is also to provide an element for converting heat into electricity or directly converting electricity into heat, in which a p-type or n-type thermoelectric semiconductor is joined to both ends of a heat pipe. Can be achieved.

【0011】本発明の第一の目的は、熱電変換素子を高
温で性能指数の高い材料と中低温で性能指数の高い材料
とを使用して構成することによっても達成できる。
The first object of the present invention can also be achieved by constructing a thermoelectric conversion element by using a material having a high performance index at high temperature and a material having a high performance index at medium and low temperatures.

【0012】本発明の第二の目的は、請求項3から請求
項6に記載の熱電変換素子を複数個,電気的に直列ある
いは並列に接続した構成にすることによって達成でき
る。
The second object of the present invention can be achieved by a configuration in which a plurality of thermoelectric conversion elements according to claims 3 to 6 are electrically connected in series or in parallel.

【0013】本発明の第三の目的は、熱電変換装置の電
極部と負荷の間に整流装置を入れることによっても達成
できる。
The third object of the present invention can also be achieved by inserting a rectifying device between the electrode portion of the thermoelectric conversion device and the load.

【0014】[0014]

【作用】本発明の熱電変換素子では、まず、熱電半導体
が高い熱伝導度を持つ材料(例えば金属の数千倍もの熱
伝導度を有するヒートパイプなど)の両端に接合されて
いるため、熱電変換半導体の大きさを変えることなく、
しかも熱電変換に寄与しない部分での温度差は非常に小
さく保ったまま素子の長さを任意に設定することができ
る。そのため、熱源間距離の大きい場合でも熱電素子の
内部抵抗を小さく保つことができる。また、熱源間の熱
輻射や、熱電変換に寄与しない構造材(補強材など)を
通じての熱伝導を抑えるのに、熱反射体を熱源間に設置
する熱源間の距離を広げて構造材中の温度勾配を小さく
するなどの手段を用いることができる。従って、高い総
合熱電変換効率を得ることができる。また高い熱伝導度
を持つ材料が電気的には絶縁体である場合、特に熱源間
の距離が大きい等、この熱の良導体の長さを熱流方向に
長くする必要があるときに、高温源側の熱電半導体と低
温源側の熱電半導体を電気的に切り離し、別々の負荷に
つなぐことで配線を短くして送電ロスを減らすことがで
きる。
In the thermoelectric conversion element of the present invention, first, the thermoelectric semiconductor is bonded to both ends of a material having a high thermal conductivity (for example, a heat pipe having a thermal conductivity several thousand times that of a metal). Without changing the size of the conversion semiconductor,
Moreover, the length of the element can be arbitrarily set while keeping the temperature difference in the portion that does not contribute to thermoelectric conversion very small. Therefore, even when the distance between the heat sources is large, the internal resistance of the thermoelectric element can be kept small. Also, in order to suppress heat radiation between heat sources and heat conduction through structural materials (reinforcing materials, etc.) that do not contribute to thermoelectric conversion, the distance between the heat sources installed between the heat sources is increased to increase the distance between the heat sources. Means such as reducing the temperature gradient can be used. Therefore, high total thermoelectric conversion efficiency can be obtained. Also, when a material with high thermal conductivity is an insulator electrically, especially when the distance between heat sources is large and it is necessary to lengthen the length of a good conductor of this heat in the heat flow direction, the high temperature source side By electrically disconnecting the thermoelectric semiconductor and the thermoelectric semiconductor on the low temperature source side and connecting them to different loads, it is possible to shorten the wiring and reduce power transmission loss.

【0015】本発明の熱電変換素子の場合、高温源側に
中高温で性能指数の高い熱電半導体材料を使用し、低温
源側に中低温で性能指数の高い熱電半導体材料を使用す
ることにより全体として高い熱電変換効率を実現するこ
とができる。類似の発想に基づくタンデム型熱電変換素
子は、組成の異なる熱電変換半導体を非常に短い距離で
接合しているため、高温側で使用されている熱電変換半
導体の成分の一部が低温側へ熱拡散して短い時間で劣化
することがある。これに対して、本発明の熱電変換素子
では、組成の異なる熱電半導体が長い距離をおいて熱的
にのみ接合されているので、熱の良導体であり電気絶縁
体である材料を適当に選択することで熱による熱電半導
体の劣化を防止ぎ、高い熱電変換効率を保つことができ
る。
In the case of the thermoelectric conversion element of the present invention, a thermoelectric semiconductor material having a high performance index at medium and high temperatures is used on the high temperature source side, and a thermoelectric semiconductor material having a high performance index at medium and low temperatures is used on the low temperature source side. As a result, high thermoelectric conversion efficiency can be realized. A tandem-type thermoelectric conversion element based on a similar idea joins thermoelectric conversion semiconductors with different compositions at an extremely short distance, so that some of the components of the thermoelectric conversion semiconductors used at high temperatures are heated to the low temperature side. It may diffuse and deteriorate in a short time. On the other hand, in the thermoelectric conversion element of the present invention, since thermoelectric semiconductors having different compositions are bonded only at a long distance thermally, a material that is a good conductor of heat and an electrical insulator is appropriately selected. As a result, it is possible to prevent the thermoelectric semiconductor from deteriorating due to heat and maintain a high thermoelectric conversion efficiency.

【0016】本発明の熱電変換素子及び熱電変換装置
は、高温源と低温源が入れ替わっても動作可能である
が、流れる電流は逆方向となるので負荷との間に公知の
整流装置を入れることにより、負荷に流れる電流の方向
を一定に保つことができる。
The thermoelectric conversion element and the thermoelectric conversion device of the present invention can be operated even when the high temperature source and the low temperature source are exchanged, but since the flowing current is in the opposite direction, a known rectifying device should be inserted between the load and the load. Thereby, the direction of the current flowing through the load can be kept constant.

【0017】[0017]

【実施例】以下、図面を参照しながら本発明を詳述す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings.

【0018】<実施例1>図1は本発明の第一の実施例
を示す断面図である。電気良導体であり電気絶縁体であ
る材料(例えばシリコンカーバイド)1の両端にクロム
を少量添加した珪化鉄のようなp型熱電半導体21,2
2、あるいはコバルトを少量添加した珪化鉄のようなn
型熱電半導体31,32を電極5を介して接合する。熱
源6と熱の良導体であり電気絶縁体である材料1との間
の温度差により発生した電力は、p型熱電半導体21、
あるいはn型熱電半導体31の両端に設けた電極5から
取り出し、熱の良導体であり電気絶縁体である材料1と
熱源7との間の温度差により発生した電力はp型熱電半
導体22、あるいはn型熱電半導体32の両端に設けた
電極5から取り出し、それぞれ別の負荷8に接続する。
<Embodiment 1> FIG. 1 is a sectional view showing a first embodiment of the present invention. A p-type thermoelectric semiconductor 21,2 such as iron silicide in which a small amount of chromium is added to both ends of a material (for example, silicon carbide) 1 which is a good electric conductor and an electric insulator.
2 or n such as iron silicide with a small amount of cobalt added
The thermoelectric semiconductors 31 and 32 are joined via the electrode 5. The electric power generated by the temperature difference between the heat source 6 and the material 1 which is a good conductor of heat and which is an electric insulator is generated by the p-type thermoelectric semiconductor 21,
Alternatively, the electric power generated by the temperature difference between the heat source 7 and the material 1 which is a good conductor of heat and an electric insulator is taken out from the electrodes 5 provided at both ends of the n-type thermoelectric semiconductor 31, or n-type thermoelectric semiconductor 22 or n. The thermoelectric semiconductor 32 is taken out from the electrodes 5 provided at both ends and connected to different loads 8.

【0019】図2は本発明の第二の実施例を示す断面図
である。図1との違いは熱の良導体であり電気絶縁体で
あるような材料1の代わりに、熱電半導体及び電極に接
触する部分が電気絶縁体12により電気的に絶縁されて
いるヒートパイプ11が用いられている点にある。
FIG. 2 is a sectional view showing a second embodiment of the present invention. The difference from FIG. 1 is that instead of the material 1 which is a good conductor of heat and is an electric insulator, a heat pipe 11 is used in which the parts in contact with the thermoelectric semiconductor and the electrodes are electrically insulated by the electric insulator 12. There is a point.

【0020】本実施例では、熱源6側に接する熱電半導
体と熱源7側に接する熱電半導体からそれぞれ独立に電
力を取り出すことができるため、熱良導体であり電気絶
縁体である材料1あるいは熱電半導体及び電極に接触す
る部分が電気絶縁体12により電気的に絶縁されている
ヒートパイプ11を長く取った場合でも配線を短く保つ
ことができ、送電ロスを減らすことができる。また、熱
源6と熱源7のどちらが高温源になっても同じ効率で発
電できる。
In the present embodiment, since electric power can be independently taken out from the thermoelectric semiconductor which is in contact with the heat source 6 side and the thermoelectric semiconductor which is in contact with the heat source 7 side, the material 1 or thermoelectric semiconductor which is a good heat conductor and an electric insulator, Even when the length of the heat pipe 11 in which the portion in contact with the electrodes is electrically insulated by the electric insulator 12 is long, the wiring can be kept short and power transmission loss can be reduced. Further, it is possible to generate power with the same efficiency regardless of which of the heat source 6 and the heat source 7 becomes a high temperature source.

【0021】<実施例2>図3は、本発明の第三の実施
例を示す断面図である。p型熱電半導体21,22には
クロムを少量添加した珪化鉄、n型熱電半導体31,3
2にはコバルトを少量添加した珪化鉄を用いる。p型熱
電半導体21と22、n型熱電半導体31と32の間に
は熱良導体であり電気絶縁体である材料(例えばシリコ
ンカーバイド)1を挟んで接合した構成とする。p型熱
電半導体21とn型熱電半導体31とは、熱源6に近い
側の端同士を電気良導体4により公知の方法(例えば銀
ペースト)で電気的に接続し、p型熱電半導体21,n
型熱電半導体31の他端には電極5を形成する。熱源6
と熱の良導体であり電気絶縁体である材料1との間の温
度差により発生した電力はこの電極から取り出す。p型
熱電半導体22とn型熱電半導体32とは、熱源7から
遠い側の端同士が電気良導体4により公知の方法(例え
ば銀ペースト)で電気的に接続されており、p型熱電半
導体22とn型熱電半導体32の他端には電極5が形成
されている。熱の良導体であり電気絶縁体である材料1
と熱源7との間の温度差により発生した電力はこの電極
から取り出す。
<Embodiment 2> FIG. 3 is a sectional view showing a third embodiment of the present invention. For the p-type thermoelectric semiconductors 21 and 22, iron silicide containing a small amount of chromium added, n-type thermoelectric semiconductors 31 and 3
2 uses iron silicide containing a small amount of cobalt. The p-type thermoelectric semiconductors 21 and 22 and the n-type thermoelectric semiconductors 31 and 32 are joined together with a material (for example, silicon carbide) 1 which is a good thermal conductor and an electrical insulator interposed therebetween. The p-type thermoelectric semiconductor 21 and the n-type thermoelectric semiconductor 31 are electrically connected to each other at their ends close to the heat source 6 by a well-known method (for example, silver paste) with the good electrical conductor 4, and the p-type thermoelectric semiconductors 21, n
The electrode 5 is formed on the other end of the thermoelectric semiconductor 31. Heat source 6
The electric power generated by the temperature difference between the material 1 which is a good conductor of heat and the electrical insulator is taken out from this electrode. The p-type thermoelectric semiconductor 22 and the n-type thermoelectric semiconductor 32 are electrically connected at their ends remote from the heat source 7 by a well-known method (for example, silver paste) by the good electrical conductor 4, and are connected to the p-type thermoelectric semiconductor 22. The electrode 5 is formed on the other end of the n-type thermoelectric semiconductor 32. Material 1 that is a good conductor of heat and an electrical insulator
The electric power generated by the temperature difference between the heat source 7 and the heat source 7 is taken out from this electrode.

【0022】図4は、本発明の第一実施例を示す断面図
である。図3との違いは、熱の良導体であり電気絶縁体
である材料1のかわりに熱電半導体及び電極に接触する
部分が電気絶縁体12により電気的に絶縁されているヒ
ートパイプ11を用いた点にある。
FIG. 4 is a sectional view showing the first embodiment of the present invention. 3 is different from FIG. 3 in that instead of the material 1 which is a good conductor of heat and is an electric insulator, a heat pipe 11 in which a portion contacting a thermoelectric semiconductor and an electrode is electrically insulated by an electric insulator 12 is used. It is in.

【0023】<実施例3>図3,図4において熱源6を
高温源,熱源7を低温源とし、p型熱電半導体21,n
型熱電半導体31に中高温で熱電能の高い材料、例え
ば、クロムやコバルトを添加した珪化鉄を使い、p型熱
電半導体22,n型熱電半導体32に中低温で熱電能の
高い材料、例えば、セレンやアンチモンを添加したテル
ル化ビスマスを使うことにより、実施例1より更に高い
総合熱電変換効率を実現したものである。
<Embodiment 3> In FIGS. 3 and 4, the heat source 6 is a high temperature source and the heat source 7 is a low temperature source.
For the p-type thermoelectric semiconductor 22 and the n-type thermoelectric semiconductor 32, for example, a material having a high thermoelectric power at an intermediate temperature and a high temperature, for example, iron silicide containing chromium or cobalt is used for the type thermoelectric semiconductor 31, for example, By using bismuth telluride to which selenium or antimony is added, a higher overall thermoelectric conversion efficiency than in Example 1 is realized.

【0024】<実施例4>図5は本発明の第五の実施例
を示す断面図である。図3と異なる点は、p型熱電半導
体22とn型熱電半導体32を電気的に結ぶ電気良導体
4の代わりにp型熱電半導体22,n型熱電半導体32
のそれぞれに電極5を設け、熱良導体であり電気絶縁体
である材料1と平行にp型熱電半導体21と22,n型
熱電半導体31と32を結ぶ電気良導体4を設けた点で
ある。また輻射伝熱を抑えるため、熱源6と熱源7の間
に放射率の低い材料(金を蒸着した膜など)で障壁9を
設けている。熱の良導体であり電気絶縁体である材料1
と平行に設けた電気良導体4は熱良導体であり電気絶縁
体である材料1と一体化していてもよい。
<Fourth Embodiment> FIG. 5 is a sectional view showing a fifth embodiment of the present invention. 3 is different from FIG. 3 in that instead of the good electrical conductor 4 that electrically connects the p-type thermoelectric semiconductor 22 and the n-type thermoelectric semiconductor 32, the p-type thermoelectric semiconductor 22 and the n-type thermoelectric semiconductor 32 are provided.
The electrode 5 is provided on each of the above, and the electrical good conductor 4 that connects the p-type thermoelectric semiconductors 21 and 22 and the n-type thermoelectric semiconductors 31 and 32 is provided in parallel with the material 1 which is a good thermal conductor and an electrical insulator. Further, in order to suppress radiant heat transfer, a barrier 9 is provided between the heat source 6 and the heat source 7 with a material having a low emissivity (such as a film formed by vapor deposition of gold). Material 1 that is a good conductor of heat and an electrical insulator
The good electrical conductor 4 provided in parallel with the above may be integrated with the material 1 which is a good thermal conductor and an electrical insulator.

【0025】図6は本発明の第六の実施例を示す断面図
である。図5と異なる点は、熱の良導体であり電気絶縁
体である材料1の代わりに、ヒートパイプ11を使用し
ている点にある。これにより熱の良導体と電気良導体を
一体化したのと同じ効果が得られる。
FIG. 6 is a sectional view showing a sixth embodiment of the present invention. The difference from FIG. 5 is that the heat pipe 11 is used instead of the material 1 which is a good conductor of heat and is an electric insulator. As a result, the same effect as that of integrating a good thermal conductor and a good electrical conductor can be obtained.

【0026】本実施例について従来例との比較を以下に
示す。尚、p型熱電半導体21,22、n型熱電半導体
31,32に性能指数Z=103-1(ゼーベック係数α
=10-3VK,電気伝導度σ=103Ω-1-1,熱伝導
度κ=1Wm-1-1)の熱電変換材料を用い、熱伝導度
κhp=105Wm-1-1 のヒートパイプ11を用いて、
熱流方向全長10cm(うち熱電変換材料長さ1cm×
2),熱電変換材料部断面積10cm2 の熱電変換素子を
製作したとする。また、高温源温度は773K、低温源
温度は373K、熱源断面積は20cm2とし、抵抗値R
=0.02Ωの負荷に接続したときの総合熱電変換効率
を比較した。
A comparison between this example and the conventional example is shown below. In addition, in the p-type thermoelectric semiconductors 21 and 22, and the n-type thermoelectric semiconductors 31 and 32, the figure of merit Z = 10 3 K −1 (Seebeck coefficient α
= 10 −3 VK, electric conductivity σ = 10 3 Ω −1 m −1 , thermal conductivity κ = 1 Wm −1 K −1 ) and a thermal conductivity κ hp = 10 5 Wm −1. Using the K- 1 heat pipe 11,
Heat flow direction total length 10 cm (of which thermoelectric conversion material length 1 cm x
2) It is assumed that a thermoelectric conversion element having a cross-sectional area of 10 cm 2 of the thermoelectric conversion material part is manufactured. The high temperature source temperature is 773K, the low temperature source temperature is 373K, the heat source cross-sectional area is 20 cm 2 , and the resistance value R
The total thermoelectric conversion efficiency when connected to a load of 0.02Ω was compared.

【0027】(1) 棒状熱電変換素子との比較 全て熱電変換材料で構成された本作製例の素子と同じサ
イズの熱電変換素子を作製したときの総合熱電変換効率
は5.5% となる。これは本作製例の総合熱電変換効率
10%の約半分である。
(1) Comparison with a rod-shaped thermoelectric conversion element The total thermoelectric conversion efficiency is 5.5% when a thermoelectric conversion element of the same size as the element of this preparation example, which is made of all thermoelectric conversion materials, is manufactured. This is about half of the total thermoelectric conversion efficiency of 10% in this preparation example.

【0028】(2) 板状熱電変換素子との比較 全て熱電変換材料で構成された熱流方向の長さが2cmの
熱電変換素子(本作製例の熱電素子からヒートパイプ1
1と輻射熱の障壁9を取り去ったもの)の総合熱電変換
効率は、輻射伝熱を考慮に入れると4.5% となり、輻
射伝熱を抑えることのできる本作成例の総合熱電変換効
率の約半分である。
(2) Comparison with a plate-like thermoelectric conversion element A thermoelectric conversion element composed entirely of thermoelectric conversion material and having a length of 2 cm in the heat flow direction (from the thermoelectric element of this preparation example to the heat pipe 1
1 and the radiant heat barrier 9 are removed), the total thermoelectric conversion efficiency is 4.5% when radiant heat transfer is taken into consideration, which is about the total thermoelectric conversion efficiency of this example that can suppress radiant heat transfer. It is half.

【0029】<実施例5>図7,図8は本発明の第七お
よび第八の実施例を示す断面図である。本実施例は、実
施例1ではp型の電気的性質を持つ熱電変換素子とn型
の電気的性質を持つ熱電変換素子にそれぞれ独立に存在
していた、熱の良導体であり電気絶縁体である材料1、
あるいは熱電半導体及び電極に接触する部分が電気絶縁
体12により電気的に絶縁されているヒートパイプ11
を共用するようにした。このような構成とすれば実施例
1で説明した利点を失うことなく、部品数を減らし材料
の節約と組立ての簡略化を図ることができる。本実施例
では一つの素子について、熱の良導体であり電気絶縁体
である材料1、あるいは熱電半導体及び電極に接触する
部分が電気絶縁体12により電気的に絶縁されているヒ
ートパイプ11を共用する例を示したが、多数の素子を
組み合わせて熱電変換装置を構成する場合、電気的な接
続とは関係なく全ての素子の熱の良導体であり電気絶縁
体である材料1、あるいは熱電半導体及び電極に接触す
る部分が電気絶縁体12により電気的に絶縁されている
ヒートパイプ11を共用することも可能である。
<Fifth Embodiment> FIGS. 7 and 8 are sectional views showing the seventh and eighth embodiments of the present invention. The present example is a good conductor of heat and an electrical insulator which existed independently in the thermoelectric conversion element having the p-type electrical property and the thermoelectric conversion element having the n-type electrical property in the first example. Some material 1,
Alternatively, the heat pipe 11 in which the portion contacting the thermoelectric semiconductor and the electrodes is electrically insulated by the electric insulator 12
I shared it. With such a configuration, it is possible to reduce the number of parts, save material, and simplify assembly without losing the advantages described in the first embodiment. In the present embodiment, for one element, the material 1 which is a good conductor of heat and is an electrical insulator, or the heat pipe 11 in which the portion contacting the thermoelectric semiconductor and the electrode is electrically insulated by the electrical insulator 12 is shared. Although an example is shown, when a thermoelectric conversion device is configured by combining a large number of elements, the material 1 which is a good conductor of heat and is an electrical insulator of all the elements, or the thermoelectric semiconductor and the electrode, regardless of electrical connection. It is also possible to share the heat pipe 11 whose portion contacting with is electrically insulated by the electric insulator 12.

【0030】<実施例6>図9,図10は本発明の第
九,第十の実施例を示す斜視図である。構成は実施例2
と同じであるが、本実施例では、熱源6と熱源7は平板
で互いに垂直な関係にあり、熱の良導体であり電気絶縁
体である材料1、あるいは熱電半導体及び電極に接触す
る部分が電気絶縁体12により電気的に絶縁されている
ヒートパイプ11をそれに合わせて90度曲げてある。
本実施例のような簡単な場合だけでなく、熱の良導体で
あり電気絶縁体である材料1、あるいは熱電半導体及び
電極に接触する部分が電気絶縁体12により電気的に絶
縁されているヒートパイプ11に加工性の高いものを選
択することにより、加工の困難なことの多い熱電変換素
子の形状を変えることなく、熱源の配置状態や熱源間の
空間の利用状態に合わせて素子を作成することができ
る。
<Embodiment 6> FIGS. 9 and 10 are perspective views showing the ninth and tenth embodiments of the present invention. The configuration is Example 2
In the present embodiment, the heat source 6 and the heat source 7 are flat plates and are perpendicular to each other, and the material 1 which is a good conductor of heat and is an electrical insulator, or the portion which contacts the thermoelectric semiconductor and the electrode is electrically The heat pipe 11 electrically insulated by the insulator 12 is bent by 90 degrees in accordance with the heat pipe 11.
Not only in the simple case as in this embodiment, but also in the heat pipe in which the material 1 which is a good conductor of heat and is an electric insulator, or the portion which contacts the thermoelectric semiconductor and the electrode is electrically insulated by the electric insulator 12. By selecting a material with high workability as 11, there is no need to change the shape of the thermoelectric conversion element, which is often difficult to process, to create the element according to the arrangement state of the heat source and the usage state of the space between the heat sources. You can

【0031】<実施例7>図11,図12は本発明の熱
電変換装置の実施例を示す断面図である。図11,図1
2は図3,図4に示した熱電変換素子を二個、熱源6側
と熱源7側の熱電変換材料をそれぞれ電気的に直列に接
続し、熱の良導体であり電気絶縁体である材料1、ある
いは熱電半導体及び電極に接触する部分が電気絶縁体1
2により電気的に絶縁されているヒートパイプ11を共
用したものである。取り出された電力は熱源6側と熱源
7側で別々の負荷8に接続されるが、熱電変換装置と負
荷の間に公知の整流装置10を入れ、熱源6,熱源7の
どちらが高温源になっても負荷8には同じ方向に電流が
流れるようにしている。本実施例では、二個の素子をつ
ないだだけであるが、更に多数の素子を電気的には様々
な方法で接続することも可能である。
<Embodiment 7> FIGS. 11 and 12 are sectional views showing an embodiment of the thermoelectric conversion device of the present invention. 11 and 1
2 is a material 1 which is a good conductor of heat and an electrical insulator, which is obtained by electrically connecting two thermoelectric conversion elements shown in FIGS. 3 and 4 and thermoelectric conversion materials on the heat source 6 side and the heat source 7 side respectively in series. , Or the portion in contact with the thermoelectric semiconductor and the electrode is the electrical insulator 1
The heat pipe 11 electrically insulated by 2 is shared. The extracted electric power is connected to different loads 8 on the heat source 6 side and the heat source 7 side, and a known rectifying device 10 is inserted between the thermoelectric converter and the load so that either the heat source 6 or the heat source 7 becomes a high temperature source. Even so, the current is made to flow in the same direction in the load 8. In this embodiment, only two elements are connected, but it is possible to electrically connect a larger number of elements by various methods.

【0032】以上の実施例は主に熱電発電の観点から説
明を行ってきたが、実施例7を除き、熱源6,7を外し
て電極に電流を流すことで、高性能の熱電冷却,加熱素
子あるいは装置として動作させることができる。
Although the above embodiments have been described mainly from the viewpoint of thermoelectric power generation, except for the seventh embodiment, by removing the heat sources 6 and 7 and passing an electric current through the electrodes, high-performance thermoelectric cooling and heating can be performed. It can be operated as an element or a device.

【0033】[0033]

【発明の効果】本発明によれば、高い総合熱電変換効率
を持つ熱電変換素子が得られる。また、高い総合熱電変
換効率を持つ熱電変換素子を用いた熱電変換装置が得ら
れる。そして、高温源と低温源が入れ替わった場合で
も、負荷には同じ方向に電流が流れるような熱電変換装
置を得ることができる。
According to the present invention, a thermoelectric conversion element having a high total thermoelectric conversion efficiency can be obtained. Further, a thermoelectric conversion device using a thermoelectric conversion element having a high total thermoelectric conversion efficiency can be obtained. Then, even when the high temperature source and the low temperature source are exchanged, it is possible to obtain a thermoelectric conversion device in which a current flows through the load in the same direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例の断面図。FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の第二実施例の断面図。FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の第三実施例の断面図。FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】本発明の第四実施例の断面図。FIG. 4 is a sectional view of a fourth embodiment of the present invention.

【図5】本発明の第五実施例の断面図。FIG. 5 is a sectional view of a fifth embodiment of the present invention.

【図6】本発明の第六実施例の断面図。FIG. 6 is a sectional view of a sixth embodiment of the present invention.

【図7】本発明の第七実施例の斜視図。FIG. 7 is a perspective view of a seventh embodiment of the present invention.

【図8】本発明の第八実施例の斜視図。FIG. 8 is a perspective view of an eighth embodiment of the present invention.

【図9】本発明の第九実施例の断面図。FIG. 9 is a sectional view of a ninth embodiment of the present invention.

【図10】本発明の第十実施例の断面図。FIG. 10 is a sectional view of a tenth embodiment of the present invention.

【図11】本発明の熱電変換装置の一実施例の系統図。FIG. 11 is a system diagram of an embodiment of the thermoelectric conversion device of the present invention.

【図12】本発明の熱電変換装置の他の実施例の系統
図。
FIG. 12 is a system diagram of another embodiment of the thermoelectric conversion device of the present invention.

【図13】従来の棒状熱電変換材料を用いた熱電変換素
子の断面図。
FIG. 13 is a sectional view of a thermoelectric conversion element using a conventional rod-shaped thermoelectric conversion material.

【図14】従来の板状熱電変換材料を用いた熱電変換素
子の断面図。
FIG. 14 is a cross-sectional view of a thermoelectric conversion element using a conventional plate-shaped thermoelectric conversion material.

【符号の説明】[Explanation of symbols]

4…電気良導体、5…電極、6…熱源、7…熱源、8…
負荷、21…p型熱電変換材料、22…p型熱電変換材
料、31…n型熱電変換材料、32…n型熱電変換材
料。
4 ... Good electrical conductor, 5 ... Electrode, 6 ... Heat source, 7 ... Heat source, 8 ...
Load, 21 ... P-type thermoelectric conversion material, 22 ... P-type thermoelectric conversion material, 31 ... N-type thermoelectric conversion material, 32 ... N-type thermoelectric conversion material.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塩野 修 茨城県日立市森山町1168番地 株式会社日 立製作所エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Shiono 1168 Moriyama-cho, Hitachi-shi, Ibaraki Pref.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】熱を電気にあるいは電気を熱に直接変換す
る素子において、熱の良導体であり電気絶縁体である材
料の両端に、p型あるいはn型の熱電半導体を接合した
ことを特徴とする熱電変換素子。
1. An element for converting heat into electricity or directly converting electricity into heat, wherein a p-type or n-type thermoelectric semiconductor is bonded to both ends of a material which is a good conductor of heat and is an electric insulator. Thermoelectric conversion element.
【請求項2】熱を電気にあるいは電気を熱に直接変換す
る素子において、ヒートパイプの両端に、p型あるいは
n型の熱電半導体を接合したことを特徴とする熱電変換
素子。
2. A thermoelectric conversion element for converting heat into electricity or directly converting electricity into heat, wherein a p-type or n-type thermoelectric semiconductor is bonded to both ends of a heat pipe.
【請求項3】請求項1において、熱の良導体であり電気
絶縁体である材料の両端の熱電半導体の型を同じとし、
導体でこの二つの半導体を電気的に接続してp型あるい
はn型の電気的性質を持つ熱電変換素子を形成し、異な
る電気的性質を持つ熱電変換素子の一端同士を電気良導
体によって接続した熱電変換素子。
3. The thermoelectric semiconductor according to claim 1, wherein the both ends of the material which is a good conductor of heat and is an electric insulator are the same,
The two semiconductors are electrically connected by a conductor to form a thermoelectric conversion element having p-type or n-type electrical properties, and one ends of the thermoelectric conversion elements having different electrical properties are connected by a good electrical conductor. Conversion element.
【請求項4】請求項1において、熱の良導体であり電気
絶縁体である材料の両端に同じ電気的性質を持つ熱電半
導体を持ち、p型の熱電半導体を使用したものとn型の
熱電半導体を使用したものを各一つずつ、または熱の良
導体であり電気絶縁体である材料の両端にことなる電気
的性質を持つ熱電半導体を持つもの二つを異なる電気的
性質を持つそれぞれの半導体の一端同士で電気良導体に
より接続した熱電変換素子。
4. The p-type thermoelectric semiconductor and the n-type thermoelectric semiconductor according to claim 1, which have thermoelectric semiconductors having the same electric properties at both ends of a material which is a good conductor of heat and is an electric insulator. One with a thermoelectric semiconductor with different electrical properties at each end of a material that is a good conductor of heat and an electrical insulator, and two of each semiconductor with different electrical properties. A thermoelectric conversion element with one end connected by a good electrical conductor.
【請求項5】請求項2において、熱の良導体であり電気
良導体であるヒートパイプの両端の熱電半導体の型を同
じとし、p型あるいはn型の電気的性質を持つ熱電変換
素子を形成し、異なる電気的性質を持つ熱電変換素子の
一端同士を電気良導体によって接続した熱電変換素子。
5. A thermoelectric conversion element having p-type or n-type electrical properties, wherein the thermoelectric semiconductors at both ends of the heat pipe, which is a good conductor of heat and is a good conductor of heat, have the same type. A thermoelectric conversion element in which one ends of thermoelectric conversion elements having different electrical properties are connected by a good electrical conductor.
【請求項6】請求項2において、少なくとも熱電半導体
及び電極に接触する部分が公知の方法で電気的に絶縁さ
れているヒートパイプの、両端に同じ電気的性質を持つ
熱電半導体を持つもので、p型の熱電半導体を使用した
ものとn型の熱電半導体を使用したものを各一つずつ、
または前記ヒートパイプの両端にことなる電気的性質を
持つ熱電半導体の二つを異なる電気的性質を持つそれぞ
れの半導体の一端同士で電気良導体により接続した熱電
変換素子。
6. The heat pipe according to claim 2, wherein at least a portion in contact with the thermoelectric semiconductor and the electrode is electrically insulated by a known method, the thermopipe semiconductor having the same electric property at both ends. One using p-type thermoelectric semiconductor and one using n-type thermoelectric semiconductor,
Alternatively, a thermoelectric conversion element in which two thermoelectric semiconductors having different electric properties at both ends of the heat pipe are connected to each other at one end of each semiconductor having different electric properties by a good electric conductor.
【請求項7】請求項1または2において、高温源側には
高温で性能指数の高い材料、低温源側には中低温で性能
指数の高い材料を使用して構成した熱電変換素子。
7. The thermoelectric conversion element according to claim 1, wherein the high temperature source side is made of a material having a high performance index at a high temperature, and the low temperature source side is made of a material having a high performance index at an intermediate temperature.
【請求項8】請求項3,4または6において、熱の良導
体であり電気絶縁体である材料あるいはヒートパイプを
共有した熱電変換素子。
8. A thermoelectric conversion element according to claim 3, 4 or 6, wherein a material that is a good conductor of heat and is an electrical insulator or a heat pipe is shared.
【請求項9】請求項3,4,5または6において、熱電
変換素子を複数個電気的に直列あるいは並列に接続した
熱電変換モジュール。
9. The thermoelectric conversion module according to claim 3, 4, 5 or 6, wherein a plurality of thermoelectric conversion elements are electrically connected in series or in parallel.
【請求項10】請求項9において、熱電変換素子または
熱電変換装置の電極と負荷の間に整流装置を入れた熱電
変換装置。
10. The thermoelectric conversion device according to claim 9, wherein a rectifying device is inserted between the electrode of the thermoelectric conversion element or the thermoelectric conversion device and the load.
JP4118758A 1992-05-12 1992-05-12 Thermoelectric converting element and thermoelectric converter Pending JPH05315657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4118758A JPH05315657A (en) 1992-05-12 1992-05-12 Thermoelectric converting element and thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4118758A JPH05315657A (en) 1992-05-12 1992-05-12 Thermoelectric converting element and thermoelectric converter

Publications (1)

Publication Number Publication Date
JPH05315657A true JPH05315657A (en) 1993-11-26

Family

ID=14744334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4118758A Pending JPH05315657A (en) 1992-05-12 1992-05-12 Thermoelectric converting element and thermoelectric converter

Country Status (1)

Country Link
JP (1) JPH05315657A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023650A1 (en) 2006-08-24 2008-02-28 Sumitomo Chemical Company, Limited Thermoelectric material, method for producing the same, and thermoelectric converter
EP1895603A1 (en) * 2005-04-13 2008-03-05 Sumitomo Chemical Company, Limited Thermoelectric conversion material, method for production thereof and thermoelectric conversion element
WO2008047885A1 (en) 2006-10-17 2008-04-24 Sumitomo Chemical Company, Limited Thermo-electric converting material, process for producing the same, thermo-electric converting element, and method of heightening strength of thermo-electric converting material
WO2008066189A1 (en) 2006-11-28 2008-06-05 Sumitomo Chemical Company, Limited Thermoelectric conversion material and thermoelectric conversion element
WO2009102073A1 (en) 2008-02-14 2009-08-20 Sumitomo Chemical Company, Limited Sintered body and thermoelectric material
WO2009101946A1 (en) 2008-02-14 2009-08-20 Sumitomo Chemical Company, Limited Method for producing sintered body
WO2009125875A1 (en) 2008-04-10 2009-10-15 住友化学株式会社 Sintered compact and thermoelectric conversion material
WO2009125871A1 (en) 2008-04-10 2009-10-15 住友化学株式会社 Sintered body, and thermoelectric conversion material
JPWO2013093967A1 (en) * 2011-12-21 2015-04-27 株式会社日立製作所 Thermoelectric conversion element and thermoelectric conversion module using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1895603A1 (en) * 2005-04-13 2008-03-05 Sumitomo Chemical Company, Limited Thermoelectric conversion material, method for production thereof and thermoelectric conversion element
EP1895603A4 (en) * 2005-04-13 2011-07-13 Sumitomo Chemical Co Thermoelectric conversion material, method for production thereof and thermoelectric conversion element
WO2008023650A1 (en) 2006-08-24 2008-02-28 Sumitomo Chemical Company, Limited Thermoelectric material, method for producing the same, and thermoelectric converter
WO2008047885A1 (en) 2006-10-17 2008-04-24 Sumitomo Chemical Company, Limited Thermo-electric converting material, process for producing the same, thermo-electric converting element, and method of heightening strength of thermo-electric converting material
WO2008066189A1 (en) 2006-11-28 2008-06-05 Sumitomo Chemical Company, Limited Thermoelectric conversion material and thermoelectric conversion element
WO2009102073A1 (en) 2008-02-14 2009-08-20 Sumitomo Chemical Company, Limited Sintered body and thermoelectric material
WO2009101946A1 (en) 2008-02-14 2009-08-20 Sumitomo Chemical Company, Limited Method for producing sintered body
WO2009125875A1 (en) 2008-04-10 2009-10-15 住友化学株式会社 Sintered compact and thermoelectric conversion material
WO2009125871A1 (en) 2008-04-10 2009-10-15 住友化学株式会社 Sintered body, and thermoelectric conversion material
JPWO2013093967A1 (en) * 2011-12-21 2015-04-27 株式会社日立製作所 Thermoelectric conversion element and thermoelectric conversion module using the same

Similar Documents

Publication Publication Date Title
US6127766A (en) Paired-tube thermoelectric couple
US6563039B2 (en) Thermoelectric unicouple used for power generation
JP4472359B2 (en) Thermoelectric device using double-sided Peltier junction and manufacturing method thereof
Min et al. Conversion efficiency of thermoelectric combustion systems
US6958443B2 (en) Low power thermoelectric generator
US8044293B2 (en) High performance thermoelectric nanocomposite device
EP2070129B1 (en) Thermoelectric power generating systems utilizing segmented thermoelectric elements
US8143510B2 (en) Thermoelectric composite semiconductor
US4463214A (en) Thermoelectric generator apparatus and operation method
US20070199587A1 (en) Thermoelectric Conversion Module
US20040177877A1 (en) Geometrically optimized thermoelectric module
US20130306125A1 (en) Seebeck Solar Cell
CN103426963A (en) Concentrated photovoltaic/quantum well thermoelectric power source
JPH03155376A (en) Thermoelectric generating element
US20070084497A1 (en) Solid state direct heat to cooling converter
JPH05315657A (en) Thermoelectric converting element and thermoelectric converter
CN105633264A (en) Thermoelectric battery with series-wound electric leg structure
US3441449A (en) Thermoelectric system
JP3482094B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
US20060016248A1 (en) Thermoelectric Circuits Utilizing Series Isothermal Heterojunctions
JP3350705B2 (en) Heat transfer control thermoelectric generator
JP2659775B2 (en) Thermoelectric energy direct conversion device
JP3425783B2 (en) Heat exchange system
US3460996A (en) Thermoelectric lead telluride base compositions and devices utilizing them
KR20190049971A (en) Multi-multi-array themoeletric generator and its manufacturing method