JP2011134940A - Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same - Google Patents

Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same Download PDF

Info

Publication number
JP2011134940A
JP2011134940A JP2009294140A JP2009294140A JP2011134940A JP 2011134940 A JP2011134940 A JP 2011134940A JP 2009294140 A JP2009294140 A JP 2009294140A JP 2009294140 A JP2009294140 A JP 2009294140A JP 2011134940 A JP2011134940 A JP 2011134940A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type semiconductor
semiconductor element
insulating support
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009294140A
Other languages
Japanese (ja)
Inventor
Michitaka Okuda
通孝 奥田
Yusuke Takei
裕介 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009294140A priority Critical patent/JP2011134940A/en
Publication of JP2011134940A publication Critical patent/JP2011134940A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion element that facilitates high volume production of thermoelectric conversion modules with high efficiency of thermoelectric conversion, and possibly operable in small-sized integration, and to provide a thermoelectric conversion module employing the same. <P>SOLUTION: The thermoelectric conversion element 10 includes a p-type semiconductor element 2a having a Seebeck effect, and filled in one inner portion through the partition 1a of an insulating supporter 1; an n-type semiconductor element 2b having the Seebeck effect, filled in another inner portion through the partition 1a, and directly electrically connected to the p-type semiconductor element 2a at one end 1c; and an electrode formed in the p-type semiconductor element 2a and the n-type semiconductor element 2b at an opening 1b. The thermoelectric conversion element 10 can be connected to another element by the electrode 6 mounted at another side of the insulating supporter 1 in the thermoelectic conversion element 10, and can be connected in series at the upper and lower surfaces of the p-type and the n-type semiconductor elements 2a, 2b without using an electrode plate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱を電気に変換するゼーベック効果を用いた熱電変換素子と、それを用いた熱電変換モジュールおよび熱電変換装置に関する。   The present invention relates to a thermoelectric conversion element using the Seebeck effect for converting heat into electricity, a thermoelectric conversion module and a thermoelectric conversion apparatus using the thermoelectric conversion element.

環境負荷低減の為、排熱等の熱エネルギーを電気エネルギーに変換して有効利用する熱電変換技術が注目されている。従来、熱電変換を行う熱電変換素子は、BiTe、PbTe、CoSb、MgSi等の材料からなるp型の半導体素子とn型の半導体素子が知られている。 In order to reduce the environmental load, thermoelectric conversion technology that effectively uses heat energy such as exhaust heat by converting it into electrical energy has attracted attention. Conventionally, as a thermoelectric conversion element that performs thermoelectric conversion, a p-type semiconductor element and an n-type semiconductor element made of a material such as BiTe, PbTe, CoSb, or Mg 2 Si are known.

図9は、そうした従来の熱電変換モジュールの構成を示した正面図で、p型半導体素子102aおよびn型半導体素子102bの両端に、これらを直列接続するように電極板106が接合され、π型接続構造を成している。電極板106の上下面は、熱伝導性が高く、電気絶縁性の上面板105aおよび下面板105bが取り付けられている。上面板105aと下面板105bとをそれぞれ例えば数百℃の高温部と数十℃の低温部とに密接すると、n型半導体素子102bでは、伝導電子のエネルギーが高温側で高くなって低温側に拡散するために、低温部から高温部に電流を流す方向に熱起電力が生じる。p型半導体素子102aでは、同様に高温側の正孔のエネルギーが高くなって低温側に拡散するために、高温部から低温部に電流を流す方向に熱起電力が生じる。そして、p型半導体素子102aとn型半導体素子102bとが電極板106でπ型に直列に接続されているので、熱電モジュールの両端から電気を取り出して利用することができる。   FIG. 9 is a front view showing the configuration of such a conventional thermoelectric conversion module, in which an electrode plate 106 is joined to both ends of a p-type semiconductor element 102a and an n-type semiconductor element 102b so as to be connected in series. It has a connection structure. The upper and lower surfaces of the electrode plate 106 have high thermal conductivity, and an electrically insulating upper surface plate 105a and lower surface plate 105b are attached. When the upper surface plate 105a and the lower surface plate 105b are brought into close contact with, for example, a high temperature portion of several hundred degrees Celsius and a low temperature portion of several tens of degrees Celsius, in the n-type semiconductor element 102b, the energy of conduction electrons increases on the high temperature side, In order to diffuse, a thermoelectromotive force is generated in a direction in which current flows from the low temperature portion to the high temperature portion. In the p-type semiconductor element 102a, similarly, the energy of holes on the high temperature side becomes high and diffuses to the low temperature side, so that a thermoelectromotive force is generated in the direction in which current flows from the high temperature portion to the low temperature portion. Since the p-type semiconductor element 102a and the n-type semiconductor element 102b are connected in series in the π-type by the electrode plate 106, electricity can be taken out from both ends of the thermoelectric module and used.

特開平1−214280JP-A-1-214280

しかしながら、従来の熱電変換モジュールは、熱電変換用のp型およびn型半導体素子102a,102bを一定の隙間を空けて整列する作業が煩雑で、量産化、低価格化することが困難である。   However, in the conventional thermoelectric conversion module, the operation of aligning the p-type and n-type semiconductor elements 102a and 102b for thermoelectric conversion with a certain gap is complicated, and it is difficult to achieve mass production and cost reduction.

また、従来の熱電変換モジュールは、大きな半導体材料の焼結体を切断することによってp型半導体素子102aおよびn型半導体素子102bに加工するが、p型半導体素子102aおよびn型半導体素子102bが小さくなると、切断加工時に端面にクラックや欠けが生じる場合がある。その為、p型半導体素子102aおよびn型半導体素子102bを小型化することが難しい。また、各半導体素子102a,102bが小さくなると、上下面板105a、105bへ整列させて接合する加工が困難となる。   In addition, the conventional thermoelectric conversion module is processed into the p-type semiconductor element 102a and the n-type semiconductor element 102b by cutting a sintered body of a large semiconductor material, but the p-type semiconductor element 102a and the n-type semiconductor element 102b are small. If it becomes, a crack and a chip | tip may arise in an end surface at the time of a cutting process. Therefore, it is difficult to reduce the size of the p-type semiconductor element 102a and the n-type semiconductor element 102b. Further, when the semiconductor elements 102a and 102b become small, it becomes difficult to align and join the upper and lower surface plates 105a and 105b.

したがって、小面積の熱電変換用に使用する小型かつ集積化された構造の熱電変換モジュールの製作が困難であり、電子機器の回路基板上の半導体部品のような小熱源を熱源とする高効率な熱電変換モジュールとして実現することは難しい。   Therefore, it is difficult to manufacture a thermoelectric conversion module having a small and integrated structure used for thermoelectric conversion in a small area, and a high efficiency using a small heat source such as a semiconductor component on a circuit board of an electronic device as a heat source. It is difficult to realize as a thermoelectric conversion module.

本発明の一実施形態に係る熱電変換素子は、上記課題を解決する為、一端部を除いて内側の軸方向に隔壁が設けられるとともに、他端部側外周面に開口を有する筒状絶縁支持体と、該絶縁支持体の前記隔壁を介した一方内部に充填されたゼーベック効果を有するp型半導体素子と、前記隔壁を介した他方内部に充填され、前記一端部で前記p型半導体素子と直接電気的に接続されたゼーベック効果を有するn型半導体素子と、前記開口部において前記p型半導体素子および前記n型半導体素子に設けられた電極とを備えた。   In order to solve the above-described problem, a thermoelectric conversion element according to an embodiment of the present invention has a cylindrical insulating support having a partition in the inner axial direction except for one end and having an opening on the outer peripheral surface on the other end. A p-type semiconductor element having a Seebeck effect filled in one of the insulating supports through the partition, and filled in the other of the insulating support through the partition. An n-type semiconductor element having a Seebeck effect directly electrically connected, and an electrode provided in the p-type semiconductor element and the n-type semiconductor element in the opening.

前記p型半導体素子は、高温側と低温側とに異なるp型半導体部材が接続されていてもよい。
前記n型半導体素子も、高温側と低温側とに異なるn型半導体部材が接続されていてもよい。
In the p-type semiconductor element, different p-type semiconductor members may be connected to a high temperature side and a low temperature side.
In the n-type semiconductor element, different n-type semiconductor members may be connected to the high temperature side and the low temperature side.

前記絶縁支持体の熱伝導率が前記p型半導体素子および前記n型半導体素子の熱伝導率よりも小さいのが好ましい。   It is preferable that the thermal conductivity of the insulating support is smaller than the thermal conductivity of the p-type semiconductor element and the n-type semiconductor element.

また、前記絶縁支持体の周方向にスリットが設けられているのが好ましい。   Moreover, it is preferable that a slit is provided in the circumferential direction of the insulating support.

さらに、前記絶縁支持体の軸方向にスリットが設けられているのが好ましい。   Furthermore, it is preferable that a slit is provided in the axial direction of the insulating support.

また、本発明の一実施形態に係る熱電変換モジュールは、上記熱電変換素子を、前記他端部側外周面の開口に設けられた電極同士が直列に接続されるように密着させて配置し、前記熱電変換素子の一端面および他端面に上面板および下面板をそれぞれ接合したことを特徴とする。   Moreover, the thermoelectric conversion module according to an embodiment of the present invention is arranged such that the thermoelectric conversion element is in close contact so that the electrodes provided in the opening on the outer peripheral surface of the other end are connected in series, An upper surface plate and a lower surface plate are joined to one end surface and the other end surface of the thermoelectric conversion element, respectively.

また、本発明の一実施形態に係る熱電変換装置は、上記熱電変換モジュール同士を上下複数段に重ねるとともに、前記各熱電変換モジュールの外壁端に設けた電極板を接続したことを特徴とする。   Moreover, the thermoelectric conversion apparatus which concerns on one Embodiment of this invention has connected the electrode plate provided in the outer-wall end of each said thermoelectric conversion module while overlapping the said thermoelectric conversion modules in multiple steps up and down.

本発明の一実施形態に係る熱電変換素子は、筒状絶縁支持体の内部にp型半導体素子およびn型半導体素子を配置したことにより、各熱電変換素子を密着して設置することができ、組立作業が容易になるので、量産化、低価格化することが容易である。   The thermoelectric conversion element according to one embodiment of the present invention can be installed in close contact with each thermoelectric conversion element by arranging the p-type semiconductor element and the n-type semiconductor element inside the cylindrical insulating support, Since assembly work becomes easy, mass production and cost reduction are easy.

また、p型半導体素子およびn型半導体素子を筒状絶縁支持体内に一端部で接続し、他端部側で各半導体素子に電極を装着することで、隣接する熱電変換素子同士を密着させて電極を導通させることができ、上下面板の電極を廃して、上下面に熱伝導性の高い基板を直接装着することができるようになる。そして、上下面電極を形成する工程を削減することができる。   Further, by connecting the p-type semiconductor element and the n-type semiconductor element at one end in the cylindrical insulating support and attaching an electrode to each semiconductor element at the other end, the adjacent thermoelectric conversion elements are brought into close contact with each other. The electrodes can be conducted, and the electrodes on the upper and lower surface plates can be eliminated, and a substrate having high thermal conductivity can be directly mounted on the upper and lower surfaces. And the process of forming the upper and lower surface electrodes can be reduced.

さらに、p型半導体素子が、高温側と低温側とに異なるp型半導体素子が接続されている場合、または、n型半導体素子が、高温側と低温側とに異なるn型半導体素子が接続されている場合、低温域と高温域とで優れる半導体素子をそれぞれ組み合わせて、高い変換効率を有する熱電変換素子とすることができる。   Further, when p-type semiconductor elements have different p-type semiconductor elements connected to the high-temperature side and the low-temperature side, or n-type semiconductor elements have different n-type semiconductor elements connected to the high-temperature side and the low-temperature side. In this case, a combination of semiconductor elements that are excellent in a low temperature region and a high temperature region can be combined to obtain a thermoelectric conversion device having high conversion efficiency.

また、絶縁支持体の熱伝導率が前記p型半導体素子およびn型半導体素子の熱伝導率よりも小さい場合、絶縁支持体を含めた断面の貫流熱量が減少し、熱抵抗が増大するため、熱電変換素子の性能指数Zが大きくなる。   In addition, when the thermal conductivity of the insulating support is smaller than the thermal conductivity of the p-type semiconductor element and the n-type semiconductor element, the amount of heat passing through the cross section including the insulating support decreases, and the thermal resistance increases. The figure of merit Z of the thermoelectric conversion element increases.

また、絶縁支持体の周方向にスリットが設けられている場合、半導体素子と絶縁支持体との間の熱膨張差によって生じる歪みを逃がすことができ、熱電変換素子を温度差の大きい部位に使用することができる。特に、スリットを熱電変換素子の周方向に設けることにより、支持体1と半導体素子との軸方向の熱膨張差による歪みを緩和することができる。   In addition, when slits are provided in the circumferential direction of the insulating support, distortion caused by the difference in thermal expansion between the semiconductor element and the insulating support can be released, and the thermoelectric conversion element is used for parts with a large temperature difference. can do. In particular, by providing the slits in the circumferential direction of the thermoelectric conversion element, it is possible to reduce distortion due to the difference in thermal expansion between the support 1 and the semiconductor element in the axial direction.

また、前記絶縁支持体の軸方向にスリットが設けられている場合も、半導体素子と絶縁支持体との間の熱膨張差によって生じる歪みを逃がすことができ、熱電変換素子を温度差の大きい部位に使用することができる。特に、スリットを熱電変換素子の軸方向に設けることにより、絶縁支持体と半導体素子との周方向の熱膨張差による歪みを緩和することができる。   In addition, even when a slit is provided in the axial direction of the insulating support, distortion caused by a difference in thermal expansion between the semiconductor element and the insulating support can be released, and the thermoelectric conversion element is a part having a large temperature difference. Can be used for In particular, by providing the slit in the axial direction of the thermoelectric conversion element, it is possible to reduce distortion due to a difference in thermal expansion in the circumferential direction between the insulating support and the semiconductor element.

また、本発明の一実施形態に係る熱電変換モジュールは、複数の上記熱電変換素子を、他端部側外周面の開口に設けられた電極同士が直列に接続されるように密着させて配置し、熱電変換素子の一端面および他端面に上面板および下面板をそれぞれ接合したことから、コンパクトで高い熱電変換効率ηを有するものとできる。   Moreover, the thermoelectric conversion module according to an embodiment of the present invention arranges the plurality of thermoelectric conversion elements in close contact so that the electrodes provided on the opening on the outer peripheral surface of the other end are connected in series. Since the upper surface plate and the lower surface plate are respectively joined to the one end surface and the other end surface of the thermoelectric conversion element, the thermoelectric conversion element can be compact and have high thermoelectric conversion efficiency η.

さらに、上記熱電変換モジュール同士を上下複数段に重ねるとともに、各熱電変換モジュールの外壁端に設けた電極板を接続した場合、大きな熱電変換電力を取り出すことができる。   Furthermore, when the thermoelectric conversion modules are stacked in a plurality of stages, and when an electrode plate provided on the outer wall end of each thermoelectric conversion module is connected, a large thermoelectric conversion power can be taken out.

以上のように本発明の熱電変換素子によれば、温度差の大きい部位に使用することができ、変換効率ηが高い熱電変換素子を実現することができる。また、熱電変換モジュールとした場合、小型集積化構造の量産化容易な熱電変換モジュールを容易に製作できる。   As described above, according to the thermoelectric conversion element of the present invention, it is possible to realize a thermoelectric conversion element that can be used in a portion having a large temperature difference and has high conversion efficiency η. In the case of a thermoelectric conversion module, a thermoelectric conversion module that can be easily mass-produced with a small integrated structure can be easily manufactured.

(a)は本発明の熱電変換素子の実施の形態の一例を示す斜視図、(b)は他の実施形態の一例を示す斜視図である。(A) is a perspective view which shows an example of embodiment of the thermoelectric conversion element of this invention, (b) is a perspective view which shows an example of other embodiment. (a)は図1(a)または図1(b)のA−A断面図である。(A) is AA sectional drawing of Fig.1 (a) or FIG.1 (b). (a),(b)はそれぞれ図1(a)のB−B断面における実施の形態の各例を示す断面図である。(c),(d)はそれぞれ図1(b)のB−B断面における実施の形態の各例を示す断面図である。(A), (b) is sectional drawing which shows each example of embodiment in the BB cross section of Fig.1 (a), respectively. (C), (d) is sectional drawing which shows each example of embodiment in the BB cross section of FIG.1 (b), respectively. 本発明の熱電変換モジュールの実施の形態の一例を示し、(a)は平面視における断面図、(b)は側面図、(c)は(a)のC−C断面を示す断面図である。An example of embodiment of the thermoelectric conversion module of this invention is shown, (a) is sectional drawing in planar view, (b) is a side view, (c) is sectional drawing which shows CC cross section of (a). . 本発明の熱電変換モジュールの実施の形態の他の例を示し、(a)は平面視における断面図、(b)は側面図、(c)は(a)のC−C断面を示す断面図である。The other example of embodiment of the thermoelectric conversion module of this invention is shown, (a) is sectional drawing in planar view, (b) is a side view, (c) is sectional drawing which shows CC cross section of (a) It is. 本発明の熱電変換モジュールの実施の形態の他の例を示す断面図である。It is sectional drawing which shows the other example of embodiment of the thermoelectric conversion module of this invention. 本発明の熱電変換素子の実施の形態の他の例を示し、(a)は側面図、(b)は正面図、(c)は(a)のA−A断面を示す断面図である。The other example of embodiment of the thermoelectric conversion element of this invention is shown, (a) is a side view, (b) is a front view, (c) is sectional drawing which shows the AA cross section of (a). 図7に示す熱電変換素子を用いた熱電変換モジュールの例を示す要部断面図である。It is principal part sectional drawing which shows the example of the thermoelectric conversion module using the thermoelectric conversion element shown in FIG. 従来の熱電変換素子を用いた熱電変換モジュールの例を示す側面図である。It is a side view which shows the example of the thermoelectric conversion module using the conventional thermoelectric conversion element.

以下、図面を参照しながら本発明の実施の形態の各例について説明する。   Hereinafter, examples of embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の熱電変換素子の実施の形態の例を示す斜視図であり、(a)は、四角筒状の絶縁支持体1を用いた熱電変換素子10、(b)は円筒状の絶縁支持体1を用いた熱電変換素子10の実施形態の例を示す。図1(a),図1(b)において、熱電変換素子10の内部を示すために、絶縁支持体1の外周壁面の一部を除去して示している。また、図2は図1(a)または図1(b)のA−A断面を示す断面図である。   FIG. 1 is a perspective view showing an example of an embodiment of a thermoelectric conversion element of the present invention. (A) is a thermoelectric conversion element 10 using a rectangular cylindrical insulating support 1, and (b) is cylindrical. The example of embodiment of the thermoelectric conversion element 10 using the insulating support body 1 of this is shown. In FIG. 1A and FIG. 1B, a part of the outer peripheral wall surface of the insulating support 1 is removed to show the inside of the thermoelectric conversion element 10. FIG. 2 is a cross-sectional view showing the AA cross section of FIG. 1A or FIG.

図1(a),図1(b),図2に示すように、筒状の絶縁支持体1には、一端部(図1では上部、図2では左側)を除いて内側の軸方向(図1では上下方向、図2では左右方向)に隔壁1aが設けられている。絶縁支持体1は、一端および他端に開口を有している。また、他端側の隔壁1aを介して対向する外周面には絶縁支持体1の外周面を切り欠いて設けられた開口1bがそれぞれ設けられている。この隔壁1aに対向した開口1bによって絶縁支持体1の隔壁1aを介した一方内部および他方内部は外部に通じている。   As shown in FIGS. 1 (a), 1 (b), and 2, the cylindrical insulating support 1 has an inner axial direction (except for one end (upper part in FIG. 1, left side in FIG. 2)). A partition wall 1a is provided in the vertical direction in FIG. 1 and in the horizontal direction in FIG. The insulating support 1 has openings at one end and the other end. Moreover, the opening 1b provided by notching the outer peripheral surface of the insulation support body 1 is provided in the outer peripheral surface which opposes via the partition 1a of the other end side, respectively. Through the opening 1b facing the partition wall 1a, one inside and the other inside through the partition wall 1a of the insulating support 1 communicate with the outside.

絶縁支持体1の隔壁1aを挟んで一方の内部には、ゼーベック効果を有するp型半導体素子2aが充填されている。隔壁1aを介した他方の内部には、ゼーベック効果を有するn型半導体素子2bが充填されている。p型半導体素子2aおよびn型半導体素子2bは、一端側の隔壁1aがない部分1cで互いに接触し、電気的に接続されている。他端側では開口1bによって露出するp型半導体素子2aおよびn型半導体素子2bの表面に電極6が設けられている。   One side of the insulating support 1 across the partition wall 1a is filled with a p-type semiconductor element 2a having a Seebeck effect. The other inside through the partition wall 1a is filled with an n-type semiconductor element 2b having a Seebeck effect. The p-type semiconductor element 2a and the n-type semiconductor element 2b are in contact with each other and electrically connected at a portion 1c where the partition wall 1a on one end side is absent. On the other end side, an electrode 6 is provided on the surface of the p-type semiconductor element 2a and the n-type semiconductor element 2b exposed by the opening 1b.

絶縁支持体1は、筒状の構造体で、ジルコニアセラミックス,窒化アルミニウム質セラミックス,または窒化珪素質セラミックス等の熱伝導性が低く、電気絶縁性が高いセラミック材料を成形して製作される。例えばジルコニアセラミックスを用いる場合は、樹脂バインダーを用いた加熱粉体を所定形状にプレス成形し、その後、約1400℃/24時間焼成させて形成される。絶縁支持体1の厚さは、可能な限り薄くするのが好ましく、0.2mm〜0.5mm程度のp型およびn型半導体素子2a,2bの器とされる。ジルコニアセラミックスは、熱伝導率が3.0W/m・Kとセラミック材料の中でも熱伝導性が低いので、熱電変換素子10の絶縁支持体1に用いるには好適である。   The insulating support 1 is a cylindrical structure and is manufactured by molding a ceramic material having low thermal conductivity and high electrical insulation, such as zirconia ceramics, aluminum nitride ceramics, or silicon nitride ceramics. For example, in the case of using zirconia ceramics, it is formed by press-molding a heated powder using a resin binder into a predetermined shape and then firing it for about 1400 ° C./24 hours. The thickness of the insulating support 1 is preferably as thin as possible, and is a container of p-type and n-type semiconductor elements 2a and 2b of about 0.2 mm to 0.5 mm. Zirconia ceramics are suitable for use in the insulating support 1 of the thermoelectric conversion element 10 because the thermal conductivity is 3.0 W / m · K, which is a low thermal conductivity among ceramic materials.

そして、内部空間を分離する隔壁1aを有する絶縁支持体1に2種類の半導体材料(p型半導体素子2a、n型半導体素子2b)を充填する。熱電変換素子10用の半導体素子の材料には、Si材料を用いたシリサイド系、SiGe系、酸化物系、BiTe系のp型およびn型の半導体材料が用いられる。   Then, two types of semiconductor materials (p-type semiconductor element 2a and n-type semiconductor element 2b) are filled into the insulating support 1 having the partition wall 1a separating the internal space. As the material of the semiconductor element for the thermoelectric conversion element 10, silicide-based, SiGe-based, oxide-based, and BiTe-based p-type and n-type semiconductor materials using Si material are used.

シリサイド系半導体材料は、資源として豊富に存在し、人体に無害である点で好適である。その一例として、例えば、n型半導体のMgSiの合成は、Mg(マグネシウム)およびSi(シリコン)の粉末を約1100℃まで時間をかけて加熱して溶融し、Mg−Si溶材を作製する。この溶材を絶縁支持体1に注入し、その後炉の温度を降下させ、結晶の方位を揃えるブリッジマン法という結晶育成法を用いる事で得られる。またはMg−Si粉体を絶縁支持体1に充填し、高圧プレスした状態で、800℃程度で10時間程度、焼成炉内で加熱することでも製作することができる。 Silicide-based semiconductor materials are suitable in that they are abundant as resources and are harmless to the human body. As an example, for example, in the synthesis of Mg 2 Si as an n-type semiconductor, Mg (magnesium) and Si (silicon) powders are heated and melted to about 1100 ° C. over time to produce an Mg—Si solution. . This molten material is injected into the insulating support 1, and then the temperature of the furnace is lowered to obtain the crystal by using a crystal growth method called Bridgman method that aligns the crystal orientation. Alternatively, the insulating support 1 can be filled with Mg—Si powder and heated in a baking furnace at about 800 ° C. for about 10 hours in a state where it is pressed at high pressure.

その後、p型およびn型半導体素子2a,2bが絶縁支持体1の上下端に露出する面にNiメッキ又はCuメッキをする。そして、ダイシングソウにより、絶縁支持体1の外周面上端から下端まで軸方向のスリット9a、または側面の一部分に周方向のスリット9bを複数個所入れる。各スリット9(軸方向のスリット9a,周方向のスリット9b)の深さは、絶縁支持体1の厚さ以上にカッティングして形成するのが好ましい。スリット幅は小さい方が好ましい。それにより、絶縁支持体1材料と半導体素子2材料間の接合部分の長さを分断して短くすることができ、半導体素子2と絶縁支持体1との軸方向または周方向の熱膨張差により生じる歪み量を小さく抑えることができる。例えば図1(b)の例では、絶縁支持体1と半導体素子2の接合部長さが周方向のスリット9bによって軸方向で半分程度の長さに、また、軸方向のスリット9aによって周方向で1/4程度に分断されている。   Thereafter, Ni plating or Cu plating is performed on the surfaces of the p-type and n-type semiconductor elements 2 a and 2 b exposed at the upper and lower ends of the insulating support 1. Then, by a dicing saw, a plurality of slits 9a in the axial direction from the upper end to the lower end of the outer peripheral surface of the insulating support 1 or a plurality of circumferential slits 9b are formed in a part of the side surface. The depth of each slit 9 (the axial slit 9a and the circumferential slit 9b) is preferably formed by cutting to the thickness of the insulating support 1 or more. A smaller slit width is preferred. Thereby, the length of the joint portion between the insulating support 1 material and the semiconductor element 2 material can be divided and shortened, and due to the difference in thermal expansion between the semiconductor element 2 and the insulating support 1 in the axial direction or the circumferential direction. The amount of distortion that occurs can be kept small. For example, in the example of FIG. 1B, the joint length between the insulating support 1 and the semiconductor element 2 is about half of the axial length by the circumferential slit 9b, and in the circumferential direction by the axial slit 9a. It is divided into about 1/4.

周方向に部分的に設けたスリット9bは、熱電変換素子10を軸方向に2分することにより、軸方向に発生する熱膨張差による歪み応力を緩和し、クラック発生を防止する。また、軸方向に部分的に設けたスリット9aは、同様に周方向の熱膨張差による応力歪みを緩和し、クラック発生を防止する。スリットは軸方向に2か所乃至4か所、周方向に1か所乃至2か所設けている。歪み応力を緩和できることによって、熱電変換素子10を温度差の大きい部位に用いることができるようになり、発電量を増やすことができる。   The slits 9b partially provided in the circumferential direction divide the thermoelectric conversion element 10 into two in the axial direction, thereby relaxing the strain stress due to the difference in thermal expansion occurring in the axial direction and preventing the occurrence of cracks. Similarly, the slits 9a partially provided in the axial direction relieve stress strain caused by the difference in thermal expansion in the circumferential direction, and prevent the occurrence of cracks. The slits are provided in two or four places in the axial direction and one or two places in the circumferential direction. Since the strain stress can be relaxed, the thermoelectric conversion element 10 can be used in a portion having a large temperature difference, and the amount of power generation can be increased.

絶縁支持体1の内部に一端部を除いて隔壁1aを設け、一端部でp型半導体素子2aおよびn型半導体素子2bを電気的に接続することで、上面板5aに電極板を設ける必要がない。また、p型半導体素子2aおよびn型半導体素子2bの他端側の側面には電極6が設けられ、下面板5bにも電極板を設ける必要がない。これによって、半導体素子2を電極板を介せず、銀ロウ付けなどにより、直接上下面板5a,5bに密着固定することができ、熱電変換素子10の変換効率ηが向上する。   It is necessary to provide an electrode plate on the upper surface plate 5a by providing a partition wall 1a except for one end portion inside the insulating support 1, and electrically connecting the p-type semiconductor element 2a and the n-type semiconductor element 2b at one end portion. Absent. Moreover, the electrode 6 is provided on the side surface on the other end side of the p-type semiconductor element 2a and the n-type semiconductor element 2b, and it is not necessary to provide an electrode plate on the lower surface plate 5b. Accordingly, the semiconductor element 2 can be directly adhered and fixed to the upper and lower surface plates 5a and 5b by silver brazing or the like without using an electrode plate, and the conversion efficiency η of the thermoelectric conversion element 10 is improved.

また、密着固定することができる為、従来の熱電モジュールと同じ面積により多くの熱電変換素子10を配置することができ、出力電圧を大きくすることができる。または、供給電力を大きくすることができる。   Further, since it can be fixed tightly, more thermoelectric conversion elements 10 can be arranged in the same area as the conventional thermoelectric module, and the output voltage can be increased. Alternatively, the supplied power can be increased.

絶縁支持体1の内部に充填される半導体素子2として、シリサイド系(例えば、p型がMnSi1.73等、n型がMgSi等)の半導体素子2は、その使用温度範囲が300℃〜600℃と広く、無次元性能指数ZTは1〜1.5程度あり、今後、更にZTが向上する可能性がある熱電変換用半導体材料である。無次元性能指数ZTとは、熱電変換素子の性能を示すもので、
ZT=α・T/(ρ・κ)
ここで、Z:性能指数 α・T/(ρ・κ)
α:ゼーベック係数
T:絶対温度(°K)
κ:熱伝導率
ρ:電気抵抗率
で表され、その値が大きいほど変換効率ηが大きい。
As the semiconductor element 2 filled in the insulating support 1, a silicide-based semiconductor element 2 (for example, p-type is MnSi 1.73 or the like, n-type is Mg 2 Si or the like) has a use temperature range of 300 ° C. The dimensionless figure of merit ZT is about 1 to 1.5, which is as wide as ˜600 ° C., and is a semiconductor material for thermoelectric conversion that may further improve ZT in the future. The dimensionless figure of merit ZT indicates the performance of the thermoelectric conversion element,
ZT = α 2 · T / (ρ · κ)
Where Z: figure of merit α 2 · T / (ρ · κ)
α: Seebeck coefficient
T: Absolute temperature (° K)
κ: Thermal conductivity
ρ: Expressed by electrical resistivity, the larger the value, the greater the conversion efficiency η.

絶縁支持体1にジルコニアセラミックス、n型半導体素子材料2bにシリサイド系のMgSiを使用する組み合わせの場合、熱膨張率が近く、温度変動に起因する歪みによる破損、クラック等が生じにくい。また、熱伝導率は、ジルコニアセラミックスが3.0W/m・K、MgSiが8.0W/m・Kで、ジルコニアセラミックスの方が小さい。したがって、ジルコニアセラミック製の筒状構造体からなる絶縁支持体1とn型半導体素子2bとを組み合わせた場合、n型半導体素子2b材料のみの場合よりも絶縁支持体1を含む構造の方が熱伝導率が小さくなる為、無次元性能指数ZTの値は向上し、変換効率ηが向上することになる。したがって、絶縁支持体1の材料の熱伝導率が、熱電変換用半導体素子材料2より小さい方が、熱抵抗増大により変換効率ηが向上することとなり、好ましい。また、半導体素子2の周囲を絶縁支持体1により覆うことにより、熱電変換素子10同士を密着させて設置することができる。 In the case of a combination using zirconia ceramics for the insulating support 1 and silicide-based Mg 2 Si for the n-type semiconductor element material 2b, the thermal expansion coefficient is close, and damage due to strain due to temperature fluctuations, cracks, and the like hardly occur. The thermal conductivity is 3.0 W / m · K for zirconia ceramics and 8.0 W / m · K for Mg 2 Si, which is smaller for zirconia ceramics. Therefore, when the insulating support 1 made of a cylindrical structure made of zirconia ceramic and the n-type semiconductor element 2b are combined, the structure including the insulating support 1 is more heated than the case of using only the n-type semiconductor element 2b material. Since the conductivity is reduced, the value of the dimensionless figure of merit ZT is improved, and the conversion efficiency η is improved. Therefore, it is preferable that the thermal conductivity of the material of the insulating support 1 is smaller than that of the semiconductor element material 2 for thermoelectric conversion because the conversion efficiency η is improved due to an increase in thermal resistance. Moreover, by covering the periphery of the semiconductor element 2 with the insulating support 1, the thermoelectric conversion elements 10 can be installed in close contact with each other.

図3は、図1または図2に示す熱電変換素子10のB−B断面を示した断面図で、(a)は絶縁支持体1が四角筒状の場合の断面図、(b)は四角筒状の絶縁支持体1の内部の隔壁1aが対角方向に形成されている場合の断面図で、電極6が隔壁1aを挟んで隣接する辺に設けられている場合、(c)は円筒状の絶縁支持体1の場合の断面図、(d)は(c)の円筒状の絶縁支持体1の内部隔壁1aを45度傾斜方向に形成した場合の断面図で、電極6が隔壁1aを挟んで90度方向に設けられている場合である。また、電極6は絶縁支持体1の外周面上に設けられており、隣接する熱電変換素子10同士を接続することができる。電極6は、半導体素子2表面にNiまたはCuをPVDまたはCVD法により蒸着加工し、さらにその上にCu板またはNi板等をロウ付けして形成される。また、50μm〜100μm程度の、Cu(銅)、Ag(銀),Ni(ニッケル)、Al(アルミニウム)等の厚膜メッキを半導体素子2表面に施し、電極6としてもよい。   3A and 3B are cross-sectional views showing a BB cross section of the thermoelectric conversion element 10 shown in FIG. 1 or FIG. 2, wherein FIG. 3A is a cross-sectional view when the insulating support 1 is a rectangular cylinder, and FIG. In the cross-sectional view when the partition wall 1a inside the cylindrical insulating support 1 is formed in a diagonal direction, when the electrode 6 is provided on the side adjacent to the partition wall 1a, (c) is a cylinder FIG. 6D is a cross-sectional view of the cylindrical insulating support 1 in the case where the inner partition wall 1a of the cylindrical insulating support 1 in FIG. It is a case where it is provided in a 90 degree direction on both sides. Moreover, the electrode 6 is provided on the outer peripheral surface of the insulating support 1, and the adjacent thermoelectric conversion elements 10 can be connected to each other. The electrode 6 is formed by depositing Ni or Cu on the surface of the semiconductor element 2 by PVD or CVD and brazing a Cu plate or Ni plate thereon. Alternatively, the electrode 6 may be formed by applying a thick film plating of Cu (copper), Ag (silver), Ni (nickel), Al (aluminum) or the like on the surface of the semiconductor element 2 to a thickness of about 50 μm to 100 μm.

図4は、このような図3に示した熱電変換素子10を用いた熱電変換モジュール11の実施の形態の一例を示し、図4(a)は平面視した断面図、図4(b)は側面図、図4(c)は図4(a)のC−C断面図を示す。図4(a)は、図4(c)のD−D断面を示したものであるが、図3(a)に示した熱電変換素子10を10個、および図3(b)に示した熱電変換素子10を6個の合計16個を組み合わせて熱電変換モジュール11としたものである。なお、図中の矢印は電流の流れる方向を示す。   FIG. 4 shows an example of an embodiment of the thermoelectric conversion module 11 using the thermoelectric conversion element 10 shown in FIG. 3, FIG. 4 (a) is a sectional view in plan view, and FIG. A side view and FIG.4 (c) show CC sectional drawing of Fig.4 (a). FIG. 4A shows the DD cross section of FIG. 4C, and shows ten thermoelectric conversion elements 10 shown in FIG. 3A and FIG. 3B. A total of 16 thermoelectric conversion elements 10 are combined into a thermoelectric conversion module 11. In addition, the arrow in a figure shows the direction through which an electric current flows.

図3(a)で示したタイプの熱電変換素子10は、絶縁支持体1の対向する外壁面に平行に電極6が設けられており、電流が直線的に流れる部分に用いられる。図3(b)に示したタイプの熱電変換素子10は、隣接する外壁面に電極6が設けられており、平面視して電極6が直角方向に配置されている。したがって、電流の流れる方向を90度変える場所に使用することができる。そして、隣接する熱電変換素子10同士の電極6をそれぞれ接続し、末端の熱電変換素子10の電極6には端子12が接続されて熱電変換モジュール11が構成される。   The thermoelectric conversion element 10 of the type shown in FIG. 3A has an electrode 6 provided in parallel to the opposing outer wall surface of the insulating support 1, and is used in a portion where current flows linearly. In the thermoelectric conversion element 10 of the type shown in FIG. 3B, electrodes 6 are provided on adjacent outer wall surfaces, and the electrodes 6 are arranged in a perpendicular direction in plan view. Therefore, it can be used in a place where the direction of current flow is changed by 90 degrees. And the electrode 6 of the adjacent thermoelectric conversion elements 10 is connected, respectively, and the terminal 12 is connected to the electrode 6 of the terminal thermoelectric conversion element 10, and the thermoelectric conversion module 11 is comprised.

上面板5aを高温側として熱源に接触させ、下面板5b側を低温側として冷却面に接触させることで、p型半導体素子2aでは高温側からエネルギーを得た正孔が低温側に移動し、高温側から低温側に向けて電流が流れる。n型半導体素子2bでは電子が高温側から低温側に移動し、低温側から高温側に電流が流れる。全体として矢印に示した方向に電流が流れて熱電変換モジュール11として動作する。図4(a)において、熱電変換モジュール11の右側の端子12は、n型半導体素子2bの電極6に接続されて−(マイナス)端子として動作し、左側の端子12は、p型半導体素子2aの電極6に接続されて+(プラス)端子として動作する。   By bringing the upper surface plate 5a into contact with the heat source as the high temperature side and bringing the lower surface plate 5b side into contact with the cooling surface as the low temperature side, the holes that have obtained energy from the high temperature side move to the low temperature side in the p-type semiconductor element 2a. Current flows from the high temperature side to the low temperature side. In the n-type semiconductor element 2b, electrons move from the high temperature side to the low temperature side, and a current flows from the low temperature side to the high temperature side. As a whole, current flows in the direction indicated by the arrow, and the thermoelectric conversion module 11 operates. In FIG. 4A, the right terminal 12 of the thermoelectric conversion module 11 is connected to the electrode 6 of the n-type semiconductor element 2b and operates as a − (minus) terminal, and the left terminal 12 is the p-type semiconductor element 2a. It is connected to the electrode 6 and operates as a + (plus) terminal.

図5は、図3(c)および図3(d)に示した円筒形の絶縁支持体1を用いた場合の実施の形態の一例を示したもので、図5(a)は熱電変換モジュール11を平面視した図5(b)のD−D断面を示す断面図である。図5(b)は、図5(a)の側面図であり、図5(c)は図5(a)のC−C断面を示す断面図である。ここでは図3(c)および図3(d)に示した熱電変換素子10を合計16個用いている例を示している。図3(c)で示したタイプの熱電変換素子10は、外壁面の180度対向する位置に電極6が設けられており、直線的に電流が流れる部分に用いられる。図3(d)に示したタイプの熱電変換素子10は外壁面の90度位置に電極6が設けられており、電流の流れる方向を直角に変える場所に使用される。   FIG. 5 shows an example of an embodiment in which the cylindrical insulating support 1 shown in FIGS. 3C and 3D is used, and FIG. 5A shows a thermoelectric conversion module. It is sectional drawing which shows the DD cross section of FIG.5 (b) which planarly viewed 11. 5 (b) is a side view of FIG. 5 (a), and FIG. 5 (c) is a cross-sectional view showing a CC cross section of FIG. 5 (a). Here, an example is shown in which a total of 16 thermoelectric conversion elements 10 shown in FIGS. 3C and 3D are used. The thermoelectric conversion element 10 of the type shown in FIG. 3C has an electrode 6 provided at a position facing the outer wall surface by 180 degrees, and is used in a portion where current flows linearly. The thermoelectric conversion element 10 of the type shown in FIG. 3D is provided with an electrode 6 at a 90-degree position on the outer wall surface, and is used in a place where the current flowing direction is changed to a right angle.

図6は、熱電変換素子10を上下にセグメント化し、積層した場合の実施の形態の例を示す。高温側と低温側との間に比較的大きな温度差がある場合に、同じ面積の熱電変換モジュール11で、高出力化する場合に用いることができる。この場合、高温側には、ステックルダイト系、シリサイド系のp型半導体素子2aa、例えば、CoSb(温度範囲:350℃〜650℃),MnSi1.73(温度範囲:250℃〜600℃),FeSi(微少のMnあるいはAl添加)(温度範囲:300℃〜700℃),CrSi(温度範囲:300℃〜700℃)等を用い、n型半導体素子2baには、例えば、FeSi(微少のCoあるいはNi添加),MgSi(温度範囲:150℃〜550℃),MgGe(温度範囲:150℃〜500℃)等の材料が使用できる。また、低温側にはBiTe系のp型半導体素子2ab、例えばBiTe(温度範囲:30℃〜300℃),CsBiTe(温度範囲:30℃〜300℃)等、およびn型半導体素子2bbには例えばYb0.2CoSb12(温度範囲:30℃〜400℃),Bi88Sb12(温度範囲:30℃〜300℃)等の材料を用いて熱電変換モジュール11を構成することができる。 FIG. 6 shows an example of an embodiment in which the thermoelectric conversion element 10 is segmented vertically and stacked. When there is a relatively large temperature difference between the high temperature side and the low temperature side, the thermoelectric conversion module 11 having the same area can be used to increase the output. In this case, on the high temperature side, a stick dite-based or silicide-based p-type semiconductor element 2aa, for example, CoSb 3 (temperature range: 350 ° C. to 650 ° C.), MnSi 1.73 (temperature range: 250 ° C. to 600 ° C.). ), FeSi 2 (addition of a minute amount of Mn or Al) (temperature range: 300 ° C. to 700 ° C.), CrSi 2 (temperature range: 300 ° C. to 700 ° C.), etc. are used for the n-type semiconductor element 2ba, for example, FeSi 2 (a slight amount of Co or Ni added), Mg 2 Si (temperature range: 150 ° C. to 550 ° C.), Mg 2 Ge (temperature range: 150 ° C. to 500 ° C.), or the like can be used. On the low temperature side, BiTe-based p-type semiconductor element 2ab, for example, Bi 2 Te 3 (temperature range: 30 ° C. to 300 ° C.), CsBi 4 Te 6 (temperature range: 30 ° C. to 300 ° C.), etc., and n-type The thermoelectric conversion module 11 is made of a material such as Yb 0.2 Co 4 Sb 12 (temperature range: 30 ° C. to 400 ° C.), Bi 88 Sb 12 (temperature range: 30 ° C. to 300 ° C.) or the like for the semiconductor element 2bb. Can be configured.

異なる上下の半導体素子2材料の間には、Niメッキが施されており、上下の半導体素子2同士はNiメッキを介して接合される。Niメッキは、ロウ付け等による接合を強固にするとともに、上下の半導体素子2材料の境界領域で半導体素子2材料同士が相互に拡散することによる特性劣化を防止する。   Ni plating is applied between different upper and lower semiconductor element 2 materials, and the upper and lower semiconductor elements 2 are joined to each other via the Ni plating. Ni plating strengthens bonding by brazing or the like, and prevents characteristic deterioration due to mutual diffusion of the semiconductor element 2 materials in the boundary region between the upper and lower semiconductor element 2 materials.

このように本発明の熱電変換素子10を用い、目的、用途によって組み合わせることにより、容易に熱電変換モジュール11として構成することができる。低温域と高温域の各温度領域に適した熱電変換材料を積層して用いることにより、それぞれの最適な温度領域での動作となる為、変換効率ηが向上し、熱電出力を向上することができる。例えば、熱電変換効率ηが、10%程度であったものが、15%程度に向上できる。   Thus, it can comprise easily as the thermoelectric conversion module 11 by combining the thermoelectric conversion element 10 of this invention according to the objective and a use. By laminating and using thermoelectric conversion materials suitable for each temperature range in the low temperature range and high temperature range, operation in each optimum temperature range can be achieved, so that the conversion efficiency η can be improved and the thermoelectric output can be improved. it can. For example, a thermoelectric conversion efficiency η of about 10% can be improved to about 15%.

図7は、本発明の熱電変換素子10の他の実施形態の例を示し、図7(a)は左側面図、図7(b)は正面図、図7(c)は図7(b)のA−A断面を示す。本実施形態は、図1(a),(b)に示した熱電変換素子10の絶縁支持体1内に充填されたp型半導体素子2aを、動作温度によって異なる特性を有するp型半導体素子2aaおよびn型半導体素子2abを接続して構成し、n型半導体素子2bを動作温度によって異なる特性を有するn型半導体素子2baおよびn型半導体素子2bbを接続して構成したものである。   FIG. 7 shows an example of another embodiment of the thermoelectric conversion element 10 of the present invention. FIG. 7 (a) is a left side view, FIG. 7 (b) is a front view, and FIG. 7 (c) is FIG. The AA cross section of) is shown. In the present embodiment, the p-type semiconductor element 2aa filled in the insulating support 1 of the thermoelectric conversion element 10 shown in FIGS. 1A and 1B is changed into a p-type semiconductor element 2aa having different characteristics depending on the operating temperature. The n-type semiconductor element 2ab is connected, and the n-type semiconductor element 2b is configured by connecting the n-type semiconductor element 2ba and the n-type semiconductor element 2bb having different characteristics depending on the operating temperature.

例えば、高中温域で高特性のMnSi1.73,FeSi(微少のMnあるいはAl添加),CrSi等のシリサイド系材料から成るp型半導体素子2aaと、低温域で高特性のBiTe等のBiTe系材料またはCsBiTe等のp型半導体素子2abを接続して構成される。n型半導体素子2bの材料としては、例えば、高温域側にFeSi(微少のCoあるいはNi添加),MgSi等のシリサイド系材料、低温域側にBiTe,CsBiTe等のBiTe系材料を用いることができる。 For example, a p-type semiconductor element 2aa made of a silicide-based material such as MnSi 1.73 , FeSi 2 (addition of a minute amount of Mn or Al), CrSi 2 or the like having high characteristics in a high and medium temperature range, and Bi 2 Te having high characteristics in a low temperature range. A BiTe-based material such as 3 or a p-type semiconductor element 2ab such as CsBi 4 Te 6 is connected. Examples of the material of the n-type semiconductor element 2b include silicide-based materials such as FeSi 2 (additional Co or Ni added) and Mg 2 Si on the high temperature side, and Bi 2 Te 3 and CsBi 4 Te 6 on the low temperature side. BiTe-based materials can be used.

このような熱電変換素子10は、シリサイド系半導体材料を先に絶縁支持体1内に入れた後に30MPa〜60MPaで加圧し、同時に800℃〜1000℃程度で数時間加熱して焼成し、その後BiTe系半導体材料を絶縁支持体1内に充填して150MPa〜200MPaで加圧し、同時に400℃〜500℃程度に加熱して焼成する。これら特性の異なる半導体材料の相互拡散防止の為、境界面にNiメッキ等を施してもよい。   In such a thermoelectric conversion element 10, a silicide-based semiconductor material is first put in the insulating support 1 and then pressurized at 30 MPa to 60 MPa, and simultaneously heated at about 800 ° C. to 1000 ° C. for several hours and fired, and then BiTe. The semiconductor support material is filled in the insulating support 1 and pressurized at 150 MPa to 200 MPa, and simultaneously heated to about 400 ° C. to 500 ° C. and fired. In order to prevent mutual diffusion of semiconductor materials having different characteristics, Ni plating or the like may be applied to the boundary surface.

このような熱電変換素子10を高温部および低温部の間に密接させて配置することで、p型半導体材料2aおよびn型半導体材料2bにそれぞれ1種類の材料を用いたものに比較して使用温度範囲が拡大し、より高効率に熱電変換することができる。例えば上記例のBiTe系だけを用いた場合、30℃〜300℃程度の使用温度範囲が、シリサイド系材料と組み合わせた構成とした場合は、30℃〜600℃程度に拡大する。また、各半導体材料を適切な温度範囲で使用することにより、変換効率ηを向上させ、それにより発電電力を増大させることができる。このように複数の半導体材料を組み合わせてp型半導体素子2aおよびn型半導体素子2bを形成することで、低温域から高温域まで使用温度範囲を広くカバーできる熱電変換素子10を実現できる。   By placing such a thermoelectric conversion element 10 in close contact between the high temperature portion and the low temperature portion, the p-type semiconductor material 2a and the n-type semiconductor material 2b are used in comparison with those using one kind of material. The temperature range is expanded and thermoelectric conversion can be performed with higher efficiency. For example, when only the BiTe system in the above example is used, the operating temperature range of about 30 ° C. to 300 ° C. expands to about 30 ° C. to 600 ° C. when configured in combination with a silicide-based material. Further, by using each semiconductor material in an appropriate temperature range, it is possible to improve the conversion efficiency η, thereby increasing the generated power. By thus forming a p-type semiconductor element 2a and an n-type semiconductor element 2b by combining a plurality of semiconductor materials, it is possible to realize the thermoelectric conversion element 10 that can cover a wide use temperature range from a low temperature range to a high temperature range.

図8は、図7に示した熱電変換素子10を用いた場合の熱電変換モジュール11の構成例である。紙面下側を低温側、上側を高温側とした場合、上側が中高温域用のp型半導体素子2aaおよびn型半導体素子2ba、下側が中低温領域用のp型半導体素子2abおよびn型半導体素子2bbである。高温側の熱源から、上面板5a、接合層(メッキ層3およびハンダ層4)を介して伝導した熱により、n型半導体素子2ba,2bbの電流が高温側に流れる。そして、一端側のn型半導体素子2baとp型半導体素子2aaとの接合部を介して電流はp型半導体素子2aaに流れる。p型半導体素子2aaおよびp型半導体素子2ab内では励起された正孔が低温側に移動し、低温側に電流が流れる。その後、絶縁支持体1側面に設置した電極6を介して隣接する熱電変換素子10に流れる。このように、低温域と高温域用に異なる半導体素子2の材料を用いて作製した個々の熱電変換モジュールを上下に積層したカスケード構造にすることなく、低温域から高温域まで使用温度範囲を幅広くカバーできる高効率な熱電変換モジュール11が容易に実現できるとともに、小型で集積化が容易な熱伝変換モジュール11とできる。   FIG. 8 is a configuration example of the thermoelectric conversion module 11 when the thermoelectric conversion element 10 shown in FIG. 7 is used. When the lower side of the paper is the low temperature side and the upper side is the high temperature side, the upper side is the p-type semiconductor element 2aa and n-type semiconductor element 2ba for the medium-high temperature region, and the lower side is the p-type semiconductor element 2ab and n-type semiconductor for the medium-low temperature region Element 2bb. The heat of the n-type semiconductor elements 2ba and 2bb flows to the high temperature side by the heat conducted from the heat source on the high temperature side through the upper surface plate 5a and the bonding layer (plating layer 3 and solder layer 4). Then, current flows to the p-type semiconductor element 2aa via the junction between the n-type semiconductor element 2ba and the p-type semiconductor element 2aa on one end side. In the p-type semiconductor element 2aa and the p-type semiconductor element 2ab, the excited holes move to the low temperature side, and a current flows to the low temperature side. Then, it flows to the adjacent thermoelectric conversion element 10 through the electrode 6 installed on the side surface of the insulating support 1. In this way, a wide range of operating temperature ranges from low temperature to high temperature without using a cascade structure in which individual thermoelectric conversion modules manufactured using different semiconductor element 2 materials for low temperature and high temperature are stacked. The highly efficient thermoelectric conversion module 11 that can be covered can be easily realized, and the heat transfer conversion module 11 that is small and easy to integrate can be obtained.

なお、本発明は上述の実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内であれば種々の変更は可能である。   The present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present invention.

また、上記説明において上下左右という用語は、単に図面上の位置関係を説明するために用いたものであり、実際の使用時における位置関係を意味するものではない。   In the above description, the terms “upper, lower, left and right” are merely used to describe the positional relationship on the drawing, and do not mean the positional relationship during actual use.

1:絶縁支持体
1a:隔壁
1b:開口
1c:一端部
2:半導体素子
2a:p型半導体素子
2b:n型半導体素子
3:メッキ層
4:ハンダ層
5a:上面板
5b:下面板
9:スリット
9a:軸方向のスリット
9b:周方向のスリット
10.熱電変換素子
11.熱電変換モジュール
DESCRIPTION OF SYMBOLS 1: Insulation support 1a: Partition 1b: Opening 1c: One end part 2: Semiconductor element 2a: P-type semiconductor element 2b: N-type semiconductor element 3: Plating layer 4: Solder layer 5a: Upper surface plate 5b: Lower surface plate 9: Slit 9a: Axial slit 9b: Circumferential slit Thermoelectric conversion element 11. Thermoelectric conversion module

Claims (8)

一端部を除いて内側の軸方向に隔壁が設けられるとともに、他端部側外周面に開口を有する筒状の絶縁支持体と、該絶縁支持体の前記隔壁を介した一方内部に充填されたゼーベック効果を有するp型半導体素子と、前記隔壁を介した他方内部に充填され、前記一端部で前記p型半導体素子と直接電気的に接続されたゼーベック効果を有するn型半導体素子と、前記開口部において前記p型半導体素子および前記n型半導体素子に設けられた電極と、を備えた熱電変換素子。 A partition wall is provided in the inner axial direction except for one end, and a cylindrical insulating support having an opening on the outer peripheral surface on the other end side, and one inside of the insulating support is filled through the partition. A p-type semiconductor element having a Seebeck effect, an n-type semiconductor element having a Seebeck effect that is filled in the other through the partition and is directly electrically connected to the p-type semiconductor element at the one end, and the opening A thermoelectric conversion element comprising: an electrode provided on the p-type semiconductor element and the n-type semiconductor element in a portion. 前記p型半導体素子は、高温側と低温側とに異なるp型半導体部材が接続されて成ることを特徴とする請求項1記載の熱電変換素子。 The thermoelectric conversion element according to claim 1, wherein the p-type semiconductor element is formed by connecting different p-type semiconductor members on a high temperature side and a low temperature side. 前記n型半導体素子は、高温側と低温側とに異なるn型半導体部材が接続されて成ることを特徴とする請求項1または2記載の熱電変換素子。 The thermoelectric conversion element according to claim 1 or 2, wherein the n-type semiconductor element is formed by connecting different n-type semiconductor members on a high temperature side and a low temperature side. 前記絶縁支持体の熱伝導率が前記p型半導体素子および前記n型半導体素子の熱伝導率よりも小さいことを特徴とする請求項1乃至3のいずれかに記載の熱電変換素子。 The thermoelectric conversion element according to any one of claims 1 to 3, wherein the insulating support has a thermal conductivity smaller than that of the p-type semiconductor element and the n-type semiconductor element. 前記絶縁支持体の周方向にスリットが設けられていることを特徴とする請求項1乃至4のいずれかに記載の熱電変換素子。 The thermoelectric conversion element according to claim 1, wherein a slit is provided in a circumferential direction of the insulating support. 前記絶縁支持体の軸方向にスリットが設けられていることを特徴とする請求項1乃至5のいずれかに記載の熱電変換素子。 The thermoelectric conversion element according to any one of claims 1 to 5, wherein a slit is provided in an axial direction of the insulating support. 複数の請求項1乃至6のいずれかに記載の熱電変換素子を、前記他端部側外周面の開口に設けられた電極同士が直列に接続されるように密着させて配置し、前記熱電変換素子の一端面および他端面に上面板および下面板をそれぞれ接合したことを特徴とする熱電変換モジュール。 The thermoelectric conversion element according to any one of claims 1 to 6, wherein the thermoelectric conversion elements are arranged in close contact so that electrodes provided on an opening on the outer peripheral surface of the other end are connected in series. A thermoelectric conversion module, wherein an upper surface plate and a lower surface plate are respectively joined to one end surface and the other end surface of the element. 請求項7記載の熱電変換モジュール同士を上下複数段に重ねるとともに、前記各熱電変換モジュールの外壁端に設けた電極板を接続したことを特徴とする熱電変換装置。 The thermoelectric conversion device according to claim 7, wherein the thermoelectric conversion modules are stacked in a plurality of upper and lower stages, and an electrode plate provided on an outer wall end of each thermoelectric conversion module is connected.
JP2009294140A 2009-12-25 2009-12-25 Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same Pending JP2011134940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294140A JP2011134940A (en) 2009-12-25 2009-12-25 Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294140A JP2011134940A (en) 2009-12-25 2009-12-25 Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same

Publications (1)

Publication Number Publication Date
JP2011134940A true JP2011134940A (en) 2011-07-07

Family

ID=44347348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294140A Pending JP2011134940A (en) 2009-12-25 2009-12-25 Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same

Country Status (1)

Country Link
JP (1) JP2011134940A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149063A1 (en) * 2010-05-27 2011-12-01 京セラ株式会社 Thermoelectric element and thermoelectric module
JP2013236054A (en) * 2012-04-09 2013-11-21 Panasonic Corp Thermoelectric conversion element and thermoelectric conversion module
JP2019062054A (en) * 2017-09-26 2019-04-18 三菱マテリアル株式会社 Thermoelectric conversion cell and thermoelectric conversion module
US10510939B2 (en) 2016-02-24 2019-12-17 Mitsubishi Materials Corporation Thermoelectric conversion cell and thermoelectric conversion module
CN111064391A (en) * 2019-12-31 2020-04-24 中国电子科技集团公司第十八研究所 High-energy-conversion-efficiency cascade thermoelectric power generation unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326802A (en) * 1994-06-01 1995-12-12 Tokin Corp Thermoelectric conversion module and thermoelectric conversion device using the module
JPH0992891A (en) * 1995-09-25 1997-04-04 Mitsubishi Materials Corp Thermoelectric element and thermoelectric module
JP2000068564A (en) * 1998-08-18 2000-03-03 Dainippon Screen Mfg Co Ltd Peltier element
JP2002270910A (en) * 2001-03-06 2002-09-20 Komatsu Ltd Thermoelectric module
JP2005294695A (en) * 2004-04-02 2005-10-20 Denso Corp Waste heat recovery device
JP2008270410A (en) * 2007-04-18 2008-11-06 Ishikawa Pref Gov Thermoelectric transducer, thermoelectric transducing module, and method for manufacturing the module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326802A (en) * 1994-06-01 1995-12-12 Tokin Corp Thermoelectric conversion module and thermoelectric conversion device using the module
JPH0992891A (en) * 1995-09-25 1997-04-04 Mitsubishi Materials Corp Thermoelectric element and thermoelectric module
JP2000068564A (en) * 1998-08-18 2000-03-03 Dainippon Screen Mfg Co Ltd Peltier element
JP2002270910A (en) * 2001-03-06 2002-09-20 Komatsu Ltd Thermoelectric module
JP2005294695A (en) * 2004-04-02 2005-10-20 Denso Corp Waste heat recovery device
JP2008270410A (en) * 2007-04-18 2008-11-06 Ishikawa Pref Gov Thermoelectric transducer, thermoelectric transducing module, and method for manufacturing the module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011149063A1 (en) * 2010-05-27 2011-12-01 京セラ株式会社 Thermoelectric element and thermoelectric module
JP2013236054A (en) * 2012-04-09 2013-11-21 Panasonic Corp Thermoelectric conversion element and thermoelectric conversion module
US10510939B2 (en) 2016-02-24 2019-12-17 Mitsubishi Materials Corporation Thermoelectric conversion cell and thermoelectric conversion module
JP2019062054A (en) * 2017-09-26 2019-04-18 三菱マテリアル株式会社 Thermoelectric conversion cell and thermoelectric conversion module
CN111064391A (en) * 2019-12-31 2020-04-24 中国电子科技集团公司第十八研究所 High-energy-conversion-efficiency cascade thermoelectric power generation unit
CN111064391B (en) * 2019-12-31 2022-12-13 中国电子科技集团公司第十八研究所 High-energy-conversion-efficiency cascade thermoelectric power generation unit

Similar Documents

Publication Publication Date Title
JP5499317B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP5336373B2 (en) Thermoelectric conversion module
RU2546830C2 (en) Thermoelectric element
US10483449B2 (en) Thermoelectric generator
JPWO2006004059A1 (en) Thermoelectric conversion module
JP2011134940A (en) Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same
KR20160109658A (en) Thermoelectric module and method for manufacturing the same
JP6507745B2 (en) Thermoelectric conversion module
JP2009081286A (en) Thermoelectric conversion module
JP6976631B2 (en) Thermoelectric module and thermoelectric generator
JP6822227B2 (en) Thermoelectric conversion module
JP5537202B2 (en) Thermoelectric conversion module
JP2018137374A (en) Thermoelectric conversion module and method of manufacturing thermoelectric conversion module
KR101471036B1 (en) Tubular thermoelectric module and method for manufacturing the same
JP6010941B2 (en) Thermoelectric conversion module with airtight case
EP3062358A1 (en) Thermoelectric conversion device having thermoelectric conversion element connected thereto via wiring pattern, and method for manufacturing thermoelectric conversion device having thermoelectric conversion element connected thereto via wiring pattern
JP7552023B2 (en) Thermoelectric conversion structure
JP7313660B2 (en) Thermoelectric conversion module
JP2019012736A (en) Thermoelectric conversion module and application method thereof
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP3451456B2 (en) Thermoelectric generator, method of manufacturing the same, and thermoelectric generator
KR101207300B1 (en) Method for manufacturing thermoelectric element
JP7151068B2 (en) Thermoelectric conversion module with case
JP7047244B2 (en) Manufacturing method of thermoelectric conversion module
TW202002341A (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401