JP5537202B2 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP5537202B2
JP5537202B2 JP2010065504A JP2010065504A JP5537202B2 JP 5537202 B2 JP5537202 B2 JP 5537202B2 JP 2010065504 A JP2010065504 A JP 2010065504A JP 2010065504 A JP2010065504 A JP 2010065504A JP 5537202 B2 JP5537202 B2 JP 5537202B2
Authority
JP
Japan
Prior art keywords
type semiconductor
semiconductor element
electrode
thermoelectric conversion
conversion module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010065504A
Other languages
Japanese (ja)
Other versions
JP2011199091A (en
Inventor
裕介 武井
通孝 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010065504A priority Critical patent/JP5537202B2/en
Publication of JP2011199091A publication Critical patent/JP2011199091A/en
Application granted granted Critical
Publication of JP5537202B2 publication Critical patent/JP5537202B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Description

本発明は、温度差によって電圧を生じるゼーベック効果を用いて発電する発電モジュールに関する。   The present invention relates to a power generation module that generates power using the Seebeck effect that generates a voltage due to a temperature difference.

環境負荷低減の為、排熱等の熱エネルギーを電気エネルギーに変換して有効利用する熱電変換技術が注目されている。   In order to reduce the environmental load, thermoelectric conversion technology that effectively uses heat energy such as exhaust heat by converting it into electrical energy has attracted attention.

図3は、従来の熱電変換モジュールの例を示した断面図である。熱電変換モジュールは、p型半導体素子31とn型半導体素子32とが接触することなく交互に配列され、それぞれの上端面および下端面において電気的に直列になるように電極板36によって接続されている。電極板36は、外部取り出し電極37,38に接続されている。例えば、図3の上端が高温側であり、下端が低温側とすると、ゼーベック効果によりp型半導体素子31およびn型半導体素子32に起電力が生じ、外部電極38から、端子電極板36を介してp型半導体素子31、p型半導体素子31の下端の端子電極板36、n型半導体素子32と順に通り、外部電極37へ電流が流れるしくみとなっている。   FIG. 3 is a cross-sectional view showing an example of a conventional thermoelectric conversion module. In the thermoelectric conversion module, the p-type semiconductor elements 31 and the n-type semiconductor elements 32 are alternately arranged without being in contact with each other, and are connected by electrode plates 36 so as to be electrically in series at the respective upper and lower end surfaces. Yes. The electrode plate 36 is connected to external extraction electrodes 37 and 38. For example, if the upper end in FIG. 3 is the high temperature side and the lower end is the low temperature side, an electromotive force is generated in the p-type semiconductor element 31 and the n-type semiconductor element 32 due to the Seebeck effect, and from the external electrode 38 via the terminal electrode plate 36. The p-type semiconductor element 31, the terminal electrode plate 36 at the lower end of the p-type semiconductor element 31, and the n-type semiconductor element 32 sequentially pass through the external electrode 37.

しかし、図3に示す熱電変換モジュールの場合、電極板36が形成された基材39の表面に多数個のp型半導体素子31およびn型半導体素子32を配列させて実装していくため、生産性を向上し難いという難点があった。また、p型半導体素子31とn型半導体素子32との間が空間となっており、対流が生じたりすることで高温側と低温側との間の温度差が緩和されて、発電効率の低下を招き易い。   However, in the case of the thermoelectric conversion module shown in FIG. 3, a large number of p-type semiconductor elements 31 and n-type semiconductor elements 32 are arranged and mounted on the surface of the base material 39 on which the electrode plate 36 is formed. It was difficult to improve the performance. In addition, a space is formed between the p-type semiconductor element 31 and the n-type semiconductor element 32, and the temperature difference between the high-temperature side and the low-temperature side is mitigated by the occurrence of convection, resulting in a decrease in power generation efficiency. It is easy to invite.

そこで、生産性向上と、温度差の緩和を生じ難くして発電効率を向上させるため、図4に示すような積層構造の発電モジュールが提案されている(例えば、特許文献1参照)。この発電モジュールは、p型半導体素子41と、n型半導体素子42とで断熱と電気的絶縁機能とを持った絶縁体43を挟んだ構造となっている。p型半導体素子41およびn型半導体素子42は、端部で直接接合され、電気的に直列に接続されている。p型半導体素子41,絶縁体43,n型半導体素子42を順に積層し、積層後小片に切断して、端子電極47,48を印刷等で被着させた後に焼き付けする。図3に示す熱電変換モジュールのように個々のp型半導体素子31とn型半導体素子32とをそれぞれ電極板36上に位置決めして実装する必要がなく、生産性を向上させることができる。   Therefore, in order to improve productivity and improve the power generation efficiency by reducing the temperature difference, a power generation module having a stacked structure as shown in FIG. 4 has been proposed (see, for example, Patent Document 1). This power generation module has a structure in which an insulator 43 having heat insulation and electrical insulation functions is sandwiched between a p-type semiconductor element 41 and an n-type semiconductor element 42. The p-type semiconductor element 41 and the n-type semiconductor element 42 are directly joined at the ends and are electrically connected in series. The p-type semiconductor element 41, the insulator 43, and the n-type semiconductor element 42 are sequentially stacked, cut into small pieces after stacking, and the terminal electrodes 47 and 48 are deposited by printing or the like and then baked. Unlike the thermoelectric conversion module shown in FIG. 3, it is not necessary to position and mount each of the p-type semiconductor element 31 and the n-type semiconductor element 32 on the electrode plate 36, and productivity can be improved.

また、図3に示す熱電変換モジュールは、端面電極板36を介して、p型半導体素子31の端面とn型半導体素子32の端面とを電気的に接続するので、接続抵抗が大きいという問題があるが、図4に示す熱電変換モジュールではp型半導体素子41とn型半導体素子42とが直接接合され、接続抵抗を低減させることができる。   In addition, the thermoelectric conversion module shown in FIG. 3 electrically connects the end face of the p-type semiconductor element 31 and the end face of the n-type semiconductor element 32 via the end face electrode plate 36, so that there is a problem that the connection resistance is large. However, in the thermoelectric conversion module shown in FIG. 4, the p-type semiconductor element 41 and the n-type semiconductor element 42 are directly joined, and the connection resistance can be reduced.

特開2009−124030号公報JP 2009-124030 A

しかしながら、図4に示す構造では、p型半導体素子41とn型半導体素子42との間に絶縁体43が配置されるため、絶縁体43の厚みにより、p型半導体素子41やn型半導体素子42と絶縁体43とを同時焼成した後に、p型半導体素子41とn型半導体素子
の接触面の、特に絶縁体43の端部に層間剥離が発生する場合があり、信頼性に問題があった。
However, in the structure shown in FIG. 4, since the insulator 43 is disposed between the p-type semiconductor element 41 and the n-type semiconductor element 42, the p-type semiconductor element 41 and the n-type semiconductor element are dependent on the thickness of the insulator 43. After simultaneous firing of 42 and the insulator 43, delamination may occur at the contact surface of the p-type semiconductor element 41 and the n-type semiconductor element, particularly at the end of the insulator 43, and there is a problem in reliability. It was.

そこで、上記問題に鑑み、本発明は、p型半導体素子とn型半導体素子との接触抵抗が小さく、かつ層間剥離の発生が少なく信頼性の高い熱電変換モジュールを提供することを目的とする   In view of the above problems, an object of the present invention is to provide a highly reliable thermoelectric conversion module in which the contact resistance between a p-type semiconductor element and an n-type semiconductor element is small and the occurrence of delamination is small.

本発明の一実施形態に係る熱電変換モジュールは、p型半導体素子とn型半導体素子とが絶縁層を介して交互に複数配置され、それぞれ隣接する前記p型半導体素子および前記n型半導体素子の両端で、前記p型半導体素子および前記n型半導体素子が導体によって直列接続されている熱電変換モジュールにおいて、前記p型半導体素子および前記n型半導体素子の主面両端部に電極が形成され、電極を介して前記p型半導体素子および前記n型半導体素子が電気的に接続されており、前記p型半導体素子および前記n型半導体素子の前記主面に接する端面に、前記電極と導通した端面電極を形成し、該端面電極を介して隣接する前記p型半導体素子および前記n型半導体素子が接続され、前記電極と前記端面電極とは異種の金属から成ることを特徴とする。
In the thermoelectric conversion module according to an embodiment of the present invention, a plurality of p-type semiconductor elements and n-type semiconductor elements are alternately arranged via insulating layers, and the adjacent p-type semiconductor elements and n-type semiconductor elements are adjacent to each other. at both ends, in the thermoelectric conversion module in which the p-type semiconductor elements and the n-type semiconductor elements are connected in series by conductors, electrodes are formed on the main surface opposite ends of the p-type semiconductor elements and the n-type semiconductor element, the The p-type semiconductor element and the n-type semiconductor element are electrically connected via an electrode, and an end face that is electrically connected to the electrode is connected to an end face in contact with the main surface of the p-type semiconductor element and the n-type semiconductor element electrode is formed, is connected the p-type semiconductor elements and the n-type semiconductor elements adjacent to each other via the end surface electrode, Ru consists dissimilar metals and the end surface electrode and the electrode And wherein the door.

さらに、上記熱電変換モジュールにおいて、前記電極と前記p型半導体素子または前記n型半導体素子との間に固溶層が生じているのが好ましい。   Furthermore, in the thermoelectric conversion module, it is preferable that a solid solution layer is formed between the electrode and the p-type semiconductor element or the n-type semiconductor element.

また、前記電極の位置に対応する前記絶縁層の位置に一方表面から他方表面に貫通する孔を形成するとともに前記一方表面と前記他方表面とを電気的に導通させた導通孔により、隣接する前記p型半導体素子と前記n型半導体素子とが接続されているのが好ましい。   In addition, a hole penetrating from one surface to the other surface is formed at the position of the insulating layer corresponding to the position of the electrode, and the one surface and the other surface are electrically connected to each other by the conductive hole. It is preferable that the p-type semiconductor element and the n-type semiconductor element are connected.

本発明の一実施形態に係る熱電変換モジュールによれば、p型半導体素子およびn型半導体素子の主面両端部に電極が形成され、この電極を介してp型半導体素子およびn型半導体素子が電気的に接続されていることで、生産性の高い、積層体構造の熱電変換モジュールにおいて、p型およびn型半導体素子と電極との間の抵抗を低減することができ、変換効率の高い熱電変換モジュールを提供することができる。   According to the thermoelectric conversion module according to one embodiment of the present invention, electrodes are formed on both ends of the main surface of the p-type semiconductor element and the n-type semiconductor element, and the p-type semiconductor element and the n-type semiconductor element are interposed via the electrodes. By being electrically connected, in a highly productive thermoelectric conversion module having a laminated structure, the resistance between the p-type and n-type semiconductor elements and the electrodes can be reduced, and the thermoelectric power with high conversion efficiency can be obtained. A conversion module can be provided.

本発明の熱電変換モジュールの実施の形態の一例を示した断面図である。It is sectional drawing which showed an example of embodiment of the thermoelectric conversion module of this invention. 本発明の熱電変換モジュールの実施の形態の他の例を示した断面図である。It is sectional drawing which showed the other example of embodiment of the thermoelectric conversion module of this invention. 従来の熱電変換モジュールの例を示す断面図である。It is sectional drawing which shows the example of the conventional thermoelectric conversion module. 従来の熱電変換モジュールの他の例を示す断面図である。It is sectional drawing which shows the other example of the conventional thermoelectric conversion module.

以下本発明の実施の形態の各例について説明する。   Each example of the embodiment of the present invention will be described below.

図1,図2は本発明の熱電変換モジュールの実施の形態の例を示した断面図である。なお、図1,図2において、同じ機能を有する部位には同じ符号を付している。   1 and 2 are cross-sectional views showing examples of embodiments of the thermoelectric conversion module of the present invention. 1 and 2, parts having the same function are denoted by the same reference numerals.

熱電変換モジュールにおいて、p型半導体素子1とn型半導体素子2とが絶縁層3を介して交互に複数個配置されている。絶縁層3を介することによって、p型半導体素子1とn型半導体素子2とは一端から他端まで電気的に絶縁されている。また、p型半導体素子
1の一方主面1aの一端部およびp型半導体素子1の他方主面1bの他端部、n型半導体素子2の一方主面2aの一端部およびn型半導体素子2の他方主面2bの他端部に主面側の電極4が形成されている。
In the thermoelectric conversion module, a plurality of p-type semiconductor elements 1 and n-type semiconductor elements 2 are alternately arranged via insulating layers 3. By interposing the insulating layer 3, the p-type semiconductor element 1 and the n-type semiconductor element 2 are electrically insulated from one end to the other end. Also, one end of one main surface 1a of p-type semiconductor element 1 and the other end of other main surface 1b of p-type semiconductor element 1, one end of one main surface 2a of n-type semiconductor element 2, and n-type semiconductor element 2 An electrode 4 on the main surface side is formed on the other end of the other main surface 2b.

電極4は、p型半導体素子1およびn型半導体素子2の主面1a,1b,2a,2b側端部に設けられており、面積を広くすることができるので、p型半導体素子1およびn型半導体素子2に流れる電流を効率よく、小さい抵抗で流すことができる。   The electrode 4 is provided at the end of the main surface 1a, 1b, 2a, 2b side of the p-type semiconductor element 1 and the n-type semiconductor element 2, and the area can be increased, so that the p-type semiconductor element 1 and n The current flowing through the type semiconductor element 2 can be efficiently passed with a small resistance.

図1において、p型半導体素子1の電極4と、絶縁層3を介して隣り合うn型半導体素子2の電極4同士は、絶縁層3の一方表面から他方表面に貫通する孔を形成し、一方表面と他方表面とを電気的に導通させる導通孔5を介して接続されている。これによって、p型半導体素子1とn型半導体素子2とが電気的に直列になるように接続される。   In FIG. 1, the electrode 4 of the p-type semiconductor element 1 and the electrodes 4 of the n-type semiconductor element 2 adjacent via the insulating layer 3 form a hole penetrating from one surface of the insulating layer 3 to the other surface, The one surface and the other surface are connected via a conduction hole 5 that electrically conducts. Thereby, the p-type semiconductor element 1 and the n-type semiconductor element 2 are connected so as to be electrically in series.

導通孔5は、絶縁層3の所定部位に貫通孔を開けた後、電極4と同じ導体または異なる導体を貫通孔に充填するか、貫通孔の内壁に導体を被着させることによって形成される。   The through hole 5 is formed by opening a through hole at a predetermined portion of the insulating layer 3 and then filling the through hole with the same conductor as the electrode 4 or a different conductor, or depositing a conductor on the inner wall of the through hole. .

このようにp型半導体素子1とn型半導体素子2とを導通孔5を介して電気的に直列に接続した場合は、電極4とp型半導体素子1とn型半導体素子2とを同時焼成することで、接触抵抗を小さくすることができる。また導通孔5を大きくすることで導通抵抗を小さくすることができ、大電流を流すことができる。導通孔5を、複数個設けることもできる。   Thus, when the p-type semiconductor element 1 and the n-type semiconductor element 2 are electrically connected in series via the conduction hole 5, the electrode 4, the p-type semiconductor element 1 and the n-type semiconductor element 2 are simultaneously fired. By doing so, the contact resistance can be reduced. Further, by increasing the size of the conduction hole 5, the conduction resistance can be reduced, and a large current can flow. A plurality of conduction holes 5 can also be provided.

一方、図2に示される熱電変換モジュールにおいては、p型半導体素子1の電極4と絶縁層3を介して隣り合うn型半導体素子2の電極4同士は、絶縁層3の端面に形成された端面電極6を介して接続され、p型半導体素子1とn型半導体素子2とが電気的に直列に接続される。このように端面電極6を介して接続することにより、電極4とp型半導体素子1とn型半導体素子2とを同時焼成することで、接触抵抗を小さくすることができる。   On the other hand, in the thermoelectric conversion module shown in FIG. 2, the electrodes 4 of the p-type semiconductor element 1 and the electrodes 4 of the n-type semiconductor element 2 adjacent to each other through the insulating layer 3 are formed on the end face of the insulating layer 3. The p-type semiconductor element 1 and the n-type semiconductor element 2 are electrically connected in series through the end face electrode 6. By connecting through the end face electrode 6 in this manner, the electrode 4, the p-type semiconductor element 1, and the n-type semiconductor element 2 can be simultaneously fired to reduce the contact resistance.

図2に示すように、端面電極6は、絶縁層3の端面だけではなく、p型半導体素子1の端面およびn型半導体素子2の端面にも形成するのが好ましい。これによって、端面電極6とp型半導体素子1およびn型半導体素子2と電気的に導通することができ、さらに接触抵抗を小さくすることができる。   As shown in FIG. 2, the end face electrode 6 is preferably formed not only on the end face of the insulating layer 3 but also on the end face of the p-type semiconductor element 1 and the end face of the n-type semiconductor element 2. Thereby, the end face electrode 6 and the p-type semiconductor element 1 and the n-type semiconductor element 2 can be electrically connected, and the contact resistance can be further reduced.

ここで、p型半導体素子1とn型半導体素子2は、温度差が生じることでゼーベック効果により、起電力を発生する素子である。ゼーベック効果による起電力は、温度領域や無次元性能指数により、変換効率は異なる。これら半導体材料として、例えば、150℃〜250℃の低温領域ではBiTe系、250℃〜500℃の中温領域ではPbSn系やCoSb系、500℃以上の高温領域ではSiGe系等が用いられる。シリサイド系は、温度範囲が300℃〜600℃と広く、またSiは地球上に多く存在する金属であり、環境性にも優れる。シリサイド系の例としては、MgSi等がp型半導体素子1に、Mn1.73Si等がn型半導体素子2として挙げられる。シリサイド系の無次元性能指数ZTは1〜1.5程度であり、変換効率は10%以上となる。今後、更にZTが向上する可能性があり、期待される熱電変換用半導体素子である。 Here, the p-type semiconductor element 1 and the n-type semiconductor element 2 are elements that generate an electromotive force due to the Seebeck effect due to a temperature difference. The electromotive force due to the Seebeck effect varies in conversion efficiency depending on the temperature region and the dimensionless figure of merit. As these semiconductor materials, for example, a BiTe system is used in a low temperature range of 150 ° C. to 250 ° C., a PbSn system or CoSb system is used in an intermediate temperature range of 250 ° C. to 500 ° C., and a SiGe system is used in a high temperature range of 500 ° C. or higher. The silicide system has a wide temperature range of 300 ° C. to 600 ° C., and Si is a metal that exists abundantly on the earth and has excellent environmental properties. Examples of silicide-based materials include Mg 2 Si and the like as the p-type semiconductor element 1, and Mn 1.73 Si and the like as the n-type semiconductor element 2. Silicide-based dimensionless figure of merit ZT is about 1 to 1.5, and the conversion efficiency is 10% or more. In the future, ZT may be further improved, and this is an expected thermoelectric conversion semiconductor element.

絶縁体3としては、数百度以上の高熱下で熱電変換モジュールが用いられる場合を考慮して、セラミック等の耐熱材料が好適である。今後は効率向上のため、中温領域、高温領域の熱電変換モジュールの普及が期待されており、セラミック絶縁体3が益々重要となる。   The insulator 3 is preferably a heat-resistant material such as ceramic in consideration of the case where a thermoelectric conversion module is used under high heat of several hundred degrees or more. In the future, in order to improve efficiency, it is expected that the thermoelectric conversion modules in the medium temperature region and the high temperature region will be popularized, and the ceramic insulator 3 becomes more and more important.

また熱電変換モジュールは、温度差を利用して発電するため、断熱性も求められる。半
導体素子1,2に比較して絶縁体3の熱伝導率が無視できなくなると、絶縁体3を伝わる熱が無視できなくなり、変換効率の劣化を招く。例えば、先に説明したシリサイド系のMgSiの熱伝導率κは8W/(m・K)である。代表的な耐熱性セラミックスであるアルミナセラミックスは、熱伝導率が30W/(m・K)とMgSiの熱伝導率に比して高く、熱電変換モジュールの変換効率の劣化を招く場合がある。
Moreover, since the thermoelectric conversion module generates electric power using a temperature difference, heat insulation is also required. If the thermal conductivity of the insulator 3 cannot be ignored as compared with the semiconductor elements 1 and 2, the heat transmitted through the insulator 3 cannot be ignored, leading to deterioration in conversion efficiency. For example, the thermal conductivity κ of the silicide-based Mg 2 Si described above is 8 W / (m · K). Alumina ceramics, which is a typical heat-resistant ceramic, has a thermal conductivity of 30 W / (m · K), which is higher than that of Mg 2 Si, and may lead to deterioration in conversion efficiency of the thermoelectric conversion module. .

一方、ジルコニアセラミックスは熱伝導率が3W/(m・K)とMgSiの熱伝導率κより低く、変換効率の向上のためには適していると言える。また、LTCC(Low Temperature Co-fired Ceramics)は、ガラスを混ぜて低温焼成できる基板材料である。LTCCも熱伝導率が3W/(m・K)と低く、熱電変換モジュールの絶縁体3として有望な材料である。また、LTCCは900℃程度の焼成温度で焼成することが可能であり、ジルコニアセラミックの焼成温度1400℃以上に比べて少ない焼成エネルギーで焼成できる。 On the other hand, zirconia ceramics have a thermal conductivity of 3 W / (m · K), which is lower than the thermal conductivity κ of Mg 2 Si, and can be said to be suitable for improving the conversion efficiency. Moreover, LTCC (Low Temperature Co-fired Ceramics) is a substrate material that can be fired at a low temperature by mixing glass. LTCC has a low thermal conductivity of 3 W / (m · K) and is a promising material for the insulator 3 of the thermoelectric conversion module. Furthermore, LTCC can be fired at a firing temperature of about 900 ° C., and can be fired with less firing energy than the firing temperature of zirconia ceramic is 1400 ° C. or higher.

半導体素子1,2の主面に形成される電極4の材料はp型およびn型半導体素子1,2および絶縁体3と還元雰囲気炉で同時に焼成する。この場合は、半導体素子1,2が酸化しない酸素分圧で焼成を行う必要があるため、電極4に高価なPdやPtを用いずに、CuやNiといった卑金属材料を用いることができる。また、電極4は、半導体素子1,2と同時焼成を行うことで、両者の界面に固溶層が発生し、両者の接続抵抗を小さくすることができる。例えば、p型半導体素子1にMgSiを用い、電極4にNiを用いると、p型半導体素子1と電極4との界面にMgとNiとの固溶層やNiとSiとの固溶層が発現する。化学的な結合を起こした固溶層は、物理的な接触に較べて電気的な接続抵抗を小さくすることができる。 The material of the electrode 4 formed on the main surfaces of the semiconductor elements 1 and 2 is fired simultaneously in the reducing atmosphere furnace with the p-type and n-type semiconductor elements 1 and 2 and the insulator 3. In this case, since it is necessary to perform firing at an oxygen partial pressure at which the semiconductor elements 1 and 2 are not oxidized, a base metal material such as Cu or Ni can be used for the electrode 4 without using expensive Pd or Pt. Moreover, the electrode 4 performs simultaneous firing with the semiconductor elements 1 and 2, so that a solid solution layer is generated at the interface between them, and the connection resistance between them can be reduced. For example, when Mg 2 Si is used for the p-type semiconductor element 1 and Ni is used for the electrode 4, a solid solution layer of Mg and Ni or a solid solution of Ni and Si is formed at the interface between the p-type semiconductor element 1 and the electrode 4. The layer develops. The solid solution layer that has caused chemical bonding can reduce electrical connection resistance as compared to physical contact.

また、電極4は、CuやNiの金属粉末にエチルセルロース等の有機樹脂や、α−テルピネオール等の有機溶剤を混ぜてインク状にし、スクリーン印刷等で半導体素子1,2あるいは絶縁体3に印刷すればよい。これによって、厚さ1μm〜10μmの薄層電極4を形成することができる。この場合、積層構造体において、焼成後の残留応力を低減することができ、層間剥離のない量産性に優れた熱電変換モジュールを提供することが出来る。また、同時焼成することによって、半導体素子1,2との間で固溶層を形成させることができる。   In addition, the electrode 4 is formed by mixing an organic resin such as ethyl cellulose or an organic solvent such as α-terpineol with Cu or Ni metal powder and printing it on the semiconductor element 1, 2 or the insulator 3 by screen printing or the like. That's fine. Thereby, the thin layer electrode 4 having a thickness of 1 μm to 10 μm can be formed. In this case, in the laminated structure, the residual stress after firing can be reduced, and a thermoelectric conversion module excellent in mass productivity without delamination can be provided. Moreover, a solid solution layer can be formed between the semiconductor elements 1 and 2 by simultaneous firing.

図2に示す熱電変換モジュールに用いられる端面電極6は、同時焼成された後の半導体素子1,2の端面にスクリーン印刷等の印刷により、Ag,Cu,またはNi等を含むペースト状インクを用いて所定のパターンの電極を形成した後、700℃〜1200℃で焼き付けを行う。この焼き付け温度は、半導体素子1,2と電極4のパターンと絶縁体3とを同時焼成した温度より、低温であるのが望ましい。同時焼成の温度と同程度の温度で端面電極6を焼き付けると、電極4が半導体素子1,2および絶縁体3の端面から内側へ向けて再凝集してしまい、端面電極6と接続不良が発生する場合がある。焼き付け温度を低くするため、電極4と端面電極6とは異種金属とするのが望ましく、例えば、電極4にNi等の高融点金属を用い、Niに較べて比較的低温で焼成できるCuを端面電極6に用いると、端面電極6を焼き付ける際に、電極4に再凝集が発生することはなく、端面電極6と電極4との接続不良をなくすことができる。   The end surface electrode 6 used in the thermoelectric conversion module shown in FIG. 2 uses paste-like ink containing Ag, Cu, Ni, or the like by printing such as screen printing on the end surfaces of the semiconductor elements 1 and 2 after being simultaneously fired. After forming a predetermined pattern of electrodes, baking is performed at 700 ° C. to 1200 ° C. This baking temperature is preferably lower than the temperature at which the patterns of the semiconductor elements 1 and 2 and the electrode 4 and the insulator 3 are simultaneously fired. If the end face electrode 6 is baked at the same temperature as the co-firing temperature, the electrode 4 reaggregates from the end faces of the semiconductor elements 1 and 2 and the insulator 3 to the inside, resulting in poor connection with the end face electrode 6. There is a case. In order to lower the baking temperature, the electrode 4 and the end face electrode 6 are preferably made of different metals. For example, a high melting point metal such as Ni is used for the electrode 4 and the end face is made of Cu that can be fired at a relatively low temperature compared to Ni. When used for the electrode 6, when the end face electrode 6 is baked, re-aggregation does not occur in the electrode 4, and poor connection between the end face electrode 6 and the electrode 4 can be eliminated.

次に本発明を実施するための製造方法について説明する。p型半導体素子1とn型半導体素子2の材料として、それぞれの2種類以上の金属材料を溶融し、単結晶状のインゴットを作製する。その後、ボールミル等で粉砕し粉砕粉を得る。粉砕粉にメチルセルロース、酢酸ビニル,PVA等のバインダー、ポリアクリル酸ナトリウム、ピロリン酸ナトリウム等の分散剤、グリセリン、ジエチレングリコール等の可塑剤、溶剤等をボールミル等で混合してスラリーを得る。次にこのスラリーをドクターブレード法等のシート成形機を用
いて、数10μm〜数百μmの厚みのシートを得る。シートの幅は後に切断するため、半導体素子1,2より十分大きくしておく。例えば数10cm〜1m程度とすれば良い。
Next, the manufacturing method for implementing this invention is demonstrated. As materials for the p-type semiconductor element 1 and the n-type semiconductor element 2, two or more kinds of metal materials are melted to produce a single crystal ingot. Then, it grind | pulverizes with a ball mill etc. and pulverized powder is obtained. A slurry is obtained by mixing a pulverized powder with a binder such as methyl cellulose, vinyl acetate, PVA, a dispersant such as sodium polyacrylate and sodium pyrophosphate, a plasticizer such as glycerin and diethylene glycol, a solvent, and the like with a ball mill or the like. Next, a sheet having a thickness of several tens of μm to several hundreds of μm is obtained from the slurry using a sheet forming machine such as a doctor blade method. The width of the sheet is sufficiently larger than the semiconductor elements 1 and 2 to be cut later. For example, it may be about several tens of cm to 1 m.

絶縁体3については、Al,SiO,B等の複数の酸化物粉末に、例えば上記半導体素子1,2とするためのシートに用いたものと同じバインダー、分散剤、可塑剤、溶剤等を混合し、ボールミル等で混合するとともにスラリーを得る。次にスラリーを同じくドクターブレード法等のシート成形機を用いて、数10μmの厚みのシートを得る。さらに、図1の熱電変換モジュールの場合は、打ち抜き等でシートに貫通孔5を形成する。 For the insulator 3 , a plurality of oxide powders such as Al 2 O 3 , SiO 2 , B 2 O 3 , the same binder, dispersant, and the like used for the sheet for forming the semiconductor elements 1 and 2, for example, A plasticizer, a solvent, and the like are mixed and mixed with a ball mill or the like to obtain a slurry. Next, a sheet having a thickness of several tens of μm is obtained from the slurry by using a sheet forming machine such as a doctor blade method. Furthermore, in the case of the thermoelectric conversion module of FIG. 1, the through holes 5 are formed in the sheet by punching or the like.

次に、p型半導体素子1、n型半導体素子2になるシートの一部に電極4となるCu,Ni等の金属粉末にエチルセルロース等の有機樹脂や、α−テルピネオール等の有機溶剤を混合させてペースト状にしたインクをスクリーン印刷等で印刷する。インクの厚みは5μm以下でも十分に電気的な接続が可能であり、また十分に薄いため、層間剥離等の問題が生じ難い。   Next, an organic resin such as ethyl cellulose or an organic solvent such as α-terpineol is mixed with a metal powder such as Cu or Ni that becomes the electrode 4 in a part of the sheet that becomes the p-type semiconductor element 1 or the n-type semiconductor element 2. Then, the pasted ink is printed by screen printing or the like. Even if the thickness of the ink is 5 μm or less, sufficient electrical connection is possible, and since the thickness is sufficiently thin, problems such as delamination are unlikely to occur.

また、絶縁体3のシートにも同様に、電極4となるペースト状インクを半導体素子1,2上の電極4と重なる位置にスクリーン印刷等で印刷する。図1に示す熱電変換モジュールの場合は、打ち抜かれた貫通孔にも、導通孔5となる電極4のペースト状インクを充填させる。   Similarly, the paste-like ink to be the electrode 4 is printed on the sheet of the insulator 3 at a position overlapping the electrode 4 on the semiconductor elements 1 and 2 by screen printing or the like. In the case of the thermoelectric conversion module shown in FIG. 1, the punched through hole is also filled with the paste ink of the electrode 4 that becomes the conduction hole 5.

次にp型半導体素子1になるシートと、絶縁体3になるシートと、n型半導体素子2になるシートとを交互に積層し、加圧プレスする。その後、個々の熱電変換モジュールのサイズになるようにカッターやダイシングソーで切断する。   Next, a sheet that becomes the p-type semiconductor element 1, a sheet that becomes the insulator 3, and a sheet that becomes the n-type semiconductor element 2 are alternately laminated and pressed. Then, it cuts with a cutter or a dicing saw so that it may become the size of each thermoelectric conversion module.

次に、バインダー成分を分解させるため、400℃以下の雰囲気で熱分解させた後、700℃以上の温度で還元焼成する。なお、半導体素子1,2の材質により焼成温度条件や、酸素分圧条件は異なる。例えばシリサイド系の半導体素子1,2および絶縁体3にLTCC材料を用い、電極4にNiを用いた場合、900℃前後で焼成すればよい。   Next, in order to decompose the binder component, thermal decomposition is performed in an atmosphere of 400 ° C. or lower, and then reduction firing is performed at a temperature of 700 ° C. or higher. The firing temperature condition and the oxygen partial pressure condition differ depending on the material of the semiconductor elements 1 and 2. For example, when an LTCC material is used for the silicide-based semiconductor elements 1 and 2 and the insulator 3 and Ni is used for the electrode 4, it may be fired at around 900 ° C.

その後、図2の熱電変換モジュールの場合は、焼成された半導体素子1,2の端面および絶縁体3の端面に、端面電極6となるペースト状インクを塗布し、700℃以下の還元雰囲気で焼き付けを行う。例えば、端面電極6にCuを用いた場合、600℃前後で焼き付けを行う。   After that, in the case of the thermoelectric conversion module of FIG. 2, the paste-like ink to be the end face electrode 6 is applied to the end face of the fired semiconductor elements 1 and 2 and the end face of the insulator 3 and baked in a reducing atmosphere at 700 ° C. or less. I do. For example, when Cu is used for the end face electrode 6, baking is performed at around 600 ° C.

最後に、外部電極と外部取り出し電極7,8とを接続し、熱電変換モジュールが完成する。   Finally, the external electrode and the external extraction electrodes 7 and 8 are connected to complete the thermoelectric conversion module.

以上のように、大きなシートを積層した後に個々の熱電変換モジュールに切断することで、一度に数十から数百個の熱電変換モジュールを作製することができ、生産性を向上することができる。   As described above, by stacking large sheets and then cutting into individual thermoelectric conversion modules, several tens to several hundred thermoelectric conversion modules can be manufactured at a time, and productivity can be improved.

なお、本発明は上述の実施の形態および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内であれば種々の変更は可能である。例えば、上述の実施の形態の一例では図1の導通孔5とともに図2に示す端子電極6を形成しても良い。   The present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present invention. For example, in the example of the above embodiment, the terminal electrode 6 shown in FIG. 2 may be formed together with the conduction hole 5 of FIG.

また、上記実施の形態の説明において上下左右という用語は、単に図面上の位置関係を説明するために用いたものであり、実際の使用時における位置関係を意味するものではない。   In the description of the above embodiment, the terms “upper, lower, left and right” are merely used to describe the positional relationship in the drawings, and do not mean the positional relationship in actual use.

1:p型半導体素子
2:n型半導体素子
3:絶縁体
4:電極
5:導通孔
6:端面電極
7,8:取り出し電極
1: p-type semiconductor element 2: n-type semiconductor element 3: insulator 4: electrode 5: conduction hole 6: end face electrodes 7, 8: extraction electrode

Claims (3)

p型半導体素子とn型半導体素子とが絶縁層を介して交互に複数配置され、それぞれ隣接する前記p型半導体素子および前記n型半導体素子の両端で、前記p型半導体素子および前記n型半導体素子が導体によって直列接続されている熱電変換モジュールにおいて、前記p型半導体素子および前記n型半導体素子の主面両端部に電極が形成され、該電極を介して前記p型半導体素子および前記n型半導体素子が電気的に接続されており、前記p型半導体素子および前記n型半導体素子の前記主面に接する端面に、前記電極と導通した端面電極を形成し、該端面電極を介して隣接する前記p型半導体素子および前記n型半導体素子が接続され、前記電極と前記端面電極とは異種の金属から成ることを特徴とする熱電変換モジュール。 A plurality of p-type semiconductor elements and n-type semiconductor elements are alternately arranged via insulating layers, and the p-type semiconductor element and the n-type semiconductor are respectively disposed at both ends of the adjacent p-type semiconductor element and the n-type semiconductor element. In a thermoelectric conversion module in which elements are connected in series by a conductor, electrodes are formed at both ends of the main surface of the p-type semiconductor element and the n-type semiconductor element, and the p-type semiconductor element and the n-type are interposed via the electrodes. A semiconductor element is electrically connected, and an end face electrode electrically connected to the electrode is formed on an end face contacting the main surface of the p-type semiconductor element and the n-type semiconductor element, and is adjacent to the end face electrode. the p-type semiconductor elements and the n-type semiconductor element is connected, the thermoelectric conversion module and the end surface electrode and the electrode is characterized by forming Rukoto from dissimilar metals. 前記電極と前記p型半導体素子または前記n型半導体素子との間に固溶層が生じていることを特徴とする請求項1記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1, wherein a solid solution layer is formed between the electrode and the p-type semiconductor element or the n-type semiconductor element. 前記電極の位置に対応する前記絶縁層の位置に一方表面から他方表面に貫通する孔を形成するとともに前記一方表面と前記他方表面とを電気的に導通させた導通孔により、隣接する前記p型半導体素子と前記n型半導体素子とが接続されていることを特徴とする請求項1または請求項2に記載の熱電変換モジュール。 The p-type adjacent to each other by a conduction hole that forms a hole penetrating from one surface to the other surface at a position of the insulating layer corresponding to the position of the electrode and electrically connects the one surface and the other surface. the thermoelectric conversion module according to claim 1 or claim 2, characterized in that the semiconductor element and the n-type semiconductor element is connected.
JP2010065504A 2010-03-23 2010-03-23 Thermoelectric conversion module Expired - Fee Related JP5537202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010065504A JP5537202B2 (en) 2010-03-23 2010-03-23 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010065504A JP5537202B2 (en) 2010-03-23 2010-03-23 Thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2011199091A JP2011199091A (en) 2011-10-06
JP5537202B2 true JP5537202B2 (en) 2014-07-02

Family

ID=44876915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010065504A Expired - Fee Related JP5537202B2 (en) 2010-03-23 2010-03-23 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP5537202B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114650A1 (en) 2011-02-22 2012-08-30 Panasonic Corporation Thermoelectric conversion element and producing method thereof
JP6115047B2 (en) * 2012-09-04 2017-04-19 日立化成株式会社 Thermoelectric conversion module and manufacturing method thereof
JP6286845B2 (en) * 2013-03-22 2018-03-07 富士通株式会社 Thermoelectric element mounting module and manufacturing method thereof
JP6510045B2 (en) * 2015-06-17 2019-05-08 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214173A (en) * 1989-02-14 1990-08-27 Murata Mfg Co Ltd Manufacture of laminated thermoelectric element
JP3528471B2 (en) * 1996-02-26 2004-05-17 松下電工株式会社 Manufacturing method of thermoelectric module
JP3447915B2 (en) * 1997-04-28 2003-09-16 シャープ株式会社 Thermoelectric element and thermoelectric element module using the same
JP2003110157A (en) * 2001-09-28 2003-04-11 Toshiba Corp Thermoelectricity generation set
JP2005050863A (en) * 2003-07-29 2005-02-24 Kyocera Corp Thermoelectric module

Also Published As

Publication number Publication date
JP2011199091A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP4983920B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
US8940571B2 (en) Thermoelectric conversion element
JP5295824B2 (en) Thermoelectric conversion module
US10483449B2 (en) Thermoelectric generator
JP4668233B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion module
US20140230870A1 (en) Thermoelectric Conversion Elements
JP5537202B2 (en) Thermoelectric conversion module
JPH11121815A (en) Thermoelectric element
JP5007748B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP5158200B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP5384954B2 (en) Thermoelectric conversion module
JP2011134940A (en) Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same
JP2015005596A (en) Thermoelectric conversion module and method for manufacturing the same
WO2014200884A1 (en) Thermoelectric module and method of making same
JP2015005595A (en) Thermoelectric conversion module and method for manufacturing the same
JP4882855B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP2011003640A (en) Method for manufacturing thermoelectric conversion module and thermoelectric conversion module
US20230180610A1 (en) Thermoelectric module and method for manufacturing the same
JP5061706B2 (en) Thermoelectric element, manufacturing method thereof, and thermoelectric conversion module
JP2017076744A (en) Thermoelectric conversion module and thermal power generation device
JP2012124480A (en) Thermoelectric element and manufacturing method for the same
JP2017084947A (en) Thermoelectric conversion module
JPH1070316A (en) Thermoelement
JPH1065225A (en) Thermoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140425

R150 Certificate of patent or registration of utility model

Ref document number: 5537202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees