JP2011003640A - Method for manufacturing thermoelectric conversion module and thermoelectric conversion module - Google Patents

Method for manufacturing thermoelectric conversion module and thermoelectric conversion module Download PDF

Info

Publication number
JP2011003640A
JP2011003640A JP2009144156A JP2009144156A JP2011003640A JP 2011003640 A JP2011003640 A JP 2011003640A JP 2009144156 A JP2009144156 A JP 2009144156A JP 2009144156 A JP2009144156 A JP 2009144156A JP 2011003640 A JP2011003640 A JP 2011003640A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type thermoelectric
conversion material
type
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009144156A
Other languages
Japanese (ja)
Inventor
Takanori Nakamura
孝則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009144156A priority Critical patent/JP2011003640A/en
Publication of JP2011003640A publication Critical patent/JP2011003640A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently manufacture a thermoelectric conversion module with the high occupancy of a thermoelectric conversion material, low resistance, and an excellent characteristic.SOLUTION: A joint body 13 with a P-type thermoelectric conversion material 11 and an N-type thermoelectric conversion material 12 joined via an insulating material 14a is plated so as to form plated electrodes 16, each of which is constituted of a plated film, in other than the regions joined via the insulating material concerning the P-type thermoelectric conversion material and the N-type thermoelectric conversion material. Then, the joined body with the plated electrodes formed thereon is thermally processed under an oxidizing atmosphere. Besides, the plated electrode formed on the P-type thermoelectric conversion material and the plated electrode formed on the N-type thermoelectric conversion material are electrically connected via metallic plates 15. The joined body with the plated electrodes formed thereon is thermally processed at the temperature of 400-500°C. The thermoelectric conversion material made of an oxide is used as the P-type thermoelectric conversion material and the N-type thermoelectric conversion material.

Description

本発明は、熱電変換モジュールの製造方法および熱電変換モジュールに関し、詳しくは、熱電変換材料の占有率の高い熱電変換モジュールの製造方法および該製造方法により製造される熱電変換モジュールに関する。   The present invention relates to a method for manufacturing a thermoelectric conversion module and a thermoelectric conversion module, and more particularly to a method for manufacturing a thermoelectric conversion module having a high occupation ratio of a thermoelectric conversion material and a thermoelectric conversion module manufactured by the manufacturing method.

近年、地球温暖化防止のため、二酸化炭素の削減が重要な課題となるに至り、熱を直接電気に変換することが可能な熱電変換素子が、有効な廃熱利用技術の一つとして着目されている。   In recent years, the reduction of carbon dioxide has become an important issue in order to prevent global warming, and thermoelectric conversion elements that can directly convert heat into electricity have attracted attention as an effective waste heat utilization technology. ing.

そして、従来の熱電変換素子としては、例えば、図8に示すように、P型熱電変換材料51とN型熱電変換材料52と、低温側電極56と、高温側電極58とを備えた構造を有する熱電変換素子50が知られている。   As a conventional thermoelectric conversion element, for example, as shown in FIG. 8, a structure including a P-type thermoelectric conversion material 51, an N-type thermoelectric conversion material 52, a low temperature side electrode 56, and a high temperature side electrode 58 is provided. A thermoelectric conversion element 50 is known.

この熱電変換素子50において、2種の熱電変換材料51,52は、熱と電気とのエネルギー変換材料であり、それぞれの低温側の端面である低温側接合部53bにおいて低温側電極56と接続されている。また、熱電変換材料51,52は、高温側の端面である高温側接合部53aにおいて高温側電極58を介して接続されている。
そして、この熱電変換素子50においては、高温側接合部53aと低温側接合部53bとに温度差が与えられると、ゼーベック効果により起電力が生じ、電力が取り出される。
In this thermoelectric conversion element 50, the two types of thermoelectric conversion materials 51 and 52 are energy conversion materials of heat and electricity, and are connected to the low temperature side electrode 56 at the low temperature side junction portion 53b which is the end surface of each low temperature side. ing. Further, the thermoelectric conversion materials 51 and 52 are connected via a high temperature side electrode 58 at a high temperature side joint portion 53a which is an end surface on the high temperature side.
And in this thermoelectric conversion element 50, when a temperature difference is given to the high temperature side junction part 53a and the low temperature side junction part 53b, an electromotive force will arise by Seebeck effect and electric power will be taken out.

ところで、熱電変換素子の発電能力は、材料の熱電変換特性や素子に与える温度差によって決まるが、熱電変換材料の占有率(熱電変換素子に生じる温度差の方向に対し、垂直な面における熱電変換材料部が占める面積の割合)の影響も大きく、熱電変換材料の占有率を大きくすることにより、熱電変換素子の単位面積当りの発電能力を高めることができる。   By the way, the power generation capability of the thermoelectric conversion element is determined by the thermoelectric conversion characteristics of the material and the temperature difference applied to the element, but the occupation rate of the thermoelectric conversion material (thermoelectric conversion in a plane perpendicular to the direction of the temperature difference occurring in the thermoelectric conversion element) The influence of the ratio of the area occupied by the material portion is also great, and the power generation capacity per unit area of the thermoelectric conversion element can be increased by increasing the occupation ratio of the thermoelectric conversion material.

しかし、この従来の熱電変換素子50の構造の場合、2種の熱電変換材料51,52の間には、絶縁用の空隙層が設けられているため、熱電変換材料の占有率を大きくするには、おのずと限界がある。   However, in the case of the structure of the conventional thermoelectric conversion element 50, since an insulating gap layer is provided between the two types of thermoelectric conversion materials 51 and 52, the occupation ratio of the thermoelectric conversion material is increased. Is naturally limited.

そこで、例えば、図9(a),(b)に示すように、P型熱電変換材料51とN型熱電変換材料52を、絶縁層61を介して接合するとともに、上面側及び下面側で、電極62を介してP型熱電変換材料51とN型熱電変換材料52を電気的に接合した熱電変換モジュールが提案されている(特許文献1参照)。   Therefore, for example, as shown in FIGS. 9A and 9B, the P-type thermoelectric conversion material 51 and the N-type thermoelectric conversion material 52 are joined via the insulating layer 61, and on the upper surface side and the lower surface side, A thermoelectric conversion module in which a P-type thermoelectric conversion material 51 and an N-type thermoelectric conversion material 52 are electrically joined via an electrode 62 has been proposed (see Patent Document 1).

具体的には、図9(b)に示すように、P型熱電変換材料51とN型熱電変換材料52は、その側面(接合面)が、絶縁層61を介して接合されており、上面側にはカーボン電極71が配設され、カーボン電極71には、ニッケル系ろう72、板状のモリブデン電極73が順に配設されており、これらからなる電極62により、P型熱電変換材料51とN型熱電変換材料52が電気的に接続されている。すなわち、この熱電変換モジュールにおいては、Si−Ge半導体からなるP型熱電変換材料51とN型熱電変換材料52を、ガラス質の絶縁層61を介して接合し、その後、P型熱電変換材料51とN型熱電変換材料52を直列接続するために、ニッケル系ろう72により板状のモリブデン電極73をカーボン電極71にろう付けしている。また、絶縁層61を構成する材料として、ガラスマトリックス中にセラミックス粒子を分散させた電気絶縁材料が用いられている。   Specifically, as shown in FIG. 9B, the side surfaces (bonding surfaces) of the P-type thermoelectric conversion material 51 and the N-type thermoelectric conversion material 52 are bonded via an insulating layer 61, and the upper surface A carbon electrode 71 is arranged on the side, and a nickel-based braze 72 and a plate-like molybdenum electrode 73 are arranged in this order on the carbon electrode 71, and the electrode 62 made of these and the P-type thermoelectric conversion material 51. An N-type thermoelectric conversion material 52 is electrically connected. That is, in this thermoelectric conversion module, a P-type thermoelectric conversion material 51 made of a Si—Ge semiconductor and an N-type thermoelectric conversion material 52 are joined via a vitreous insulating layer 61, and then the P-type thermoelectric conversion material 51. In order to connect the N-type thermoelectric conversion material 52 in series, a plate-like molybdenum electrode 73 is brazed to the carbon electrode 71 with a nickel-based braze 72. In addition, as a material constituting the insulating layer 61, an electrically insulating material in which ceramic particles are dispersed in a glass matrix is used.

そして、このように構成された熱電変換モジュールにおいては、P型熱電変換材料51とN型熱電変換材料52は絶縁層61を介して接合されており、両者の間には隙間がないため、熱電変換材料の占有率が高く、単位面積当りの発電能力を向上させることが可能になる。   In the thermoelectric conversion module configured as described above, the P-type thermoelectric conversion material 51 and the N-type thermoelectric conversion material 52 are joined via the insulating layer 61, and there is no gap between them. The occupation ratio of the conversion material is high, and the power generation capacity per unit area can be improved.

しかしながら、この熱電変換モジュールの場合のように、P型熱電変換材料とN型熱電変換材料を接続するために、電極(例えば板状のモリブデン電極)である金属板をろう付けの方法でP型熱電変換材料とN型熱電変換材料に接合するようにした場合、P型熱電変換材料およびN型熱電変換材料の種類によっては、電極(例えば板状のモリブデン電極)とP型およびN型熱電変換材料電極との間の抵抗が大きくなり、所望の特性を備えた熱電変換モジュールが得られなくなる場合がある。   However, as in the case of this thermoelectric conversion module, in order to connect the P-type thermoelectric conversion material and the N-type thermoelectric conversion material, a metal plate which is an electrode (for example, a plate-like molybdenum electrode) is brazed by the P-type method. When bonded to a thermoelectric conversion material and an N-type thermoelectric conversion material, depending on the type of P-type thermoelectric conversion material and N-type thermoelectric conversion material, an electrode (for example, a plate-like molybdenum electrode) and P-type and N-type thermoelectric conversion In some cases, the resistance between the material electrode and the thermoelectric conversion module having desired characteristics cannot be obtained.

また、P型およびN型熱電変換材料の種類によっては、ろう付けの方法で電極(例えば板状のモリブデン電極)を確実にP型およびN型熱電変換材料に接合することができなくなる場合があり、所望の特性を備えた熱電変換モジュールを構成することができなくなるという問題点がある。   In addition, depending on the type of P-type and N-type thermoelectric conversion materials, it may not be possible to reliably bond an electrode (for example, a plate-like molybdenum electrode) to the P-type and N-type thermoelectric conversion materials by a brazing method. There is a problem that a thermoelectric conversion module having desired characteristics cannot be configured.

特開2000−286467号公報JP 2000-286467 A

本発明は、上記実情に鑑みてなされたものであり、P型熱電変換材料とN型熱電変換材料を電気的に接続するための金属板(板状電極)を、接合部における抵抗を低く抑えつつ、P型およびN型熱電変換材料に確実に接合することを可能にして、低抵抗で、熱電変換材料の占有率の高い、特性の良好な熱電変換モジュールを効率よく製造することが可能な熱電変換モジュールの製造方法および該方法により製造される、特性の良好な熱電変換モジュールを提供することを目的とする。   The present invention has been made in view of the above circumstances, and a metal plate (plate electrode) for electrically connecting a P-type thermoelectric conversion material and an N-type thermoelectric conversion material is suppressed to a low resistance at the joint. However, it is possible to reliably join the P-type and N-type thermoelectric conversion materials, and it is possible to efficiently manufacture a thermoelectric conversion module having a low resistance, a high occupation ratio of the thermoelectric conversion materials, and good characteristics. It is an object of the present invention to provide a method for manufacturing a thermoelectric conversion module and a thermoelectric conversion module having good characteristics manufactured by the method.

上記課題を解決するために、本発明の熱電変換モジュールの製造方法は、
P型熱電変換材料とN型熱電変換材料とが絶縁材料を介して接合され、前記絶縁材料を介して接合された領域以外の領域において、P型熱電変換材料とN型熱電変換材料とが電気的に接続された構造を有する熱電変換モジュールの製造方法であって、
P型熱電変換材料と、N型熱電変換材料を準備する工程と、
前記P型熱電変換材料と前記N型熱電変換材料とを、絶縁材料を介して接合して接合体を形成する工程と、
前記接合体にめっきを施すことにより、前記P型熱電変換材料と前記N型熱電変換材料の、前記絶縁材料を介して接合された領域以外の領域に、めっき膜からなるめっき電極を形成する工程と、
前記めっき電極が形成された前記接合体を、酸化性雰囲気中で熱処理する工程と
を具備することを特徴としている。
In order to solve the above problems, a method for manufacturing a thermoelectric conversion module of the present invention includes:
The P-type thermoelectric conversion material and the N-type thermoelectric conversion material are bonded via an insulating material, and the P-type thermoelectric conversion material and the N-type thermoelectric conversion material are electrically connected in a region other than the region bonded via the insulating material. A method for manufacturing a thermoelectric conversion module having an electrically connected structure,
Preparing a P-type thermoelectric conversion material and an N-type thermoelectric conversion material;
Bonding the P-type thermoelectric conversion material and the N-type thermoelectric conversion material via an insulating material to form a joined body;
A step of forming a plating electrode made of a plating film in a region other than a region of the P-type thermoelectric conversion material and the N-type thermoelectric conversion material joined via the insulating material by plating the joined body. When,
And heat-treating the joined body on which the plating electrode is formed in an oxidizing atmosphere.

また、本発明の熱電変換モジュールの製造方法は、前記P型熱電変換材料に形成された前記めっき電極と、前記N型熱電変換材料に形成された前記めっき電極とを、金属板を介して電気的に接続する工程をさらに具備することを特徴としている。   Moreover, the manufacturing method of the thermoelectric conversion module of this invention electrically connects the said plating electrode formed in the said P-type thermoelectric conversion material and the said plating electrode formed in the said N-type thermoelectric conversion material through a metal plate. The method further includes a step of automatically connecting.

また、本発明の熱電変換モジュールの製造方法において、前記めっき電極が形成された前記接合体を熱処理する際の前記酸化性雰囲気は大気雰囲気であることが好ましい。   Moreover, in the manufacturing method of the thermoelectric conversion module of this invention, it is preferable that the said oxidizing atmosphere at the time of heat-processing the said joined body in which the said plating electrode was formed is an air atmosphere.

また、前記めっき電極が形成された前記接合体を熱処理する際の温度は400〜500℃であることが好ましい。   Moreover, it is preferable that the temperature at the time of heat-processing the said joined body in which the said plating electrode was formed is 400-500 degreeC.

また、前記P型熱電変換材料および前記N型熱電変換材料が酸化物からなる熱電変換材料であることを特徴としている。   Further, the P-type thermoelectric conversion material and the N-type thermoelectric conversion material are thermoelectric conversion materials made of an oxide.

また、本発明の熱電変換モジュールは、
P型熱電変換材料とN型熱電変換材料とが絶縁材料を介して接合され、
P型熱電変換材料とN型熱電変換材料の、前記絶縁材料を介して接合された領域以外の領域には、めっき膜からなり、比抵抗が1Ω・cm以下であるめっき電極が形成されており、
前記P型熱電変換材料に形成された前記めっき電極と、前記N型熱電変換材料に形成された前記めっき電極とが、金属板を介して電気的に接続されていること
を特徴としている。
The thermoelectric conversion module of the present invention is
The P-type thermoelectric conversion material and the N-type thermoelectric conversion material are joined via an insulating material,
A region of the P-type thermoelectric conversion material and the N-type thermoelectric conversion material other than the region joined via the insulating material is formed of a plating film, and a plating electrode having a specific resistance of 1 Ω · cm or less is formed. ,
The plating electrode formed on the P-type thermoelectric conversion material and the plating electrode formed on the N-type thermoelectric conversion material are electrically connected via a metal plate.

本発明の熱電変換モジュールの製造方法は、P型熱電変換材料とN型熱電変換材料とを、絶縁材料を介して接合して接合体を形成した後、接合体にめっきを施して、接合体の絶縁材料を介して接合された領域以外の領域に、めっき膜からなるめっき電極を形成するとともに、めっき電極が形成された、P型熱電変換材料とN型熱電変換材料の接合体を酸化性雰囲気中において、所定の熱処理温度で熱処理するようにしているので、P型熱電変換材料とN型熱電変換材料の表面に、界面の抵抗の小さいめっき電極を形成することが可能になる。   In the method for manufacturing a thermoelectric conversion module of the present invention, a P-type thermoelectric conversion material and an N-type thermoelectric conversion material are joined via an insulating material to form a joined body, and then the joined body is plated, A plating electrode made of a plating film is formed in a region other than the region bonded via the insulating material, and the joined body of the P-type thermoelectric conversion material and the N-type thermoelectric conversion material on which the plating electrode is formed is oxidized. Since the heat treatment is performed at a predetermined heat treatment temperature in the atmosphere, it is possible to form a plating electrode having a low interface resistance on the surfaces of the P-type thermoelectric conversion material and the N-type thermoelectric conversion material.

なお、本発明のように、P型およびN型熱電変換材料の表面に形成されためっき電極を熱処理するようにした場合、熱電変換材料とめっき電極の界面の高抵抗分が除去され、抵抗が低減するが、そのメカニズムは必ずしも明確でないのが実情である。   When the plating electrodes formed on the surfaces of the P-type and N-type thermoelectric conversion materials are heat-treated as in the present invention, the high resistance component at the interface between the thermoelectric conversion materials and the plating electrodes is removed, and the resistance is reduced. Although it is reduced, the mechanism is not necessarily clear.

また、めっきの方法により、P型熱電変換材料およびN型熱電変換材料に電極(めっき電極)を形成するようにした場合、絶縁材料を介して接合された領域以外の領域すべてに、めっき膜からなる電極(めっき電極)を形成することが可能になり、電気的な導通面として、また、伝熱面として機能する面の面積を広く確保することが可能になる。   Moreover, when an electrode (plating electrode) is formed on the P-type thermoelectric conversion material and the N-type thermoelectric conversion material by a plating method, the plating film is applied to all regions other than the region joined via the insulating material. It becomes possible to form an electrode (plating electrode) to be formed, and it is possible to secure a wide area of a surface functioning as an electrically conductive surface and a heat transfer surface.

また、P型熱電変換材料に形成されためっき電極と、N型熱電変換材料に形成されためっき電極とを金属板を介して電気的に接続する、すなわち、金属板を、P型およびN型熱電変換材料に形成されためっき電極のそれぞれに接合するように配設することにより、P型熱電変換材料とN型熱電変換材料とが、界面の抵抗の小さいめっき電極と金属板を介して直列接続された,特性の良好な熱電変換モジュールを効率よく製造することが可能になる。   Moreover, the plating electrode formed in the P-type thermoelectric conversion material and the plating electrode formed in the N-type thermoelectric conversion material are electrically connected through the metal plate, that is, the metal plate is connected to the P-type and the N-type. By arranging so as to be joined to each of the plating electrodes formed on the thermoelectric conversion material, the P-type thermoelectric conversion material and the N-type thermoelectric conversion material are connected in series via the plating electrode and the metal plate having a low interface resistance. It is possible to efficiently manufacture a connected thermoelectric conversion module with good characteristics.

本発明の熱電変換モジュールの製造方法において、めっき電極が形成された接合体を熱処理する際の酸化性雰囲気は大気雰囲気であることが好ましい。大気雰囲気下で熱処理することにより,特別な雰囲気ガスを用いることなく、熱電変換材料とめっき電極の界面の高抵抗分を効率よく除去して、界面の抵抗の小さいめっき電極を形成することが可能になる。   In the manufacturing method of the thermoelectric conversion module of the present invention, it is preferable that the oxidizing atmosphere when heat-treating the joined body on which the plating electrode is formed is an air atmosphere. By heat-treating in an air atmosphere, it is possible to efficiently remove the high resistance component at the interface between the thermoelectric conversion material and the plating electrode without using a special atmosphere gas, and to form a plating electrode with a low interface resistance. become.

また、めっき電極が形成された接合体を熱処理する際の熱処理温度を400〜500℃とすることにより、めっき電極が酸化されてしまうことを確実に抑制、防止して、低抵抗のめっき電極を得ることが可能になる。
なお、熱処理温度が400℃未満になると、熱処理による抵抗低減の効果が不十分になる。また、熱処理温度が500℃を超えると、電極(めっき電極)が酸化して抵抗の上昇を招く。したがって、熱処理温度は400〜500℃の範囲とすることが望ましい。
In addition, by setting the heat treatment temperature when the bonded body on which the plating electrode is formed to 400 to 500 ° C., it is possible to reliably suppress and prevent the plating electrode from being oxidized, and to reduce the resistance of the plating electrode. It becomes possible to obtain.
Note that when the heat treatment temperature is less than 400 ° C., the effect of reducing the resistance by the heat treatment becomes insufficient. On the other hand, when the heat treatment temperature exceeds 500 ° C., the electrode (plating electrode) is oxidized and the resistance is increased. Therefore, the heat treatment temperature is desirably in the range of 400 to 500 ° C.

また、P型熱電変換材料およびN型熱電変換材料が、酸化物からなる熱電変換材料である場合、従来のようなろう付けの方法では金属板をP型熱電変換材料およびN型熱電変換材料に接合することが困難になりやすいが、本発明のように、熱電変換材料の表面に、めっき膜からなり、比抵抗が1Ω・cm以下であるめっき電極を形成し、該めっき電極を介して金属板を接合することにより、P型熱電変換材料およびN型熱電変換材料の表面に確実に金属板を接合して、P型熱電変換材料とN型熱電変換材料とが直列接続された構造を有する熱電変換モジュールを確実に製造することが可能になり、特に有意義である。
なお、比抵抗が1Ω・cm以下であるめっき電極は、本発明の熱電変換モジュールの製造方法を用いることにより、確実に形成することができる。
In addition, when the P-type thermoelectric conversion material and the N-type thermoelectric conversion material are oxide thermoelectric conversion materials, the conventional brazing method converts the metal plate into the P-type thermoelectric conversion material and the N-type thermoelectric conversion material. Although it is difficult to join, as in the present invention, a plating electrode made of a plating film and having a specific resistance of 1 Ω · cm or less is formed on the surface of the thermoelectric conversion material, and the metal is interposed through the plating electrode. By joining the plates, the metal plate is securely joined to the surfaces of the P-type thermoelectric conversion material and the N-type thermoelectric conversion material, and the P-type thermoelectric conversion material and the N-type thermoelectric conversion material are connected in series. This makes it possible to reliably manufacture the thermoelectric conversion module, which is particularly meaningful.
In addition, the plating electrode whose specific resistance is 1 ohm * cm or less can be reliably formed by using the manufacturing method of the thermoelectric conversion module of this invention.

また、本発明の熱電変換モジュールは、P型熱電変換材料とN型熱電変換材料が絶縁材料を介して接合され、かつ、P型およびN型熱電変換材料の、絶縁材料を介して接合された領域以外の領域には、めっき膜からなるめっき電極が形成され、P型熱電変換材料に形成されためっき電極と、N型熱電変換材料に形成されためっき電極とが、金属板を介して電気的に接続された構成を備えており、P型熱電変換材料とN型熱電変換材料とが低抵抗で直列接続された,特性の良好な熱電変換モジュールを提供することができる。なお、この熱電変換モジュールは,上述の本発明の熱電変換モジュールの製造方法により,確実に、しかも効率よく製造することができる。   In the thermoelectric conversion module of the present invention, the P-type thermoelectric conversion material and the N-type thermoelectric conversion material are joined via an insulating material, and the P-type and N-type thermoelectric conversion materials are joined via an insulating material. A plating electrode made of a plating film is formed in a region other than the region, and the plating electrode formed in the P-type thermoelectric conversion material and the plating electrode formed in the N-type thermoelectric conversion material are electrically connected via the metal plate. Therefore, it is possible to provide a thermoelectric conversion module with good characteristics in which a P-type thermoelectric conversion material and an N-type thermoelectric conversion material are connected in series with low resistance. This thermoelectric conversion module can be reliably and efficiently manufactured by the above-described method for manufacturing a thermoelectric conversion module of the present invention.

本発明の熱電変換モジュールを構成する熱電変換素子の、めっき電極を形成する前の状態を示す図である。It is a figure which shows the state before forming a plating electrode of the thermoelectric conversion element which comprises the thermoelectric conversion module of this invention. 本発明の熱電変換モジュールを構成する熱電変換素子であって、めっき電極を備えているが、熱処理は行われていない熱電変換素子を示す図である。It is a thermoelectric conversion element which comprises the thermoelectric conversion module of this invention, Comprising: It is a figure which shows the thermoelectric conversion element which is provided with the plating electrode but is not heat-processed. 本発明の実施例にかかる熱電変換モジュールの製造方法の一工程を示す図である。It is a figure which shows 1 process of the manufacturing method of the thermoelectric conversion module concerning the Example of this invention. 本発明の実施例にかかる熱電変換モジュールの製造工程で熱電変換素子の側面に塗布したガラスペースト上にセラミックス球状粒子(酸化ジルコニウムビーズ)を配置した状態を示す図である。It is a figure which shows the state which has arrange | positioned the ceramic spherical particle (zirconium oxide bead) on the glass paste apply | coated to the side surface of the thermoelectric conversion element at the manufacturing process of the thermoelectric conversion module concerning the Example of this invention. 本発明の実施例にかかる熱電変換モジュールの製造工程で各熱電変換素子を接合した状態を示す図である。It is a figure which shows the state which joined each thermoelectric conversion element at the manufacturing process of the thermoelectric conversion module concerning the Example of this invention. 本発明の実施例にかかる熱電変換モジュールの製造工程で接合体にめっき電極を形成した状態を示す図である。It is a figure which shows the state which formed the plating electrode in the conjugate | zygote at the manufacturing process of the thermoelectric conversion module concerning the Example of this invention. 本発明の実施例にかかる熱電変換モジュールの製造工程で接合体に、めっき電極およびCuペーストを介して金属板(Cu板)を接合した状態を示す図である。It is a figure which shows the state which joined the metal plate (Cu board) to the joined body through the plating electrode and Cu paste at the manufacturing process of the thermoelectric conversion module concerning the Example of this invention. 従来の熱電変換モジュールを示す図である。It is a figure which shows the conventional thermoelectric conversion module. 従来の他の熱電変換モジュールを示す図であり、(a)は正面図、(b)は要部を拡大して示す図である。It is a figure which shows the other conventional thermoelectric conversion module, (a) is a front view, (b) is a figure which expands and shows the principal part.

以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。   Examples of the present invention will be described below to describe the features of the present invention in more detail.

この実施例1では、以下の手順で、めっき電極が形成された熱電変換素子を作製してその抵抗を評価した。   In Example 1, a thermoelectric conversion element on which a plating electrode was formed was produced by the following procedure, and its resistance was evaluated.

(1)まず、
イ)P型熱電変換材料として、組成が(La1.98Sr0.02)CuO4の酸化物半導体と、
ロ)N型熱電変換材料として、組成が(Nd1.98Ce0.02)CuO4の酸化物半導体と
が形成されるように原料粉末を秤量した。
なお、LaおよびNd、Ce、Cuの原料粉末として、酸化物粉末を用いた。また、Srの原料粉末として、炭酸塩粉末を用いた。
なお、出発原料は、上述のような酸化物や炭酸塩に限定されるものではなく、水酸化物などの他の無機材料、アセチルアセトナート錯体のような有機金属化合物などを使用することも可能である。
(1) First,
A) As a P-type thermoelectric conversion material, an oxide semiconductor having a composition of (La 1.98 Sr 0.02 ) CuO 4 ;
B) The raw material powder was weighed so as to form an N-type thermoelectric conversion material and an oxide semiconductor having a composition of (Nd 1.98 Ce 0.02 ) CuO 4 .
In addition, oxide powder was used as a raw material powder for La, Nd, Ce, and Cu. Further, carbonate powder was used as the raw material powder of Sr.
The starting material is not limited to the oxides and carbonates as described above, and other inorganic materials such as hydroxides, organometallic compounds such as acetylacetonate complexes, etc. can be used. It is.

(2)それから、上記の各組成になるように秤量された原料粉末を、溶媒として水を用いた湿式ボールミルにて、粉砕、混合した後、水を蒸発させて混合粉末を得た。   (2) Then, the raw material powder weighed so as to have each composition described above was pulverized and mixed in a wet ball mill using water as a solvent, and then water was evaporated to obtain a mixed powder.

(3)次に、この混合粉末を大気雰囲気中にて、900℃、8時間の条件で熱処理し、目的とする組成物粉末(熱電酸化物粉末)を得た。なお、この組成物粉末には、未反応部分が一部に残存していてもよい。   (3) Next, this mixed powder was heat-treated at 900 ° C. for 8 hours in an air atmosphere to obtain a target composition powder (thermoelectric oxide powder). In this composition powder, an unreacted portion may partially remain.

(4)上記(3)の熱処理を行うことにより得た各組成物粉末に、有機バインダを、各組成物粉末に対して5重量%の割合で混合し、溶媒として水を用いた湿式ボールミルにて、粉砕、混合した。   (4) An organic binder is mixed in a proportion of 5% by weight with respect to each composition powder in each composition powder obtained by performing the heat treatment of (3) above, and a wet ball mill using water as a solvent is used. Crushed and mixed.

(5)それから、有機バインダを混合した各組成物粉末を十分に乾燥させた後、1軸プレス機を使用して、1kN/cm2の圧力にて成形体を作製した。 (5) Then, each composition powder mixed with an organic binder was sufficiently dried, and then a compact was produced using a uniaxial press at a pressure of 1 kN / cm 2 .

(6)この成形体を大気中雰囲気中にて、1000℃〜1100℃の範囲で2時間焼成を行い、各組成物粉末の焼結体を作製した。ここで、焼成温度は、各組成物粉末の組成により異なり、相対密度が80%以上(好ましくは90%以上)となるように設定した。   (6) The molded body was fired in the atmosphere at 1000 ° C. to 1100 ° C. for 2 hours to prepare sintered bodies of the respective composition powders. Here, the firing temperature varies depending on the composition of each composition powder, and is set so that the relative density is 80% or more (preferably 90% or more).

(7)それから、この焼結体をタイシングソーにより5mm×5mm×5mmの大きさの立方体に切り出し、本発明におけるP型熱電変換材料およびN型熱電変換材料となる熱電変換素子を得た。
そして、この熱電変換素子の、上下両面(導電面)以外の4つの側面にガラスペーストを塗布し、150℃のオーブンにて乾燥させた。
(7) Then, the sintered body was cut into a cube having a size of 5 mm × 5 mm × 5 mm with a tapping saw, and thermoelectric conversion elements serving as a P-type thermoelectric conversion material and an N-type thermoelectric conversion material in the present invention were obtained.
And the glass paste was apply | coated to four side surfaces other than the upper and lower surfaces (conductive surface) of this thermoelectric conversion element, and it was made to dry in 150 degreeC oven.

(8)次いで、この熱電変換素子を、大気中900℃に設定したトンネル炉に導入してガラス成分を溶融させ、図1に示すように、上下両面を除いた4つの側面がガラス4に覆われた、めっき電極を形成する前の熱電変換素子1(1a)を得た。   (8) Next, the thermoelectric conversion element is introduced into a tunnel furnace set at 900 ° C. in the atmosphere to melt the glass component, and the four side surfaces excluding the upper and lower surfaces are covered with the glass 4 as shown in FIG. The thermoelectric conversion element 1 (1a) before forming the plating electrode was obtained.

(9)そして、この熱電変換素子のガラスで覆われていない導電面となる上下両面を、平坦になるように研磨した。   (9) The upper and lower surfaces, which are conductive surfaces not covered with glass, of this thermoelectric conversion element were polished to be flat.

(10)それから、熱電変換素子1にNiめっきを施して、図2に示すように、熱電変換素子1の研磨された上下両面に、膜厚4〜11μmのNiめっき膜(めっき電極)6を形成することにより、めっき電極6を備えているが、熱処理は行われていない熱電変換素子1(1b)を得た。
なお、Niめっき膜6は、電解めっき法、無電解めっき法のいずれの手法で形成してもよい。
このとき、熱電変換素子1の4つの側面はガラス4により覆われているため、めっき電極は全く形成されず、ガラスで覆われていない上下両面には、その全面にめっき電極6が形成される。
(10) Then, Ni plating is applied to the thermoelectric conversion element 1, and as shown in FIG. 2, Ni plating films (plating electrodes) 6 having a film thickness of 4 to 11 μm are formed on the polished upper and lower surfaces of the thermoelectric conversion element 1. By forming, the thermoelectric conversion element 1 (1b) provided with the plating electrode 6 but not heat-treated was obtained.
The Ni plating film 6 may be formed by any method of electrolytic plating and electroless plating.
At this time, since the four side surfaces of the thermoelectric conversion element 1 are covered with the glass 4, no plating electrodes are formed at all, and the plating electrodes 6 are formed on the entire upper and lower surfaces not covered with the glass. .

(11)次いで、めっき電極が形成された熱電変換素子1(1b)を、大気雰囲気中で、400℃、15分の条件で熱処理して、熱処理済みの熱電変換素子(図示せず)を得た。   (11) Next, the thermoelectric conversion element 1 (1b) on which the plating electrode is formed is heat-treated in the atmosphere at 400 ° C. for 15 minutes to obtain a heat-treated thermoelectric conversion element (not shown). It was.

また、熱処理雰囲気の影響を確認するため、窒素雰囲気中で、400℃、15分の条件で熱処理を行い、比較用の熱電変換素子を得た。   Further, in order to confirm the influence of the heat treatment atmosphere, heat treatment was performed in a nitrogen atmosphere at 400 ° C. for 15 minutes to obtain a comparative thermoelectric conversion element.

そして、得られた、
(a)熱処理前の熱電変換素子、
(b)大気雰囲気中で、400℃、15分の条件で熱処理を行った熱処理済みの熱電変換素子、および
(c)窒素雰囲気中で、400℃、15分の条件で熱処理を行った比較用の熱電変換素子、
について、めっき電極を備えた熱電変換素子の抵抗(素子抵抗)を測定した。その結果を表1に併せて示す。
And obtained,
(a) thermoelectric conversion element before heat treatment,
(b) a heat-treated thermoelectric conversion element that has been heat-treated in air at 400 ° C. for 15 minutes; and
(c) a thermoelectric conversion element for comparison, which was heat-treated in a nitrogen atmosphere at 400 ° C. for 15 minutes,
About, the resistance (element resistance) of the thermoelectric conversion element provided with the plating electrode was measured. The results are also shown in Table 1.

また、上記のP型熱電変換材料((La1.98Sr0.02)CuO4)、およびN型熱電変換材料((Nd1.98Ce0.02)CuO4)以外の組成を有する酸化物熱電変換材料として、(Li0.09Ni0.91)O、およびCa3Co47で表される熱電変換材料(P型熱電変換材料)を用いて、上記の実施例の場合と同じ条件で、熱処理前の熱電変換素子、大気雰囲気中で熱処理した熱電変換素子、窒素雰囲気中で熱処理した熱電変換素子を作製し、抵抗(素子抵抗)を測定した。その結果を表1に併せて示す。 In addition, as an oxide thermoelectric conversion material having a composition other than the P-type thermoelectric conversion material ((La 1.98 Sr 0.02 ) CuO 4 ) and the N-type thermoelectric conversion material ((Nd 1.98 Ce 0.02 ) CuO 4 ), (Li 0.09 Ni 0.91 ) O and a thermoelectric conversion material (P-type thermoelectric conversion material) represented by Ca 3 Co 4 O 7 , under the same conditions as in the above example, the thermoelectric conversion element before heat treatment, the atmosphere A thermoelectric conversion element heat-treated in an atmosphere and a thermoelectric conversion element heat-treated in a nitrogen atmosphere were prepared, and resistance (element resistance) was measured. The results are also shown in Table 1.

Figure 2011003640
Figure 2011003640

表1に示すように、Niめっきを施した後、大気雰囲気中にて熱処理を行った熱電変換素子の場合、めっき電極を介した熱電変換素子の抵抗(素子抵抗)が、熱処理前の段階に比べて、大幅に低減されていることが確認された。   As shown in Table 1, in the case of a thermoelectric conversion element that has been Ni-plated and then heat-treated in an air atmosphere, the resistance (element resistance) of the thermoelectric conversion element through the plating electrode is in the stage before the heat treatment. Compared to this, it was confirmed that it was greatly reduced.

なお、組成が(La1.98Sr0.02)CuO4の熱電変換素子の場合、特に大幅な素子抵抗の低下が認められた。 In the case of a thermoelectric conversion element having a composition of (La 1.98 Sr 0.02 ) CuO 4, a significant reduction in element resistance was observed.

また、組成が(Li0.09Ni0.91)O、およびCa3Co47の熱電変換素子の場合、素子抵抗の低下の度合いは小さいが、それでも約40%の素子抵抗の低下が認められた。 Further, in the case of thermoelectric conversion elements having compositions of (Li 0.09 Ni 0.91 ) O and Ca 3 Co 4 O 7 , the degree of decrease in element resistance was small, but a decrease in element resistance of about 40% was still observed.

さらに、窒素雰囲気(すなわち非酸化性雰囲気)中で熱処理を行った場合の素子抵抗の低減の効果は、大気雰囲気中にて熱処理を行った場合に比べて、著しく劣っていることが確認された。   Furthermore, it was confirmed that the effect of reducing element resistance when heat treatment was performed in a nitrogen atmosphere (that is, non-oxidizing atmosphere) was significantly inferior to that when heat treatment was performed in an air atmosphere. .

この実施例2では、上記実施例1で作製した、
イ)組成が(La1.98Sr0.02)CuO4の酸化物半導体からなるP型熱電変換材料(P型熱電変換素子)と、
ロ)組成が(Nd1.98Ce0.02)CuO4の酸化物半導体からなるN型熱電変換材料(N型熱電変換素子)と
を用いて、以下に説明する手順で熱電変換モジュールを作製した。
In this Example 2, it was produced in the above Example 1,
A) a P-type thermoelectric conversion material (P-type thermoelectric conversion element) made of an oxide semiconductor whose composition is (La 1.98 Sr 0.02 ) CuO 4 ;
(B) A thermoelectric conversion module was prepared by using the N-type thermoelectric conversion material (N-type thermoelectric conversion element) made of an oxide semiconductor having a composition of (Nd 1.98 Ce 0.02 ) CuO 4 according to the procedure described below.

(1)まず、上記イ)の(La1.98Sr0.02)CuO4で表される酸化物半導体からなるP型熱電変換材料(P型熱電変換素子)と、上記ロ)の(Nd1.98Ce0.02)CuO4で表される酸化物半導体からなるN型熱電変換材料(N型熱電変換素子)とを用意する。なお、このP型およびN型熱電変換素子はいずれも、寸法が5mm×5mm×5mmの立方体形状のものである。 (1) First, a P-type thermoelectric conversion material (P-type thermoelectric conversion element) made of an oxide semiconductor represented by (La 1.98 Sr 0.02 ) CuO 4 in (a) above and (Nd 1.98 Ce 0.02 ) in (b) above. An N-type thermoelectric conversion material (N-type thermoelectric conversion element) made of an oxide semiconductor represented by CuO 4 is prepared. Both the P-type and N-type thermoelectric conversion elements have a cubic shape with dimensions of 5 mm × 5 mm × 5 mm.

(2)それから、図3に示すように、このP型熱電変換素子11と、N型熱電変換素子12の、上下両面(導電面)以外の4つの側面にガラスペースト14aを塗布し、ガラスペースト14aが乾燥する前に、図4に示すように、セラミックス球状粒子(絶縁材料粒子)(この実施例2では、酸化ジルコニウムビーズ)10を、ガラスペースト14aの塗布面の四隅に1個以上分布するよう配置した。   (2) Then, as shown in FIG. 3, a glass paste 14a is applied to four side surfaces of the P-type thermoelectric conversion element 11 and the N-type thermoelectric conversion element 12 other than the upper and lower surfaces (conductive surface). Before the 14a is dried, as shown in FIG. 4, one or more ceramic spherical particles (insulating material particles) (zirconium oxide beads in this Example 2) 10 are distributed at the four corners of the coated surface of the glass paste 14a. Arranged.

(3)そして、図5に示すように、一つの熱電変換素子11(または12)の、セラミックス球状粒子(酸化ジルコニウムビーズ)10を配置した面に、他の熱電変換素子12(または11)の、ガラスペースト14aを塗布した接合面を接合(仮接合)させた。
このようにしてP型熱電変換素子11とN型熱電変換素子12を、図5に示すように、交互に2個ずつ組み合わせて仮接合した後、150℃のオーブンにて乾燥させた。
なお、セラミックス球状粒子(酸化ジルコニウムビーズ)10の直径は50〜600μmの範囲とすることが好ましい。また、粒径のバラツキは3CVで20%以下であることが好ましい。
また、ガラスペースト14aを構成するガラス成分は、セラミック球状粒子が固定されていればよく、セラミック球状粒子10の種類、大きさ、形状などにより適宜その組成、濃度は選択される。
(3) Then, as shown in FIG. 5, the surface of one thermoelectric conversion element 11 (or 12) on which ceramic spherical particles (zirconium oxide beads) 10 are arranged has another thermoelectric conversion element 12 (or 11). The joined surface to which the glass paste 14a was applied was joined (temporary joining).
In this way, as shown in FIG. 5, the P-type thermoelectric conversion element 11 and the N-type thermoelectric conversion element 12 were alternately combined and provisionally joined, and then dried in an oven at 150 ° C.
The diameter of the ceramic spherical particles (zirconium oxide beads) 10 is preferably in the range of 50 to 600 μm. Further, the variation in particle diameter is preferably 20% or less at 3 CV.
Moreover, the glass component which comprises the glass paste 14a should just have the ceramic spherical particle fixed, The composition and density | concentration are suitably selected with the kind, magnitude | size, shape, etc. of the ceramic spherical particle 10. FIG.

(4)次いで、この接合体を大気中900℃に設定したトンネル炉に導入することにより、ガラスペースト14aを構成するガラス成分を溶融させ、P型熱電変換素子11とN型熱電変換素子12が接合された接合体13を形成した。   (4) Next, this joined body is introduced into a tunnel furnace set at 900 ° C. in the atmosphere to melt the glass component constituting the glass paste 14a, and the P-type thermoelectric conversion element 11 and the N-type thermoelectric conversion element 12 A joined body 13 was formed.

(5)それから、P型熱電変換素子11とN型熱電変換素子12が接合された接合体13の、導電面となる上下両面を平坦になるよう研磨した後、接合体13をめっき浴に入れてめっきを施した。これにより、図6に示すように、接合体13の研磨された上下両面に、膜厚4〜11μmのNiめっき膜からなるめっき電極16が形成される。なお、図6では接合体13の上面側のめっき電極16のみを示しているが、接合体13の下面側にも対称領域にめっき電極が形成されている。また、図5の段階におけるガラスペースト14aは、図6以降の段階では、焼成後のガラス14となり絶縁材料として機能する。
ここでNiめっき膜(めっき電極)16を形成する方法としては、電解めっき法、無電解めっき法のいずれの手法を用いてもよい。
(5) Then, after polishing the joined body 13 in which the P-type thermoelectric conversion element 11 and the N-type thermoelectric conversion element 12 are joined so that the upper and lower surfaces as the conductive surfaces become flat, the joined body 13 is put in a plating bath. Plating. Thereby, as shown in FIG. 6, the plating electrode 16 which consists of Ni plating film with a film thickness of 4-11 micrometers is formed in the upper and lower surfaces where the joined body 13 was grind | polished. In FIG. 6, only the plating electrode 16 on the upper surface side of the joined body 13 is shown, but a plating electrode is also formed in a symmetrical region on the lower surface side of the joined body 13. Moreover, the glass paste 14a in the stage of FIG. 5 becomes the glass 14 after baking in the stage after FIG. 6, and functions as an insulating material.
Here, as a method of forming the Ni plating film (plating electrode) 16, any method of an electrolytic plating method and an electroless plating method may be used.

(6)そして、このめっき電極16を形成した接合体13を大気雰囲気中で、400℃、15分の条件で熱処理した。これにより、P型熱電変換素子11およびN型熱電変換素子12とめっき電極16の界面の高抵抗分が除去され、P型およびN型熱電変換材料11,12の表面に形成されためっき電極16は低抵抗のものになる。   (6) The joined body 13 on which the plating electrode 16 was formed was heat-treated in the atmosphere at 400 ° C. for 15 minutes. Thereby, the high resistance component at the interface between the P-type thermoelectric conversion element 11 and the N-type thermoelectric conversion element 12 and the plating electrode 16 is removed, and the plating electrode 16 formed on the surfaces of the P-type and N-type thermoelectric conversion materials 11 and 12. Becomes low resistance.

(7)次いで、めっき電極16上の金属板(この実施例では銅板)を接合すべき領域に、Cuペーストを塗布した後、図7に示すように、接合体13を構成するP型熱電変換素子11とN型熱電変換素子12が直列に接続されるようなパターンで、厚さ0.5mmの金属板(Cu板)15を配列し、窒素中で、860℃、15分の条件で熱処理を行った。これにより、Cu板15がCuペーストを介して、接合体13に固着され、P型熱電変換素子11とN型熱電変換素子12が直列に接続された熱電変換モジュール20が得られる。   (7) Next, after applying the Cu paste to the region where the metal plate (copper plate in this embodiment) on the plating electrode 16 is to be joined, as shown in FIG. 7, P-type thermoelectric conversion constituting the joined body 13 The metal plate (Cu plate) 15 having a thickness of 0.5 mm is arranged in a pattern in which the element 11 and the N-type thermoelectric conversion element 12 are connected in series, and heat treatment is performed in nitrogen at 860 ° C. for 15 minutes. Went. Thereby, the Cu plate 15 is fixed to the joined body 13 via the Cu paste, and the thermoelectric conversion module 20 in which the P-type thermoelectric conversion element 11 and the N-type thermoelectric conversion element 12 are connected in series is obtained.

また、比較のため、上記(6)の工程において、400℃で15分の熱処理を窒素雰囲気中で行い、その他の工程は同じとして、比較例の熱電変換モジュールを作製した。   For comparison, in the step (6), a heat treatment was performed at 400 ° C. for 15 minutes in a nitrogen atmosphere, and the other steps were the same, and a thermoelectric conversion module of a comparative example was manufactured.

そして、上述のようにして作製した熱電変換モジュール20と比較例の熱電変換モジュールの抵抗を測定した。   And resistance of the thermoelectric conversion module 20 produced as mentioned above and the thermoelectric conversion module of a comparative example was measured.

その結果、上記(6)の工程において、窒素雰囲気(還元性雰囲気)中で熱処理したものは2650Ωであったのに対して、大気雰囲気中で熱処理したものは抵抗が65Ωと低く、大気雰囲気中で熱処理することにより低抵抗の熱電変換モジュールが得られることが確認された。   As a result, in the above step (6), the heat treatment in the nitrogen atmosphere (reducing atmosphere) was 2650Ω, whereas the heat treatment in the air atmosphere had a low resistance of 65Ω, so It was confirmed that a low-resistance thermoelectric conversion module can be obtained by heat treatment at

この結果から、めっき電極が形成された接合体を熱処理する際に大気中で熱処理することにより、窒素雰囲気中で熱処理したものより抵抗が低く、熱電変換により発電された電気エネルギーを効率よく外部に取り出すことが可能な熱電変換モジュールが得られることがわかる。   From this result, when heat-treating the joined body on which the plating electrode is formed in the air, the resistance is lower than that heat-treated in a nitrogen atmosphere, and the electric energy generated by thermoelectric conversion is efficiently transferred to the outside. It turns out that the thermoelectric conversion module which can be taken out is obtained.

上記実施例2では、P型熱電変換材料とN型熱電変換材料との間に介在させる絶縁材料としてガラスペースト(ガラス)を用いているが、絶縁材料としては、場合によっては、樹脂系材料や、接着性を有するセラミックペーストなどを用いることも可能である。   In Example 2 described above, glass paste (glass) is used as an insulating material interposed between the P-type thermoelectric conversion material and the N-type thermoelectric conversion material. It is also possible to use an adhesive ceramic paste or the like.

また、上記実施例2では、金属板としてCu板を用いたが、Cu板の代わりに、Ag板、Mo板などを用いることも可能である。   Moreover, in the said Example 2, although Cu board was used as a metal plate, it is also possible to use Ag board, Mo board, etc. instead of Cu board.

また、上記実施例では、めっき電極が形成された接合体を熱処理するにあたって、大気雰囲気中で熱処理を行ったが、熱処理は大気中に限らず、他の酸化性雰囲気中で行うようにすることも可能である。   Further, in the above embodiment, the heat treatment is performed in the air atmosphere when heat-treating the joined body on which the plating electrode is formed. However, the heat treatment is not limited to the air, but should be performed in another oxidizing atmosphere. Is also possible.

なお、本発明は、さらにその他の点においても上記実施例に限定されるものではなく、P型熱電変換材料およびN型熱電変換材料の組成やその原料、熱電変換モジュールの具体的な構造、製造時の具体的な条件(例えば、寸法や焼成条件、熱電変換モジュールを構成する熱電変換素子の数など)などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。   In addition, the present invention is not limited to the above-described embodiments in other points. The composition of the P-type thermoelectric conversion material and the N-type thermoelectric conversion material, the raw material thereof, the specific structure and production of the thermoelectric conversion module. Various applications and modifications can be made within the scope of the invention with respect to specific conditions (for example, dimensions, firing conditions, the number of thermoelectric conversion elements constituting the thermoelectric conversion module, etc.).

上述のように、本発明によれば、P型熱電変換材料とN型熱電変換材料を電気的に接続するための金属板を、接合部における抵抗を低く抑えつつ、P型およびN型熱電変換材料に確実に接合することが可能で、熱電変換材料の占有率が高く、低抵抗で特性の良好な熱電変換モジュールを効率よく製造することができる。
したがって、本発明は、素子の高い占有率と、高い熱電変換効率が求められる熱電変換モジュールの技術分野に広く適用することができる。
As described above, according to the present invention, the metal plate for electrically connecting the P-type thermoelectric conversion material and the N-type thermoelectric conversion material can be used while the resistance at the joint is kept low, and the P-type and N-type thermoelectric conversions. A thermoelectric conversion module that can be reliably bonded to the material, has a high occupation ratio of the thermoelectric conversion material, has low resistance, and has good characteristics can be efficiently manufactured.
Therefore, the present invention can be widely applied to the technical field of thermoelectric conversion modules that require high element occupancy and high thermoelectric conversion efficiency.

1 熱電変換素子
1a めっき電極を形成する前の熱電変換素子
1b 熱処理前の熱電変換素子
4 ガラス
6 めっき電極(めっき膜)
10 セラミックス球状粒子(酸化ジルコニウムビーズ)
11 P型熱電変換材料(P型熱電変換素子)
12 N型熱電変換材料(N型熱電変換素子)
13 接合体
14a ガラスペースト
14 ガラス
15 金属板(Cu板)
16 めっき電極
20 熱電変換モジュール
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion element 1a Thermoelectric conversion element before forming a plating electrode 1b Thermoelectric conversion element before heat processing 4 Glass 6 Plating electrode (plating film)
10 Ceramic spherical particles (zirconium oxide beads)
11 P-type thermoelectric conversion material (P-type thermoelectric conversion element)
12 N-type thermoelectric conversion material (N-type thermoelectric conversion element)
13 Joints
14a Glass paste 14 Glass 15 Metal plate (Cu plate)
16 Plating electrode 20 Thermoelectric conversion module

Claims (6)

P型熱電変換材料とN型熱電変換材料とが絶縁材料を介して接合され、前記絶縁材料を介して接合された領域以外の領域において、P型熱電変換材料とN型熱電変換材料とが電気的に接続された構造を有する熱電変換モジュールの製造方法であって、
P型熱電変換材料と、N型熱電変換材料を準備する工程と、
前記P型熱電変換材料と前記N型熱電変換材料とを、絶縁材料を介して接合して接合体を形成する工程と、
前記接合体にめっきを施すことにより、前記P型熱電変換材料と前記N型熱電変換材料の、前記絶縁材料を介して接合された領域以外の領域に、めっき膜からなるめっき電極を形成する工程と、
前記めっき電極が形成された前記接合体を、酸化性雰囲気中で熱処理する工程と
を具備することを特徴とする熱電変換モジュールの製造方法。
The P-type thermoelectric conversion material and the N-type thermoelectric conversion material are bonded via an insulating material, and the P-type thermoelectric conversion material and the N-type thermoelectric conversion material are electrically connected in a region other than the region bonded via the insulating material. A method for manufacturing a thermoelectric conversion module having an electrically connected structure,
Preparing a P-type thermoelectric conversion material and an N-type thermoelectric conversion material;
Bonding the P-type thermoelectric conversion material and the N-type thermoelectric conversion material via an insulating material to form a joined body;
A step of forming a plating electrode made of a plating film in a region other than a region of the P-type thermoelectric conversion material and the N-type thermoelectric conversion material joined via the insulating material by plating the joined body. When,
And a step of heat-treating the joined body on which the plating electrode is formed in an oxidizing atmosphere.
前記P型熱電変換材料に形成された前記めっき電極と、前記N型熱電変換材料に形成された前記めっき電極とを、金属板を介して電気的に接続する工程をさらに具備することを特徴とする請求項1記載の熱電変換モジュールの製造方法。   The method further comprises a step of electrically connecting the plating electrode formed on the P-type thermoelectric conversion material and the plating electrode formed on the N-type thermoelectric conversion material via a metal plate. The manufacturing method of the thermoelectric conversion module of Claim 1 to do. 前記めっき電極が形成された前記接合体を熱処理する際の前記酸化性雰囲気が大気雰囲気であることを特徴とする請求項1または2記載の熱電変換モジュールの製造方法。   The method for manufacturing a thermoelectric conversion module according to claim 1 or 2, wherein the oxidizing atmosphere when heat-treating the joined body on which the plating electrode is formed is an air atmosphere. 前記めっき電極が形成された前記接合体を熱処理する際の温度が400〜500℃であることを特徴とする請求項1〜3のいずれかに記載の熱電変換モジュールの製造方法。   The method for manufacturing a thermoelectric conversion module according to any one of claims 1 to 3, wherein a temperature when the joined body on which the plating electrode is formed is heat-treated is 400 to 500 ° C. 前記P型熱電変換材料および前記N型熱電変換材料が酸化物からなる熱電変換材料であることを特徴とする請求項1〜4のいずれかに記載の熱電変換モジュールの製造方法。   The method for manufacturing a thermoelectric conversion module according to claim 1, wherein the P-type thermoelectric conversion material and the N-type thermoelectric conversion material are thermoelectric conversion materials made of oxide. P型熱電変換材料とN型熱電変換材料とが絶縁材料を介して接合され、
P型熱電変換材料とN型熱電変換材料の、前記絶縁材料を介して接合された領域以外の領域には、めっき膜からなり、比抵抗が1Ω・cm以下であるめっき電極が形成されており、
前記P型熱電変換材料に形成された前記めっき電極と、前記N型熱電変換材料に形成された前記めっき電極とが、金属板を介して電気的に接続されていること
を特徴とする熱電変換モジュール。
The P-type thermoelectric conversion material and the N-type thermoelectric conversion material are joined via an insulating material,
A region of the P-type thermoelectric conversion material and the N-type thermoelectric conversion material other than the region joined via the insulating material is formed of a plating film, and a plating electrode having a specific resistance of 1 Ω · cm or less is formed. ,
The thermoelectric conversion characterized in that the plating electrode formed on the P-type thermoelectric conversion material and the plating electrode formed on the N-type thermoelectric conversion material are electrically connected via a metal plate. module.
JP2009144156A 2009-06-17 2009-06-17 Method for manufacturing thermoelectric conversion module and thermoelectric conversion module Pending JP2011003640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009144156A JP2011003640A (en) 2009-06-17 2009-06-17 Method for manufacturing thermoelectric conversion module and thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009144156A JP2011003640A (en) 2009-06-17 2009-06-17 Method for manufacturing thermoelectric conversion module and thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2011003640A true JP2011003640A (en) 2011-01-06

Family

ID=43561393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009144156A Pending JP2011003640A (en) 2009-06-17 2009-06-17 Method for manufacturing thermoelectric conversion module and thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2011003640A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101322791B1 (en) 2012-04-17 2013-10-29 한국세라믹기술원 Thermoelectric material having enhanced power density and mechanical strength and the manufacturing method of the same
WO2014010588A1 (en) * 2012-07-10 2014-01-16 株式会社 東芝 Thermoelectric conversion material, thermoelectric conversion module using same, and method for manufacturing thermoelectric conversion material
CN110770924A (en) * 2017-06-29 2020-02-07 三菱综合材料株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352107A (en) * 2000-06-07 2001-12-21 Nissan Motor Co Ltd Method of manufacturing thermoelectric conversion module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001352107A (en) * 2000-06-07 2001-12-21 Nissan Motor Co Ltd Method of manufacturing thermoelectric conversion module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101322791B1 (en) 2012-04-17 2013-10-29 한국세라믹기술원 Thermoelectric material having enhanced power density and mechanical strength and the manufacturing method of the same
WO2014010588A1 (en) * 2012-07-10 2014-01-16 株式会社 東芝 Thermoelectric conversion material, thermoelectric conversion module using same, and method for manufacturing thermoelectric conversion material
JPWO2014010588A1 (en) * 2012-07-10 2016-06-23 株式会社東芝 Thermoelectric conversion material, thermoelectric conversion module using the same, and method of manufacturing thermoelectric conversion material
US9837593B2 (en) 2012-07-10 2017-12-05 Kabushiki Kaisha Toshiba Thermoelectric conversion material, thermoelectric conversion module using the same, and manufacturing method of the same
CN110770924A (en) * 2017-06-29 2020-02-07 三菱综合材料株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN110770924B (en) * 2017-06-29 2023-11-14 三菱综合材料株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP6750404B2 (en) Thermoelectric conversion module, thermoelectric conversion device, and method for manufacturing thermoelectric conversion module
JP6249382B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP7163631B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
WO2009150908A1 (en) Thermoelectric converter element and conductive member for thermoelectric converter element
JP7196432B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2019102808A (en) Insulating heat transfer substrate, thermoelectric conversion module, and method of manufacturing insulating heat transfer substrate
JP5158200B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2013197265A (en) Thermoelectric conversion module
JPH11121815A (en) Thermoelectric element
JP2011003640A (en) Method for manufacturing thermoelectric conversion module and thermoelectric conversion module
CN108028306B (en) Thermoelectric conversion module and thermoelectric conversion device
JP5537202B2 (en) Thermoelectric conversion module
CN115004391A (en) Thermoelectric conversion module
WO2009142240A1 (en) Thermoelectric conversion module and process for producing thermoelectric conversion module
JP5218285B2 (en) Thermoelectric conversion material
TWI752242B (en) Thermoelectric conversion module and method for producing thermoelectric conversion module
JP7248091B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
WO2022168777A1 (en) Thermoelectric conversion module, and method for producing thermoelectric conversion module
JP2008277622A (en) Thermoelectric conversion module and manufacturing method therefor
JP2002289929A (en) Thermoelectric conversion module and heat exchanger using the same
WO2014155643A1 (en) Thermoelectric conversion device
KR20240092504A (en) Flexible thermoelectric element and method thereof
JP2005302758A (en) Thermoelectric power generator
JP2017084947A (en) Thermoelectric conversion module
JP2002252379A (en) Thermoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224