JP2009273273A - Thermal power generator - Google Patents

Thermal power generator Download PDF

Info

Publication number
JP2009273273A
JP2009273273A JP2008122665A JP2008122665A JP2009273273A JP 2009273273 A JP2009273273 A JP 2009273273A JP 2008122665 A JP2008122665 A JP 2008122665A JP 2008122665 A JP2008122665 A JP 2008122665A JP 2009273273 A JP2009273273 A JP 2009273273A
Authority
JP
Japan
Prior art keywords
guide wall
heat
exhaust
heat collecting
thermoelectric generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008122665A
Other languages
Japanese (ja)
Other versions
JP4986925B2 (en
Inventor
Yoshihiko Takasu
芳彦 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2008122665A priority Critical patent/JP4986925B2/en
Publication of JP2009273273A publication Critical patent/JP2009273273A/en
Application granted granted Critical
Publication of JP4986925B2 publication Critical patent/JP4986925B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact thermal power generator which has a small height difference in heating temperature distribution to a plurality of heat generating elements and has a high power generation efficiency. <P>SOLUTION: An exhaust gas flow part 7 for guiding an exhaust gas flow from a radiation type burner 5 comprises: a first guide wall 13 for receiving the radiation heat from the radiation type burner 5, a second guide wall 14 for receiving the exhaust heat, and a third guide wall 15 having an exhaust outlet 22 formed therein. The inside space of the guide walls is gradually reduced from the upstream side to downstream side in the flowing direction of the exhaust gas. Heat generating elements 3 are mounted onto the respective outside surfaces of the guide walls 13, 14, 15. The first guide wall 13 is provided with a first heat collecting part 18, and the second guide wall 14 is provided with a second heat collecting part 21. The maximum projection length of the first heat collecting fin 17 of the first heat collecting part 18 is made shorter than that of the second heat collecting fin 20 of the second heat collecting part 21. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱発電素子の高温側をバーナの熱により加熱して発電を行う熱発電装置に関する。   The present invention relates to a thermoelectric generator that generates electricity by heating a high temperature side of a thermoelectric generator with heat from a burner.

熱発電素子は、周知のようにN型半導体とP型半導体との間に閉回路が形成され、高温側と低温側とに温度差を付与することにより起電力が得られる。熱発電素子から得られた電力は他の電気部品に供給したり、バッテリ等に蓄電することができる。   As is well known, a thermoelectric generator has a closed circuit formed between an N-type semiconductor and a P-type semiconductor, and an electromotive force is obtained by applying a temperature difference between a high temperature side and a low temperature side. The electric power obtained from the thermoelectric generator can be supplied to other electrical components or stored in a battery or the like.

従来、下記特許文献1に見られるように熱発電素子をバーナの火炎により加熱して発電を行う装置が知られている。この装置では、フィンを備える加熱プレートに熱発電素子の高温側を密着させ、フィンをバーナの火炎の近傍(直上)に配置させることにより、火炎の熱を直接的にフィンによって吸熱して熱発電素子に供給している。   2. Description of the Related Art Conventionally, as can be seen in Patent Document 1 below, an apparatus is known that generates power by heating a thermoelectric generator with a burner flame. In this device, the high temperature side of the thermoelectric generator is brought into close contact with a heating plate equipped with fins, and the fins are arranged in the vicinity (directly above) of the flame of the burner, so that the heat of the flame is directly absorbed by the fins for thermoelectric generation. Supplying to the element.

また、それ以外には、下記特許文献2に見られるように熱発電素子を内燃機関の排ガス流路に配設して排気ガスの熱により発電を行う装置が知られている。この装置では、排ガス流路を流動する排ガスが有する熱を排ガス流路内に突出するフィンにより吸熱し、フィンに密着させた熱発電素子によって発電が行われるようになっている。
特開平11−55975号公報 特開平11−122960号公報
In addition to this, there is known a device that generates heat by the heat of exhaust gas by arranging a thermoelectric generator in an exhaust gas flow path of an internal combustion engine as seen in Patent Document 2 below. In this apparatus, heat generated by the exhaust gas flowing through the exhaust gas channel is absorbed by the fins protruding into the exhaust gas channel, and power is generated by the thermoelectric generator that is in close contact with the fins.
JP-A-11-55975 Japanese Patent Laid-Open No. 11-122960

しかし、特許文献1の装置では、バーナの火炎による熱を直接フィンで受けることによりフィンに密着する熱発電素子の高温側を加熱する構成であるために、多数の熱発電素子を設けた場合には、それに応じて火炎の形成面積の広いバーナを用いる必要がある。即ち、より多くの電力を得るために多数の熱発電素子を設けた場合、各熱発電素子の高温側に密着するフィンの全てを加熱可能な火炎を形成する必要がある。このために、バーナが大型化し、装置をコンパクトに構成することが困難となる。   However, in the apparatus of Patent Document 1, since the heat generated by the burner flame is directly received by the fins to heat the high temperature side of the thermoelectric elements closely attached to the fins, when a large number of thermoelectric elements are provided, Accordingly, it is necessary to use a burner having a large flame formation area. That is, when a large number of thermoelectric generators are provided in order to obtain more electric power, it is necessary to form a flame capable of heating all the fins that are in close contact with the high temperature side of each thermoelectric generator. For this reason, a burner becomes large-sized and it becomes difficult to comprise an apparatus compactly.

一方、特許文献2の装置では、排ガスが有する熱は、火炎から直接得られる熱に比べて温度が低く、フィンによる熱吸収を効率よく行う必要があることから、排ガス流路内へのフィンの突出量が比較的大きくなる。このため、この構成を火炎による直接加熱に採用すると熱発電素子の加熱に伴いフィンの先端への熱負荷が極めて大きくなり、フィンの耐久性が低下するおそれがあるだけでなく、フィンの劣化により熱発電素子に対して均一な加熱配分が得られず、発電効率が低くなる不都合がある。   On the other hand, in the apparatus of Patent Document 2, the heat of the exhaust gas is lower than the heat directly obtained from the flame, and it is necessary to efficiently absorb heat by the fins. The amount of protrusion is relatively large. For this reason, when this configuration is used for direct heating by a flame, the heat load on the tip of the fin becomes extremely large with the heating of the thermoelectric element, which may reduce the durability of the fin, There is an inconvenience that uniform heating distribution cannot be obtained for the thermoelectric generator and the power generation efficiency is lowered.

本発明は、以上の点に鑑み、コンパクトに構成することができ、しかも複数の熱発電素子に対する加熱温度配分の高低差が少なく発電効率の高い熱発電装置を提供することを課題とする。   In view of the above points, it is an object of the present invention to provide a thermoelectric generator that can be configured compactly and that has a small difference in heating temperature distribution with respect to a plurality of thermoelectric generators and has high power generation efficiency.

本発明は、上記課題を解決するために、燃焼加熱手段と、該燃焼加熱手段の熱により発電する複数の熱発電素子とを備える熱発電装置において、前記燃焼加熱手段は、燃焼板の表面に火炎を形成する輻射式バーナと、該輻射式バーナの排気の流動を案内する排気流動部とを備え、該排気流動部は、排気の流動方向の上流側から下流側にかけて内部が次第に狭くなる形状に形成されていると共に、上流側に位置し、前記輻射式バーナから輻射熱を受けつつ排気を案内する第1案内壁と、該第1案内壁の下流側に連設され、排気熱を受けつつ排気を案内する第2案内壁と、該第2案内壁の下流側に連設されて排気熱を受けつつ排気を案内し、終端に排気出口が形成された第3案内壁とを備え、各熱発電素子は、前記第1案内壁の外側面と前記第2案内壁の外側面と前記第3案内壁の外側面との夫々に高温側を密着させて取り付けられ、前記第1案内壁と前記第2案内壁とは、排気流動部の内部に向かって突出する複数の集熱フィンが形成された集熱部を備え、前記第1案内壁の集熱部は、前記第2案内壁の集熱部よりも集熱フィンの最大突出寸法が小とされていることを特徴とする。   In order to solve the above-described problems, the present invention provides a thermoelectric generator including a combustion heating unit and a plurality of thermoelectric generators that generate electric power using the heat of the combustion heating unit. A radiant burner that forms a flame, and an exhaust flow portion that guides the flow of exhaust gas from the radiant burner, the exhaust flow portion having a shape in which the inside gradually narrows from the upstream side to the downstream side in the flow direction of the exhaust gas And a first guide wall that is located upstream and guides exhaust while receiving radiant heat from the radiant burner, and is connected to the downstream side of the first guide wall and receives exhaust heat. A second guide wall for guiding the exhaust, and a third guide wall provided downstream of the second guide wall to guide the exhaust while receiving the exhaust heat, and having an exhaust outlet at the end. The thermoelectric generator includes the outer surface of the first guide wall and the second guide wall. The outer side surface of the inner wall and the outer side surface of the third guide wall are attached in close contact with the high temperature side, and the first guide wall and the second guide wall protrude toward the inside of the exhaust flow part. A heat collecting portion formed with a plurality of heat collecting fins, wherein the heat collecting portion of the first guide wall has a smaller maximum projecting dimension of the heat collecting fin than the heat collecting portion of the second guide wall; It is characterized by that.

本発明は、前記燃焼加熱手段が輻射式バーナを備えることにより、輻射式バーナから輻射熱と燃焼排気熱とを得ることができる。そこで、前記排気流動部においては、輻射式バーナからの輻射熱を受ける範囲に位置する前記第1案内壁に集熱部を設け、輻射式バーナの輻射熱により該第1案内壁の外側面に取り付けた熱発電素子を加熱する。これによって、熱発電素子の起電力はその殆どが輻射熱によって得ることができ、第1案内壁の集熱部の集熱フィンの最大突出寸法を比較的小さくすることができ、コンパクトとなる。   In the present invention, when the combustion heating means includes a radiant burner, radiant heat and combustion exhaust heat can be obtained from the radiant burner. Therefore, in the exhaust flow part, a heat collecting part is provided on the first guide wall located in a range where the radiant heat from the radiant burner is received, and is attached to the outer surface of the first guide wall by the radiant heat of the radiant burner. The thermoelectric generator is heated. As a result, most of the electromotive force of the thermoelectric generator can be obtained by radiant heat, and the maximum projecting dimension of the heat collecting fins of the heat collecting portion of the first guide wall can be made relatively small, resulting in compactness.

一方、前記第2案内壁の集熱部においては、輻射式バーナの燃焼排気熱から吸熱し、該第2案内壁の外側面に取り付けた熱発電素子を加熱する。このとき、前記第1案内壁の集熱部は、前記第2案内壁の集熱部よりも集熱フィンの最大突出寸法が小とされているので、第1案内壁を通過する排気熱の低下が抑制される。特に、輻射式バーナは輻射熱生成に伴い排気熱が減少するが、第1案内壁の集熱部では集熱フィンの最大突出寸法が小さく形成されていて排気熱からの吸熱量が小さいので、燃焼排気は十分に高温の状態で第2案内壁の集熱部に接する。これにより、輻射熱生成による排気熱の減少分を第2案内壁の集熱部に備える最大突出寸法が大きな集熱フィンの集熱により補うことができ、このように第1案内壁と第2案内壁とで集熱フィンの最大突出寸法の大小が調整されていることにより、第1案内壁と第2案内壁との温度分布を均一化することができる。   On the other hand, in the heat collecting part of the second guide wall, heat is absorbed from the combustion exhaust heat of the radiant burner, and the thermoelectric generator attached to the outer surface of the second guide wall is heated. At this time, the heat collection part of the first guide wall has a smaller maximum projecting dimension of the heat collection fin than the heat collection part of the second guide wall, so that the exhaust heat passing through the first guide wall is reduced. Reduction is suppressed. In particular, the radiant burner reduces the exhaust heat with the generation of radiant heat, but the heat collection part of the first guide wall is formed with a small maximum protrusion size of the heat collection fins, and the amount of heat absorbed from the exhaust heat is small. The exhaust is in contact with the heat collecting portion of the second guide wall in a sufficiently high temperature state. As a result, the reduction in exhaust heat due to the generation of radiant heat can be compensated by the heat collection of the heat collection fins with the largest maximum projection size provided in the heat collection portion of the second guide wall, and thus the first guide wall and the second guide By adjusting the size of the maximum protrusion dimension of the heat collecting fin with the wall, the temperature distribution between the first guide wall and the second guide wall can be made uniform.

更に、排気流動部は、排気の流動方向の上流側から下流側にかけて内部が次第に狭くなる形状に形成されているので、第2案内壁を経て第3案内壁に沿って流れる燃焼排気の速度が増加する。そして、流速が増した燃焼排気によって第3案内壁を十分に加熱することができ、第3案内壁を絞って(狭くして)燃焼排気の流速を適度に調整しておくことにより、第1案内壁及び第2案内壁と第3案内壁との温度分布を均一化することができる。また、これにより、第3案内壁においては第1案内壁や第2案内壁に設けられているような集熱フィンを不要とすることができ、排気出口における燃焼排気の圧力損失を抑えて燃焼排気の円滑な流動を得ることができる。   Further, since the exhaust flow portion is formed in a shape in which the inside gradually narrows from the upstream side to the downstream side in the flow direction of the exhaust gas, the speed of the combustion exhaust gas flowing along the third guide wall through the second guide wall is increased. To increase. The third guide wall can be sufficiently heated by the combustion exhaust gas having an increased flow velocity, and the first guide wall can be narrowed (narrowed) to adjust the flow velocity of the combustion exhaust gas appropriately. The temperature distribution of the guide wall and the second guide wall and the third guide wall can be made uniform. This also eliminates the need for the heat collection fins provided in the first guide wall and the second guide wall in the third guide wall, and suppresses the pressure loss of the combustion exhaust at the exhaust outlet and performs combustion. A smooth flow of exhaust can be obtained.

このように、本発明によれば、排気流動部の各案内壁の外側面に熱発電素子が配設されていても、排気の流動方向に沿って温度分布を均一化することが可能であるので、各熱発電素子に対する加熱温度配分の高低差を少なくして発電効率の高い熱発電装置を提供することができる。また、第1案内壁において輻射熱を受ける集熱フィンの突出寸法が小さく第2案内壁において排気熱を受ける集熱フィンの突出寸法が大きいことにより、集熱フィンの温度が必要以上に高くなるならず、集熱フィンの耐久性の低下を防止することができる。更に、輻射熱と排気熱とを用いて第1案内壁から第3案内壁にわたる温度分布を均一化することができるので、従来のようにバーナを大型化させることなく複数の熱発電素子を加熱することができ、コンパクトに構成することができる。   Thus, according to the present invention, it is possible to make the temperature distribution uniform along the flow direction of the exhaust gas even if the thermoelectric generator is disposed on the outer surface of each guide wall of the exhaust gas flow portion. Therefore, it is possible to provide a thermoelectric generator having high power generation efficiency by reducing the difference in heating temperature distribution between the thermoelectric generators. Further, if the temperature of the heat collecting fins becomes higher than necessary due to the small protruding size of the heat collecting fins receiving radiant heat at the first guide wall and the large protruding size of the heat collecting fins receiving exhaust heat at the second guide wall. Therefore, it is possible to prevent the durability of the heat collecting fins from being lowered. Furthermore, since the temperature distribution from the first guide wall to the third guide wall can be made uniform using radiant heat and exhaust heat, a plurality of thermoelectric generators can be heated without increasing the size of the burner as in the prior art. Can be configured compactly.

また、本発明において、前記熱発電素子は、前記排気流動部の各案内壁毎に、排気の流動方向に交差する横方向に所定間隔を存して複数配設され、前記集熱部は、各熱発電素子に対応して、排気の流動方向に交差する横方向に所定間隔を存して複数配設されていることを特徴とする。   Further, in the present invention, a plurality of the thermoelectric generators are arranged at predetermined intervals in the transverse direction intersecting the flow direction of the exhaust for each guide wall of the exhaust flow portion, Corresponding to each thermoelectric generation element, a plurality of them are arranged at predetermined intervals in the lateral direction intersecting the flow direction of the exhaust gas.

複数の熱発電素子は、排気の流動方向に沿って(即ち縦方向に沿って)配列するだけでなく、横方向にも配列させて設けることで、より多くの電力を得ることができる。このとき、前記集熱部を、横方向に並ぶ熱発電素子の並び方向に沿って連続して設けると、夫々の案内壁においては、熱発電素子の高温側が密着する位置での熱吸収により温度低下が生じ、横方向に隣合う熱発電素子の間隔位置では熱吸収が少ない分、温度が高くなるので、各案内壁毎に横方向に均一な温度分布を得ることができない。   The plurality of thermoelectric generators can be arranged not only along the flow direction of the exhaust gas (that is, along the vertical direction) but also in the horizontal direction, so that more electric power can be obtained. At this time, if the heat collecting part is continuously provided along the arrangement direction of the thermoelectric generators arranged in the lateral direction, each guide wall has a temperature due to heat absorption at a position where the high temperature side of the thermoelectric generator is in close contact. The temperature is increased by the amount of heat absorption at the interval between the adjacent thermoelectric generators in the horizontal direction, so that a uniform temperature distribution in the horizontal direction cannot be obtained for each guide wall.

そこで、本発明においては、複数の集熱部を、各熱発電素子の高温部が密着する位置に対応するように横方向に所定間隔を存して配設することにより、熱発電素子の高温部が密着する位置での集熱量を増加させる。こうすることにより、各熱発電素子による局部的な熱吸収を集熱部による集熱により補うことができると同時に、横方向に隣合う熱発電素子の間隔位置での温度上昇を抑えることができ、温度分布を横方向に均一化することができる。従って、本発明によれば、横方向に並ぶ熱発電素子に対しても加熱温度配分の高低差を少なくすることができ、発電効率を一層向上させることができる。   Therefore, in the present invention, the plurality of heat collecting portions are arranged at predetermined intervals in the lateral direction so as to correspond to the positions where the high temperature portions of the respective thermoelectric generators are in close contact with each other. Increases the amount of heat collected at the position where the parts are in close contact. In this way, local heat absorption by each thermoelectric generator can be supplemented by heat collection by the heat collector, and at the same time, temperature rise at the interval between adjacent thermoelectric generators in the lateral direction can be suppressed. The temperature distribution can be made uniform in the horizontal direction. Therefore, according to the present invention, the difference in heating temperature distribution can be reduced even for thermoelectric generators arranged in the horizontal direction, and the power generation efficiency can be further improved.

本発明の一実施形態を図面に基づいて説明する。図1は本実施形態の熱発電装置の構成をその一部を取り除いて示す説明図、図2は排気流動部をその一側壁を取り除いて示す説明的斜視図、図3は一方の第1案内壁の説明的横断面図、図4は一方の第2案内壁の説明的横断面図、図5(a)は本実施形態の第1案内壁における温度測定点とその温度を示す説明図、図5(b)は比較例の第1案内壁における温度測定点とその温度を示す説明図である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing a configuration of the thermoelectric generator of the present embodiment with a part thereof removed, FIG. 2 is an explanatory perspective view showing an exhaust flow part with one side wall removed, and FIG. 3 is one first guide. 4 is an explanatory cross-sectional view of the wall, FIG. 4 is an explanatory cross-sectional view of one of the second guide walls, FIG. 5A is an explanatory view showing temperature measurement points and their temperatures on the first guide wall of the present embodiment, FIG. 5B is an explanatory diagram showing temperature measurement points and their temperatures on the first guide wall of the comparative example.

本実施形態の熱発電装置1は、図1に示すように、燃焼加熱手段2と熱発電素子3とを備えている。熱発電素子3は、高温側3aと低温側3bとに温度差を付与することにより起電力が得られるものであり、燃焼加熱手段2により高温側3aが加熱される。また、熱発電素子3の低温側3bには、内部に冷却媒体が供給される冷却ブロック4が密着して取り付けられている。熱発電素子3から得られた電力は、図外の電気部品や蓄電池等に送られる。   As shown in FIG. 1, the thermoelectric generator 1 of this embodiment includes a combustion heating unit 2 and a thermoelectric generator 3. In the thermoelectric generator 3, an electromotive force is obtained by giving a temperature difference between the high temperature side 3a and the low temperature side 3b, and the high temperature side 3a is heated by the combustion heating means 2. A cooling block 4 to which a cooling medium is supplied is closely attached to the low temperature side 3b of the thermoelectric generator 3. The electric power obtained from the thermoelectric generator 3 is sent to electric parts, storage batteries, etc., not shown.

燃焼加熱手段2は、図1に示すように、輻射熱と燃焼排気とを生成する輻射式バーナ5と、該輻射式バーナ5を収容して支持するバーナ支持部6と、該バーナ支持部6の上方に延びて、輻射式バーナ5から発生する燃焼排気の上昇方向への流動を案内する排気流動部7とを備えている。   As shown in FIG. 1, the combustion heating means 2 includes a radiant burner 5 that generates radiant heat and combustion exhaust, a burner support 6 that accommodates and supports the radiant burner 5, and the burner support 6. An exhaust flow portion 7 is provided that extends upward and guides the flow of combustion exhaust generated from the radiant burner 5 in the upward direction.

輻射式バーナ5は、図1に示すように、バーナ本体8の上部開口面にセラミック製の燃焼板9を装着し、混合管10を介してバーナ本体8内に供給される燃料ガスと一次空気の混合気を燃焼板9に形成した多数の炎孔から噴出させて燃焼させるように構成されている。   As shown in FIG. 1, the radiant burner 5 is provided with a ceramic combustion plate 9 on the upper opening surface of the burner body 8, and fuel gas and primary air supplied into the burner body 8 through a mixing tube 10. The air-fuel mixture is ejected from a number of flame holes formed in the combustion plate 9 and burned.

排気流動部7は、図1及び図2に示すように、互いに対向する一対の第1側壁11と、両第1側壁11の対向方向に直行する方向に対向する一対の第2側壁12(図示は一方のみ)とにより構成され、輻射式バーナ5から発生する燃焼排気は第1側壁11及び第2側壁12に包囲された内部を流動する。両第1側壁11には、夫々、下方から順に、第1案内壁13と第2案内壁14と第3案内壁15とが設けられている。   As shown in FIGS. 1 and 2, the exhaust flow section 7 includes a pair of first side walls 11 that face each other and a pair of second side walls 12 that face each other in a direction orthogonal to the opposing direction of the first side walls 11. The combustion exhaust generated from the radiant burner 5 flows in the interior surrounded by the first side wall 11 and the second side wall 12. The first guide wall 13, the second guide wall 14, and the third guide wall 15 are provided on the first side walls 11 in order from below.

両第1案内壁13は、上端が互いに接近する方向に傾斜して、対向間隔が次第に狭くなり、両第1案内壁13の内面側で輻射式バーナ5からの輻射熱が受けられるようになっている。また、両第1案内壁13の外側面には、排気の流動方向に交差する横方向に所定間隔を存して複数(本実施形態においては2つ)の熱発電素子3を取り付けるための第1密着部16が設けられている。各第1密着部16には、夫々の熱発電素子3の高温側3aが密着する。   Both the first guide walls 13 are inclined in the direction in which the upper ends approach each other, and the interval between the first guide walls 13 is gradually narrowed so that the radiant heat from the radiant burner 5 can be received on the inner surfaces of the first guide walls 13. Yes. A plurality of (two in the present embodiment) thermoelectric generators 3 are attached to the outer surfaces of the first guide walls 13 at predetermined intervals in the transverse direction intersecting the exhaust flow direction. One close contact portion 16 is provided. Each first close contact portion 16 is in close contact with the high temperature side 3 a of each thermoelectric generator 3.

更に、図3に示すように、両第1案内壁13の内側面には、内部に向かって突出する複数の第1集熱フィン17が形成され、この第1集熱フィン17が形成されている部分により第1集熱部18が形成されている。第1集熱部18は、第1集熱フィン17の形成されていない部分を間隔として複数部分に形成されている。各第1集熱部18は、各第1密着部16に対応する位置に有り、第1密着部16の面積よりも少し大きな範囲にわたって形成されている。   Further, as shown in FIG. 3, a plurality of first heat collecting fins 17 projecting toward the inside are formed on the inner side surfaces of the first guide walls 13, and the first heat collecting fins 17 are formed. The first heat collecting portion 18 is formed by the portion. The first heat collecting section 18 is formed in a plurality of portions with intervals where the first heat collecting fins 17 are not formed. Each first heat collecting portion 18 is located at a position corresponding to each first contact portion 16, and is formed over a range slightly larger than the area of the first contact portion 16.

両第2案内壁14は、図1及び図2に示すように、夫々の下端が第1案内壁13の上端に連接されている。両第2案内壁14も、上端が互いに接近する方向に傾斜して、対向間隔が次第に狭くなるが、内面側で受ける輻射式バーナ5からの輻射熱は両第1案内壁13よりも小さい。また、両第2案内壁14の外側面には、排気の流動方向に交差する横方向に所定間隔を存して複数(本実施形態においては2つ)の熱発電素子3を取り付けるための第2密着部19が設けられている。各第2密着部19には、夫々の熱発電素子3の高温側3aが密着する。   As shown in FIGS. 1 and 2, the lower ends of the second guide walls 14 are connected to the upper end of the first guide wall 13. Both the second guide walls 14 are also inclined in the direction in which the upper ends approach each other, and the interval between the two is gradually narrowed, but the radiant heat from the radiant burner 5 received on the inner surface side is smaller than both the first guide walls 13. A plurality of (two in the present embodiment) thermoelectric generators 3 are attached to the outer surfaces of the second guide walls 14 at predetermined intervals in the transverse direction intersecting the flow direction of the exhaust gas. Two close contact portions 19 are provided. The high temperature side 3 a of each thermoelectric generator 3 is in close contact with each second close contact portion 19.

更に、図4に示すように、両第2案内壁14の内側面には、内部に向かって突出する複数の第2集熱フィン20が形成され、この第2集熱フィン20が形成されている部分により第2集熱部21が形成されている。第2集熱部21は、第2集熱フィン20の形成されていない部分を間隔として複数部分に形成されている。各第2集熱部21は、各第2密着部19に対応する位置に有り、第2密着部19の面積よりも少し大きな範囲にわたって形成されている。   Further, as shown in FIG. 4, a plurality of second heat collecting fins 20 projecting toward the inside are formed on the inner side surfaces of the second guide walls 14, and the second heat collecting fins 20 are formed. A second heat collecting portion 21 is formed by the portion. The second heat collecting portion 21 is formed in a plurality of portions with intervals between portions where the second heat collecting fins 20 are not formed. Each second heat collecting portion 21 is located at a position corresponding to each second close contact portion 19 and is formed over a range slightly larger than the area of the second close contact portion 19.

そして、図3及び図4に示すように、第1集熱フィン17の最大突出寸法aは、第2集熱フィン20の最大突出寸法bよりも小さい。   As shown in FIGS. 3 and 4, the maximum protrusion dimension a of the first heat collection fin 17 is smaller than the maximum protrusion dimension b of the second heat collection fin 20.

両第3案内壁15は、図1及び図2に示すように、夫々の下端が第2案内壁14の上端に連接されている。両第3案内壁15は互いに略平行に上方に延び、上端において排気出口22が形成される。また、両第3案内壁15の外側面には、排気の流動方向に交差する横方向に所定間隔を存して複数(本実施形態においては2つ)の熱発電素子3を取り付けるための第3密着部23が設けられている。各第3密着部23には、夫々の熱発電素子3の高温側3aが密着する。また、両第3案内壁15の内側面は略平滑に形成されており、内部を燃焼排気が円滑に流動できるようになっている。なお、燃焼排気の流動が円滑に得られる範囲であれば、例えば両第3案内壁15の内側面から極僅かに突出する集熱フィンを設けてもよい。   As shown in FIGS. 1 and 2, the lower ends of the third guide walls 15 are connected to the upper end of the second guide wall 14. Both the third guide walls 15 extend upward substantially parallel to each other, and an exhaust outlet 22 is formed at the upper end. A plurality of (two in the present embodiment) thermoelectric generators 3 are attached to the outer surfaces of the third guide walls 15 at predetermined intervals in the transverse direction intersecting the flow direction of the exhaust gas. Three contact portions 23 are provided. The high temperature side 3 a of each thermoelectric generator 3 is in close contact with each third close contact portion 23. Further, the inner side surfaces of the third guide walls 15 are formed to be substantially smooth so that the combustion exhaust gas can flow smoothly inside. In addition, as long as the flow of combustion exhaust gas can be obtained smoothly, for example, heat collecting fins that slightly protrude from the inner side surfaces of the third guide walls 15 may be provided.

次に、以上のように構成された熱発電装置1の作動を説明する。輻射式バーナ5が燃焼すると、輻射式バーナ5からは輻射熱と燃焼排気とが生成される。輻射式バーナ5の輻射熱は、この輻射熱を受けるように傾斜している第1案内壁13に当たり、その熱が第1密着部16を経て熱発電素子3の高温側3aを加熱する。同時に、輻射式バーナ5の燃焼排気が第1集熱部18の第1集熱フィン17に接触しつつ上昇し、燃焼排気が有する熱の一部が第1集熱フィン17により集熱される。これにより、輻射熱と燃焼排気熱とで熱発電素子3の高温側3aが加熱される。熱発電素子3は低温側3bが冷却ブロック4により冷却されていることにより高温側3aと低温側3bとに温度差が生じ、これによって電力が生成させる。このとき、第1集熱フィン17はその突出寸法が比較的小さいことから、燃焼排気が有する熱を過剰に奪うことはなく、燃焼排気はその温度低下が抑えられた状態で第2案内壁14に向かう。   Next, the operation of the thermoelectric generator 1 configured as described above will be described. When the radiant burner 5 burns, the radiant burner 5 generates radiant heat and combustion exhaust. The radiant heat of the radiant burner 5 hits the first guide wall 13 inclined so as to receive this radiant heat, and the heat passes through the first contact portion 16 and heats the high temperature side 3a of the thermoelectric generator 3. At the same time, the combustion exhaust of the radiant burner 5 rises in contact with the first heat collection fins 17 of the first heat collection unit 18, and a part of the heat of the combustion exhaust is collected by the first heat collection fins 17. Thereby, the high temperature side 3a of the thermoelectric generator 3 is heated by the radiant heat and the combustion exhaust heat. The thermoelectric generator 3 has a temperature difference between the high temperature side 3a and the low temperature side 3b due to the low temperature side 3b being cooled by the cooling block 4, thereby generating electric power. At this time, since the first heat collecting fins 17 have a relatively small projecting dimension, the heat of the combustion exhaust is not taken away excessively, and the second guide wall 14 is kept in a state where the temperature reduction of the combustion exhaust is suppressed. Head for.

第2案内壁14では、燃焼排気が第2集熱部21の第2集熱フィン20に接触しつつ上昇し、燃焼排気が有する熱が第2集熱フィン20により集熱されて、第2密着部19に密着している熱発電素子3の高温側を加熱する。第2案内壁14は、輻射式バーナ5からの距離が第1案内壁13よりも遠いことから輻射式バーナ5の輻射熱が届きにくいが、その分、第2集熱フィン20は第1集熱フィン17より突出寸法が大きいことにより、燃焼排気から十分に集熱することができる。そして、これによって、第1案内壁13と第2案内壁14との温度分布が均一化され、第1密着部16の熱発電素子3と第2密着部19の熱発電素子3とで高低差の少ない加熱温度配分が得られる。   In the second guide wall 14, the combustion exhaust rises while being in contact with the second heat collection fins 20 of the second heat collection section 21, and the heat of the combustion exhaust is collected by the second heat collection fins 20, so that the second The high temperature side of the thermoelectric generator 3 that is in close contact with the close contact portion 19 is heated. Since the second guide wall 14 is far from the first guide wall 13 because the distance from the radiant burner 5 is far from the radiant heat of the radiant burner 5, the second heat collecting fin 20 is equivalent to the first heat collecting fin 20. Since the projecting dimensions are larger than those of the fins 17, it is possible to sufficiently collect heat from the combustion exhaust. As a result, the temperature distribution between the first guide wall 13 and the second guide wall 14 is made uniform, and there is a difference in height between the thermoelectric generator 3 of the first contact portion 16 and the thermoelectric generator 3 of the second contact portion 19. Less heating temperature distribution.

第2案内壁14を経て流動する燃焼排気は、第1案内壁13から第2案内壁14にわたって対向間隔が次第に狭くなることにより、流速を増して両第3案内壁15間を通過する。第3案内壁15では、短時間で多量の燃焼排気が通過することにより、多くの熱が燃焼排気から集熱され、その熱が第3密着部23を経て熱発電素子3の高温側3aを加熱する。このとき、両第3案内壁15間を通過する燃焼排気は、第1集熱フィン17及び第2集熱フィン20を通過したことで、ある程度温度が低下しており、第3密着部23が過剰に加熱されることはない。しかも、両第3案内壁15の内側面には集熱フィンを設けなくてもよいことにより、圧力損失が抑制できる。従って、第1案内壁13、第2案内壁14、及び第3案内壁15の間の温度分布が均一化され、排気の流動方向に沿って配設された各密着部16,19,23間で高低差の少ない加熱温度配分が得られる。   The combustion exhaust gas flowing through the second guide wall 14 passes between the third guide walls 15 at an increased flow velocity due to the gradually decreasing distance between the first guide wall 13 and the second guide wall 14. In the third guide wall 15, a large amount of combustion exhaust passes in a short time, so that a lot of heat is collected from the combustion exhaust, and the heat passes through the third contact portion 23 and passes through the high temperature side 3 a of the thermoelectric generator 3. Heat. At this time, the temperature of the combustion exhaust passing between the third guide walls 15 is lowered to some extent by passing through the first heat collecting fins 17 and the second heat collecting fins 20. There is no overheating. In addition, since it is not necessary to provide heat collecting fins on the inner side surfaces of the third guide walls 15, pressure loss can be suppressed. Therefore, the temperature distribution among the first guide wall 13, the second guide wall 14, and the third guide wall 15 is made uniform, and between the contact portions 16, 19, and 23 disposed along the exhaust flow direction. The heating temperature distribution with little difference in height can be obtained.

ここで、発明者は、各密着部16,19,23の夫々の温度を測定した結果、燃焼排気による目標加熱温度を650℃としたとき、最も低い温度を挙げれば第1密着部16、第2密着部19、第3密着部23の順で、630℃、600℃、620℃となっており、各密着部16,19,23間で高低差の少ない加熱温度配分が得られることが確認できた。なお、本実施形態の構成と比較するため、第1集熱部18及び第2集熱部21を設けることなく、第1案内壁13から第3案内壁15にわたってその内側面を平滑に形成したもので同様の温度測定を行ったところ、第1密着部16、第2密着部19、第3密着部23の順で、550℃、500℃、660℃となっており、本実施形態の構成によって良好な加熱温度配分が得られることが明らかとなった。   Here, as a result of measuring the temperature of each of the contact portions 16, 19, and 23, the inventor sets the lowest temperature when the target heating temperature by combustion exhaust gas is 650 ° C. It is 630 ° C., 600 ° C., and 620 ° C. in the order of the two close contact portions 19 and the third close contact portion 23, and it is confirmed that a heating temperature distribution with a small difference in height is obtained between the close contact portions 16, 19, and 23. did it. In addition, in order to compare with the structure of this embodiment, the inner side surface was smoothly formed from the first guide wall 13 to the third guide wall 15 without providing the first heat collection unit 18 and the second heat collection unit 21. When the same temperature measurement was performed with a thing, it became 550 degreeC, 500 degreeC, and 660 degreeC in order of the 1st contact part 16, the 2nd contact part 19, and the 3rd contact part 23, The structure of this embodiment It was found that good heating temperature distribution can be obtained.

また、第1案内壁13及び第2案内壁14においては、所定間隔を存して横並びに配列された熱発電素子3に対応して、第1集熱部18及び第2集熱部21が何れも所定間隔を存して横並びに形成されている。これによれば、横方向に並ぶ熱発電素子3に対しても加熱温度配分の高低差を少なくすることができる。   Moreover, in the 1st guide wall 13 and the 2nd guide wall 14, the 1st heat collecting part 18 and the 2nd heat collecting part 21 respond | correspond to the thermoelectric generator 3 arranged side by side with predetermined spacing. Both are formed side by side with a predetermined interval. According to this, the difference in elevation of the heating temperature distribution can be reduced even for the thermoelectric generators 3 arranged in the horizontal direction.

即ち、本発明者は、図5(a)及び図5(b)に示すように、燃焼排気による目標加熱温度を650℃とした場合において、本実施形態の第1案内壁13の外側面と比較例30の第1案内壁31の外側面とで複数の温度測定点A〜Gにおける加熱温度を測定して比較した。比較例30の第1案内壁31は、本実施形態の第1集熱部18と同じ形状の第1集熱フィンが形成された第1集熱部32を備えるが、この第1集熱部32は、横並びに配列された熱発電素子6の密着部33に沿って連続しており、各熱発電素子6に対応する間隔を形成していない。その結果、図5(b)に示すように、比較例30の第1案内壁31では、加熱温度の最も高い部分(測定点D)と加熱温度の最も低い部分(測定点A,G)との温度差が120℃であったのに対し、図5(a)に示すように、本実施形態の第1案内壁13では、加熱温度の最も高い部分(測定点D)と加熱温度の最も低い部分(測定点A,G)との温度差が50℃であり、横方向に並ぶ熱発電素子3に対して加熱温度配分の高低差が少ないことが確認できた。   That is, as shown in FIGS. 5 (a) and 5 (b), the present inventor has the outer surface of the first guide wall 13 of the present embodiment when the target heating temperature by combustion exhaust is 650 ° C. The heating temperatures at a plurality of temperature measurement points A to G were measured and compared with the outer surface of the first guide wall 31 of Comparative Example 30. Although the 1st guide wall 31 of the comparative example 30 is provided with the 1st heat collection part 32 in which the 1st heat collection fin of the same shape as the 1st heat collection part 18 of this embodiment was formed, this 1st heat collection part 32 is continuous along the contact portions 33 of the thermoelectric generators 6 arranged side by side, and does not form an interval corresponding to each thermoelectric generator 6. As a result, as shown in FIG. 5B, in the first guide wall 31 of the comparative example 30, the portion with the highest heating temperature (measurement point D) and the portion with the lowest heating temperature (measurement points A and G) As shown in FIG. 5A, the first guide wall 13 of the present embodiment has the highest heating temperature (measurement point D) and the highest heating temperature. The temperature difference from the lower part (measurement points A and G) was 50 ° C., and it was confirmed that the difference in heating temperature distribution was small with respect to the thermoelectric generators 3 arranged in the horizontal direction.

なお、本実施形態の排気流動部7は、図2に示すように、各案内壁13,14,15の境界が屈曲しているが、各案内壁13,14,15を直線状に連続させて構成してもよい。   In addition, as shown in FIG. 2, the exhaust flow part 7 of this embodiment has the boundary of each guide wall 13,14,15 bent, However, Each guide wall 13,14,15 is made to continue linearly. May be configured.

また、本実施形態の排気流動部7は、角筒状に形成されて、一対ずつ対向する各案内壁13,14,15がその対向間隔を狭めることによって、排気の流動方向の上流側から下流側にかけて内部が次第に狭くなる形状に形成されているが、それ以外に、図示しないが、排気流動部は円筒状に形成することもできる。しかし、本実施形態の排気流動部7は、角筒状に形成することで、各案内壁13,14,15における熱発電素子3の取付面積を狭めることなく、上流側から下流側にかけて内部を次第に狭くすることができ、多数の熱発電素子3を備えていながらコンパクトに構成できる点で有利である。   In addition, the exhaust flow portion 7 of the present embodiment is formed in a rectangular tube shape, and the guide walls 13, 14, and 15 that face each other in a pair narrow the facing interval, so that the exhaust flow portion 7 is downstream from the upstream side in the exhaust flow direction. Although the inside is gradually narrowed toward the side, the exhaust flow part can also be formed in a cylindrical shape, although not shown. However, the exhaust flow portion 7 of the present embodiment is formed in a rectangular tube shape, so that the interior from the upstream side to the downstream side is reduced without reducing the mounting area of the thermoelectric generator 3 on each guide wall 13, 14, 15. It is advantageous in that it can be made narrower and can be made compact while having a large number of thermoelectric generators 3.

本発明の一実施形態の熱発電装置の構成をその一部を取り除いて示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which removes the part and shows the structure of the thermoelectric generator of one Embodiment of this invention. 排気流動部をその一側壁を取り除いて示す説明的斜視図。The explanatory perspective view which removes the one side wall and shows an exhaust_gas | exhaustion flow part. 一方の第1案内壁の説明的横断面図。An explanatory cross-sectional view of one first guide wall. 一方の第2案内壁の説明的横断面図。Explanatory cross-sectional view of one second guide wall. (a)は本実施形態の第1案内壁における温度測定点とその温度を示す説明図、(b)は比較例の第1案内壁における温度測定点とその温度を示す説明図。(A) is explanatory drawing which shows the temperature measurement point in the 1st guide wall of this embodiment, and its temperature, (b) is explanatory drawing which shows the temperature measurement point in the 1st guide wall of a comparative example, and its temperature.

符号の説明Explanation of symbols

1…熱発電装置、2…燃焼加熱手段、3…熱発電素子、3a…高温側、5…輻射式バーナ、7…排気流動部、9…燃焼板、13…第1案内壁、14…第2案内壁、15…第3案内壁、17,20…集熱フィン、18,21…集熱部、22…排気出口。   DESCRIPTION OF SYMBOLS 1 ... Thermoelectric generator, 2 ... Combustion heating means, 3 ... Thermoelectric power generation element, 3a ... High temperature side, 5 ... Radiation type burner, 7 ... Exhaust flow part, 9 ... Combustion plate, 13 ... 1st guide wall, 14 ... 1st 2 guide walls, 15 ... third guide wall, 17, 20 ... heat collecting fins, 18, 21 ... heat collecting section, 22 ... exhaust outlet.

Claims (2)

燃焼加熱手段と、該燃焼加熱手段の熱により発電する複数の熱発電素子とを備える熱発電装置において、
前記燃焼加熱手段は、燃焼板の表面に火炎を形成する輻射式バーナと、該輻射式バーナの排気の流動を案内する排気流動部とを備え、
該排気流動部は、排気の流動方向の上流側から下流側にかけて内部が次第に狭くなる形状に形成されていると共に、上流側に位置し、前記輻射式バーナから輻射熱を受けつつ排気を案内する第1案内壁と、該第1案内壁の下流側に連設され、排気熱を受けつつ排気を案内する第2案内壁と、該第2案内壁の下流側に連設されて排気熱を受けつつ排気を案内し、終端に排気出口が形成された第3案内壁とを備え、
各熱発電素子は、前記第1案内壁の外側面と前記第2案内壁の外側面と前記第3案内壁の外側面との夫々に高温側を密着させて取り付けられ、
前記第1案内壁と前記第2案内壁とは、排気流動部の内部に向かって突出する複数の集熱フィンが形成された集熱部を備え、
前記第1案内壁の集熱部は、前記第2案内壁の集熱部よりも集熱フィンの最大突出寸法が小とされていることを特徴とする熱発電装置。
In a thermoelectric generator comprising a combustion heating means and a plurality of thermoelectric generators that generate electricity by the heat of the combustion heating means,
The combustion heating means includes a radiant burner that forms a flame on the surface of the combustion plate, and an exhaust flow part that guides the flow of exhaust gas from the radiant burner,
The exhaust flow portion is formed in a shape in which the inside gradually narrows from the upstream side to the downstream side in the flow direction of the exhaust gas, and is located upstream, and guides the exhaust while receiving radiant heat from the radiant burner. One guide wall, a second guide wall that is provided downstream of the first guide wall and guides exhaust gas while receiving exhaust heat, and a second guide wall that is provided downstream of the second guide wall and receives exhaust heat A third guide wall that guides the exhaust while having an exhaust outlet formed at the end,
Each thermoelectric generator is attached with the high-temperature side in close contact with the outer surface of the first guide wall, the outer surface of the second guide wall, and the outer surface of the third guide wall,
The first guide wall and the second guide wall include a heat collecting part in which a plurality of heat collecting fins protruding toward the inside of the exhaust flow part are formed,
The thermoelectric generator according to claim 1, wherein the heat collection portion of the first guide wall has a smaller maximum projecting dimension of the heat collection fin than the heat collection portion of the second guide wall.
前記熱発電素子は、前記排気流動部の各案内壁毎に、排気の流動方向に交差する横方向に所定間隔を存して複数配設され、
前記集熱部は、各熱発電素子に対応して、排気の流動方向に交差する横方向に所定間隔を存して複数配設されていることを特徴とする請求項1記載の熱発電装置。
A plurality of the thermoelectric generators are arranged at predetermined intervals in the transverse direction intersecting the flow direction of the exhaust for each guide wall of the exhaust flow portion,
2. The thermoelectric generator according to claim 1, wherein a plurality of the heat collecting portions are arranged at predetermined intervals in a lateral direction intersecting a flow direction of exhaust gas corresponding to each thermoelectric generator. .
JP2008122665A 2008-05-08 2008-05-08 Thermoelectric generator Expired - Fee Related JP4986925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008122665A JP4986925B2 (en) 2008-05-08 2008-05-08 Thermoelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008122665A JP4986925B2 (en) 2008-05-08 2008-05-08 Thermoelectric generator

Publications (2)

Publication Number Publication Date
JP2009273273A true JP2009273273A (en) 2009-11-19
JP4986925B2 JP4986925B2 (en) 2012-07-25

Family

ID=41439329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008122665A Expired - Fee Related JP4986925B2 (en) 2008-05-08 2008-05-08 Thermoelectric generator

Country Status (1)

Country Link
JP (1) JP4986925B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165554A (en) * 2014-02-05 2015-09-17 パナソニック株式会社 Thermoelectric generator unit and thermoelectric generation system
KR20150136289A (en) * 2014-05-27 2015-12-07 주식회사 엘지화학 Thermoelectric generator using heat of gas range
JP2018206881A (en) * 2017-06-01 2018-12-27 株式会社三五 Heat receiving unit and electrothermal power generation device with heat receiving unit
KR20220056368A (en) * 2020-10-28 2022-05-06 ㈜엔케이이노베이션 Thermoelectric power generation system with CO detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185588A (en) * 1984-10-02 1986-05-01 Toshiaki Ichikawa Power generating device utilizing updraft in cylindrical column
JPH11285235A (en) * 1998-03-27 1999-10-15 Zipangu Energy:Kk Small-sized power generating system and apparatus thereof
JP2001012240A (en) * 1999-06-23 2001-01-16 Nissan Motor Co Ltd Exhaust heat generator for automobile
JP2002325470A (en) * 2001-04-23 2002-11-08 Sango Co Ltd Automotive thermoelectric power generating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6185588A (en) * 1984-10-02 1986-05-01 Toshiaki Ichikawa Power generating device utilizing updraft in cylindrical column
JPH11285235A (en) * 1998-03-27 1999-10-15 Zipangu Energy:Kk Small-sized power generating system and apparatus thereof
JP2001012240A (en) * 1999-06-23 2001-01-16 Nissan Motor Co Ltd Exhaust heat generator for automobile
JP2002325470A (en) * 2001-04-23 2002-11-08 Sango Co Ltd Automotive thermoelectric power generating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015165554A (en) * 2014-02-05 2015-09-17 パナソニック株式会社 Thermoelectric generator unit and thermoelectric generation system
KR20150136289A (en) * 2014-05-27 2015-12-07 주식회사 엘지화학 Thermoelectric generator using heat of gas range
KR101672241B1 (en) * 2014-05-27 2016-11-03 주식회사 엘지화학 Thermoelectric generator using heat of gas range
JP2018206881A (en) * 2017-06-01 2018-12-27 株式会社三五 Heat receiving unit and electrothermal power generation device with heat receiving unit
KR20220056368A (en) * 2020-10-28 2022-05-06 ㈜엔케이이노베이션 Thermoelectric power generation system with CO detector
KR102461236B1 (en) * 2020-10-28 2022-10-31 (주)엔케이이노베이션 Thermoelectric power generation system with CO detector

Also Published As

Publication number Publication date
JP4986925B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP6008966B2 (en) Gas turbine device, power plant and method of operating the power plant
JP5939143B2 (en) Thermoelectric generator
JP4986925B2 (en) Thermoelectric generator
RU2602089C2 (en) Hybrid system
JP5737151B2 (en) Thermoelectric generator
JP2013514515A (en) Heat exchanger
JP5129942B2 (en) Semiconductor device
KR101304102B1 (en) Micro-thermophotovoltaic system
US20130283764A1 (en) Muffler
CN104578975A (en) Portable power supply device based on micro-combustion
ITRM20100428A1 (en) SOLAR RADIATION HEAT ABSORBER FOR STIRLING ENGINE
JP2015140713A (en) Thermoelectric generation device
WO2024082689A1 (en) Combined heat and power generation apparatus, thermoelectric power generation system, voltage control method and heating device
JP2013093466A (en) Thermoelectric generator
CN219222632U (en) Cogeneration device, thermoelectric power generation system and heating equipment
JP2015164391A (en) Thermoelectric power generator
JP4879227B2 (en) Hot water heater
KR102199556B1 (en) thermoelectric generator
JP2019030159A (en) Thermoelectric power generation device
JPH10150787A (en) Thermoelectric generator for outdoor use
KR100849504B1 (en) A thermo-electric power generating module using a micro channel-type catalytic combustor
CN106301084A (en) The temperature difference electricity generation device of high temperature fluid in a kind of utilization
KR102394001B1 (en) Gas heat exchanger for thermoelectric power generation
JP5344935B2 (en) Hydrogen generator
WO2018181099A1 (en) Combustion mechanism with thermal power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120424

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4986925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees