WO2018181099A1 - Combustion mechanism with thermal power generation device - Google Patents

Combustion mechanism with thermal power generation device Download PDF

Info

Publication number
WO2018181099A1
WO2018181099A1 PCT/JP2018/011984 JP2018011984W WO2018181099A1 WO 2018181099 A1 WO2018181099 A1 WO 2018181099A1 JP 2018011984 W JP2018011984 W JP 2018011984W WO 2018181099 A1 WO2018181099 A1 WO 2018181099A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
thermoelectric generator
heat
heat sink
intake pipe
Prior art date
Application number
PCT/JP2018/011984
Other languages
French (fr)
Japanese (ja)
Inventor
剛 青野
和明 石坂
智啓 村澤
Original Assignee
有限会社ジオ・パラダイス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ジオ・パラダイス filed Critical 有限会社ジオ・パラダイス
Publication of WO2018181099A1 publication Critical patent/WO2018181099A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B99/00Subject matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B1/00Stoves or ranges
    • F24B1/02Closed stoves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24BDOMESTIC STOVES OR RANGES FOR SOLID FUELS; IMPLEMENTS FOR USE IN CONNECTION WITH STOVES OR RANGES
    • F24B15/00Implements for use in connection with stoves or ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the present invention relates to a combustion appliance such as a wood stove, and more particularly to a combustion appliance with a thermoelectric generator that generates power using thermal energy generated by combustion of fuel such as wood.
  • thermoelectric generators are arranged on the outer peripheral surface, the high temperature side is heated, and the low temperature side is water-cooled to perform temperature difference power generation.
  • a thermal chamber is provided using a thermally conductive material, a thermoelectric generator is placed therein and heated, and a heat radiating member attached to the low temperature side of the thermoelectric generator is burned.
  • a temperature difference is provided in the thermoelectric generator, thereby generating power.
  • the generated electric power is stored in a battery, and this is used as a power source to drive the electric mechanism.
  • the burner-type combustion apparatus described in Patent Document 3 heat is absorbed by the thermoelectric generator using the air flow forcedly sucked by the intake fan via the primary air flow path.
  • thermoelectric generator In temperature difference power generation in small combustion appliances such as wood stoves, it is often difficult to maintain the temperature difference between the high temperature side and the low temperature side of the thermoelectric generator. When the temperature of the combustion chamber becomes high, the temperature increases on the low temperature side as well as on the high temperature side of the thermoelectric generator. If a sufficient temperature difference cannot be secured, the power generation efficiency will decrease.
  • a heating mechanism on the high temperature side of the thermoelectric generator and an endothermic mechanism on the low temperature side so that the amount of heat absorbed from the low temperature side of the thermoelectric element increases as the temperature of the thermoelectric element increases due to the increase in the combustion chamber temperature. It is desirable to link with.
  • thermoelectric generator heat is absorbed on the low temperature side of the thermoelectric generator by natural heat dissipation using a heat sink such as a heat radiating member, or forced cooling by water cooling.
  • a heat sink such as a heat radiating member
  • forced cooling by water cooling These endothermic mechanisms (cooling mechanisms) function in a direction in which the temperature difference between the high temperature side and the low temperature side of the thermoelectric generator widens in conjunction with the high temperature side state (combustion temperature) of the thermoelectric generator. Absent. Therefore, in many cases, the temperature difference between the high temperature side and the low temperature side of the thermoelectric generator cannot be maintained in an appropriate state.
  • thermoelectric generator In order to appropriately manage the temperature difference, for example, as shown in Patent Document 1, it is necessary to use a complicated and large-scale mechanism such as attaching a refrigerant circulation path that passes through each thermoelectric generator. Such a mechanism is not preferable because it increases the cost and size of a small combustion appliance such as a wood-burning stove.
  • a thermoelectric generator when a thermoelectric generator is attached to the wall of the combustion chamber housing in a wood stove or the like, an excessive heat load may be applied to the thermoelectric generator as the combustion temperature increases. There is.
  • the object of the present invention is to appropriately absorb heat from the thermoelectric generator according to the combustion state without using a complicated mechanism to ensure and maintain the temperature difference. It is an object of the present invention to provide a combustion appliance with a thermoelectric generator that does not impose an excessive heat load on the fuel.
  • the flow of combustion air taken into the combustion appliance is used for heat absorption on the low temperature side of the thermoelectric generator, and the combustion energy of the thermoelectric generator is It is used for heating on the high temperature side to ensure the temperature difference of the thermoelectric generator.
  • the combustion air consumption increases as the combustion temperature increases, and the flow rate and flow velocity of the combustion air due to the draft effect increase. The temperature difference is always kept in a widening direction within the heat resistance range of the thermoelectric generator.
  • thermoelectric generator of the present invention, A combustion appliance housing; A combustion chamber formed inside the combustion appliance housing; An intake passage provided inside or outside the combustion appliance housing for taking outside air into the combustion chamber as combustion air; A flue for discharging the combustion gas from the combustion chamber to the outside; And one or more thermoelectric generators attached to the bottom wall portion of the combustion appliance housing.
  • thermoelectric generator A heat conductor attached to the lower surface of the bottom wall portion of the housing;
  • An air intake pipe for a heat sink which is arranged on the lower side of the heat conductor, has an outside air inlet opening at one end, and communicates with the upstream end of the air intake path at the other end; It is arranged between the heat conductor and the heat sink intake pipe, the high temperature part contacts the heat conductor, the low temperature part contacts the heat sink intake pipe, and generates electricity by the temperature difference between the high temperature part and the low temperature part.
  • a set or a plurality of sets of thermoelectric generators A set or a plurality of sets of thermoelectric generators.
  • thermoelectric generator is attached to the lower surface of the bottom wall portion of the combustion appliance housing via a heat conductor to heat the high temperature side of the thermoelectric generator. Further, the combustion air is taken into the combustion chamber via a heat sink intake pipe attached to the low temperature side of the thermoelectric generator. When the combustion temperature in the combustion chamber rises, the consumption of combustion air increases accordingly, and the flow rate / velocity of the updraft passing through the flue also increases.
  • thermoelectric generator Due to such a draft effect, the flow velocity of the outside air flowing through the heat sink intake pipe increases in conjunction with the increase in the combustion temperature in the combustion chamber, so that the heat absorption from the low temperature side of the thermoelectric generator as the combustion temperature increases. Capacity (cooling capacity) increases. Therefore, even if the combustion temperature rises, the temperature difference between the high temperature side and the low temperature side of the thermoelectric generator can be maintained, and sufficient power generation can be performed. Further, by appropriately adjusting the number of thermoelectric generators, the diameter of the heat sink intake pipe of each thermoelectric generator, etc., the heat absorption capacity and power generation efficiency can be increased.
  • an air layer or a hot air layer that guides the combustion gas discharged from the combustion chamber to the flue is formed between the combustion chamber and the bottom wall portion of the housing. Can do.
  • the thermoelectric generator is directly affected by fluctuations in the combustion temperature in the combustion chamber.
  • the air layer or the hot air layer functions as a buffer layer, so that fluctuations in the heating temperature of the thermoelectric generator can be suppressed, and an excessive heat load can be prevented or suppressed from being applied to the thermoelectric generator.
  • the heat sink intake pipe in order to improve heat dissipation, a heat sink such as a plurality of heat radiating fins extending in the length direction can be used.
  • the heat sink intake pipe may be disposed horizontally, and the lower portion of the heat sink intake pipe may be used as a refrigerant liquid storage section or a refrigerant liquid circulation path.
  • water can be supplied between a plurality of heat radiation fins, and the heat absorption capability of the thermoelectric generator by the heat sink intake pipe can be enhanced by the heat of vaporization of the water.
  • an intake fan may be disposed in the intake passage, and an exhaust fan may be disposed in the flue.
  • an intake fan may be disposed in the intake passage, and an exhaust fan may be disposed in the flue.
  • a heat shielding material for blocking radiant heat from the bottom wall portion of the housing to the heat sink intake pipe may be disposed.
  • a plate material whose surface is coated with a thermal barrier paint it is possible to use a plate material whose surface is coated with a thermal barrier paint. The heat shield can prevent the heat sink intake pipe from being heated by radiant heat.
  • FIG. 1 is a plan view showing an example of a fireplace with a thermoelectric generator to which the present invention is applied, a front view, a left side view, a right side view, a cross-sectional view along line xx, and an explanatory view showing a portion of the thermoelectric generator.
  • Plan view, front view, left side view and right side view, yy sectional view, xx sectional view and xx′-x ′ sectional view showing an example of a combustion furnace with a thermoelectric generator to which the present invention is applied
  • FIG. It is a perspective view which shows the bottom face side of the combustion furnace of FIG. 2A, and explanatory drawing which shows the part of the heat sink intake pipe of a thermoelectric generator.
  • FIG. 1 is a plan view showing an example of a fireplace with a thermoelectric generator to which the present invention is applied, a front view, a left side view, a right side view, a cross-sectional view along line xx, and an explanatory view showing a portion of the
  • FIG. 2A is a plan view showing an example of a case where a water cooling mechanism using the heat of vaporization of water is attached to the combustion furnace of FIG. 2A, a cross-sectional view taken along a line xy, a cross-sectional view taken along a line xx, and a heat sink intake pipe It is explanatory drawing.
  • FIG. 2B is a plan view, a left side view, and a cross-sectional view along line xx showing an example in which an exhaust fan and an intake fan are attached to the combustion furnace of FIG. 2A.
  • 2A is a plan view, a front view, a left side view, a right side view, a yy sectional view, an xx sectional view, and an x ′ showing an example in which a plurality of thermoelectric generators are attached to the combustion furnace of FIG. -X 'line cross section.
  • FIG. 1 A fireplace 1 with a thermoelectric generator (hereinafter simply referred to as “fireplace 1”) is, for example, a wood stove, and includes a cylindrical combustion furnace casing 2.
  • the combustion furnace housing 2 is supported horizontally by four support pipes 3 at the front and rear.
  • An opening / closing door 4 is attached to the front surface 2 a of the combustion furnace casing 2.
  • a rectangular bottom plate 5 extending horizontally in the front-rear direction is disposed at a bottom portion thereof.
  • the upper part of the bottom plate 5 is a combustion chamber 6, and the lower part thereof is an air layer 7 surrounded by the bottom plate 5 and the combustion furnace casing 2.
  • An intake passage 8 defined by a rectangular cylindrical iron pipe extending in the vertical direction is attached to the left side of the front side of the combustion furnace housing 2 on the front surface 2a side.
  • a damper 8 a is disposed in the middle of the intake path 8.
  • An upper end portion of the intake passage 8 is bent at a right angle toward the combustion furnace casing 2 and extends through the wall of the combustion furnace casing 2 into the inner combustion chamber 6.
  • the intake passage portion 8b in the combustion chamber 6 extends horizontally in the combustion chamber 6 toward the rear.
  • a combustion air ejection port 8c that opens downward is formed in the intake passage portion 8b.
  • a chimney 9 extending upward is attached to the upper surface portion of the combustion furnace casing 2 on the rear end surface 2b side. The lower end of the flue 9 a defined by the chimney 9 opens to the ceiling surface on the rear end side of the combustion chamber 6.
  • thermoelectric generator 10 is horizontally attached to the front bottom wall portion 2c of the combustion furnace casing 2 from below.
  • the thermoelectric generator 10 includes a plate-like heat conductor 11 attached to the lower surface of the bottom wall portion 2 c from below and two sets of heat attached to the lower surface of the heat conductor 11.
  • a power generation element 12 and a heat sink intake pipe 13 attached between the thermoelectric generation elements 12 from below are provided.
  • a heat shielding material 14 coated with a shielding paint is disposed.
  • the heat shielding material 14 is attached to the heat conductor 11 so as to surround the heat conductor 11.
  • the heat shielding material 14 is in a state where the bottom wall portion 2c and the upper surface portion of the heat sink intake pipe 13 are thermally blocked.
  • the horizontal heat sink air intake pipe 13 has, for example, a rectangular cylinder shape made of a material having good thermal conductivity.
  • the right end of the heat sink intake pipe 13 is a laterally open outside air inlet 13a, and the opposite open end 13b is connected with the lower end of the intake passage 8 bent at a right angle. .
  • a plurality of radiating fins 13c extending in the length direction are arranged inside the heat sink intake pipe 13.
  • the radiating fins 13c are arranged in a vertically arranged state at regular intervals, and a narrow air flow path is formed between the radiating fins 13c.
  • thermoelectric generators 12 arranged between the heat conductor 11 and the heat sink intake pipe 13 has a high temperature portion 12 a that contacts the heat conductor 11 and a low temperature portion 12 b that is the upper surface of the heat sink intake pipe 13. Touching.
  • the thermoelectric generator 12 generates power by the temperature difference between the high temperature part 12a and the low temperature part 12b.
  • the electric power generated in each thermoelectric generator 12 is stored, for example, in a power storage device (not shown) via a lead wire (not shown).
  • the number of thermoelectric generators 12 is not limited to two sets.
  • the combustion air A is taken in from the outside air inlet 13a as shown by an arrow in FIG. 1 (e), flows into the intake passage 8 through the heat sink intake pipe 13, and the intake passage 8 Then, the air is supplied into the combustion chamber 6 from the combustion air ejection port 8 c opened in the combustion chamber 6. Further, the combustion gas generated by the combustion of soot in the combustion chamber 6 flows upward through the flue 9a opened on the rear end side of the combustion chamber 6 and is released to the outside.
  • the lower air layer 7 of the combustion chamber 6 is heated by the heat generated by the combustion, and the bottom wall portion 2c of the lower combustion furnace casing 2 is heated.
  • the thermal conductor 11 of the thermoelectric generator 10 is attached to the lower side of the bottom wall portion 2c, and the high temperature portion 12a of the thermoelectric generator 12 on the lower side is heated via the thermal conductor 11.
  • the low temperature portion 12 b of the thermoelectric generator 12 is in contact with the upper surface of the heat sink intake pipe 13.
  • the outside air first flows through the heat sink intake pipe 13 and then flows between the heat radiation fins 13 c disposed therein to the intake path 8 side. Therefore, the heat absorption of the low temperature portion 12b of the thermoelectric generator 12 is performed by the heat sink intake pipe 13, and the low temperature portion 12b is maintained in a temperature state close to the outside air temperature.
  • thermoelectric generator 12 As the combustion progresses and the temperature in the combustion chamber 6 rises, the high temperature portion 12a of the thermoelectric generator 12 is also heated and the temperature rises. Further, since the intake energy also increases due to the draft effect, the flow rate / flow velocity of the outside air flowing along the heat radiation fins 13c of the heat sink intake pipe 13 also increases, and the low temperature portion 12b of the thermoelectric generator 12 by the heat sink intake pipe 13 increases. Endothermic capacity is also increased. Thus, since the heat absorption capability also changes in accordance with (in conjunction with) the combustion state, the temperature difference between the high temperature portion 12a and the low temperature portion 12b of the thermoelectric generator 12 can be maintained in a predetermined state.
  • FIG. 2 is a cross-sectional view taken along a line and a cross-sectional view taken along a line x′-x ′.
  • 2B (a) and 2B (b) are a perspective view showing the bottom surface side of the combustion furnace of FIG. 2A and an explanation of a heat sink intake pipe portion of the thermoelectric generator.
  • the combustion furnace 21 with a thermoelectric generator of this example uses, for example, soot as fuel.
  • the combustion furnace 21 includes a rectangular parallelepiped combustion furnace casing 22, and an open / close door 24 is attached to a front surface 22a thereof.
  • the interior of the combustion furnace housing 22 is partitioned by a bottom plate 25a, left and right side plates 25b and 25c, a back plate 25d and a top plate 25e, and a combustion chamber 26 opened to the front side is formed.
  • a vertical partition plate 25f is disposed, and an intake passage 28 is formed by the vertical partition plate 25f.
  • the intake passage 28 includes an intake port 28 a that opens to a portion on the back side of the bottom wall portion 22 c of the combustion furnace casing 22.
  • the intake path 28 rises from the intake port 28a side through the vertical partition plate 25f and the back wall 22b, passes between the upper end of the vertical partition plate 25f and the top plate 25e, and is perpendicular to the back plate 25d. It descends through the space between the partition plate 25f.
  • the intake passage 28 communicates with the combustion chamber 26 through a plurality of combustion air ejection ports 28c formed in the vertical partition plate 25f.
  • a hot air layer 27 is formed between the combustion furnace casing 22 and the combustion chamber 26 so as to surround the bottom surface, the left and right side surfaces, and the top surface of the combustion chamber 26.
  • the hot air layer 27 is formed between the inner peripheral surface of the combustion furnace casing 22 and the bottom plate 25a, the left and right side plates 25b and 25c, and the top plate 25e.
  • the hot air layer 27 communicates with the combustion chamber 26 through a gap between the upper end of the right side plate 25c and the top plate 25e.
  • a chimney 29 extending upward is attached to the top surface portion of the combustion furnace casing 22.
  • the lower end of the flue 29a defined by the chimney 29 communicates with the portion of the hot air layer 27 on the top surface side formed between the top surface portion of the combustion furnace casing 22 and the top plate 25e below it. is doing.
  • a damper 25g is attached to the top plate 25e.
  • thermoelectric generator 30 is horizontally attached to the bottom wall portion 22c of the combustion furnace casing 22 from below.
  • the thermoelectric generator 30 includes a plate-like heat conductor 31 attached to the lower surface of the bottom wall portion 22c from the lower side, two sets of thermoelectric elements 32 attached to the lower surface of the heat conductor 31, and the thermoelectric generator 32.
  • the heat sink intake pipe 33 is sandwiched and attached from below. As in the case shown in FIG. 1, in order to block the radiant heat from the bottom wall portion 22 c to the heat sink intake pipe 33, a heat shielding material can be disposed between them. Further, the number of thermoelectric generators 32 is not limited to two sets.
  • the heat sink intake pipe 33 has, for example, a rectangular cylindrical shape made of a material having good thermal conductivity. As shown in FIG. 2B (b), the heat sink intake pipe 33 includes an intake pipe portion 33b that includes an outside air introduction port 33a and extends in the left-right direction, and intake air that is bent at a right angle from the intake pipe portion 33b toward the back side. And a tube portion 33c. The rear end of the intake pipe portion 33 c communicates with an intake port 28 a of an intake passage 28 formed in the combustion furnace casing 22.
  • a damper 33d is attached inside the intake pipe portion 33b on the side of the outside air inlet 33a.
  • the intake pipe portion 33b connected to the intake port 28a of the intake passage 28 is a pipe portion that functions as a heat sink, and a plurality of heat radiation fins 33e extending in the length direction are disposed inside the intake pipe portion 33b.
  • the radiating fins 33e are arranged vertically at regular intervals, and a narrow air flow path is formed between the radiating fins 33e.
  • thermoelectric generator 32 arranged between the heat conductor 31 and the heat sink intake pipe portion 33c, the high temperature portion 32a contacts the heat conductor 31, and the low temperature portion 32b is the heat sink intake pipe portion. It is in contact with the upper surface of 33c.
  • the thermoelectric generator 32 generates power by the temperature difference between the high temperature part 32a and the low temperature part 32b.
  • the electric power generated in the thermoelectric generator 32 is stored, for example, in a power storage device (not shown) via a lead wire (not shown).
  • the combustion air is taken in from the outside air inlet 33a that opens to the bottom, which is the lowest position in the combustion furnace 21, and is used for the heat sink. It flows into the intake passage 28 through the intake pipe 33, passes through the intake passage 28, and is supplied into the combustion chamber 26 from the combustion air ejection port 28 c. Further, combustion gas generated by burning soot in the combustion chamber 26 passes between the upper end of the side plate 25c of the combustion chamber 26 and the top plate 25e and enters the hot air layer 27, and the right side portion thereof, the bottom side thereof. It flows into the flue 29a via the part, the left part, and the part on the top plate side, rises here, and is discharged to the outside.
  • the portion of the hot air layer 27 on the lower side of the combustion chamber 26 is heated by the heat generated by the combustion, and the bottom wall portion 22c of the combustion furnace casing 22 on the lower side is heated.
  • the thermal conductor 31 of the thermoelectric generator 30 is attached to the lower side of the bottom wall portion 22c, and the high temperature portion 32a of the lower thermoelectric generator 32 is heated via the thermal conductor 31.
  • the low temperature portion 32b of the thermoelectric generator 32 is in contact with the upper surface of the heat sink intake pipe portion 33c.
  • the outside air flows into the heat sink intake pipe 33 from the outside air inlet 33a, and flows into the intake path 28 through the space between the radiation fins 33e disposed on the rear side. Therefore, the heat absorption of the low temperature portion 32b of the thermoelectric generator 32 is performed by the heat sink intake pipe 33, and the low temperature portion 32b is held in a temperature state close to the outside air temperature.
  • thermoelectric generator 32 As the combustion progresses and the temperature in the combustion chamber 26 rises, the high temperature portion 32a of the thermoelectric generator 32 is also heated and the temperature rises. Accordingly, the intake energy also rises, so the flow rate / flow velocity of the outside air flowing along the heat radiation fins 33e of the heat sink intake pipe 33 also rises, and the heat absorption capability of the low temperature portion 32b of the thermoelectric generator 32 by the heat sink intake pipe 33. Will also increase. As described above, the endothermic capacity also changes according to (in conjunction with) the combustion state, so that the temperature difference between the high temperature portion 32a and the low temperature portion 32b of the thermoelectric generator 32 can be maintained in a predetermined state.
  • [Modification 1 of Embodiment 2] 3 (a) to 3 (d) are a plan view showing a modified example of the combustion furnace 21, a cross-sectional view taken along a line yy, a cross-sectional view taken along a line xx, and an explanation showing a heat sink intake pipe of the thermoelectric generator.
  • FIG. In the combustion furnace 41 of this example, a water cooling mechanism is attached to the thermoelectric generator 30 of the combustion furnace 21 described above. Except for the part of the water cooling mechanism in the combustion furnace 41 of this example, since it is substantially the same as the combustion furnace 21 described above, description thereof is omitted.
  • the heat sink intake pipe 33 of the thermoelectric generator 30A can be cooled with water.
  • the intake pipe portion 33c of the heat sink intake pipe 33 is provided with a water storage portion 42 which is a refrigerant liquid below the lower surface portion thereof.
  • a material capable of sucking up the water in the storage portion 42 by capillary force for example, a piece of paper 43, is disposed between the radiation fins 33e.
  • the lower end part of each paper piece 43 is immersed in the water of the storage part 42.
  • the reservoir 42 is connected to a water supply tank 45 via a water supply pipe 44.
  • water is supplied from the water supply tank 45 by a water head difference.
  • Water W is supplied to the water supply tank 45 from the outside. It is also possible to circulate a refrigerant liquid such as water using the reservoir 42 as a coolant circulation path.
  • a combustion temperature becomes high and the high temperature part 32a of the thermoelectric generator 32 becomes higher temperature.
  • the heat sink intake pipe 33 is efficiently cooled by the heat of vaporization of water, the temperature of the low temperature portion 32b of the thermoelectric generator 32 can be lowered. Therefore, the temperature difference between the high temperature part 32a and the low temperature part 32b of the thermoelectric generator 32 can be widened, and the state can be maintained. Therefore, power generation can be performed efficiently.
  • FIGS. 4A to 4C are a plan view, a left side view, and a cross-sectional view taken along line xx showing another modified example of the combustion furnace 21 described above.
  • the combustion furnace 51 of this example is obtained by attaching the intake fan for forced intake and the exhaust fan for forced exhaust to the above-described combustion furnace 21. Since the configuration other than this is the same as that of the combustion furnace 21, the description thereof is omitted.
  • an exhaust fan 52 is attached in the middle of the flue 29a, and forced exhaust can be performed.
  • an intake fan 53 is attached in the middle of the intake passage 28 so that forced intake is possible.
  • [Modification 3 of Embodiment 2] 5 (a) to 5 (g) are a plan view, a front view, a left side view, a right side view, a yy sectional view, and an xx sectional view showing still another modified example of the combustion furnace 21 described above. It is a figure and a x'-x 'line cross section.
  • the combustion furnace 61 of this example is obtained by changing the thermoelectric generator 30 to a plurality of units in the above-described combustion furnace 21.
  • three thermoelectric generators 30 ⁇ / b> B are attached to the lower surface of the bottom wall portion 22 c of the combustion furnace casing 22.
  • thermoelectric generator 30B has a configuration in which the intake pipe portion 33b in the above-described thermoelectric generator 30 is omitted.
  • the thermoelectric generator 30B includes only the intake pipe portion 33c, and an outside air introduction port 33a opened forward is provided on the front end surface thereof. Is formed. Since the configuration other than this is the same as that of the combustion furnace 21, the description thereof is omitted.
  • thermoelectric generators 30B Efficient combustion can be realized by increasing or decreasing the number of thermoelectric generators 30B according to the volume of the combustion furnace 61, etc., and an efficient power generation operation can be realized in each thermoelectric generator 30B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Fuel Combustion (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Abstract

According to the present invention, inn a thermal power generation device (30) of a thermal power generation device-mounted combustion furnace (21), a thermal power generation element (32) is attached to a lower face of a bottom wall section of a combustion mechanism housing (22) with a thermal conductor (31) therebetween, and a high-temperature section (32a) thereof is heated. Heat is absorbed from a low-temperature section (32b) by means of combustion air suctioned into a combustion chamber (26) through a heat sink intake pipe (33) attached to the low-temperature section (32b) of the thermal power generation element. When the combustion temperature inside the combustion chamber increases, the flow velocity and flow rate of external air flowing in the heat sink intake pipe (33) increases due to a draft effect, and the heat absorbing capacity of the low-temperature side of the thermal power generation element also increases. Even if the combustion temperature increases, the temperature difference between the high-temperature side and the low-temperature side of the thermal power generation element can be maintained, and sufficient power generation is possible.

Description

熱発電装置付き燃焼器具Combustion appliance with thermoelectric generator
 本発明は薪ストーブなどの燃焼器具に関し、更に詳しくは、薪などの燃料の燃焼によって発生する熱エネルギを利用して発電を行う熱発電装置付き燃焼器具に関する。 The present invention relates to a combustion appliance such as a wood stove, and more particularly to a combustion appliance with a thermoelectric generator that generates power using thermal energy generated by combustion of fuel such as wood.
 薪ストーブなどの小型の燃焼器具として、熱発電素子を用いて温度差発電を行うものが提案されている。特許文献1に記載の薪ストーブでは、その外周面に熱発電装置を配置し、それらの高温側を加熱し、それらの低温側を水冷して、温度差発電を行っている。特許文献2に記載の燃焼装置では、熱伝導性の素材を用いて燃焼室外室を付設し、その中に熱発電素子を入れて加熱し、熱発電素子の低温側に取り付けた放熱部材を燃焼室外室の外側に突出させることにより、熱発電素子に温度差を設け、これにより発電を行っている。また、発生した電力をバッテリに蓄え、これを電源として電動機構を駆動している。一方、特許文献3に記載のバーナー式の燃焼装置では、一次空気流路を介して、吸気ファンによって強制吸引される空気流を利用して、熱発電素子の吸熱を行っている。 As a small burning appliance such as a wood-burning stove, one that performs temperature difference power generation using a thermoelectric generator has been proposed. In the wood stove described in Patent Document 1, thermoelectric generators are arranged on the outer peripheral surface, the high temperature side is heated, and the low temperature side is water-cooled to perform temperature difference power generation. In the combustion apparatus described in Patent Document 2, a thermal chamber is provided using a thermally conductive material, a thermoelectric generator is placed therein and heated, and a heat radiating member attached to the low temperature side of the thermoelectric generator is burned. By projecting outside the outdoor chamber, a temperature difference is provided in the thermoelectric generator, thereby generating power. Moreover, the generated electric power is stored in a battery, and this is used as a power source to drive the electric mechanism. On the other hand, in the burner-type combustion apparatus described in Patent Document 3, heat is absorbed by the thermoelectric generator using the air flow forcedly sucked by the intake fan via the primary air flow path.
実用新案登録第3190969号公報Utility Model Registration No. 3190969 特許第5410567号公報Japanese Patent No. 5410567 特許第4803555号公報Japanese Patent No. 4803555
 薪ストーブなどの小型の燃焼器具における温度差発電においては、熱発電素子の高温側と低温側との間の温度差を維持することが困難な場合が多い。燃焼室が高温になると、熱発電素子の高温側と一緒にその低温側も温度が上がってしまう。十分な温度差を確保できないと発電効率が低下する。燃焼室温度の上昇による熱発電素子の高温側の温度上昇に伴って、熱発電素子の低温側からの吸熱量が多くなるように、熱発電素子の高温側の加熱機構と低温側の吸熱機構とを連動させることが望ましい。 In temperature difference power generation in small combustion appliances such as wood stoves, it is often difficult to maintain the temperature difference between the high temperature side and the low temperature side of the thermoelectric generator. When the temperature of the combustion chamber becomes high, the temperature increases on the low temperature side as well as on the high temperature side of the thermoelectric generator. If a sufficient temperature difference cannot be secured, the power generation efficiency will decrease. A heating mechanism on the high temperature side of the thermoelectric generator and an endothermic mechanism on the low temperature side so that the amount of heat absorbed from the low temperature side of the thermoelectric element increases as the temperature of the thermoelectric element increases due to the increase in the combustion chamber temperature. It is desirable to link with.
 従来においては、放熱部材などのヒートシンクを用いた自然放熱、あるいは、水冷による強制冷却により、熱発電素子の低温側の吸熱を行っている。これらの吸熱機構(冷却機構)は、熱発電素子の高温側の状態(燃焼温度)に連動して、熱発電素子の高温側と低温側との間の温度差が広がる方向に機能するものではない。よって、熱発電素子の高温側と低温側との間の温度差を適切な状態に維持することができない場合が多い。 Conventionally, heat is absorbed on the low temperature side of the thermoelectric generator by natural heat dissipation using a heat sink such as a heat radiating member, or forced cooling by water cooling. These endothermic mechanisms (cooling mechanisms) function in a direction in which the temperature difference between the high temperature side and the low temperature side of the thermoelectric generator widens in conjunction with the high temperature side state (combustion temperature) of the thermoelectric generator. Absent. Therefore, in many cases, the temperature difference between the high temperature side and the low temperature side of the thermoelectric generator cannot be maintained in an appropriate state.
 温度差を適切に管理するには、例えば、特許文献1に示されているように、各熱発電素子を経由する冷媒循環路を付設するなど、複雑で大掛かりな機構を用いる必要がある。このような機構は、薪ストーブなどの小型の燃焼器具のコスト高、寸法増加を招くので、好ましくない。また、薪ストーブなどにおける燃焼室筐体の壁面に熱発電素子を取り付けた場合には、燃焼温度の増加に伴って熱発電素子に過剰な熱負荷が掛かる場合があり、この点も考慮する必要がある。 In order to appropriately manage the temperature difference, for example, as shown in Patent Document 1, it is necessary to use a complicated and large-scale mechanism such as attaching a refrigerant circulation path that passes through each thermoelectric generator. Such a mechanism is not preferable because it increases the cost and size of a small combustion appliance such as a wood-burning stove. In addition, when a thermoelectric generator is attached to the wall of the combustion chamber housing in a wood stove or the like, an excessive heat load may be applied to the thermoelectric generator as the combustion temperature increases. There is.
 本発明の目的は、このような点に鑑みて、複雑な機構を用いることなく、燃焼状態に応じて適切に熱発電素子から吸熱を行って温度差を確保・維持でき、また、熱発電素子に過剰な熱負荷を掛けることのない熱発電装置付き燃焼器具を提供することにある。 In view of these points, the object of the present invention is to appropriately absorb heat from the thermoelectric generator according to the combustion state without using a complicated mechanism to ensure and maintain the temperature difference. It is an object of the present invention to provide a combustion appliance with a thermoelectric generator that does not impose an excessive heat load on the fuel.
 上記の課題を解決するために、本発明の熱発電装置付き燃焼器具では、燃焼器具に取り込まれる燃焼用空気の流れを熱発電素子の低温側の吸熱に利用し、燃焼エネルギを熱発電素子の高温側の加熱に用いて、熱発電素子の温度差を確保している。また、燃焼温度が高くなると燃焼用空気の消費量が増え、ドラフト効果による燃焼用空気の流量・流速が増加することを利用して、燃焼室の温度上昇に連動させて熱発電素子の低温側の吸熱能力を高くして、熱発電素子の耐熱性の範囲内において、その温度差を、常に広がる方向に保つようにしている。 In order to solve the above-described problems, in the combustion appliance with a thermoelectric generator of the present invention, the flow of combustion air taken into the combustion appliance is used for heat absorption on the low temperature side of the thermoelectric generator, and the combustion energy of the thermoelectric generator is It is used for heating on the high temperature side to ensure the temperature difference of the thermoelectric generator. In addition, the combustion air consumption increases as the combustion temperature increases, and the flow rate and flow velocity of the combustion air due to the draft effect increase. The temperature difference is always kept in a widening direction within the heat resistance range of the thermoelectric generator.
 すなわち、本発明の熱発電装置付き燃焼器具は、
 燃焼器具筐体と、
 燃焼器具筐体の内部に形成した燃焼室と、
 外気を燃焼用空気として燃焼室に取り込むために、燃焼器具筐体の内部あるいは外部に設けた吸気路と、
 燃焼室から燃焼ガスを外部に排出するための煙道と、
 燃焼器具筐体の筐体底壁部分に取り付けた1台あるいは複数台の熱発電装置と
を有している。
That is, the combustion appliance with a thermoelectric generator of the present invention,
A combustion appliance housing;
A combustion chamber formed inside the combustion appliance housing;
An intake passage provided inside or outside the combustion appliance housing for taking outside air into the combustion chamber as combustion air;
A flue for discharging the combustion gas from the combustion chamber to the outside;
And one or more thermoelectric generators attached to the bottom wall portion of the combustion appliance housing.
 また、熱発電装置は、
 筐体底壁部分の下面に取り付けた熱伝導体と、
 熱伝導体の下側に配置され、一端に外気導入口が開口し、他端が吸気路の上流端に連通しているヒートシンク用吸気管と、
 熱伝導体とヒートシンク用吸気管の間に配置され、高温部が熱伝導体に接触し、低温部がヒートシンク用吸気管に接触し、高温部と低温部の間の温度差により発電を行う1組あるいは複数組の熱発電素子とを備えている。
The thermoelectric generator
A heat conductor attached to the lower surface of the bottom wall portion of the housing;
An air intake pipe for a heat sink, which is arranged on the lower side of the heat conductor, has an outside air inlet opening at one end, and communicates with the upstream end of the air intake path at the other end;
It is arranged between the heat conductor and the heat sink intake pipe, the high temperature part contacts the heat conductor, the low temperature part contacts the heat sink intake pipe, and generates electricity by the temperature difference between the high temperature part and the low temperature part. A set or a plurality of sets of thermoelectric generators.
 本発明においては、燃焼器具筐体の底壁部分の下面に、熱伝導体を介して、熱発電素子を取り付けて、熱発電装置の高温側を加熱している。また、燃焼用空気を、熱発電素子の低温側に取り付けたヒートシンク用吸気管を経由させて燃焼室内に取り込むようにしている。燃焼室内の燃焼温度が上昇すると、それに応じて燃焼用空気の消費量が増加し、また、煙道を通る上昇気流の流量・流速も増加する。 In the present invention, a thermoelectric generator is attached to the lower surface of the bottom wall portion of the combustion appliance housing via a heat conductor to heat the high temperature side of the thermoelectric generator. Further, the combustion air is taken into the combustion chamber via a heat sink intake pipe attached to the low temperature side of the thermoelectric generator. When the combustion temperature in the combustion chamber rises, the consumption of combustion air increases accordingly, and the flow rate / velocity of the updraft passing through the flue also increases.
 このようなドラフト効果により、燃焼室内の燃焼温度の上昇に連動して、ヒートシンク用吸気管を流れる外気の流速が増加するので、燃焼温度の上昇に応じて、熱発電素子の低温側からの吸熱能力(冷却能力)が上がる。よって、燃焼温度が上昇しても、熱発電素子の高温側と低温側との間の温度差を維持でき、十分な発電を行わせることができる。また、熱発電装置の台数、各熱発電装置のヒートシンク用吸気管の管径などを適切に調整することにより、吸熱能力および発電効率を高めることができる。 Due to such a draft effect, the flow velocity of the outside air flowing through the heat sink intake pipe increases in conjunction with the increase in the combustion temperature in the combustion chamber, so that the heat absorption from the low temperature side of the thermoelectric generator as the combustion temperature increases. Capacity (cooling capacity) increases. Therefore, even if the combustion temperature rises, the temperature difference between the high temperature side and the low temperature side of the thermoelectric generator can be maintained, and sufficient power generation can be performed. Further, by appropriately adjusting the number of thermoelectric generators, the diameter of the heat sink intake pipe of each thermoelectric generator, etc., the heat absorption capacity and power generation efficiency can be increased.
 次に、燃焼器具筐体の内部において、燃焼室と筐体底壁部分との間に、空気層、または、燃焼室から排出される燃焼ガスを煙道に導く熱気層を形成しておくことができる。燃焼室の壁面に直接に、熱発電素子の高温側の部分を配置した場合には、熱発電素子は燃焼室内の燃焼温度の変動による影響を直接受ける。空気層あるいは熱気層が緩衝層として機能して、熱発電素子の加熱温度の変動を抑制でき、また、熱発電素子に過剰な熱負荷が加わることを防止あるいは抑制できる。 Next, in the combustion appliance housing, an air layer or a hot air layer that guides the combustion gas discharged from the combustion chamber to the flue is formed between the combustion chamber and the bottom wall portion of the housing. Can do. When the portion on the high temperature side of the thermoelectric generator is arranged directly on the wall surface of the combustion chamber, the thermoelectric generator is directly affected by fluctuations in the combustion temperature in the combustion chamber. The air layer or the hot air layer functions as a buffer layer, so that fluctuations in the heating temperature of the thermoelectric generator can be suppressed, and an excessive heat load can be prevented or suppressed from being applied to the thermoelectric generator.
 次に、ヒートシンク用吸気管としては、放熱性を高めるために、その内部に、長さ方向に延びる複数の放熱フィンなどの放熱材を配置したものを用いることができる。また、製造コスト、装置寸法に余裕がある場合などにおいては、ヒートシンク用吸気管を水平に配置し、ヒートシンク用吸気管の下側部分を、冷媒液貯留部あるいは冷媒液循環路としてもよい。たとえば、複数の放熱フィンの間に水を供給し、水の気化熱によってヒートシンク用吸気管による熱発電素子の吸熱能力を高めることができる。 Next, as the heat sink intake pipe, in order to improve heat dissipation, a heat sink such as a plurality of heat radiating fins extending in the length direction can be used. In addition, when there is a margin in manufacturing costs and apparatus dimensions, the heat sink intake pipe may be disposed horizontally, and the lower portion of the heat sink intake pipe may be used as a refrigerant liquid storage section or a refrigerant liquid circulation path. For example, water can be supplied between a plurality of heat radiation fins, and the heat absorption capability of the thermoelectric generator by the heat sink intake pipe can be enhanced by the heat of vaporization of the water.
 場合によっては、吸気路に吸気ファンを配置してもよく、煙道に排気ファンを配置してもよい。このようなファンを設けることにより、ヒートシンク用吸気管の吸熱能力を更に高めることができる。 Depending on circumstances, an intake fan may be disposed in the intake passage, and an exhaust fan may be disposed in the flue. By providing such a fan, the heat absorption capability of the heat sink intake pipe can be further enhanced.
 一方、筐体底壁部分からヒートシンク用吸気管への放射熱を遮断するための熱遮蔽材を配置してもよい。例えば板材の表面に遮熱塗料を塗布したものを用いることができる。熱遮蔽材によって放射熱によりヒートシンク用吸気管が加熱されることを防止できる。 On the other hand, a heat shielding material for blocking radiant heat from the bottom wall portion of the housing to the heat sink intake pipe may be disposed. For example, it is possible to use a plate material whose surface is coated with a thermal barrier paint. The heat shield can prevent the heat sink intake pipe from being heated by radiant heat.
本発明を適用した熱発電装置付き暖炉の一例を示す平面図、正面図、左側面図、右側面図、x-x線断面図および熱発電装置の部分を示す説明図である。1 is a plan view showing an example of a fireplace with a thermoelectric generator to which the present invention is applied, a front view, a left side view, a right side view, a cross-sectional view along line xx, and an explanatory view showing a portion of the thermoelectric generator. 本発明を適用した熱発電装置付き燃焼炉の一例を示す平面図、正面図、左側面図および右側面図、y-y線断面図、x-x線断面図およびx´-x´線断面図である。Plan view, front view, left side view and right side view, yy sectional view, xx sectional view and xx′-x ′ sectional view showing an example of a combustion furnace with a thermoelectric generator to which the present invention is applied FIG. 図2Aの燃焼炉の底面側を示す斜視図および熱発電装置のヒートシンク用吸気管の部分を示す説明図である。It is a perspective view which shows the bottom face side of the combustion furnace of FIG. 2A, and explanatory drawing which shows the part of the heat sink intake pipe of a thermoelectric generator. 図2Aの燃焼炉に水の気化熱を利用した水冷機構を付設した場合の一例を示す平面図、y-y線断面図、x-x線断面図および熱発電装置のヒートシンク用吸気管を示す説明図である。FIG. 2A is a plan view showing an example of a case where a water cooling mechanism using the heat of vaporization of water is attached to the combustion furnace of FIG. 2A, a cross-sectional view taken along a line xy, a cross-sectional view taken along a line xx, and a heat sink intake pipe It is explanatory drawing. 図2Aの燃焼炉に排気ファンおよび吸気ファンを取り付けた場合の例を示す平面図、左側面図およびx-x線断面図である。FIG. 2B is a plan view, a left side view, and a cross-sectional view along line xx showing an example in which an exhaust fan and an intake fan are attached to the combustion furnace of FIG. 2A. 図2Aの燃焼炉に複数台の熱発電装置を取り付けた場合の例を示す平面図、正面図、左側面図、右側面図、y-y線断面図、x-x線断面図およびx´-x´線断面である。FIG. 2A is a plan view, a front view, a left side view, a right side view, a yy sectional view, an xx sectional view, and an x ′ showing an example in which a plurality of thermoelectric generators are attached to the combustion furnace of FIG. -X 'line cross section.
 以下に、図面を参照して本発明の実施の形態に係る熱発電装置付き燃焼器具を説明する。なお、以下に述べる各例は本発明の一例を示すものであり、本発明は各例の構成に限定されるものではない。 Hereinafter, a combustion appliance with a thermoelectric generator according to an embodiment of the present invention will be described with reference to the drawings. Each example described below shows an example of the present invention, and the present invention is not limited to the configuration of each example.
[実施の形態1]
 図1(a)~1(f)は、実施の形態1に係る熱発電装置付き暖炉を示す平面図、正面図、左側面図、右側面図、x-x線断面図および熱発電装置の部分を示す説明図である。熱発電装置付き暖炉1(以下、単に「暖炉1」と呼ぶ。)は、例えば、薪ストーブであり、円筒状の燃焼炉筐体2を備えている。燃焼炉筐体2は前後4本の支持パイプ3によって横置き状態に支持されている。燃焼炉筐体2の前面2aには開閉扉4が取り付けられている。燃焼炉筐体2の内部には、その底側の部位に、前後方向に水平に延びる長方形の底板5が配置されている。底板5の上側の部分が燃焼室6であり、その下側の部分は、底板5と燃焼炉筐体2とによって囲まれた空気層7となっている。
[Embodiment 1]
1 (a) to 1 (f) are a plan view, a front view, a left side view, a right side view, a cross-sectional view taken along line xx, and a thermoelectric generator, showing a fireplace with a thermoelectric generator according to Embodiment 1. FIG. It is explanatory drawing which shows a part. A fireplace 1 with a thermoelectric generator (hereinafter simply referred to as “fireplace 1”) is, for example, a wood stove, and includes a cylindrical combustion furnace casing 2. The combustion furnace housing 2 is supported horizontally by four support pipes 3 at the front and rear. An opening / closing door 4 is attached to the front surface 2 a of the combustion furnace casing 2. Inside the combustion furnace casing 2, a rectangular bottom plate 5 extending horizontally in the front-rear direction is disposed at a bottom portion thereof. The upper part of the bottom plate 5 is a combustion chamber 6, and the lower part thereof is an air layer 7 surrounded by the bottom plate 5 and the combustion furnace casing 2.
 燃焼炉筐体2の外側において、その左側における前面2a側の部位には、上下方向に延びる矩形筒状の鉄パイプによって規定される吸気路8が取り付けられている。吸気路8の途中位置にはダンパー8aが配置されている。吸気路8の上端部は、燃焼炉筐体2の側に直角に折れ曲がり、当該燃焼炉筐体2の壁を貫通して内側の燃焼室6内に延びている。燃焼室6内の吸気路部分8bは、燃焼室6内を後方に向けて水平に延びている。また、吸気路部分8bには、下方に開口した燃焼空気噴出し口8cが形成されている。燃焼炉筐体2の後端面2bの側の上面部分には、上方に延びる煙突9が取り付けられている。煙突9によって規定される煙道9aの下端は、燃焼室6の後端側の天井面に開口している。 An intake passage 8 defined by a rectangular cylindrical iron pipe extending in the vertical direction is attached to the left side of the front side of the combustion furnace housing 2 on the front surface 2a side. A damper 8 a is disposed in the middle of the intake path 8. An upper end portion of the intake passage 8 is bent at a right angle toward the combustion furnace casing 2 and extends through the wall of the combustion furnace casing 2 into the inner combustion chamber 6. The intake passage portion 8b in the combustion chamber 6 extends horizontally in the combustion chamber 6 toward the rear. In addition, a combustion air ejection port 8c that opens downward is formed in the intake passage portion 8b. A chimney 9 extending upward is attached to the upper surface portion of the combustion furnace casing 2 on the rear end surface 2b side. The lower end of the flue 9 a defined by the chimney 9 opens to the ceiling surface on the rear end side of the combustion chamber 6.
 燃焼炉筐体2における前側の底壁部分2cには、その下側から1台の熱発電装置10が水平に取り付けられている。熱発電装置10は、図1(f)に示すように、底壁部分2cの下面に下側から取り付けた板状の熱伝導体11と、熱伝導体11の下面に取り付けた2組の熱発電素子12と、これらの熱発電素子12を挟み、下側から取り付けたヒートシンク用吸気管13とを備えている。また、底壁部分2cからヒートシンク用吸気管13への放射熱を遮断するために、遮蔽塗料が塗布された熱遮蔽材14が配置されている。熱遮蔽材14は、熱伝導体11を取り囲むように当該熱伝導体11に取り付けられている。熱遮蔽材14によって、底壁部分2cとヒートシンク用吸気管13の上面部分との間が熱的に遮断された状態となっている。 One thermoelectric generator 10 is horizontally attached to the front bottom wall portion 2c of the combustion furnace casing 2 from below. As shown in FIG. 1 (f), the thermoelectric generator 10 includes a plate-like heat conductor 11 attached to the lower surface of the bottom wall portion 2 c from below and two sets of heat attached to the lower surface of the heat conductor 11. A power generation element 12 and a heat sink intake pipe 13 attached between the thermoelectric generation elements 12 from below are provided. Further, in order to block radiant heat from the bottom wall portion 2c to the heat sink intake pipe 13, a heat shielding material 14 coated with a shielding paint is disposed. The heat shielding material 14 is attached to the heat conductor 11 so as to surround the heat conductor 11. The heat shielding material 14 is in a state where the bottom wall portion 2c and the upper surface portion of the heat sink intake pipe 13 are thermally blocked.
 左右方向に水平なヒートシンク用吸気管13は、例えば、熱伝導性の良い素材からなる矩形筒形状をしている。ヒートシンク用吸気管13における右側の端は横方向に開口した外気導入口13aとなっており、反対側の開口端13bには、吸気路8の下端部が直角に折れ曲がった状態で接続されている。ヒートシンク用吸気管13の内部には、その長さ方向に延びる複数枚の放熱フィン13cが配列されている。放熱フィン13cは、一定間隔で縦置き状態に配列され、各放熱フィン13cの間には細幅の空気流路が形成されている。 The horizontal heat sink air intake pipe 13 has, for example, a rectangular cylinder shape made of a material having good thermal conductivity. The right end of the heat sink intake pipe 13 is a laterally open outside air inlet 13a, and the opposite open end 13b is connected with the lower end of the intake passage 8 bent at a right angle. . A plurality of radiating fins 13c extending in the length direction are arranged inside the heat sink intake pipe 13. The radiating fins 13c are arranged in a vertically arranged state at regular intervals, and a narrow air flow path is formed between the radiating fins 13c.
 熱伝導体11とヒートシンク用吸気管13の間に配置されている熱発電素子12のそれぞれは、その高温部12aが熱伝導体11に接触し、その低温部12bがヒートシンク用吸気管13の上面に接触している。熱発電素子12は、高温部12aと低温部12bとの間の温度差により発電を行う。各熱発電素子12において発生した電力は、不図示のリード線を介して、例えば、不図示の蓄電装置に蓄えられる。なお、熱発電素子12の数は2組に限定されるものではない。 Each of the thermoelectric generators 12 arranged between the heat conductor 11 and the heat sink intake pipe 13 has a high temperature portion 12 a that contacts the heat conductor 11 and a low temperature portion 12 b that is the upper surface of the heat sink intake pipe 13. Touching. The thermoelectric generator 12 generates power by the temperature difference between the high temperature part 12a and the low temperature part 12b. The electric power generated in each thermoelectric generator 12 is stored, for example, in a power storage device (not shown) via a lead wire (not shown). The number of thermoelectric generators 12 is not limited to two sets.
 この構成の暖炉1において、燃焼用空気Aは、図1(e)に矢印で示すように、外気導入口13aから取り込まれ、ヒートシンク用吸気管13を通って吸気路8に流れ込み、吸気路8を通って、燃焼室6内に開口している燃焼空気噴出し口8cから燃焼室6内に供給される。また、燃焼室6内での薪の燃焼により発生した燃焼ガスは、燃焼室6の後端側に開口している煙道9aを通って上方に流れ出して外部に放出される。 In the fireplace 1 having this configuration, the combustion air A is taken in from the outside air inlet 13a as shown by an arrow in FIG. 1 (e), flows into the intake passage 8 through the heat sink intake pipe 13, and the intake passage 8 Then, the air is supplied into the combustion chamber 6 from the combustion air ejection port 8 c opened in the combustion chamber 6. Further, the combustion gas generated by the combustion of soot in the combustion chamber 6 flows upward through the flue 9a opened on the rear end side of the combustion chamber 6 and is released to the outside.
 燃焼によって発生した熱によって、燃焼室6の下側の空気層7が加熱され、その下側の燃焼炉筐体2の底壁部分2cが加熱される。底壁部分2cの下側には熱発電装置10の熱伝導体11が取り付けられており、熱伝導体11を介して、その下側の熱発電素子12の高温部12aが加熱される。これに対して、熱発電素子12の低温部12bは、ヒートシンク用吸気管13の上面に接触している。上記のように、外気が最初にヒートシンク用吸気管13を通って流れ込み、その内部に配置されている放熱フィン13cの間を通って吸気路8の側に流れ込む。したがって、熱発電素子12の低温部12bの吸熱が、ヒートシンク用吸気管13によって行われ、低温部12bは外気温に近い温度状態に保持される。 The lower air layer 7 of the combustion chamber 6 is heated by the heat generated by the combustion, and the bottom wall portion 2c of the lower combustion furnace casing 2 is heated. The thermal conductor 11 of the thermoelectric generator 10 is attached to the lower side of the bottom wall portion 2c, and the high temperature portion 12a of the thermoelectric generator 12 on the lower side is heated via the thermal conductor 11. On the other hand, the low temperature portion 12 b of the thermoelectric generator 12 is in contact with the upper surface of the heat sink intake pipe 13. As described above, the outside air first flows through the heat sink intake pipe 13 and then flows between the heat radiation fins 13 c disposed therein to the intake path 8 side. Therefore, the heat absorption of the low temperature portion 12b of the thermoelectric generator 12 is performed by the heat sink intake pipe 13, and the low temperature portion 12b is maintained in a temperature state close to the outside air temperature.
 燃焼が進み、燃焼室6内の温度が上昇すると、熱発電素子12の高温部12aも加熱されて温度が上昇する。また、ドラフト効果により、吸気エネルギも上昇するので、ヒートシンク用吸気管13の放熱フィン13cに沿って流れる外気の流量・流速も上昇し、ヒートシンク用吸気管13による熱発電素子12の低温部12bの吸熱能力も高まる。このように、燃焼状態に応じて(連動して)吸熱能力も変化するので、熱発電素子12の高温部12aと低温部12bとの間の温度差を所定の状態に維持できる。 As the combustion progresses and the temperature in the combustion chamber 6 rises, the high temperature portion 12a of the thermoelectric generator 12 is also heated and the temperature rises. Further, since the intake energy also increases due to the draft effect, the flow rate / flow velocity of the outside air flowing along the heat radiation fins 13c of the heat sink intake pipe 13 also increases, and the low temperature portion 12b of the thermoelectric generator 12 by the heat sink intake pipe 13 increases. Endothermic capacity is also increased. Thus, since the heat absorption capability also changes in accordance with (in conjunction with) the combustion state, the temperature difference between the high temperature portion 12a and the low temperature portion 12b of the thermoelectric generator 12 can be maintained in a predetermined state.
[実施の形態2]
 図2A(a)~2A(g)は、実施の形態2に係る熱発電装置付き燃焼炉を示す平面図、正面図、左側面図および右側面図、y-y線断面図、x-x線断面図およびx´-x´線断面図である。また、図2B(a)、2B(b)は、図2Aの燃焼炉の底面側を示す斜視図および熱発電装置のヒートシンク用吸気管の部分を示す説明である。
[Embodiment 2]
2A (a) to 2A (g) are a plan view, a front view, a left side view, a right side view, a cross-sectional view along line yy, and xx showing a combustion furnace with a thermoelectric generator according to Embodiment 2. FIG. 2 is a cross-sectional view taken along a line and a cross-sectional view taken along a line x′-x ′. 2B (a) and 2B (b) are a perspective view showing the bottom surface side of the combustion furnace of FIG. 2A and an explanation of a heat sink intake pipe portion of the thermoelectric generator.
 本例の熱発電装置付き燃焼炉21(以下、単に「燃焼炉21」と呼ぶ。)は、例えば、薪を燃料としている。燃焼炉21は、直方体状の燃焼炉筐体22を備え、その前面22aに開閉扉24が取り付けられている。燃焼炉筐体22の内部は、底板25a、左右の側板25b、25c、背面板25dおよび天板25eによって区画され、前側に開口した燃焼室26が形成されている。 The combustion furnace 21 with a thermoelectric generator of this example (hereinafter simply referred to as “combustion furnace 21”) uses, for example, soot as fuel. The combustion furnace 21 includes a rectangular parallelepiped combustion furnace casing 22, and an open / close door 24 is attached to a front surface 22a thereof. The interior of the combustion furnace housing 22 is partitioned by a bottom plate 25a, left and right side plates 25b and 25c, a back plate 25d and a top plate 25e, and a combustion chamber 26 opened to the front side is formed.
 燃焼室26の背面板25dと、その後ろ側の燃焼炉筐体22の背面壁22bとの間は、垂直仕切り板25fが配置され、垂直仕切り板25fによって吸気路28が形成されている。吸気路28は、燃焼炉筐体22の底壁部分22cの背面側の部位に開口する吸気口28aを備えている。吸気路28は、吸気口28aの側から、垂直仕切り板25fと背面壁22bとの間を通って上昇し、垂直仕切り板25fの上端と天板25eとの間を通り、背面板25dと垂直仕切り板25fとの間を通って降下している。吸気路28は、垂直仕切り板25fに形成した複数個所の燃焼空気噴出し口28cを介して、燃焼室26に連通している。 Between the back plate 25d of the combustion chamber 26 and the back wall 22b of the combustion furnace casing 22 on the rear side thereof, a vertical partition plate 25f is disposed, and an intake passage 28 is formed by the vertical partition plate 25f. The intake passage 28 includes an intake port 28 a that opens to a portion on the back side of the bottom wall portion 22 c of the combustion furnace casing 22. The intake path 28 rises from the intake port 28a side through the vertical partition plate 25f and the back wall 22b, passes between the upper end of the vertical partition plate 25f and the top plate 25e, and is perpendicular to the back plate 25d. It descends through the space between the partition plate 25f. The intake passage 28 communicates with the combustion chamber 26 through a plurality of combustion air ejection ports 28c formed in the vertical partition plate 25f.
 また、燃焼炉筐体22と燃焼室26との間には、燃焼室26の底面、左右の側面および天面を取り囲む状態に熱気層27が形成されている。熱気層27は、燃焼炉筐体22の内周面と、底板25a、左右の側板25b、25cおよび天板25eとの間に形成されている。熱気層27は、右側の側板25cの上端と天板25eとの間の隙間を介して燃焼室26に連通している。燃焼炉筐体22の天面部分には上方に延びる煙突29が取り付けられている。煙突29によって規定される煙道29aの下端は、燃焼炉筐体22の天面部分と、その下側の天板25eとの間に形成されている天面側の熱気層27の部分に連通している。天板25eにはダンパー25gが取り付けられている。 Further, a hot air layer 27 is formed between the combustion furnace casing 22 and the combustion chamber 26 so as to surround the bottom surface, the left and right side surfaces, and the top surface of the combustion chamber 26. The hot air layer 27 is formed between the inner peripheral surface of the combustion furnace casing 22 and the bottom plate 25a, the left and right side plates 25b and 25c, and the top plate 25e. The hot air layer 27 communicates with the combustion chamber 26 through a gap between the upper end of the right side plate 25c and the top plate 25e. A chimney 29 extending upward is attached to the top surface portion of the combustion furnace casing 22. The lower end of the flue 29a defined by the chimney 29 communicates with the portion of the hot air layer 27 on the top surface side formed between the top surface portion of the combustion furnace casing 22 and the top plate 25e below it. is doing. A damper 25g is attached to the top plate 25e.
 燃焼炉筐体22における底壁部分22cには、その下側から1台の熱発電装置30が水平に取り付けられている。熱発電装置30は、底壁部分22cの下面に下側から取り付けた板状の熱伝導体31と、熱伝導体31の下面に取り付けた2組の熱発電素子32と、熱発電素子32を挟み、下側から取り付けたヒートシンク用吸気管33とを備えている。なお、図1に示す場合と同様に、底壁部分22cからヒートシンク用吸気管33への放射熱を遮断するために、これらの間に、熱遮蔽材を配置することもできる。また、熱発電素子32の数は2組に限定されるものではない。 One thermoelectric generator 30 is horizontally attached to the bottom wall portion 22c of the combustion furnace casing 22 from below. The thermoelectric generator 30 includes a plate-like heat conductor 31 attached to the lower surface of the bottom wall portion 22c from the lower side, two sets of thermoelectric elements 32 attached to the lower surface of the heat conductor 31, and the thermoelectric generator 32. The heat sink intake pipe 33 is sandwiched and attached from below. As in the case shown in FIG. 1, in order to block the radiant heat from the bottom wall portion 22 c to the heat sink intake pipe 33, a heat shielding material can be disposed between them. Further, the number of thermoelectric generators 32 is not limited to two sets.
 ヒートシンク用吸気管33は、例えば、熱伝導性の良い素材からなる矩形筒形状をしている。ヒートシンク用吸気管33は、図2B(b)に示すように、外気導入口33aを備えた左右方向に延びる吸気管部分33bと、吸気管部分33bから背面側に向かって直角に折れ曲がって延びる吸気管部分33cとを備えている。この吸気管部分33cの後端は、燃焼炉筐体22内に形成されている吸気路28の吸気口28aに連通している。 The heat sink intake pipe 33 has, for example, a rectangular cylindrical shape made of a material having good thermal conductivity. As shown in FIG. 2B (b), the heat sink intake pipe 33 includes an intake pipe portion 33b that includes an outside air introduction port 33a and extends in the left-right direction, and intake air that is bent at a right angle from the intake pipe portion 33b toward the back side. And a tube portion 33c. The rear end of the intake pipe portion 33 c communicates with an intake port 28 a of an intake passage 28 formed in the combustion furnace casing 22.
 ヒートシンク用吸気管33において、外気導入口33aの側の吸気管部分33bの内部には、ダンパー33dが取り付けられている。吸気路28の吸気口28aに繋がっている吸気管部分33bはヒートシンクとして機能する管部分であり、この内部には、その長さ方向に延びる複数枚の放熱フィン33eが配置されている。放熱フィン33eは、一定間隔で縦置き状態に配列されており、各放熱フィン33eの間に、細巾の空気流路が形成されている。 In the heat sink intake pipe 33, a damper 33d is attached inside the intake pipe portion 33b on the side of the outside air inlet 33a. The intake pipe portion 33b connected to the intake port 28a of the intake passage 28 is a pipe portion that functions as a heat sink, and a plurality of heat radiation fins 33e extending in the length direction are disposed inside the intake pipe portion 33b. The radiating fins 33e are arranged vertically at regular intervals, and a narrow air flow path is formed between the radiating fins 33e.
 熱伝導体31とヒートシンク用の吸気管部分33cとの間に配置されている熱発電素子32は、その高温部32aが熱伝導体31に接触し、その低温部32bがヒートシンク用の吸気管部分33cの上面に接触している。熱発電素子32は、高温部32aと低温部32bとの間の温度差により発電を行う。熱発電素子32において発生した電力は、不図示のリード線を介して、例えば、不図示の蓄電装置に蓄えられる。 In the thermoelectric generator 32 arranged between the heat conductor 31 and the heat sink intake pipe portion 33c, the high temperature portion 32a contacts the heat conductor 31, and the low temperature portion 32b is the heat sink intake pipe portion. It is in contact with the upper surface of 33c. The thermoelectric generator 32 generates power by the temperature difference between the high temperature part 32a and the low temperature part 32b. The electric power generated in the thermoelectric generator 32 is stored, for example, in a power storage device (not shown) via a lead wire (not shown).
 図2A(e)、(f)、(g)を参照して説明すると、燃焼用空気は、燃焼炉21における最も低い位置である底に開口している外気導入口33aから取り込まれ、ヒートシンク用吸気管33を通って吸気路28に流れ込み、吸気路28を通って、燃焼空気噴出し口28cから燃焼室26内に供給される。また、燃焼室26内での薪の燃焼により発生した燃焼ガスは、燃焼室26の側板25cの上端と天板25eとの間を通って熱気層27に入り込み、その右側の部分、底側の部分、左側の部分および天板側の部分を経由して、煙道29aに流れ込み、ここを上昇して外部に放出される。 Referring to FIGS. 2A (e), (f), and (g), the combustion air is taken in from the outside air inlet 33a that opens to the bottom, which is the lowest position in the combustion furnace 21, and is used for the heat sink. It flows into the intake passage 28 through the intake pipe 33, passes through the intake passage 28, and is supplied into the combustion chamber 26 from the combustion air ejection port 28 c. Further, combustion gas generated by burning soot in the combustion chamber 26 passes between the upper end of the side plate 25c of the combustion chamber 26 and the top plate 25e and enters the hot air layer 27, and the right side portion thereof, the bottom side thereof. It flows into the flue 29a via the part, the left part, and the part on the top plate side, rises here, and is discharged to the outside.
 燃焼によって発生した熱によって、燃焼室26の下側の熱気層27の部分が加熱され、その下側の燃焼炉筐体22の底壁部分22cが加熱される。底壁部分22cの下側には熱発電装置30の熱伝導体31が取り付けられており、熱伝導体31を介して、その下側の熱発電素子32の高温部32aが加熱される。これに対して、熱発電素子32の低温部32bは、ヒートシンク用の吸気管部分33cの上面に接触している。外気が外気導入口33aからヒートシンク用吸気管33に流れ込み、その後側の部分に配置されている放熱フィン33eの間を通って吸気路28の側に流れ込む。したがって、熱発電素子32の低温部32bの吸熱が、ヒートシンク用吸気管33によって行われ、低温部32bは外気温に近い温度状態に保持される。 The portion of the hot air layer 27 on the lower side of the combustion chamber 26 is heated by the heat generated by the combustion, and the bottom wall portion 22c of the combustion furnace casing 22 on the lower side is heated. The thermal conductor 31 of the thermoelectric generator 30 is attached to the lower side of the bottom wall portion 22c, and the high temperature portion 32a of the lower thermoelectric generator 32 is heated via the thermal conductor 31. On the other hand, the low temperature portion 32b of the thermoelectric generator 32 is in contact with the upper surface of the heat sink intake pipe portion 33c. The outside air flows into the heat sink intake pipe 33 from the outside air inlet 33a, and flows into the intake path 28 through the space between the radiation fins 33e disposed on the rear side. Therefore, the heat absorption of the low temperature portion 32b of the thermoelectric generator 32 is performed by the heat sink intake pipe 33, and the low temperature portion 32b is held in a temperature state close to the outside air temperature.
 また、燃焼が進み、燃焼室26内の温度が上昇すると、熱発電素子32の高温部32aも加熱されて温度が上昇する。これに伴って吸気エネルギも上昇するので、ヒートシンク用吸気管33の放熱フィン33eに沿って流れる外気の流量・流速も上昇し、ヒートシンク用吸気管33による熱発電素子32の低温部32bの吸熱能力も高まる。このように、燃焼状態に応じて(連動して)吸熱能力も変化するので、熱発電素子32の高温部32aと低温部32bとの間の温度差を所定の状態に維持できる。 Further, as the combustion progresses and the temperature in the combustion chamber 26 rises, the high temperature portion 32a of the thermoelectric generator 32 is also heated and the temperature rises. Accordingly, the intake energy also rises, so the flow rate / flow velocity of the outside air flowing along the heat radiation fins 33e of the heat sink intake pipe 33 also rises, and the heat absorption capability of the low temperature portion 32b of the thermoelectric generator 32 by the heat sink intake pipe 33. Will also increase. As described above, the endothermic capacity also changes according to (in conjunction with) the combustion state, so that the temperature difference between the high temperature portion 32a and the low temperature portion 32b of the thermoelectric generator 32 can be maintained in a predetermined state.
[実施の形態2の改変例1]
 図3(a)~3(d)は、上記の燃焼炉21の改変例を示す平面図、y-y線断面図、x-x線断面図および熱発電装置のヒートシンク用吸気管を示す説明図である。本例の燃焼炉41は、上記の燃焼炉21の熱発電装置30に水冷機構を付設してある。本例の燃焼炉41における水冷機構の部分以外は、上記の燃焼炉21と実質的に同一であるので、それらの説明は省略する。
[Modification 1 of Embodiment 2]
3 (a) to 3 (d) are a plan view showing a modified example of the combustion furnace 21, a cross-sectional view taken along a line yy, a cross-sectional view taken along a line xx, and an explanation showing a heat sink intake pipe of the thermoelectric generator. FIG. In the combustion furnace 41 of this example, a water cooling mechanism is attached to the thermoelectric generator 30 of the combustion furnace 21 described above. Except for the part of the water cooling mechanism in the combustion furnace 41 of this example, since it is substantially the same as the combustion furnace 21 described above, description thereof is omitted.
 本例の燃焼炉41では、その熱発電装置30Aのヒートシンク用吸気管33を水冷できるようにしている。ヒートシンク用吸気管33の吸気管部分33cには、その下面部分の下側に冷媒液である水の貯留部42を設けてある。また、各放熱フィン33eの間には、貯留部42の水を毛細管力によって吸い上げ可能な素材、例えば紙片43が配置されている。各紙片43の下端部は貯留部42の水に浸漬させる。貯留部42は、給水管44を介して、給水タンク45に繋がっている。給水タンク45からは例えば、水頭差により水が補給される。給水タンク45には外部から水Wが供給される。貯留部42を冷却液循環路として、水などの冷媒液を循環させることも可能である。 In the combustion furnace 41 of this example, the heat sink intake pipe 33 of the thermoelectric generator 30A can be cooled with water. The intake pipe portion 33c of the heat sink intake pipe 33 is provided with a water storage portion 42 which is a refrigerant liquid below the lower surface portion thereof. In addition, a material capable of sucking up the water in the storage portion 42 by capillary force, for example, a piece of paper 43, is disposed between the radiation fins 33e. The lower end part of each paper piece 43 is immersed in the water of the storage part 42. The reservoir 42 is connected to a water supply tank 45 via a water supply pipe 44. For example, water is supplied from the water supply tank 45 by a water head difference. Water W is supplied to the water supply tank 45 from the outside. It is also possible to circulate a refrigerant liquid such as water using the reservoir 42 as a coolant circulation path.
 外気は、ヒートシンク用吸気管33を流れて、湿気を含み、その状態で燃焼室26に供給されて燃焼用空気として消費される。湿気を含むことにより、燃焼温度が高くなり、熱発電素子32の高温部32aが、より高温になる。また、ヒートシンク用吸気管33は水の気化熱によって効率良く冷却されるので、熱発電素子32の低温部32bの温度を下げることができる。よって、熱発電素子32の高温部32aと低温部32bとの間の温度差を広くでき、また、その状態を維持できる。よって、効率良く発電を行うことができる。 The outside air flows through the heat sink intake pipe 33, contains moisture, is supplied to the combustion chamber 26 in this state, and is consumed as combustion air. By including moisture, a combustion temperature becomes high and the high temperature part 32a of the thermoelectric generator 32 becomes higher temperature. Further, since the heat sink intake pipe 33 is efficiently cooled by the heat of vaporization of water, the temperature of the low temperature portion 32b of the thermoelectric generator 32 can be lowered. Therefore, the temperature difference between the high temperature part 32a and the low temperature part 32b of the thermoelectric generator 32 can be widened, and the state can be maintained. Therefore, power generation can be performed efficiently.
[実施の形態2の改変例2]
 図4(a)~(c)は、前述の燃焼炉21の別の改変例を示す平面図、左側面図およびx-x線断面図である。本例の燃焼炉51は、前述の燃焼炉21に、強制吸気用の吸気ファンおよび強制排気用の排気ファンを取り付けたものである。これ以外の構成は、上記の燃焼炉21と同一であるので、それらの説明は省略する。
[Modification 2 of Embodiment 2]
FIGS. 4A to 4C are a plan view, a left side view, and a cross-sectional view taken along line xx showing another modified example of the combustion furnace 21 described above. The combustion furnace 51 of this example is obtained by attaching the intake fan for forced intake and the exhaust fan for forced exhaust to the above-described combustion furnace 21. Since the configuration other than this is the same as that of the combustion furnace 21, the description thereof is omitted.
 本例の燃焼炉51では、その煙道29aの途中位置に排気ファン52を取り付けてあり、強制排気を行うことが可能である。また、吸気路28の途中位置に吸気ファン53を取り付けてあり、強制吸気が可能である。これらのファンの駆動を適切に制御することにより、効率の良い燃焼を実現でき、また、熱発電素子32の高温部32aと低温部32bとの間の温度差を確保・維持して効率の良い発電動作を実現できる。 In the combustion furnace 51 of this example, an exhaust fan 52 is attached in the middle of the flue 29a, and forced exhaust can be performed. In addition, an intake fan 53 is attached in the middle of the intake passage 28 so that forced intake is possible. By appropriately controlling the driving of these fans, efficient combustion can be realized, and the temperature difference between the high temperature portion 32a and the low temperature portion 32b of the thermoelectric generator 32 is ensured and maintained to be efficient. Power generation operation can be realized.
[実施の形態2の改変例3]
 図5(a)~(g)は、前述の燃焼炉21の更に別の改変例を示す平面図、正面図、左側面図、右側面図、y-y線断面図、x-x線断面図およびx´-x´線断面である。本例の燃焼炉61は、前述の燃焼炉21において、熱発電装置30を複数台に変更したものである。本例では、3台の熱発電装置30Bを燃焼炉筐体22の底壁部分22cの下面に取り付けてある。各熱発電装置30Bは、前述の熱発電装置30における吸気管部分33bが省略された構成となっており、吸気管部分33cのみを備え、その前端面に、前方に開口した外気導入口33aが形成されている。これ以外の構成は、上記の燃焼炉21と同一であるので、それらの説明は省略する。
[Modification 3 of Embodiment 2]
5 (a) to 5 (g) are a plan view, a front view, a left side view, a right side view, a yy sectional view, and an xx sectional view showing still another modified example of the combustion furnace 21 described above. It is a figure and a x'-x 'line cross section. The combustion furnace 61 of this example is obtained by changing the thermoelectric generator 30 to a plurality of units in the above-described combustion furnace 21. In this example, three thermoelectric generators 30 </ b> B are attached to the lower surface of the bottom wall portion 22 c of the combustion furnace casing 22. Each thermoelectric generator 30B has a configuration in which the intake pipe portion 33b in the above-described thermoelectric generator 30 is omitted. The thermoelectric generator 30B includes only the intake pipe portion 33c, and an outside air introduction port 33a opened forward is provided on the front end surface thereof. Is formed. Since the configuration other than this is the same as that of the combustion furnace 21, the description thereof is omitted.
 燃焼炉61の容積等に応じて熱発電装置30Bの台数を増減することにより、効率の良い燃焼を実現でき、また、各熱発電装置30Bにおいて効率の良い発電動作を実現できる。 Efficient combustion can be realized by increasing or decreasing the number of thermoelectric generators 30B according to the volume of the combustion furnace 61, etc., and an efficient power generation operation can be realized in each thermoelectric generator 30B.

Claims (6)

  1.  燃焼器具筐体と、
     前記燃焼器具筐体の内部に形成した燃焼室と、
     外気を燃焼用空気として前記燃焼室に取り込むために、前記燃焼器具筐体の内部あるいは外部に設けた吸気路と、
     前記燃焼室から燃焼ガスを外部に排出するための煙道と、
     前記燃焼器具筐体の筐体底壁部分の下側に取り付けた1台あるいは複数台の熱発電装置と
    を有しており、
     熱発電装置は、
     前記筐体底壁部分の下面に取り付けた熱伝導体と、
     前記熱伝導体の下側に配置され、一端に外気導入口が開口し、他端が前記吸気路の上流端に連通しているヒートシンク用吸気管と、
     前記熱伝導体と前記ヒートシンク用吸気管の間に配置され、高温部が前記熱伝導体に接触し、低温部が前記ヒートシンク用吸気管に接触し、前記高温部と前記低温部の間の温度差により発電を行う1組あるいは複数組の熱発電素子と
    を備えている熱発電装置付き燃焼器具。
    A combustion appliance housing;
    A combustion chamber formed inside the combustion appliance housing;
    An intake passage provided inside or outside the combustion appliance housing for taking outside air into the combustion chamber as combustion air;
    A flue for discharging combustion gas from the combustion chamber to the outside;
    One or more thermoelectric generators attached to the lower side of the bottom wall portion of the combustion appliance housing;
    Thermoelectric generator
    A heat conductor attached to the lower surface of the bottom wall portion of the housing;
    An air intake pipe for a heat sink, which is disposed on the lower side of the heat conductor, has an open air inlet at one end, and communicates with the upstream end of the intake path at the other end;
    The heat conductor is disposed between the heat sink and the heat sink intake pipe, the high temperature portion contacts the heat conductor, the low temperature portion contacts the heat sink intake pipe, and the temperature between the high temperature portion and the low temperature portion. A combustion appliance with a thermoelectric generator, comprising one or a plurality of thermoelectric generators for generating electric power by the difference.
  2.  請求項1において、
     前記燃焼器具筐体の内部における前記燃焼室と前記筐体底壁部分との間には、
     空気層、または、前記燃焼室から排出される燃焼ガスを前記煙道に導く熱気層が形成されている熱発電装置付き燃焼器具。
    In claim 1,
    Between the combustion chamber and the housing bottom wall portion inside the combustion appliance housing,
    A combustion appliance with a thermoelectric generator in which an air layer or a hot air layer for guiding combustion gas discharged from the combustion chamber to the flue is formed.
  3.  請求項1において、
     前記ヒートシンク用吸気管は水平に延びており、
     前記ヒートシンク用吸気管の下側部分は、冷媒液貯留部あるいは冷媒液循環路となっている熱発電装置付き燃焼器具。
    In claim 1,
    The heat sink intake pipe extends horizontally,
    The lower part of the heat sink intake pipe is a combustion appliance with a thermoelectric generator in which a refrigerant liquid storage part or a refrigerant liquid circulation path is formed.
  4.  請求項3において、
     前記ヒートシンク用吸気管の内部には、複数枚の放熱フィンが所定の間隔で配列され、
     前記放熱フィンの下側部分には冷媒液である水の貯留部が形成され、
     前記放熱フィンの間には、前記貯留部の水を毛細管力によって吸い上げる部材が配置されている熱発電装置付き燃焼器具。
    In claim 3,
    Inside the heat sink intake pipe, a plurality of radiating fins are arranged at predetermined intervals,
    The lower portion of the heat dissipating fin is formed with a water reservoir that is a refrigerant liquid,
    A combustion appliance with a thermoelectric generator in which a member for sucking up water in the storage portion by capillary force is disposed between the heat radiation fins.
  5.  請求項1において、
     前記吸気路に配置した吸気ファン、および、前記煙道に設けた排気ファンのうちの一方あるいは双方を備えている熱発電装置付き燃焼器具。
    In claim 1,
    A combustion appliance with a thermoelectric generator, comprising one or both of an intake fan arranged in the intake passage and an exhaust fan provided in the flue.
  6.  請求項1において、
     前記熱発電装置は、前記筐体底壁部分から前記ヒートシンク用吸気管への放射熱を遮断するための熱遮蔽材を備えている熱発電装置付き燃焼器具。
    In claim 1,
    The said thermoelectric generator is a combustion appliance with a thermoelectric generator provided with the heat shielding material for interrupting | blocking the radiant heat from the said housing | casing bottom wall part to the said heat sink intake pipe.
PCT/JP2018/011984 2017-03-27 2018-03-26 Combustion mechanism with thermal power generation device WO2018181099A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-061436 2017-03-27
JP2017061436A JP6899125B2 (en) 2017-03-27 2017-03-27 Combustion equipment with thermoelectric generator

Publications (1)

Publication Number Publication Date
WO2018181099A1 true WO2018181099A1 (en) 2018-10-04

Family

ID=63677165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/011984 WO2018181099A1 (en) 2017-03-27 2018-03-26 Combustion mechanism with thermal power generation device

Country Status (2)

Country Link
JP (1) JP6899125B2 (en)
WO (1) WO2018181099A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2624477A (en) * 2023-03-14 2024-05-22 Pym Howard Electrical power generation system
CN119294350A (en) * 2024-12-13 2025-01-10 中科艾尔(北京)科技有限公司 A semiconductor integrated gas path analysis and processing method, system and medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113078849B (en) * 2021-05-19 2022-11-29 浙江赛普能源有限公司 Combustion power generation furnace and power generation and charging method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204164U (en) * 1986-06-18 1987-12-26
JP3190969U (en) * 2014-03-18 2014-06-05 株式会社岡本 Cogeneration type wood heating stove
WO2016027057A1 (en) * 2014-08-22 2016-02-25 Standard Brands (Uk) Limited Cooking stove

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62204164U (en) * 1986-06-18 1987-12-26
JP3190969U (en) * 2014-03-18 2014-06-05 株式会社岡本 Cogeneration type wood heating stove
WO2016027057A1 (en) * 2014-08-22 2016-02-25 Standard Brands (Uk) Limited Cooking stove

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2624477A (en) * 2023-03-14 2024-05-22 Pym Howard Electrical power generation system
CN119294350A (en) * 2024-12-13 2025-01-10 中科艾尔(北京)科技有限公司 A semiconductor integrated gas path analysis and processing method, system and medium

Also Published As

Publication number Publication date
JP2018162942A (en) 2018-10-18
JP6899125B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
WO2018181099A1 (en) Combustion mechanism with thermal power generation device
CN106253751B (en) Biomass fuel thermoelectric generator
CN210569202U (en) Electromagnetic hot air device
JP7527366B2 (en) Gas equipment
KR200491117Y1 (en) staggered heat dissipation structure of interface card
KR101059317B1 (en) Hot air fan using heat pipe
CN110999068B (en) Thermoelectric power generation device
JP2019531451A (en) Oil heater
CN108679700A (en) A kind of self power generation blower mechanism of outdoor heater
KR20160044130A (en) Fan Heater Using Heat Pipe
TWM525395U (en) Excess heat power generation structure of gas combustion stove
CN209030123U (en) Fireplace Thermogenerator
CN210578309U (en) Micro-combustion-based thermoelectric generator
CN210578308U (en) Thermoelectric Generator Based on Micro Swirl Combustion
CN115597109A (en) Cogeneration device, thermoelectric power generation system, voltage control method and heating equipment
RU98231U1 (en) ELECTRIC GENERATING HEATER AND HOB DEVICE
KR101253701B1 (en) A fan heater with on horizontal heat transfer pipe
CN110635718A (en) Micro-combustion based thermoelectric generator
CN107154752B (en) Blast structure of thermoelectric generator and thermoelectric generator
CN221961493U (en) Electrical equipment
CN204574119U (en) With the solid fuel cooker of temperature difference electricity generation device
KR102590790B1 (en) Thermoelectric gas burner
KR101021930B1 (en) Radiator with air flow path and tower electric hot air fan using the same
CN220235294U (en) Heat dissipation structure of chassis
CN218179028U (en) Heating stove

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776935

Country of ref document: EP

Kind code of ref document: A1