JP2010135620A - Thermoelectric conversion module, and generator using the same - Google Patents

Thermoelectric conversion module, and generator using the same Download PDF

Info

Publication number
JP2010135620A
JP2010135620A JP2008311101A JP2008311101A JP2010135620A JP 2010135620 A JP2010135620 A JP 2010135620A JP 2008311101 A JP2008311101 A JP 2008311101A JP 2008311101 A JP2008311101 A JP 2008311101A JP 2010135620 A JP2010135620 A JP 2010135620A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type
conversion module
electrode
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008311101A
Other languages
Japanese (ja)
Other versions
JP5146290B2 (en
Inventor
Masahiro Ito
雅宏 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008311101A priority Critical patent/JP5146290B2/en
Publication of JP2010135620A publication Critical patent/JP2010135620A/en
Application granted granted Critical
Publication of JP5146290B2 publication Critical patent/JP5146290B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module capable of achieving an increase in power generation quantity by achieving a large difference in temperature in an element: and to provide a generator using the thermoelectric conversion module. <P>SOLUTION: The thermoelectric conversion module includes: a substrate 201 made of a foaming body; a plurality of upper plate electrodes 202 and lower plate electrodes 203 which are provided on both the surfaces of the substrate; a plurality of through-holes 204 penetrating through a region where the substrate and each electrode are superimposed; an n-type thermoelectric conversion element 205 embedded in one of the through-holes of each electrode; and a p-type thermoelectric conversion element 206 embedded in the other through-hole. The thermoelectric conversion module has a structure in which the end sides of the thermoelectric conversion elements 205, 206 are electrically connected to the upper and lower plate electrodes respectively so that a plurality of pairs of thermoelectric conversion elements 205, 206 can be arranged in series, and one electrode side is arranged on a high temperature side and the other electrode side is arranged on a low temperature side. The generator generates power based on the difference in temperature between a solar cell and the ambient air by allowing the module to contact the backside of the solar cell. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、温度差を利用して熱を電気に変換する熱電変換モジュールとこの熱電変換モジュールを太陽電池に接続した発電装置に関するものである。   The present invention relates to a thermoelectric conversion module that converts heat into electricity using a temperature difference and a power generation device in which the thermoelectric conversion module is connected to a solar cell.

地球温暖化が進行し、天候不順や海水上昇等々の問題が現実的に深刻化してきた現在、温暖化ガスである二酸化炭素を排出しないエネルギー源として太陽電池の重要性は、日本だけでなく、欧州、米国でも認識され、家庭や事業所への導入が盛んになってきている。導入されている太陽電池の7割は、Si系の太陽電池であり、そのほとんどは結晶系(単結晶あるいは多結晶系)である。   As global warming has progressed and problems such as bad weather and rising seawater have become seriously serious, solar cells are not only important in Japan as an energy source that does not emit carbon dioxide, a greenhouse gas, It is also recognized in Europe and the United States, and its introduction into homes and offices has become popular. Seventy percent of the solar cells introduced are Si-based solar cells, most of which are crystalline (single crystal or polycrystalline).

真夏の昼間、地球に降り注ぐ太陽エネルギーは1000W/m程度であり、これ等の太陽電池の最適条件下での平均的な発電量は150W/m程度である。つまり、変換効率は15%程度である。しかし、現実的には、住んでいる場所の緯度、家の向き、障害物の存在の有無、季節の差、天候の良し悪し等に強く依存し、15%という値は年間を通して実現されるものではない。 During midsummer daytime, the solar energy falling on the earth is about 1000 W / m 2 , and the average power generation amount under these optimum conditions of these solar cells is about 150 W / m 2 . That is, the conversion efficiency is about 15%. However, in reality, it depends strongly on the latitude of the place where you live, the orientation of the house, the presence of obstacles, the difference in season, the weather, and the like, and the value of 15% is realized throughout the year. is not.

平均的な家庭での必要発電量は4kW程度であろうが、平均的な家庭が太陽電池を導入しようとする場合、26m程度が必要となる。実効的な効率を考えると、40m程度が必要であろう。そのような屋根面積の確保はそう容易なものではない。従って、面積をできるだけ小さくするには、少しでも変換効率の高い太陽電池ユニットが必要とされる。 The average amount of power required in an average home will be about 4 kW, but if the average home wants to introduce solar cells, about 26 m 2 will be required. Considering effective efficiency, about 40 m 2 will be necessary. Securing such a roof area is not so easy. Therefore, in order to make the area as small as possible, a solar cell unit having a high conversion efficiency is required.

また、真夏の昼間、太陽電池にとって最も発電量の多い時間帯では、太陽電池の温度は80℃以上になる。結晶シリコン系太陽電池は80℃まで温度が上がると、室温における変換効率より20〜30%も落ちる。効率が落ちることを補償しようとすると、屋根に載せる太陽電池の面積を大きくしなければならなくなり、高価になるだけでなく、屋根の上でその面積の確保も容易でないというのが現実である。太陽電池の実効的な効率がアップできれば、必要とされる屋根上の太陽電池面積も小さくてすみ、コスト低減にもつながる。これ等の理由から、安価で発電効率の高い太陽電池が望まれる。   Further, during the daytime of midsummer, the solar cell temperature is 80 ° C. or higher in the time zone where the amount of power generation is the largest for the solar cell. When the temperature of a crystalline silicon solar cell rises to 80 ° C., it falls by 20 to 30% from the conversion efficiency at room temperature. In order to compensate for the decrease in efficiency, the area of the solar cell placed on the roof has to be increased, which is not only expensive, but it is also difficult to secure the area on the roof. If the effective efficiency of the solar cell can be increased, the required solar cell area on the roof can be reduced, leading to cost reduction. For these reasons, an inexpensive solar cell with high power generation efficiency is desired.

真夏の晴天の正午頃、太陽電池自体が80℃近くなることを逆に利用し、熱電変換素子を太陽電池の裏面に貼付して発電しようというアイデアは過去にもあった(特許文献1、2参照)が、ビジネスとしては実現されていない。その理由は、従来の熱電変換素子が作りにくいため、小さい面積での素子しか作られなかったこと、そのため、大きな太陽電池の裏に上記素子を接着する工程の複雑さも理由として挙げられる。   In the past, there has been an idea to generate electricity by attaching a thermoelectric conversion element to the back surface of the solar cell by using the fact that the solar cell itself is close to 80 ° C. around noon in midsummer sunny weather (Patent Documents 1 and 2). But it has not been realized as a business. The reason for this is that it is difficult to produce a conventional thermoelectric conversion element, so that only an element with a small area can be produced. Therefore, the complexity of the process of adhering the element to the back of a large solar cell is also cited.

また、熱電変換素子があまりに高価であるという事情もある。これは、従来のゼーベック効果を利用した熱電変換素子の構造上、p型とn型の素子を“π”の字状に結合して下基板に垂直に立てる構造とし、n型−p型−n型−p型というように直列につなぐ必要があり、更に、一般的に使用される熱電材料がBi−Te系であり、この材料がもろい材質の上、半田での接合が難しいという事情のため、ほとんど手作りでしか作られないためということが理由に挙げられる。   There is also a situation that the thermoelectric conversion element is too expensive. This is a structure of a conventional thermoelectric conversion element using the Seebeck effect, and a structure in which a p-type and an n-type element are coupled in a “π” shape to stand vertically to a lower substrate. It is necessary to connect n-type-p-type in series, and the thermoelectric material generally used is Bi-Te, which is a brittle material and difficult to join with solder. For this reason, the reason is that it can only be made by hand.

このため、低価格であることが必須である太陽電池基板の裏面に使用するのは現実的ではなく、実際に商品としては市場に現れていなかった。   For this reason, it is not realistic to use it for the back surface of the solar cell substrate, which is indispensable for a low price, and has not actually appeared in the market as a product.

このような技術的背景の下、特許文献3と非特許文献1には、効率良く発電を行えるとする熱電変換素子が提案されている。すなわち、この熱電変換素子は、p型材料から成る薄膜のp型熱電変換素子とn型材料から成る薄膜のn型熱電変換素子とが直列接続となるように成膜され、かつ、その両側に電極を成膜して熱電変換ユニットを構成すると共に、この熱電変換ユニットの両面に、熱伝導率の異なる2種類の材料で構成された柔軟性を有するフィルム状基板を設けたもので、熱電変換ユニット側に、熱伝導率の低い絶縁体であるポリイミド樹脂等の材料にて皮膜を設け、熱電変換ユニットの接合面と反対側に、熱伝導率の高い、銅等の金属材料が上記フィルム状基板の外面の一部分に位置するように設けられたものである。   Under such a technical background, Patent Literature 3 and Non-Patent Literature 1 propose thermoelectric conversion elements that can generate power efficiently. That is, this thermoelectric conversion element is formed such that a thin film p-type thermoelectric conversion element made of a p-type material and a thin film n-type thermoelectric conversion element made of an n-type material are connected in series, and are formed on both sides thereof. A thermoelectric conversion unit is formed by forming electrodes, and a flexible film-like substrate composed of two types of materials having different thermal conductivities is provided on both sides of the thermoelectric conversion unit. On the unit side, a film is provided with a material such as polyimide resin, which is an insulator with low thermal conductivity, and on the side opposite to the joining surface of the thermoelectric conversion unit, a metal material such as copper with high thermal conductivity is in the form of the film. It is provided so that it may be located in a part of outer surface of a board | substrate.

このような構成を採用することにより、上記フィルム状基板の上下面に温度差を加えたときの各層の熱流束の違いからフィルム状基板内部に温度差を生じさせ、フィルム状基板の厚さ方向の温度勾配をフィルム状基板の面内方向の温度勾配に効率よく変換させ、この温度勾配を利用して、熱電変換ユニットで効率良く発電を行おうとするものであった。そして、特許文献3と非特許文献1に記載の発明は、機械的強度が高く、加工性に優れ、自動化が容易で大量生産が可能であり、更に、フレキシブルであることを生かし曲面等への設置も可能であるため設置場所が制限されない発電効率の高い熱電変換素子を提供することを目的としていた。   By adopting such a configuration, a temperature difference is generated inside the film substrate from the difference in heat flux of each layer when a temperature difference is applied to the upper and lower surfaces of the film substrate, and the thickness direction of the film substrate The temperature gradient is efficiently converted into a temperature gradient in the in-plane direction of the film-like substrate, and the temperature gradient is used to efficiently generate power with the thermoelectric conversion unit. The inventions described in Patent Document 3 and Non-Patent Document 1 have high mechanical strength, excellent workability, are easy to automate, can be mass-produced, and are flexible to curved surfaces. The object of the present invention is to provide a thermoelectric conversion element with high power generation efficiency that can be installed and is not limited in installation location.

具体的には、マスクを利用し、樹脂シート上に素子構造を制御しながらスパッタリング法によりp型、n型の熱電材料をそれぞれ成膜して熱電変換素子部を形成し、かつ、熱電変換素子部上に別の樹脂シートを貼り付けることで熱電変換素子をサンドイッチする。   Specifically, using a mask, a p-type and n-type thermoelectric material is formed on the resin sheet by sputtering while controlling the element structure to form a thermoelectric conversion element portion, and the thermoelectric conversion element The thermoelectric conversion element is sandwiched by attaching another resin sheet on the part.

次に、この接着した樹脂シートの両外側面上でかつp型、n型の熱電変換素子の接合部に相当する部位に、銅等の熱伝導の良い金属により、上記接合部と同等サイズで同形のパターンを形成する。この構造体の断面を図1に示す。   Next, on both outer side surfaces of the bonded resin sheet and in a portion corresponding to the joint portion of the p-type and n-type thermoelectric conversion elements, a metal having good thermal conductivity such as copper is used to have the same size as the joint portion. Form an isomorphic pattern. A cross section of this structure is shown in FIG.

実際には、銅(図1中、material-Bと示す)が片面に塗布あるいは貼付されたポリイミドシート(図1中、material-Aと示す)を利用してその裏面に熱電変換素子(図1中、TE materialと示す)を形成し、もう1枚のポリイミドシートの銅が付いていない裏面側を上記熱電変換素子上に接着し、かつ、貼り合わせシートの両表面にある銅薄膜をエッチングして所望のパターンを切る。この銅部が、高温部、低温部に接触することになる。そこからの熱伝導で、樹脂シート面に平行な熱電変換素子内に温度差がついて発電するというものであった。   Actually, a thermoelectric conversion element (FIG. 1) is formed on the back surface of a polyimide sheet (shown as material-A in FIG. 1) with copper (shown as material-B in FIG. 1) coated or pasted on one side. The other side of the polyimide sheet with no copper attached is bonded onto the thermoelectric conversion element, and the copper thin films on both surfaces of the bonded sheet are etched. To cut the desired pattern. This copper part comes into contact with the high temperature part and the low temperature part. Due to the heat conduction from there, there was a temperature difference in the thermoelectric conversion element parallel to the resin sheet surface, and power was generated.

しかし、この方法では、高温側、低温側の温度接触部(以下、温度接触部と称する)からの熱伝導が樹脂内での熱拡散による熱伝導のみのため、熱電変換素子への熱伝導性が低く、熱電変換素子内での温度勾配が付き難いことから発電量が小さくなってしまうということが課題となっていた。   However, in this method, the heat conduction from the temperature contact portion on the high temperature side and the low temperature side (hereinafter referred to as the temperature contact portion) is only the heat conduction by thermal diffusion in the resin, and therefore the heat conductivity to the thermoelectric conversion element. However, it is difficult to have a temperature gradient in the thermoelectric conversion element, so that the amount of power generation is reduced.

ところで、発電効率については、高温部と低温部に大きな熱容量の物体を接着させることにより確実な温度差を実現でき、例えば、一方が高温部に熱的に接続し、他方を大気に放熱させるときは、最大効率の条件が存在する。そして、高温部−低温部間が固定温度の場合に発電量を増やそうとするならば、熱電変換素子を空間内に密に配置し、かつ、熱電変換素子の長さは短い方が良い(熱電素子モジュールの厚さは薄い方がよい)。発電量は、熱電素子の長さに反比例し、断面積に比例するからである。   By the way, as for power generation efficiency, a certain temperature difference can be realized by bonding an object having a large heat capacity between the high temperature part and the low temperature part, for example, when one is thermally connected to the high temperature part and the other is radiated to the atmosphere. There are conditions for maximum efficiency. If the power generation amount is to be increased when the temperature between the high temperature part and the low temperature part is a fixed temperature, it is better that the thermoelectric conversion elements are densely arranged in the space and the length of the thermoelectric conversion elements is short (thermoelectricity). The thickness of the element module should be thin). This is because the amount of power generation is inversely proportional to the length of the thermoelectric element and proportional to the cross-sectional area.

尚、熱電素子の発電量を最大にするため、熱電素子の断面積に着目した例としては特許文献4に記載された熱電モジュールが知られている。すなわち、P型熱電素子とN型熱電素子の各上下の電極面が電極に接続されて上下に対向する基板間にP型熱電素子とN型熱電素子とが配されている熱電モジュールにおいて、電極面と平行な平面で切ったP型およびN型熱電素子の断面積比を、P型およびN型熱電素子の電気抵抗値の平均値と熱伝導度の平均値との積が最小付近になるようにしていることを特徴とするものであった。そして、この熱電モジュールにおいては、P型熱電素子とN型熱電素子とに電気的特性や熱的特性で差がある場合でも、両種熱電素子の両方の性能を最大に引き出すことができる上に、構造的な性能低下要因を新たに生じてしまうこともない利点を有するものであった。   In order to maximize the amount of power generated by the thermoelectric element, a thermoelectric module described in Patent Document 4 is known as an example in which the cross-sectional area of the thermoelectric element is focused. That is, in the thermoelectric module in which the upper and lower electrode surfaces of the P-type thermoelectric element and the N-type thermoelectric element are connected to the electrodes and the P-type thermoelectric element and the N-type thermoelectric element are arranged between the vertically opposed substrates, The cross-sectional area ratio of the P-type and N-type thermoelectric elements cut by a plane parallel to the surface is the minimum product of the average value of the electrical resistance value and the average value of the thermal conductivity of the P-type and N-type thermoelectric elements. It was characterized by doing so. In this thermoelectric module, even if there is a difference in electrical characteristics and thermal characteristics between the P-type thermoelectric element and the N-type thermoelectric element, the performance of both types of thermoelectric elements can be maximized. In addition, there is an advantage that a structural performance deterioration factor is not newly generated.

しかし、特許文献4に記載された熱電モジュールにおいては、モジュールの構造上、モジュール内のP型熱電素子とN型熱電素子が存在しない領域は単なる空間(非熱電素子空間)で断熱性に難があり、熱電素子の発電量を最大にするためには未だ改良の余地を有していた。
特開2001−53322号公報 特開2003−69070号公報 特開2006−186255号公報 特開平11−274577号公報 NEDO平成18年度研究助成事業成果報告会 産業技術研究助成事業「エネルギー・環境技術」プロジェクトID:03B70010c=「低温廃熱利用のためのシート状フレキシブル熱電変換素子の研究開発」の発表資料 「ウレタンゴム弾性体」、「多孔質体の性質とその応用技術」1999年3月30日、石井正史著フジテクノシステム発行、210頁 図6.「各種断熱材料の性能」
However, in the thermoelectric module described in Patent Document 4, the region where the P-type thermoelectric element and the N-type thermoelectric element do not exist in the module is a simple space (non-thermoelectric element space) due to the structure of the module. There was still room for improvement in order to maximize the amount of power generated by the thermoelectric elements.
JP 2001-53322 A JP 2003-69070 A JP 2006-186255 A Japanese Patent Application Laid-Open No. 11-274577 NEDO 2006 Research Grants Project Results Report Industrial Technology Research Grants Project “Energy / Environmental Technology” Project ID: 03B70010c = Presentation of “Research and development of sheet-like flexible thermoelectric conversion elements for low-temperature waste heat utilization” "Urethane rubber elastic body", "Properties of porous body and its applied technology", March 30, 1999, published by Masafumi Ishii, Fuji Techno System, page 210 Figure 6. "Performance of various heat insulating materials"

本発明はこのような問題点に着目してなされたもので、その課題とするところは、P型熱電素子とN型熱電素子の各上下の電極面が電極に接続されて上下に対向する基板間にP型熱電素子とN型熱電素子とが配された構造を有する熱電モジュールにおいて、発電量を最大にするために好ましい新規な構造体を提供すると共に、「熱電変換素子の熱伝導度と断面積の積」と「非熱電素子空間の断面積と熱伝導度の積」との関係から発電量を最大に調整できる熱電モジュールの構造体を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the upper and lower electrode surfaces of the P-type thermoelectric element and the N-type thermoelectric element are connected to the electrodes and face each other vertically. In a thermoelectric module having a structure in which a P-type thermoelectric element and an N-type thermoelectric element are arranged between them, a preferable new structure for maximizing the amount of power generation is provided, and “the thermal conductivity of the thermoelectric conversion element and An object of the present invention is to provide a thermoelectric module structure that can adjust the amount of power generation to the maximum from the relationship between the product of the cross-sectional area and the product of the cross-sectional area of the non-thermoelectric element space and the thermal conductivity.

そこで、上記課題を解決するため、本発明者が鋭意検討した結果、以下のような技術的知見を得るに至った。   Then, in order to solve the said subject, as a result of this inventor's earnest examination, it came to obtain the following technical knowledge.

すなわち、温度差を利用して熱を電気に変換させる熱電変換モジュールにおいて、一方が高温部に熱的に接続し、他方を大気に放熱させた場合、熱電素子を短くしたり、断面積を大きくすると、熱電素子の熱伝導度は通常の金属よりは小さいながらも大気より大きいため、高温部、低温部の温度差が小さくなる。そして、発電量は、温度差の2乗に比例するため、温度差が小さくなるのは不利である。   That is, in a thermoelectric conversion module that converts heat into electricity using a temperature difference, when one is thermally connected to a high temperature part and the other is radiated to the atmosphere, the thermoelectric element is shortened or the cross-sectional area is increased. Then, although the thermal conductivity of the thermoelectric element is smaller than that of a normal metal but larger than the atmosphere, the temperature difference between the high temperature part and the low temperature part becomes small. And since electric power generation amount is proportional to the square of a temperature difference, it is disadvantageous that a temperature difference becomes small.

従って、P型熱電素子とN型熱電素子の各上下の電極面が電極に接続されて上下に対向する基板間にP型熱電素子とN型熱電素子とが配された構造を有する熱電モジュールにおいては、最適な配置、寸法があり得る。また、熱電素子の支配しない空間(すなわち、熱電素子が存在しない上記非熱電素子空間)の熱伝導度は小さい方が大きな温度差を作るためには有利である。   Accordingly, in the thermoelectric module having a structure in which the upper and lower electrode surfaces of the P-type thermoelectric element and the N-type thermoelectric element are connected to the electrodes and the P-type thermoelectric element and the N-type thermoelectric element are arranged between the vertically opposed substrates. May have optimal placement and dimensions. In addition, a smaller thermal conductivity of the space where the thermoelectric element does not dominate (that is, the non-thermoelectric element space where no thermoelectric element exists) is advantageous for creating a large temperature difference.

これ等の技術的知見から、発電量を最大にするのに適した新規な熱電モジュール構造体を見出すと共に、熱電モジュール構造体の発電量を最大にするには「熱電変換素子の熱伝導度と断面積の積」と「非熱電素子空間の断面積と熱伝導度の積」との間に厳密な関係が存在することを見出すに至った。   From these technical findings, we find a new thermoelectric module structure suitable for maximizing the amount of power generation, and to maximize the power generation amount of the thermoelectric module structure, see “Thermal conductivity of thermoelectric conversion element and It has been found that there is a strict relationship between the product of the cross-sectional area and the product of the cross-sectional area of the non-thermoelectric element space and the thermal conductivity.

本発明はこのような技術的発見に基づき完成されている。   The present invention has been completed based on such technical findings.

すなわち、請求項1に係る発明は、
熱電変換モジュールにおいて、
発泡体から成る基板と、基板上面側に設けられると共に互いに電気的に接続されていない複数の上側板状電極と、基板下面側に設けられると共に互いに電気的に接続されていない複数の下側板状電極と、上記基板の上側板状電極と下側板状電極が重なり合う領域若しくは近傍領域に開設された複数の貫通孔と、各板状電極内若しくは近傍に設けられた一方の貫通孔に埋め込まれたn型材料から成るn型熱電変換素子と、各板状電極内若しくは近傍に設けられた他方の貫通孔に埋め込まれたp型材料から成るp型熱電変換素子とを備え、各板状電極内若しくは近傍に設けられた一組のn型熱電変換素子とp型熱電変換素子の各端部側が対応する上側板状電極と下側板状電極にそれぞれ電気的に接続されてこれ等板状電極を介し複数組のp型熱電変換素子とn型熱電変換素子が直列に配列されていると共に、上側板状電極若しくは下側板状電極側が高温側に配置されかつ他方の電極側が低温側に配置されることを特徴とするものである。
That is, the invention according to claim 1
In thermoelectric conversion module,
A substrate made of foam, a plurality of upper plate-like electrodes provided on the upper surface side of the substrate and not electrically connected to each other, and a plurality of lower plate-like electrodes provided on the lower surface side of the substrate and not electrically connected to each other Embedded in the electrode, a plurality of through holes provided in the region where the upper plate electrode and the lower plate electrode of the substrate overlap or in the vicinity region, and one through hole provided in or near each plate electrode An n-type thermoelectric conversion element made of an n-type material and a p-type thermoelectric conversion element made of a p-type material embedded in the other through-hole provided in or near each plate-like electrode, Alternatively, each end side of a pair of n-type thermoelectric conversion element and p-type thermoelectric conversion element provided in the vicinity is electrically connected to the corresponding upper plate electrode and lower plate electrode, respectively. Multiple sets of p-type thermoelectrics The conversion element and the n-type thermoelectric conversion element are arranged in series, the upper plate electrode or the lower plate electrode side is arranged on the high temperature side, and the other electrode side is arranged on the low temperature side. is there.

次に、請求項2に係る発明は、
請求項1に記載の発明に係る熱電変換モジュールにおいて、
上記p型熱電変換素子とn型熱電変換素子の熱伝導度をそれぞれκp、κnとし、p型熱電変換素子とn型熱電変換素子の断面積をそれぞれSp、Snとし、発泡体から成る上記基板のp型熱電変換素子とn型熱電変換素子が埋め込まれていない領域の熱伝導度をκo、上記領域の断面積をSoとしたとき、
1.2×(κp・Sp+κn・Sn)≧κo×So (式1)
の関係を有し、かつ、
0.8×(κp・Sp+κn・Sn)≦κo×So (式2)
の関係を有していることを特徴とし、
請求項3に係る発明は、
熱電変換モジュールにおいて、
請求項1または2に記載の熱電変換モジュールが電気絶縁層を介して複数積層され、かつ、最外側に位置する一方の熱電変換モジュールの板状電極側が高温側に配置され、最外側に位置する他方の熱電変換モジュールの板状電極側が低温側に配置されることを特徴とし、
請求項4に係る発明は、
請求項1〜3のいずれかに記載の発明に係る熱電変換モジュールにおいて、
高温側あるいは低温側に配置される熱電変換モジュールの板状電極側が大気放熱型であることを特徴とする。
Next, the invention according to claim 2
In the thermoelectric conversion module according to the invention of claim 1,
The p-type thermoelectric conversion element and the n-type thermoelectric conversion element have thermal conductivity κp and κn, respectively, and the p-type thermoelectric conversion element and the n-type thermoelectric conversion element have cross-sectional areas Sp and Sn, respectively. When the thermal conductivity of the region where the p-type thermoelectric conversion element and the n-type thermoelectric conversion element are not embedded is κo and the cross-sectional area of the region is So,
1.2 × (κp · Sp + κn · Sn) ≧ κo × So (Formula 1)
And having the relationship
0.8 × (κp · Sp + κn · Sn) ≦ κo × So (Formula 2)
It has the relationship of
The invention according to claim 3
In thermoelectric conversion module,
A plurality of thermoelectric conversion modules according to claim 1 or 2 are stacked via an electrical insulating layer, and the plate electrode side of one thermoelectric conversion module located on the outermost side is disposed on the high temperature side and located on the outermost side. The plate electrode side of the other thermoelectric conversion module is arranged on the low temperature side,
The invention according to claim 4
In the thermoelectric conversion module which concerns on the invention in any one of Claims 1-3,
The plate-like electrode side of the thermoelectric conversion module disposed on the high temperature side or the low temperature side is an atmospheric heat radiation type.

また、請求項5に係る発明は、
請求項1〜4のいずれかに記載の発明に係る熱電変換モジュールにおいて、
発泡体から成る上記基板の熱伝導度が、0.03W/mK以下であることを特徴とし、
請求項6に係る発明は、
請求項5に記載の発明に係る熱電変換モジュールにおいて、
上記基板を構成する発泡体材料が、発泡ポリスチレン、ポリスチレンフォーム、ウレタンフォーム、フェノールフォーム、ガラスウールから選ばれる1種以上であることを特徴とするものである。
The invention according to claim 5
In the thermoelectric conversion module which concerns on the invention in any one of Claims 1-4,
The thermal conductivity of the substrate made of foam is 0.03 W / mK or less,
The invention according to claim 6
In the thermoelectric conversion module according to the invention of claim 5,
The foam material constituting the substrate is one or more selected from expanded polystyrene, polystyrene foam, urethane foam, phenol foam, and glass wool.

次に、請求項7に係る発明は、
発電装置において、
太陽電池の裏面側に請求項1〜6のいずれかに記載の熱電変換モジュールを接着させ、太陽電池と外気との温度差で発電させることを特徴とし、
請求項8に係る発明は、
請求項7に記載の発明に係る発電装置において、
太陽電池と熱電変換モジュールの接着に用いる接着剤の熱伝導度を(W/mK)、接着剤の厚みを(d)としたとき、(W/mK)/(d)の比が1000以上であることを特徴とし、
請求項9に係る発明は、
請求項7に記載の発明に係る発電装置において、
上記太陽電池が、アモルファス系Si太陽電池であることを特徴とし、
請求項10に係る発明は、
請求項7に記載の発明に係る発電装置において、
上記熱電変換モジュールにおける太陽電池と接触している面側の温度が、太陽電池と接触していない面側の温度より低くなったとき、電気の正負を切り替えるスイッチが熱電変換モジュールの回路中に設けられていることを特徴とする。
Next, the invention according to claim 7 provides:
In the power generator,
The thermoelectric conversion module according to any one of claims 1 to 6 is adhered to the back side of the solar cell, and the power is generated by a temperature difference between the solar cell and the outside air,
The invention according to claim 8 provides:
In the power generator according to claim 7,
When the thermal conductivity of the adhesive used for bonding the solar cell and the thermoelectric conversion module is (W / mK) and the thickness of the adhesive is (d), the ratio of (W / mK) / (d) is 1000 or more. It is characterized by
The invention according to claim 9 is:
In the power generator according to claim 7,
The solar cell is an amorphous Si solar cell,
The invention according to claim 10 is:
In the power generator according to claim 7,
When the temperature on the surface side in contact with the solar cell in the thermoelectric conversion module is lower than the temperature on the surface side not in contact with the solar cell, a switch that switches between positive and negative of electricity is provided in the circuit of the thermoelectric conversion module It is characterized by being.

本発明に係る熱電変換モジュールは、発泡体から成る基板と、基板上面側に設けられると共に互いに電気的に接続されていない複数の上側板状電極と、基板下面側に設けられると共に互いに電気的に接続されていない複数の下側板状電極と、上記基板の上側板状電極と下側板状電極が重なり合う領域若しくは近傍領域に開設された複数の貫通孔と、各板状電極内若しくは近傍に設けられた一方の貫通孔に埋め込まれたn型材料から成るn型熱電変換素子と、各板状電極内若しくは近傍に設けられた他方の貫通孔に埋め込まれたp型材料から成るp型熱電変換素子とを備え、各板状電極内若しくは近傍に設けられた一組のn型熱電変換素子とp型熱電変換素子の各端部側が対応する上側板状電極と下側板状電極にそれぞれ電気的に接続されてこれ等板状電極を介し複数組のp型熱電変換素子とn型熱電変換素子が直列に配列されていると共に、上側板状電極若しくは下側板状電極側が高温側に配置されかつ他方の電極側が低温側に配置される構造を有している。   The thermoelectric conversion module according to the present invention includes a substrate made of a foam, a plurality of upper plate electrodes that are provided on the upper surface side of the substrate and are not electrically connected to each other, and provided on the lower surface side of the substrate and that are electrically connected to each other. A plurality of lower plate electrodes that are not connected, a plurality of through-holes that are opened in a region where the upper plate electrode and the lower plate electrode of the substrate overlap or in the vicinity thereof, and provided in or near each plate electrode An n-type thermoelectric conversion element made of n-type material embedded in one through-hole and a p-type thermoelectric conversion element made of p-type material embedded in the other through-hole provided in or near each plate-like electrode And a pair of n-type thermoelectric conversion elements and p-type thermoelectric conversion elements provided in or near each plate-like electrode are electrically connected to the corresponding upper plate-like electrode and lower plate-like electrode respectively. Connected A plurality of sets of p-type thermoelectric conversion elements and n-type thermoelectric conversion elements are arranged in series via equal plate electrodes, the upper plate electrode or lower plate electrode side is arranged on the high temperature side, and the other electrode side is low temperature It has a structure arranged on the side.

そして、本発明に係る熱電変換モジュールによれば、
熱電素子の支配しない空間(熱電素子が存在しない非熱電素子空間)がポリスチレンフォーム、グラスウール等の発泡体で構成され、上記空間が空気で構成される従来の熱電変換モジュールと比較して熱伝導度が小さくなり、これにより熱電変換モジュール内に大きな温度差が実現されることになるため発電量を増加、改善させることが可能となる。
And according to the thermoelectric conversion module according to the present invention,
Thermal conductivity compared to conventional thermoelectric conversion modules in which the space where the thermoelectric element does not dominate (non-thermoelectric element space where no thermoelectric element exists) is made of foam such as polystyrene foam or glass wool, and the space is made of air. As a result, a large temperature difference is realized in the thermoelectric conversion module, so that the power generation amount can be increased and improved.

特に、上記p型熱電変換素子とn型熱電変換素子の熱伝導度をそれぞれκp、κnとし、p型熱電変換素子とn型熱電変換素子の断面積をそれぞれSp、Snとし、発泡体から成る上記基板のp型熱電変換素子とn型熱電変換素子が埋め込まれていない領域の熱伝導度をκo、上記領域の断面積をSoとしたとき、
1.2×(κp・Sp+κn・Sn)≧κo×So (式1)
の関係を有し、かつ、
0.8×(κp・Sp+κn・Sn)≦κo×So (式2)
の関係を有する場合には、最大の発電量を得ることが可能となる。
In particular, the thermal conductivity of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element is κp and κn, respectively, and the cross-sectional areas of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element are Sp and Sn, respectively. When the thermal conductivity of the region where the p-type thermoelectric conversion element and the n-type thermoelectric conversion element of the substrate are not embedded is κo and the cross-sectional area of the region is So,
1.2 × (κp · Sp + κn · Sn) ≧ κo × So (Formula 1)
And having the relationship
0.8 × (κp · Sp + κn · Sn) ≦ κo × So (Formula 2)
Thus, the maximum power generation amount can be obtained.

更に、本発明に係る熱電変換モジュールを太陽電池の裏面側に接着させることにより、太陽電池における発電効率の補助を行うことができ、太陽電池の実効的な発電効率を上げることが可能となる。   Furthermore, by adhering the thermoelectric conversion module according to the present invention to the back surface side of the solar cell, the power generation efficiency in the solar cell can be assisted, and the effective power generation efficiency of the solar cell can be increased.

以下、本発明の実施の形態について図面を参照して詳細に説明する
まず、本発明に係る熱電変換モジュール200は、図2に示すように発泡体から成る基板201と、基板201上面側に設けられると共に互いに電気的に接続されていない複数の上側板状電極202と、基板201下面側に設けられると共に互いに電気的に接続されていない複数の下側板状電極203と、上記基板201を介し上側板状電極202と下側板状電極203が重なり合う領域を貫通しかつ上側板状電極202と下側板状電極203毎にそれぞれ2個ずつ設けられた貫通孔204と、各板状電極202、203の一方の貫通孔204に埋め込まれたn型材料から成るn型熱電変換素子205と、各板状電極202、203の他方の貫通孔204に埋め込まれたp型材料から成るp型熱電変換素子206とを備え、各板状電極202、203のn型熱電変換素子205とp型熱電変換素子206の各端部側が対応する上側板状電極202と下側板状電極203にそれぞれ電気的に接続されてこれ等板状電極202、203を介して複数組のn型熱電変換素子205とp型熱電変換素子206が直列に配列されていると共に、上側板状電極202若しくは下側板状電極203側が高温側に配置されかつ他方の電極側が低温側に配置される構造を有している。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, a thermoelectric conversion module 200 according to the present invention is provided on a substrate 201 made of a foam as shown in FIG. A plurality of upper plate-like electrodes 202 that are not electrically connected to each other, a plurality of lower plate-like electrodes 203 that are provided on the lower surface side of the substrate 201 and are not electrically connected to each other, and the substrate 201 A through hole 204 that passes through the region where the side plate electrode 202 and the lower plate electrode 203 overlap and is provided for each of the upper plate electrode 202 and the lower plate electrode 203, and for each of the plate electrodes 202, 203 An n-type thermoelectric conversion element 205 made of an n-type material embedded in one through-hole 204 and a p-type embedded in the other through-hole 204 of each plate electrode 202, 203. A p-type thermoelectric conversion element 206 made of a material, and an n-type thermoelectric conversion element 205 of each plate-like electrode 202, 203 and an upper plate-like electrode 202 corresponding to each end side of the p-type thermoelectric conversion element 206 and a lower plate-like shape. A plurality of sets of n-type thermoelectric conversion elements 205 and p-type thermoelectric conversion elements 206 are arranged in series via the plate-like electrodes 202 and 203 respectively connected to the electrodes 203, and the upper plate-like electrode 202 or the lower plate-like electrode 203 side is arranged on the high temperature side, and the other electrode side is arranged on the low temperature side.

また、本発明の変形例に係る熱電変換モジュール300は、図3に示すように発泡体から成る基板301と、基板301上面側に設けられると共に互いに電気的に接続されていない複数の上側板状電極302と、基板301下面側に設けられると共に互いに電気的に接続されていない複数の下側板状電極303と、上記基板301の上側板状電極302と下側板状電極303の近傍領域に開設された複数の貫通孔304と、各板状電極302、303近傍に設けられた一方の貫通孔304に埋め込まれたn型材料から成るn型熱電変換素子305と、各板状電極302、303近傍に設けられた他方の貫通孔304に埋め込まれたp型材料から成るp型熱電変換素子306とを備え、各板状電極302、303近傍に設けられた一組のn型熱電変換素子305とp型熱電変換素子306の各端部側が対応する上側板状電極302と下側板状電極303にそれぞれ電気的に接続されてこれ等板状電極302、303を介し複数組のn型熱電変換素子305とp型熱電変換素子306とが直列に配列されていると共に、上側板状電極302若しくは下側板状電極303側が高温側に配置されかつ他方の電極側が低温側に配置される構造を有している。   Further, as shown in FIG. 3, a thermoelectric conversion module 300 according to a modification of the present invention includes a substrate 301 made of a foam and a plurality of upper plate-like members that are provided on the upper surface side of the substrate 301 and are not electrically connected to each other. The electrode 302, a plurality of lower plate electrodes 303 that are provided on the lower surface side of the substrate 301 and are not electrically connected to each other, and are opened in the vicinity of the upper plate electrode 302 and the lower plate electrode 303 of the substrate 301. A plurality of through-holes 304, an n-type thermoelectric conversion element 305 made of an n-type material embedded in one through-hole 304 provided in the vicinity of each plate-like electrode 302, 303, and the vicinity of each plate-like electrode 302, 303 And a p-type thermoelectric conversion element 306 made of a p-type material embedded in the other through-hole 304 provided in the plate, and a set of n-type heat provided in the vicinity of the plate electrodes 302 and 303. Each end side of the conversion element 305 and the p-type thermoelectric conversion element 306 is electrically connected to the corresponding upper plate-like electrode 302 and lower plate-like electrode 303, and a plurality of sets of n are connected via these plate-like electrodes 302, 303. Type thermoelectric conversion element 305 and p type thermoelectric conversion element 306 are arranged in series, upper plate electrode 302 or lower plate electrode 303 side is arranged on the high temperature side, and the other electrode side is arranged on the low temperature side It has a structure.

そして、図2および図3に示す熱電変換モジュール200、300によれば、熱電素子の支配しない空間(熱電素子が存在しない非熱電素子空間)が発泡ポリスチレン、ポリスチレンフォーム等の発泡体から成る基板201、301で構成され、上記空間が空気で構成される従来の熱電変換モジュールと比較して熱伝導度が小さくなり、これにより熱電変換モジュール200、300内に大きな温度差が実現されることになるため発電量を増加、改善させることが可能となる。   2 and 3, according to the thermoelectric conversion modules 200 and 300, the space 201 where the thermoelectric element does not dominate (the non-thermoelectric element space where no thermoelectric element exists) is made of a foam 201 such as expanded polystyrene or polystyrene foam. 301, and the thermal conductivity is smaller than that of the conventional thermoelectric conversion module in which the space is made of air, thereby realizing a large temperature difference in the thermoelectric conversion modules 200 and 300. Therefore, the power generation amount can be increased and improved.

尚、図2に示す熱電変換モジュール200については、以下の実施例2において示すように、上側板状電極202と下側板状電極203の電気絶縁性等を確保するためこれ等電極面上を樹脂シート等でカバーする構造にしてもよい。   For the thermoelectric conversion module 200 shown in FIG. 2, as shown in Example 2 below, these electrode surfaces are made of resin so as to ensure electrical insulation between the upper plate electrode 202 and the lower plate electrode 203. The structure may be covered with a sheet or the like.

また、図3に示す熱電変換モジュール300についても、以下の実施例1において示すように、アルミナ等の一対の電極用基板上に上側板状電極302並びに各素子との接続部N、P、および、下側板状電極並びに各素子との接続部をそれぞれ形成し、かつ、発泡体から成る基板301に上述した複数組のn型熱電変換素子305とp型熱電変換素子306を形成した後、これ等n型熱電変換素子305とp型熱電変換素子306の各端部と電極用基板の各接続部との位置整合をさせた状態で上記基板301を上側板状電極302が形成された電極用基板と下側板状電極303が形成された電極用基板とで挟持する構造としてもよい。

1.本発明に係る熱電変換モジュールの発電量が最大となる熱流の条件
本発明に係る熱電変換モジュールの発電量を検討するに際し、一方の板状電極側が大気放熱型の場合、発電量が最大となる熱流の条件、それによって出てくる断面積比の最適値を求めるため、最も単純な電極板に対し熱電変換素子を略垂直に配置した縦型熱電変換素子、具体的には、図4に示すような、p型熱電変換素子(P)、n型熱電変換素子(N)1対からなる構造を考える。
(1)熱流の定義
図4に示す熱電変換モジュールにおいて、図面左側の電極が高温側に接触し(温度T1)、図面右側の電極が大気(温度T3)等に放熱される構造であるとし、かつ、熱電変換モジュールの低温側の温度はT2になっているとする。
Further, for the thermoelectric conversion module 300 shown in FIG. 3, as shown in Example 1 below, on the pair of electrode substrates such as alumina, the upper plate electrode 302 and the connection portions N and P with each element, and After forming the lower plate-like electrode and the connection portion with each element, and forming the plurality of sets of the n-type thermoelectric conversion element 305 and the p-type thermoelectric conversion element 306 on the substrate 301 made of foam, For the electrode on which the upper plate-like electrode 302 is formed, the substrate 301 is aligned with the ends of the n-type thermoelectric conversion element 305 and the p-type thermoelectric conversion element 306 and the connection portions of the electrode substrate. A structure may be adopted in which the substrate is sandwiched between the electrode substrate on which the lower plate-like electrode 303 is formed.

1. Conditions of heat flow that maximizes the power generation amount of the thermoelectric conversion module according to the present invention When considering the power generation amount of the thermoelectric conversion module according to the present invention, the power generation amount is maximized when one plate-like electrode side is an air radiation type. A vertical thermoelectric conversion element in which thermoelectric conversion elements are arranged substantially vertically with respect to the simplest electrode plate in order to obtain the optimum value of the heat flow conditions and the resulting cross-sectional area ratio, specifically shown in FIG. A structure composed of a pair of a p-type thermoelectric conversion element (P) and an n-type thermoelectric conversion element (N) is considered.
(1) Definition of heat flow In the thermoelectric conversion module shown in FIG. 4, it is assumed that the electrode on the left side of the drawing is in contact with the high temperature side (temperature T1), and the electrode on the right side of the drawing is radiated to the atmosphere (temperature T3). The temperature on the low temperature side of the thermoelectric conversion module is assumed to be T2.

低温接触部(温度T2)から大気へ放熱され、そのときの熱伝達係数をα(α=5〜20)とする。また、p型熱電変換素子(P)の断面積(A2)、n型熱電変換素子(N)の断面積(A3)、1対の変換素子当たりの全面積(A0)、熱電変換素子の熱伝導度(κ2、κ3)、熱電素子が存在しない空間(非熱電素子空間)の熱伝導度(κ1)、各熱電変換素子の長さ(L)とする。   Heat is radiated from the low temperature contact portion (temperature T2) to the atmosphere, and the heat transfer coefficient at that time is α (α = 5 to 20). In addition, the cross-sectional area (A2) of the p-type thermoelectric conversion element (P), the cross-sectional area (A3) of the n-type thermoelectric conversion element (N), the total area per pair of conversion elements (A0), the heat of the thermoelectric conversion element The conductivity (κ2, κ3), the thermal conductivity (κ1) of a space where there is no thermoelectric element (non-thermoelectric element space), and the length (L) of each thermoelectric conversion element.

図4右側の低温接触部(温度T2)からの放熱で失われる熱流(Q0)は、
Q0=α・A0・(T2−T3)
また、1変換素子当たりの高温側から低温側への3種類の熱流がある。
The heat flow (Q0) lost by heat radiation from the low temperature contact portion (temperature T2) on the right side of FIG.
Q0 = α · A0 · (T2-T3)
There are three types of heat flow from the high temperature side to the low temperature side per conversion element.

Q1=κ1・(A1/L)・(T1−T2)
Q2=κ2・(A2/L)・(T1−T2)
Q3=κ3・(A3/L)・(T1−T2)
ここで、これ等熱流の間には、以下の関係が成立しなければならない。
Q1 = κ1 · (A1 / L) · (T1-T2)
Q2 = κ2 · (A2 / L) · (T1-T2)
Q3 = κ3 · (A3 / L) · (T1-T2)
Here, the following relationship must be established between these heat flows.

Q0=Q1+Q2+Q3 (1)
また、断面積の間に以下の関係がある。
Q0 = Q1 + Q2 + Q3 (1)
Further, there is the following relationship between the cross-sectional areas.

A1=A0−(A2+A3)
簡単な計算から、
A1 = A0− (A2 + A3)
From simple calculations,

Figure 2010135620
この素子により発電される電気量は、簡単のためp型とn型の断面積が等しい(A2=A3)とすると、以下のようになる。
Figure 2010135620
The amount of electricity generated by this element is as follows, assuming that the cross-sectional areas of p-type and n-type are equal (A2 = A3) for simplicity.

Figure 2010135620
ここで、Pfはパワーファクターと呼ばれる値で、熱電変換素子の物理定数できまる。
Figure 2010135620
Here, Pf is a value called a power factor, which is determined by the physical constant of the thermoelectric conversion element.

Figure 2010135620
ここで、ρp、ρnは、熱電変換素子p型、n型のそれぞれの電気伝導度、Sはゼーベック係数である。
Figure 2010135620
Here, ρp and ρn are the electric conductivities of the thermoelectric conversion elements p-type and n-type, respectively, and S is the Seebeck coefficient.

発電量Pwが最大となるときの熱流比(Q2+Q3)/Q1、および、断面積比A2とA0の関係を求める。簡単な計算の結果、以下の場合となる。   The heat flow ratio (Q2 + Q3) / Q1 and the relationship between the cross-sectional area ratios A2 and A0 when the power generation amount Pw is maximized are obtained. A simple calculation results in the following case.

Figure 2010135620
(Q2+Q3)とQ1の熱流の比は、
Figure 2010135620
The ratio of heat flow between (Q2 + Q3) and Q1 is

Figure 2010135620
断熱層は熱伝導度が小さく、κ2〜κ3>>κ1、αL≧κ1ということを考慮すると
Figure 2010135620
The heat insulating layer has low thermal conductivity, and considering that κ2 to κ3 >> κ1 and αL ≧ κ1

Figure 2010135620
となる。
Figure 2010135620
It becomes.

つまり、熱電素子部を流れる熱流と熱電素子部を流れる熱流がほぼ同じになることを示す。厚さが共通であることから、この条件は、熱電素子の熱伝導度(κt)、断面積(St)、熱電素子を除いた低熱伝導度の発泡体(断熱材)の熱伝導度(κa)、断面積(Sa)とするとき、κa×Sa=κt×St ということができる。そして、発電量が最大値の8割以上となる条件を求めると、ほぼ0.8×κa×Sa≧κt×Stの関係が成立し、かつ、1.2×κa×Sa≦κt×St ということが分かった。   That is, the heat flow flowing through the thermoelectric element portion and the heat flow flowing through the thermoelectric element portion are substantially the same. Since the thickness is common, this condition is defined as the thermal conductivity (κt), the cross-sectional area (St) of the thermoelectric element, and the thermal conductivity (κa) of the low thermal conductivity foam (heat insulating material) excluding the thermoelectric element. ), The cross-sectional area (Sa), it can be expressed as κa × Sa = κt × St. Then, when obtaining the condition that the power generation amount is 80% or more of the maximum value, the relationship of approximately 0.8 × κa × Sa ≧ κt × St is established, and 1.2 × κa × Sa ≦ κt × St I understood that.

面積比について、現実的な値を入れると、
(A2+A3)/A0=2・(A2/A0)
=2・(αL+κ1)/(2κ2)
〜2・αL/(2κ2)〜0.08・Q1〜(Q2+Q3)ということに相当し、このときに発電量は最大になる。

(2)もうひとつの境界条件:一定熱流入の場合
図5のように一定の熱流入がある場合について検討する。
If you put a realistic value for the area ratio,
(A2 + A3) / A0 = 2 · (A2 / A0)
= 2 · (αL + κ1) / (2κ2)
This corresponds to ˜2 · αL / (2κ2) to 0.08 · Q1 to (Q2 + Q3), and at this time, the amount of power generation is maximized.

(2) Another boundary condition: Case of constant heat inflow Consider the case of constant heat inflow as shown in FIG.

このとき、
Q1=κ1・(A1/L)・(T1−T2)
Q2=κ2・(A2/L)・(T1−T2)
Q3=κ3・(A3/L)・(T1−T2)
なる関係が成り立つ。
At this time,
Q1 = κ1 · (A1 / L) · (T1-T2)
Q2 = κ2 · (A2 / L) · (T1-T2)
Q3 = κ3 · (A3 / L) · (T1-T2)
The relationship becomes true.

Q0=Q1+Q2+Q3=α(A1+A2+A3)・(T2−T3)
Q0=(T1−T2)(κ1・A1+κ2・A2+κ3・A3)/L
が成立する。
Q0 = Q1 + Q2 + Q3 = α (A1 + A2 + A3) · (T2-T3)
Q0 = (T1-T2) (κ1 · A1 + κ2 · A2 + κ3 · A3) / L
Is established.

Figure 2010135620
ここで発電量は、
Figure 2010135620
Here, the power generation amount is

Figure 2010135620
ΔTを代入して
Figure 2010135620
Substituting ΔT

Figure 2010135620
A2/A0=κ1/(2κ2)のとき、発電量は最大値をとり、その値は、
Figure 2010135620
When A2 / A0 = κ1 / (2κ2), the power generation takes the maximum value, and the value is

Figure 2010135620
熱流比を求める。
Figure 2010135620
Obtain the heat flow ratio.

Figure 2010135620
現実的な数値で考えると
κ1/κ2=0.03
従って、同様に
Figure 2010135620
Considering realistic values, κ1 / κ2 = 0.03
Therefore, as well

Figure 2010135620
のとき、発電量が最大となる。
Figure 2010135620
In this case, the amount of power generation is maximized.

厚さが共通であることから、この条件は、熱電変換素子の熱伝導度(κt)、断面積(St)、熱電素子を除いた低熱伝導度の発泡体(断熱材)の熱伝導度(κa)、断面積(Sa)とするとき κa×Sa=κt×St ということができる。   Since the thickness is common, this condition is that the thermal conductivity of the thermoelectric conversion element (κt), the cross-sectional area (St), and the thermal conductivity of the foam (heat insulating material) with low thermal conductivity excluding the thermoelectric element ( κa) and cross-sectional area (Sa), it can be expressed as κa × Sa = κt × St.

そして、発電量が最大値の8割以上となる条件を求めると、
ほぼ、1.2×κa×Sa≧κt×Stの関係が成立し、かつ、
0.8×κa×Sa≦κt×Stを満たしていることが必要であることが分かった。

2.熱電変換モジュールの構成
(1)熱電変換モジュール
本発明に係る熱電変換モジュールは、例えば、図2および図3に示したような構造を有している。すなわち、本発明に係る熱電変換モジュールは、発泡体から成る基板と、基板上面側に設けられると共に互いに電気的に接続されていない複数の上側板状電極と、基板下面側に設けられると共に互いに電気的に接続されていない複数の下側板状電極と、上記基板の上側板状電極と下側板状電極が重なり合う領域若しくは近傍領域に開設された複数の貫通孔と、各板状電極内若しくは近傍に設けられた一方の貫通孔に埋め込まれたn型材料から成るn型熱電変換素子と、各板状電極内若しくは近傍に設けられた他方の貫通孔に埋め込まれたp型材料から成るp型熱電変換素子とを備え、各板状電極内若しくは近傍に設けられた一組のn型熱電変換素子とp型熱電変換素子の各端部側が対応する上側板状電極と下側板状電極にそれぞれ電気的に接続されてこれ等板状電極を介し複数組のp型熱電変換素子とn型熱電変換素子が直列に配列されていると共に、上側板状電極若しくは下側板状電極側が高温側に配置されかつ他方の電極側が低温側に配置される構造を有している。
And when obtaining the condition that the power generation amount is 80% or more of the maximum value,
The relationship of 1.2 × κa × Sa ≧ κt × St is established, and
It was found that 0.8 × κa × Sa ≦ κt × St must be satisfied.

2. Configuration of Thermoelectric Conversion Module (1) Thermoelectric Conversion Module The thermoelectric conversion module according to the present invention has a structure as shown in FIGS. 2 and 3, for example. That is, the thermoelectric conversion module according to the present invention is provided with a foam substrate, a plurality of upper plate electrodes provided on the upper surface side of the substrate and not electrically connected to each other, and provided on the lower surface side of the substrate and electrically connected to each other. A plurality of lower plate-like electrodes that are not connected to each other, a plurality of through-holes opened in a region where the upper plate-like electrode and the lower plate-like electrode of the substrate overlap or in the vicinity thereof, and in or near each plate-like electrode An n-type thermoelectric conversion element made of an n-type material embedded in one provided through-hole and a p-type thermoelectric made of a p-type material embedded in the other through-hole provided in or near each plate-like electrode A pair of n-type thermoelectric conversion elements and p-type thermoelectric conversion elements provided in or near each plate-like electrode, and corresponding to the upper plate-like electrode and the lower plate-like electrode respectively corresponding to each end side Contact A plurality of sets of p-type thermoelectric conversion elements and n-type thermoelectric conversion elements are arranged in series via these plate-like electrodes, and the upper plate-like electrode or lower plate-like electrode side is arranged on the high temperature side and the other The electrode side is arranged on the low temperature side.

そして、図2に示した熱電変換モジュールは、例えば、図6の製造工程図に示すような工程を経て製造することができる。   And the thermoelectric conversion module shown in FIG. 2 can be manufactured through processes as shown in the manufacturing process diagram of FIG. 6, for example.

すなわち、発泡スチロール等の発泡性樹脂板の両面に銅等の金属箔を貼り合わせ、かつ、図示外のマスクを用いたエッチング処理により、発泡性樹脂板の両面に図7に示すような複数の上側板状電極202と下側板状電極203を形成する。   That is, a metal foil such as copper is bonded to both surfaces of a foamed resin plate such as polystyrene foam, and a plurality of upper surfaces as shown in FIG. Side plate electrodes 202 and lower plate electrodes 203 are formed.

次に、上記発泡性樹脂板を介し上側板状電極202と下側板状電極203が重なり合う領域に打ち抜き法により断面矩形状の貫通孔を複数設けると共に、これ等貫通孔にn型熱電変換素子205とp型熱電変換素子206をそれぞれ埋め込みかつ半田付けして図2に示すような構造体とし、更に、必要に応じて上側板状電極と下側板状電極側を樹脂シートで覆って図2および図7に示すような熱電変換モジュールを得る。

(2)熱電変換材料
熱電変換材料としては、高性能を有するIrSb、BiTe、PbTe等のカルコゲン系化合物の他、熱電特性は低いが資源的に豊富なFeSi、SiGe等の珪化物が挙げられる。また、Si半導体中のキャリアー濃度が1024(1/m)程度になるようにP、B、Al等種々の添加元素の単独または複合添加を行い、その添加量を調整することにより、ゼーベック係数が極めて大きく、熱電変換効率を著しく高めたSi基熱電変換材料も利用することができる。その他、公知のいずれの材質も採用可能である。Siに、Ge、C、Snのうち少なくとも1種を5〜10原子%、Siをp型半導体またはn型半導体となすための添加元素のうち少なくとも1種を0.001原子%〜20原子%含有し、多結晶Siの粒界部に上記Ge、C、Snの1種以上あるいは更に添加元素の1種以上が析出した結晶組織を有するSi基熱電変換材料等のSi基熱電変換材料は熱電変換効率が著しく高いため好ましい。
Next, a plurality of through holes having a rectangular cross section are formed by punching in a region where the upper plate electrode 202 and the lower plate electrode 203 overlap through the foamed resin plate, and the n-type thermoelectric conversion element 205 is provided in these through holes. 2 and p-type thermoelectric conversion element 206 are embedded and soldered to form a structure as shown in FIG. 2, and the upper plate electrode and the lower plate electrode side are covered with a resin sheet as necessary. A thermoelectric conversion module as shown in FIG. 7 is obtained.

(2) Thermoelectric conversion materials As thermoelectric conversion materials, siliceous FeSi 2 , SiGe, etc., which have low thermoelectric properties but are resource abundant in addition to chalcogen compounds such as IrSb 3 , Bi 2 Te 3 , and PbTe that have high performance. Things. Also, by adding various additive elements such as P, B, and Al alone or in combination so that the carrier concentration in the Si semiconductor is about 10 24 (1 / m 3 ) and adjusting the addition amount, Seebeck A Si-based thermoelectric conversion material having a very large coefficient and significantly improved thermoelectric conversion efficiency can also be used. In addition, any known material can be used. In Si, at least one of Ge, C, and Sn is 5 to 10 atomic%, and at least one of additive elements for making Si a p-type semiconductor or an n-type semiconductor is 0.001 atomic% to 20 atomic%. Si-based thermoelectric conversion materials such as Si-based thermoelectric conversion materials containing a crystal structure in which one or more of Ge, C, and Sn or further one or more of additional elements are precipitated are included in the grain boundary portion of polycrystalline Si. This is preferable because the conversion efficiency is remarkably high.

Siをp型半導体となすためのドーパント元素としては、pグループ群(Be、Mg、Ca、Sr,Ba,Zn、Cd、Hg、B、Al、Ga、In、Tl)、遷移金属元素群(Y、Mo、Zr)の各群から選択する1種または2種以上が望ましい。特に好ましい元素は、B、Ga,Alである。   As a dopant element for making Si a p-type semiconductor, a p group group (Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, B, Al, Ga, In, Tl), a transition metal element group ( One or more selected from each group of Y, Mo, Zr) are desirable. Particularly preferable elements are B, Ga, and Al.

また、Si基熱電変換材料をn型半導体となすためのドーパント元素は、nグループ群(N、P、As、Sb、Bi、O、S、Se、Te)、遷移金属元素群(Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Nb、Ru、Rh、Pd、Ag、Hf、Ta、W、Re、Os、Ir、Pt、Pt、Au、但し、Feは10原子%以下)、希土類元素群(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb、Lu)の各群から選択する1種または2種以上が望ましい。特に好ましい元素は、P、Cu,Asである。

(3)低熱伝導材料(発泡体から成る基板材料)
通常、大気の熱伝導度は極めて低いが、2つの略平行な温度電極が存在する場合、その2つの温度電極間の熱伝導度は、大気分子による熱伝導の他に、輻射による熱伝導がある。2つの電極間の温度差が大きい場合は特に顕著である。例えば、2つの温度電極間に100℃の温度差がある場合、その間隔が3mmの2枚の電極間の熱伝導を計算すると、ステファンボルツマン定数をσ=5.67×10−8 W/mとするとき、熱放射の実効的な熱伝導量を求める。このとき、実効的な熱伝導度κを定義できる。
Further, dopant elements for making an Si-based thermoelectric conversion material an n-type semiconductor include n group groups (N, P, As, Sb, Bi, O, S, Se, Te), transition metal element groups (Ti, V , Cr, Mn, Fe, Co, Ni, Cu, Nb, Ru, Rh, Pd, Ag, Hf, Ta, W, Re, Os, Ir, Pt, Pt, Au, provided that Fe is 10 atomic% or less) One or more selected from each group of rare earth elements (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu) are desirable. Particularly preferable elements are P, Cu, and As.

(3) Low thermal conductivity material (substrate material made of foam)
Normally, the thermal conductivity of the atmosphere is very low, but when there are two substantially parallel temperature electrodes, the thermal conductivity between the two temperature electrodes is not limited to the heat conduction by atmospheric molecules, but also the heat conduction by radiation. is there. This is particularly noticeable when the temperature difference between the two electrodes is large. For example, when there is a temperature difference of 100 ° C. between two temperature electrodes, the heat conduction between two electrodes having a distance of 3 mm is calculated, and the Stefan Boltzmann constant is σ = 5.67 × 10 −8 W / m. when the 2 K 4, determine the effective thermal conductivity of thermal radiation. At this time, an effective thermal conductivity κ can be defined.

Q=σS(T1−T2)=(κ/L)・(T1−T2)S
面積Sは両辺でキャンセルされ、T1=400K、T2=300Kを代入すると、
κ/L=9.92となる。
Q = σS (T1 4 −T2 4 ) = (κ / L) · (T1−T2) S
Area S is canceled on both sides, and if T1 = 400K and T2 = 300K are substituted,
κ / L = 9.92.

L=3×10−3 mとすると κ=0.029W/mKとなり必ずしも小さくない。 When L = 3 × 10 −3 m, κ = 0.029 W / mK and not necessarily small.

従って、以下に示す熱伝導度の材料があればその材料を用いた方が好ましいことが分かる。熱伝導度の小さな材料の候補として、図8(非特許文献2参照)のグラフ図に挙げられた硬質ウレタンフォーム、フェノールフォーム、硬質塩ビフォーム、グラスウール等がある。

(4)電極間に低熱伝導材料(発泡体から成る基板材料)を入れる効果
熱電材料に関する条件(例えば、熱電素子の材質、サイズ、数等)が同一の場合、上記非熱電素子空間(以下、断熱層と呼ぶことがある)の熱伝導度が低い方が発電量は大きくなる。シミュレーション結果を図9に示す。断熱層の熱伝導度が小さい方が、上下の温度差が大きくなり、結果、発電量が大きくなることが分かる。

3.複数の熱電変換モジュールが電気絶縁層を介して複数積層された構造体
例えば、図2および図3に示したような熱電変換モジュールが電気絶縁層を介して複数積層され、かつ、最外側に位置する一方の熱電変換モジュールの板状電極側が高温側に配置され、最外側に位置する他方の熱電変換モジュールの板状電極側が低温側に配置される構造を有する熱電変換モジュールとしてもよい。

4.発電装置
本発明に係る発電装置は、上記熱電変換モジュールが太陽電池の裏面側に接着され、太陽電池と外気温等との温度差で発電することを特徴とするものである。
Therefore, it can be seen that it is preferable to use a material having the following thermal conductivity. As a candidate for a material having low thermal conductivity, there are hard urethane foam, phenol foam, hard PVC foam, glass wool and the like listed in the graph of FIG. 8 (see Non-Patent Document 2).

(4) Effect of inserting a low thermal conductive material (a substrate material made of foam) between the electrodes When the conditions regarding the thermoelectric material (for example, the material, size, number, etc. of the thermoelectric element) are the same, the non-thermoelectric element space (hereinafter, The lower the thermal conductivity of the heat insulating layer (which may be called a heat insulating layer), the larger the amount of power generation. The simulation result is shown in FIG. It can be seen that the lower the thermal conductivity of the heat insulating layer, the greater the temperature difference between the upper and lower sides, and the greater the amount of power generation.

3. A structure in which a plurality of thermoelectric conversion modules are stacked via an electrical insulation layer. For example, a plurality of thermoelectric conversion modules as shown in FIGS. 2 and 3 are stacked via an electrical insulation layer and located on the outermost side. Alternatively, the thermoelectric conversion module may have a structure in which the plate electrode side of one thermoelectric conversion module is arranged on the high temperature side and the plate electrode side of the other thermoelectric conversion module located on the outermost side is arranged on the low temperature side.

4). Power Generation Device The power generation device according to the present invention is characterized in that the thermoelectric conversion module is bonded to the back side of the solar cell and generates power with a temperature difference between the solar cell and the outside air temperature.

このような構成にすることにより、太陽電池裏面と外気温の温度差を利用して発電させることができ、これによって太陽電池の温度上昇に起因した発電効率の低下を改善することができる。   With such a configuration, it is possible to generate power using the temperature difference between the back surface of the solar cell and the outside air temperature, thereby improving the decrease in power generation efficiency due to the temperature increase of the solar cell.

ところで、本発明に係る発電装置においては、太陽電池と熱電変換モジュールとの接着に用いる接着剤の熱伝導率と接着剤の厚みが発電効率に関係し、接着剤の熱伝導率を(W/mK)、接着剤の厚みを(d)としたとき、(W/mK)/(d)の比が1000以上であることが好ましい。0.1(W/mK)程度の低熱電度材料である樹脂内を流れる熱は、その厚みが1mm程度のとき、0.1/10−3=100程度となる。太陽電池との接着部で熱抵抗となってはいけないので、上記樹脂の熱流と較べて接着部内の熱流は10倍以上、すなわち、(W/mK)/(d)の比が1000以上あることが望ましい。 By the way, in the power generation device according to the present invention, the thermal conductivity of the adhesive used for bonding the solar cell and the thermoelectric conversion module and the thickness of the adhesive are related to the power generation efficiency, and the thermal conductivity of the adhesive is (W / mK), where the thickness of the adhesive is (d), the ratio of (W / mK) / (d) is preferably 1000 or more. The heat flowing through the resin, which is a low thermoelectric material of about 0.1 (W / mK), is about 0.1 / 10 −3 = 100 when the thickness is about 1 mm. Since it should not become a thermal resistance at the bonding portion with the solar cell, the heat flow in the bonding portion is 10 times or more compared to the heat flow of the resin, that is, the ratio of (W / mK) / (d) is 1000 or more. Is desirable.

ここで、本発明に係る熱電変換モジュールが接着される太陽電池の種類は特に限定されず、例えば、アモルファス系Si太陽電池が挙げられる。アモルファス系Si太陽電池は、結晶系Si太陽電池と較べると太陽光の吸収係数が大きいためSiの膜厚は1μm以下で済む。また、アモルファス系Siを樹脂の上に成膜できることもありフレキシブルな太陽電池も作れる。但し、発電効率は低く、平均8%程度であるため、屋根の上に載せるタイプでは、4kWを実現するには大面積が必要となり、安価でも使用範囲は限られている。しかし、アモルファス系Si太陽電池は、結晶系Si太陽電池と異なり、温度が上昇しても発電効率が落ちないという特色がある。従って、発泡体から成る基板が組み込まれた本発明に係る熱電変換モジュールを、太陽電池の裏面に接着したタイプではより高効率の発電が実現できる。そして、どんなタイプの太陽電池に対しても、太陽電池自身の発電とは独立に本発明に係る熱電変換モジュールにより発電を付加できるので、どんなタイプの太陽電池にも本発明に係る熱電変換モジュールを利用することができる。   Here, the kind of solar cell to which the thermoelectric conversion module according to the present invention is bonded is not particularly limited, and examples thereof include amorphous Si solar cells. Amorphous Si solar cells have a larger solar absorption coefficient than crystalline Si solar cells, so the film thickness of Si is 1 μm or less. In addition, since amorphous Si can be formed on a resin, a flexible solar cell can be made. However, since the power generation efficiency is low, about 8% on average, the type mounted on the roof requires a large area to achieve 4 kW, and the range of use is limited even at a low price. However, unlike crystalline Si solar cells, amorphous Si solar cells have a feature that power generation efficiency does not decrease even when the temperature rises. Therefore, more efficient power generation can be realized with the type in which the thermoelectric conversion module according to the present invention in which the substrate made of foam is incorporated is bonded to the back surface of the solar cell. Since any type of solar cell can be powered by the thermoelectric conversion module according to the present invention independently of the solar cell itself, the thermoelectric conversion module according to the present invention can be applied to any type of solar cell. Can be used.

次に、本発明に係る発電装置においては、熱電変換モジュールにおける太陽電池と接触している面側の温度が、太陽電池と接触していない面側の温度より低くなったとき、電気の正負を切り替えるスイッチが熱電変換モジュールの回路中に設けられていることが好ましい。上記スイッチを設ける理由は、太陽電池と接触している面側の温度が必ずしも高温部になるとは限らず、外気温あるいは太陽電池の設置の仕方によっては低温部となり、逆電圧を発生することがあるからである。この場合、スイッチで正負を切り替える構造にしておけば、太陽のない夜でも発電が可能となる。従って、電気の正負を自動的に切り替えることのできるスイッチを回路中に設けておくことが好ましい。尚、本明細書においては、特に必要の無い限り、太陽電池の裏面との接着部側が高温部として説明している。   Next, in the power generation device according to the present invention, when the temperature of the surface side in contact with the solar cell in the thermoelectric conversion module is lower than the temperature of the surface side not in contact with the solar cell, the positive / negative of electricity is determined. It is preferable that the switch to switch is provided in the circuit of the thermoelectric conversion module. The reason for providing the switch is that the temperature on the surface side in contact with the solar cell is not necessarily a high temperature part, and depending on the outside air temperature or the way of installing the solar cell, it becomes a low temperature part and may generate a reverse voltage. Because there is. In this case, if the structure is switched between positive and negative with a switch, power generation is possible even at night without the sun. Therefore, it is preferable to provide a switch in the circuit that can automatically switch between positive and negative. In the present specification, unless otherwise specified, the bonding portion side with the back surface of the solar cell is described as a high temperature portion.

以下、本発明の実施例について参考例と共に詳細に説明する。
(参考例1)
図10に示す構造の熱電変換素子を想定し、各部は表1、2に記載した材料、素子を用いることとし、「熱電変換モジュール全体の面積」に対する「熱電素子だけの断面積和の比」が変化したときの板状電極間の温度差と熱電変換モジュールの発電量をシミュレーションした。その結果を図11に示す。
Examples of the present invention will be described in detail below with reference examples.
(Reference Example 1)
Assuming the thermoelectric conversion element having the structure shown in FIG. 10, each part uses the materials and elements described in Tables 1 and 2 and “the ratio of the sum of the cross-sectional areas of only the thermoelectric elements” to the “area of the entire thermoelectric conversion module”. We simulated the temperature difference between the plate electrodes and the amount of power generated by the thermoelectric conversion module. The result is shown in FIG.

図11中、β=「熱電変換モジュール全体の面積」に対する「熱電素子だけの断面積和の比」である。   In FIG. 11, β = “the ratio of the sum of the cross-sectional areas of only the thermoelectric elements” to “the area of the entire thermoelectric conversion module”.

β=0.015付近で最大出力を示すことが分かる。熱電素子の示す面積割合βが小さい程、2つの熱電極間を流れる熱流が小さくなるので温度差は大きくなるが、断面積が小さくなるため、発電量は小さくなる。   It can be seen that the maximum output is shown around β = 0.015. The smaller the area ratio β indicated by the thermoelectric element, the smaller the heat flow flowing between the two thermal electrodes, so the temperature difference becomes larger, but the cross-sectional area becomes smaller, so the amount of power generation becomes smaller.

熱電変換素子の熱伝導度κt=2(W/mK)、断熱層の熱伝導度κa=0.03(W/mK)から、β=St/Sa=κa/κt=0.015となる。   From the thermal conductivity κt = 2 (W / mK) of the thermoelectric conversion element and the thermal conductivity κa = 0.03 (W / mK) of the heat insulating layer, β = St / Sa = κa / κt = 0.015.

つまり、St・κt=Sa・κaのところで最大値をとることが分かる。   That is, it is understood that the maximum value is obtained at St · κt = Sa · κa.

Figure 2010135620
Figure 2010135620

Figure 2010135620
(参考例2)
市販のペルチエ素子(小松エレクトロニクス社製:KSM−06127A)に対して、硬質ウレタンフォーム(熱伝導度=0.01W/mK)を詰め込んだ。高温側を120℃に固定し、低温側は20℃の大気に放熱した。熱電素子間が大気のままの場合と、ウレタンフォームを充填したときに、発電量の差を調べた。
Figure 2010135620
(Reference Example 2)
A rigid urethane foam (thermal conductivity = 0.01 W / mK) was packed into a commercially available Peltier element (manufactured by Komatsu Electronics Co., Ltd .: KSM-06127A). The high temperature side was fixed at 120 ° C., and the low temperature side was radiated to the atmosphere at 20 ° C. The difference in the amount of power generation was examined when the thermoelectric elements remained in the atmosphere and when the urethane foam was filled.

以下の表3に示すように、ウレタンフォームを充填した方が、上下の温度差が大きくなり、その分、発電量が上がった。   As shown in Table 3 below, filling the urethane foam increased the temperature difference between the upper and lower sides, and the power generation amount increased accordingly.

上記シミュレーション結果とも一致し、板状電極間の非熱電素子空間に低熱伝導度の材料で充填すると発電量は大きくなることが確認された。   In agreement with the above simulation results, it was confirmed that the amount of power generation increased when the non-thermoelectric element space between the plate electrodes was filled with a material having low thermal conductivity.

Figure 2010135620
[実施例1]
熱電変換素子(小松エレクトロニクス社製:9A−06L04)を分解してp型、n型素子(いずれも2mm×2mm×3mm)を取り出した。
Figure 2010135620
[Example 1]
A thermoelectric conversion element (manufactured by Komatsu Electronics Co., Ltd .: 9A-06L04) was disassembled to take out p-type and n-type elements (both 2 mm × 2 mm × 3 mm).

そして、それぞれ16対のp型、n型の素子を利用し、小区画の1辺が40mm、80mm、100mm、120mmの正方形の各アルミナ基板に対し、図12に示すようにp型、n型素子を直列に配置した。   Then, 16 pairs of p-type and n-type elements are used, and each side of the small section is 40 mm, 80 mm, 100 mm, and 120 mm square alumina substrates as shown in FIG. Elements were placed in series.

次に、2枚のアルミナ基板で熱電素子を挟み、一方の熱電変換素子には銅ブロックの放熱板をつけた。熱電変換素子はBiTe系であるから、熱伝導度は約1.5W/mKである。熱電変換素子間にはウレタンフォームを充填した。ウレタンフォームの熱伝導度は0.03W/mKである。   Next, a thermoelectric element was sandwiched between two alumina substrates, and one of the thermoelectric conversion elements was attached with a heat sink of a copper block. Since the thermoelectric conversion element is a BiTe system, the thermal conductivity is about 1.5 W / mK. Between the thermoelectric conversion elements, urethane foam was filled. The thermal conductivity of urethane foam is 0.03 W / mK.

アルミナ基板の一方を80℃の一定値に保たれた銅ブロックに接着剤で固定し、室温を25℃に保ち、このときの発電量を測定した。結果を表4に示す。   One side of the alumina substrate was fixed to a copper block maintained at a constant value of 80 ° C. with an adhesive, the room temperature was kept at 25 ° C., and the amount of power generation at this time was measured. The results are shown in Table 4.

Figure 2010135620
A=20mmのときが最大となった。
Figure 2010135620
The maximum was when A = 20 mm.

これは、8mm×1.5W/mK(W/mK)=A2×0.03のときに相当する。

[実施例2]
p型、n型BiTe系熱電素子(小松エレクトロニクス製:KSM−04127A)から素子(サイズ=2mm×2mm×3mm厚)を分離した。
This corresponds to a case where 8 mm 2 × 1.5 W / mK (W / mK) = A2 × 0.03.

[Example 2]
The element (size = 2 mm × 2 mm × 3 mm thickness) was separated from the p-type and n-type BiTe thermoelectric element (manufactured by Komatsu Electronics: KSM-04127A).

図6の製造工程図に示したプロセスで、発泡スチロール樹脂に銅箔(厚さ30μm)を貼り、図2および図7に示すような配置関係になるようにエッチングを行なって複数の上側板状電極、下側板状電極を形成した。上側板状電極と下側板状電極の構造は、上側と下側で互いに45度の角度をなし、複数の熱電変換素子がn型―p型−n型−p型と直列に配列されるように形成されている。   In the process shown in the manufacturing process diagram of FIG. 6, a copper foil (thickness of 30 μm) is attached to a polystyrene foam resin, and etching is performed so that the positional relationship shown in FIGS. 2 and 7 is obtained. A lower plate electrode was formed. The structure of the upper plate electrode and the lower plate electrode is such that the upper and lower plates form an angle of 45 degrees with each other, and a plurality of thermoelectric conversion elements are arranged in series with n-type-p-type-n-type-p type. Is formed.

その後、打ち抜き法で図7に示される2mm×2mm角の貫通孔を複数個開設し、これ等貫通孔に熱電素子材料を埋め込み、かつ、電極との間を半田付けした。およそ100mm×100mmの発泡スチロール樹脂に8×6=48個の熱電変換素子を作製した。最後に、電気絶縁性を確保するため、薄い伝熱性の樹脂(日東シンコー社製;シリコーンゴム)で充填した。   Thereafter, a plurality of 2 mm × 2 mm square through holes shown in FIG. 7 were formed by a punching method, a thermoelectric element material was embedded in these through holes, and soldered between the electrodes. 8 × 6 = 48 thermoelectric conversion elements were produced on a styrene resin having a size of about 100 mm × 100 mm. Finally, in order to ensure electrical insulation, it was filled with a thin heat conductive resin (manufactured by Nitto Shinko Co., Ltd .; silicone rubber).

そして、得られた熱電変換モジュールの一方の電極側を、熱伝導性の接着剤(日硝産業社製:放熱用シリコーンオイルコンパウンド YG6240)を用いてホットプレート表面に接着した。太陽電池の貼付を考慮して、ホットプレートを斜め45度に傾け、当該素子が下向きになるように配置した。   And the one electrode side of the obtained thermoelectric conversion module was adhere | attached on the hotplate surface using the heat conductive adhesive (Nissho Sangyo Co., Ltd. product: Silicone oil compound YG6240 for thermal radiation). In consideration of the attachment of the solar cell, the hot plate was tilted at an angle of 45 degrees and arranged so that the element faced downward.

図7では、約10mm×15mmの面積の中にp型、n型1対の素子が配置されている熱電素子の構成を示している。熱電素子の熱伝導度(κt)は約1.5W/mK、また発泡スチロール樹脂の熱伝導度(κa)は約0.07W/mKである。   FIG. 7 shows a configuration of a thermoelectric element in which a pair of p-type and n-type elements are arranged in an area of about 10 mm × 15 mm. The thermal conductivity (κt) of the thermoelectric element is about 1.5 W / mK, and the thermal conductivity (κa) of the expanded polystyrene resin is about 0.07 W / mK.

ホットプレート表面と、当該素子表面を熱電対で温度測定を行った。ホットプレートの温度が約80℃になるように調整をした。大気温度は、約30℃になるように調整した。   The temperature of the hot plate surface and the element surface was measured with a thermocouple. The hot plate temperature was adjusted to about 80 ° C. The atmospheric temperature was adjusted to about 30 ° C.

図7の配置の場合では、当該素子の表面温度は約64℃であり、温度差は16℃であった。   In the case of the arrangement of FIG. 7, the surface temperature of the element was about 64 ° C., and the temperature difference was 16 ° C.

48対の熱変換素子の両端電圧=6.1mV、電流=24mAが得られた。これより、1mに換算したときの発電量は15Wとなる。 The voltage across the 48 pairs of heat conversion elements was 6.1 mV, and the current was 24 mA. From this, the power generation amount when converted to 1 m 2 is 15 W.

熱電素子の配置する間隔を、変化させて上記同様の工程で熱電変換素子を作製したところ、以下の表5に示す結果が得られた。   When the thermoelectric conversion element was produced in the same process as described above while changing the interval at which the thermoelectric element was arranged, the results shown in Table 5 below were obtained.

Figure 2010135620
これより、Sa×κa=St×κtのとき最大となり、それからずれると温度差が小さくなり、出力が下がることが確認された。
Figure 2010135620
From this, it was confirmed that the maximum value was obtained when Sa × κa = St × κt, and that the temperature difference became smaller and the output decreased when deviating from that.

本発明に係る熱電変換モジュールによれば、熱電変換モジュール内に大きな温度差が実現されることから発電量を増加、改善させることが可能となり、また、太陽電池の裏面側に接着させることにより太陽電池の実効的な発電効率を上げることが可能となる。従って、本発明に係る熱電変換モジュールは太陽電池に組み込まれて利用される産業上の利用可能性を有している。   According to the thermoelectric conversion module according to the present invention, since a large temperature difference is realized in the thermoelectric conversion module, it is possible to increase and improve the amount of power generation, and by adhering to the back side of the solar cell, It is possible to increase the effective power generation efficiency of the battery. Therefore, the thermoelectric conversion module according to the present invention has industrial applicability to be used by being incorporated in a solar cell.

従来技術に係る熱電変換素子の主要部構成を示す断面図。Sectional drawing which shows the principal part structure of the thermoelectric conversion element which concerns on a prior art. 本発明に係る熱電変換モジュールの概略斜視図。The schematic perspective view of the thermoelectric conversion module which concerns on this invention. 本発明の変形例に係る熱電変換モジュールの概略斜視図。The schematic perspective view of the thermoelectric conversion module which concerns on the modification of this invention. p型熱電変換素子とn型熱電変換素子が一対の電極板間に略垂直に配置された熱電変換モジュール内における熱流の概略図。The schematic of the heat flow in the thermoelectric conversion module in which the p-type thermoelectric conversion element and the n-type thermoelectric conversion element are arrange | positioned substantially perpendicularly between a pair of electrode plates. p型熱電変換素子とn型熱電変換素子が一対の電極板間に略垂直に配置されかつ一方の電極板側に一定の熱流入がある場合の熱電変換モジュール内における熱流の概略図。The schematic diagram of the heat flow in a thermoelectric conversion module in case a p-type thermoelectric conversion element and an n-type thermoelectric conversion element are arrange | positioned substantially perpendicularly between a pair of electrode plates, and there exists a fixed heat inflow on the one electrode plate side. 実施例2に係る熱電変換モジュールの製造工程を示す説明図。Explanatory drawing which shows the manufacturing process of the thermoelectric conversion module which concerns on Example 2. FIG. 図2に示す本発明に係る熱電変換モジュールの概略平面図。The schematic plan view of the thermoelectric conversion module which concerns on this invention shown in FIG. 各種断熱材料の性能を比較したグラフ図。The graph which compared the performance of various heat insulation materials. 熱電変換モジュールにおける断熱層(非熱電素子空間)の熱伝導度と、上下電極間の温度差並びに発電量との関係を示すグラフ図。The graph which shows the relationship between the thermal conductivity of the heat insulation layer (non-thermoelectric element space) in a thermoelectric conversion module, the temperature difference between an upper and lower electrode, and electric power generation amount. 参考例1に係る熱電変換素子の構造を示す説明図。Explanatory drawing which shows the structure of the thermoelectric conversion element which concerns on the reference example 1. FIG. 参考例1において「熱電変換モジュール全体の面積」に対する「熱電素子だけの断面積和の比」が変化したときの板状電極間の温度差と熱電変換モジュールの発電量との関係を示すグラフ図。The graph which shows the relationship between the temperature difference between plate-shaped electrodes when the "ratio of the sum of the cross-sectional areas of only a thermoelectric element" with respect to "the area of the whole thermoelectric conversion module" in the reference example 1 and the electric power generation amount of a thermoelectric conversion module . 実施例1に係る熱電変換モジュールの上側若しくは下側板状電極が複数形成されたアルミナ基板の平面図。FIG. 3 is a plan view of an alumina substrate on which a plurality of upper or lower plate electrodes of the thermoelectric conversion module according to the first embodiment are formed.

符号の説明Explanation of symbols

200 熱電変換モジュール
201 発泡体から成る基板
202 上側板状電極
203 下側板状電極
204 貫通孔
205 n型熱電変換素子
206 p型熱電変換素子
300 熱電変換モジュール
301 発泡体から成る基板
302 上側板状電極
303 下側板状電極
304 貫通孔
305 n型熱電変換素子
306 p型熱電変換素子
200 Thermoelectric Conversion Module 201 Foam Substrate 202 Upper Plate Electrode 203 Lower Plate Electrode 204 Through Hole 205 n-Type Thermoelectric Conversion Element 206 p-Type Thermoelectric Conversion Element 300 Thermoelectric Conversion Module 301 Foam Substrate 302 Upper Plate Electrode 303 Lower plate electrode 304 Through hole 305 n-type thermoelectric conversion element 306 p-type thermoelectric conversion element

Claims (10)

発泡体から成る基板と、基板上面側に設けられると共に互いに電気的に接続されていない複数の上側板状電極と、基板下面側に設けられると共に互いに電気的に接続されていない複数の下側板状電極と、上記基板の上側板状電極と下側板状電極が重なり合う領域若しくは近傍領域に開設された複数の貫通孔と、各板状電極内若しくは近傍に設けられた一方の貫通孔に埋め込まれたn型材料から成るn型熱電変換素子と、各板状電極内若しくは近傍に設けられた他方の貫通孔に埋め込まれたp型材料から成るp型熱電変換素子とを備え、各板状電極内若しくは近傍に設けられた一組のn型熱電変換素子とp型熱電変換素子の各端部側が対応する上側板状電極と下側板状電極にそれぞれ電気的に接続されてこれ等板状電極を介し複数組のp型熱電変換素子とn型熱電変換素子が直列に配列されていると共に、上側板状電極若しくは下側板状電極側が高温側に配置されかつ他方の電極側が低温側に配置されることを特徴とする熱電変換モジュール。   A substrate made of foam, a plurality of upper plate-like electrodes provided on the upper surface side of the substrate and not electrically connected to each other, and a plurality of lower plate-like electrodes provided on the lower surface side of the substrate and not electrically connected to each other Embedded in the electrode, a plurality of through holes provided in the region where the upper plate electrode and the lower plate electrode of the substrate overlap or in the vicinity region, and one through hole provided in or near each plate electrode An n-type thermoelectric conversion element made of an n-type material and a p-type thermoelectric conversion element made of a p-type material embedded in the other through-hole provided in or near each plate-like electrode, Alternatively, each end side of a pair of n-type thermoelectric conversion element and p-type thermoelectric conversion element provided in the vicinity is electrically connected to the corresponding upper plate electrode and lower plate electrode, respectively. Multiple sets of p-type thermoelectrics The conversion element and the n-type thermoelectric conversion element are arranged in series, and the upper plate electrode or the lower plate electrode side is arranged on the high temperature side, and the other electrode side is arranged on the low temperature side. module. 上記p型熱電変換素子とn型熱電変換素子の熱伝導度をそれぞれκp、κnとし、p型熱電変換素子とn型熱電変換素子の断面積をそれぞれSp、Snとし、発泡体から成る上記基板のp型熱電変換素子とn型熱電変換素子が埋め込まれていない領域の熱伝導度をκo、上記領域の断面積をSoとしたとき、
1.2×(κp・Sp+κn・Sn)≧κo×So (式1)
の関係を有し、かつ、
0.8×(κp・Sp+κn・Sn)≦κo×So (式2)
の関係を有していることを特徴とする請求項1記載の熱電変換モジュール。
The p-type thermoelectric conversion element and the n-type thermoelectric conversion element have thermal conductivity κp and κn, respectively, and the p-type thermoelectric conversion element and the n-type thermoelectric conversion element have cross-sectional areas Sp and Sn, respectively. When the thermal conductivity of the region where the p-type thermoelectric conversion element and the n-type thermoelectric conversion element are not embedded is κo and the cross-sectional area of the region is So,
1.2 × (κp · Sp + κn · Sn) ≧ κo × So (Formula 1)
And having the relationship
0.8 × (κp · Sp + κn · Sn) ≦ κo × So (Formula 2)
The thermoelectric conversion module according to claim 1, wherein:
請求項1または2に記載の熱電変換モジュールが電気絶縁層を介して複数積層され、かつ、最外側に位置する一方の熱電変換モジュールの板状電極側が高温側に配置され、最外側に位置する他方の熱電変換モジュールの板状電極側が低温側に配置されることを特徴とする熱電変換モジュール。   A plurality of thermoelectric conversion modules according to claim 1 or 2 are stacked via an electrical insulating layer, and the plate electrode side of one thermoelectric conversion module located on the outermost side is disposed on the high temperature side and located on the outermost side. The thermoelectric conversion module, wherein the plate-like electrode side of the other thermoelectric conversion module is disposed on the low temperature side. 高温側あるいは低温側に配置される熱電変換モジュールの板状電極側が大気放熱型であることを特徴とする請求項1〜3のいずれかに記載の熱電変換モジュール。
熱電素子
The thermoelectric conversion module according to any one of claims 1 to 3, wherein the plate-like electrode side of the thermoelectric conversion module disposed on the high temperature side or the low temperature side is an air radiation type.
Thermoelectric element
発泡体から成る上記基板の熱伝導度が、0.03W/mK以下であることを特徴とする請求項1〜4のいずれかに記載の熱電変換モジュール。   The thermoelectric conversion module according to any one of claims 1 to 4, wherein the substrate made of foam has a thermal conductivity of 0.03 W / mK or less. 上記基板を構成する発泡体材料が、発泡ポリスチレン、ポリスチレンフォーム、ウレタンフォーム、フェノールフォーム、ガラスウールから選ばれる1種以上であることを特徴とする請求項5に記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 5, wherein the foam material constituting the substrate is at least one selected from expanded polystyrene, polystyrene foam, urethane foam, phenol foam, and glass wool. 太陽電池の裏面側に請求項1〜6のいずれかに記載の熱電変換モジュールを接着させ、太陽電池と外気との温度差で発電させることを特徴とする発電装置。   A thermoelectric conversion module according to any one of claims 1 to 6 is adhered to a back surface side of a solar cell, and a power generation device is configured to generate power with a temperature difference between the solar cell and outside air. 太陽電池と熱電変換モジュールの接着に用いる接着剤の熱伝導度を(W/mK)、接着剤の厚みを(d)としたとき、(W/mK)/(d)の比が1000以上であることを特徴とする請求項7に記載の発電装置。   When the thermal conductivity of the adhesive used for bonding the solar cell and the thermoelectric conversion module is (W / mK) and the thickness of the adhesive is (d), the ratio of (W / mK) / (d) is 1000 or more. The power generator according to claim 7, wherein the power generator is provided. 上記太陽電池が、アモルファス系Si太陽電池であることを特徴とする請求項7に記載の発電装置。   The power generator according to claim 7, wherein the solar cell is an amorphous Si solar cell. 上記熱電変換モジュールにおける太陽電池と接触している面側の温度が、太陽電池と接触していない面側の温度より低くなったとき、電気の正負を切り替えるスイッチが熱電変換モジュールの回路中に設けられていることを特徴とする請求項7に記載の発電装置。   When the temperature on the surface side in contact with the solar cell in the thermoelectric conversion module is lower than the temperature on the surface side not in contact with the solar cell, a switch that switches between positive and negative of electricity is provided in the circuit of the thermoelectric conversion module The power generator according to claim 7, wherein the power generator is provided.
JP2008311101A 2008-12-05 2008-12-05 Thermoelectric conversion module and power generator using the same Expired - Fee Related JP5146290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008311101A JP5146290B2 (en) 2008-12-05 2008-12-05 Thermoelectric conversion module and power generator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008311101A JP5146290B2 (en) 2008-12-05 2008-12-05 Thermoelectric conversion module and power generator using the same

Publications (2)

Publication Number Publication Date
JP2010135620A true JP2010135620A (en) 2010-06-17
JP5146290B2 JP5146290B2 (en) 2013-02-20

Family

ID=42346602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008311101A Expired - Fee Related JP5146290B2 (en) 2008-12-05 2008-12-05 Thermoelectric conversion module and power generator using the same

Country Status (1)

Country Link
JP (1) JP5146290B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016812A (en) * 2007-06-08 2009-01-22 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module and power generation device using the same
WO2013093967A1 (en) * 2011-12-21 2013-06-27 株式会社日立製作所 Thermoelectric conversion element and thermoelectric conversion module using same
WO2013105796A1 (en) * 2012-01-10 2013-07-18 한양대학교 에리카산학협력단 Hybrid type power generating device
JPWO2013093967A1 (en) * 2011-12-21 2015-04-27 株式会社日立製作所 Thermoelectric conversion element and thermoelectric conversion module using the same
CN109713116A (en) * 2017-10-26 2019-05-03 现代自动车株式会社 Thermoelectric element unit and its manufacturing method and electrothermal module including it

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287678A (en) * 1986-06-06 1987-12-14 Matsushita Refrig Co Thermoelectric effect element
JPS63128681A (en) * 1986-11-18 1988-06-01 Nippon Inter Electronics Corp Thermoelectric conversion device
JPH0370483A (en) * 1989-08-04 1991-03-26 Japan Atom Power Co Ltd:The High heat resistance type thermoelectric generation set
JPH11274577A (en) * 1998-03-26 1999-10-08 Matsushita Electric Works Ltd Thermoelectric module
JP2005217353A (en) * 2004-02-02 2005-08-11 Yokohama Teikoki Kk Thermoelectric semiconductor element, thermoelectric transformation module, and method of manufacturing the same
JP2006108480A (en) * 2004-10-07 2006-04-20 Japan Aerospace Exploration Agency Self-power-generation type panel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287678A (en) * 1986-06-06 1987-12-14 Matsushita Refrig Co Thermoelectric effect element
JPS63128681A (en) * 1986-11-18 1988-06-01 Nippon Inter Electronics Corp Thermoelectric conversion device
JPH0370483A (en) * 1989-08-04 1991-03-26 Japan Atom Power Co Ltd:The High heat resistance type thermoelectric generation set
JPH11274577A (en) * 1998-03-26 1999-10-08 Matsushita Electric Works Ltd Thermoelectric module
JP2005217353A (en) * 2004-02-02 2005-08-11 Yokohama Teikoki Kk Thermoelectric semiconductor element, thermoelectric transformation module, and method of manufacturing the same
JP2006108480A (en) * 2004-10-07 2006-04-20 Japan Aerospace Exploration Agency Self-power-generation type panel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016812A (en) * 2007-06-08 2009-01-22 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module and power generation device using the same
WO2013093967A1 (en) * 2011-12-21 2013-06-27 株式会社日立製作所 Thermoelectric conversion element and thermoelectric conversion module using same
JPWO2013093967A1 (en) * 2011-12-21 2015-04-27 株式会社日立製作所 Thermoelectric conversion element and thermoelectric conversion module using the same
WO2013105796A1 (en) * 2012-01-10 2013-07-18 한양대학교 에리카산학협력단 Hybrid type power generating device
CN109713116A (en) * 2017-10-26 2019-05-03 现代自动车株式会社 Thermoelectric element unit and its manufacturing method and electrothermal module including it
CN109713116B (en) * 2017-10-26 2023-08-08 现代自动车株式会社 Thermoelectric element unit, method of manufacturing the same, and thermoelectric module including the same

Also Published As

Publication number Publication date
JP5146290B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5087757B2 (en) Thermoelectric conversion module and power generator using the same
JP5067352B2 (en) Thermoelectric conversion module and power generator using the same
JP5146290B2 (en) Thermoelectric conversion module and power generator using the same
WO2005117154A1 (en) High-density integrated type thin-layer thermoelectric module and hybrid power generating system
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP2007500951A (en) Low power thermoelectric generator
US20120204923A1 (en) Thermoelectric piping apparatus and method for generating electricity
JP5708174B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP2006294935A (en) High efficiency and low loss thermoelectric module
JP2008060488A (en) One-side electrode thermoelectric conversion module
KR101237235B1 (en) Manufacturing Method of Thermoelectric Film
JP2021513216A (en) Thermoelectric device
JP5776700B2 (en) Thermoelectric conversion module
EP0020758A1 (en) Energy production and storage apparatus
JP2011047127A (en) Window structure
AU2018220031A1 (en) Thermoelectric device
JP3602721B2 (en) Solar cell module
JP2012069626A (en) Thermal power generation device
CN109450295A (en) A kind of temperature layer alternating expression heat volt power generator
Suzumura et al. Solar thermal cogeneration system using a cylindrical thermoelectric module
CN209375495U (en) A kind of temperature layer alternating expression heat volt power generator
JP2021506103A (en) Thermoelectric module
JP2003092433A (en) Thermoelectric effect device, energy direct conversion system and energy conversion system
KR102405457B1 (en) Thermoelectric device module
JPH08153898A (en) Thermoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R150 Certificate of patent or registration of utility model

Ref document number: 5146290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees