JP2012069626A - Thermal power generation device - Google Patents

Thermal power generation device Download PDF

Info

Publication number
JP2012069626A
JP2012069626A JP2010211766A JP2010211766A JP2012069626A JP 2012069626 A JP2012069626 A JP 2012069626A JP 2010211766 A JP2010211766 A JP 2010211766A JP 2010211766 A JP2010211766 A JP 2010211766A JP 2012069626 A JP2012069626 A JP 2012069626A
Authority
JP
Japan
Prior art keywords
laminate
thermoelectric
power generation
stacked body
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010211766A
Other languages
Japanese (ja)
Inventor
Akihiro Sakai
章裕 酒井
Tsutomu Sugano
勉 菅野
Kohei Takahashi
宏平 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010211766A priority Critical patent/JP2012069626A/en
Publication of JP2012069626A publication Critical patent/JP2012069626A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve the problem of a limited device thickness in conventional thermoelectric conversion devices, causing a voltage loss depending on the thickness.SOLUTION: The terminal power generation device is composed of a lamination group generated by stacking, in a device thickness direction 20, metal layers 11 and thermoelectric material layers 12 laminated with inclination to a lamination direction 14. Thus, the problem of voltage loss in the case of a large device thickness is solved, and the device is useful as an efficient device having high design performance.

Description

本発明は熱エネルギーから電気エネルギーへの変換を行う熱発電デバイスに関する。   The present invention relates to a thermoelectric power generation device that converts thermal energy into electrical energy.

熱発電は、物質の両端に印加された温度差に比例して起電力が生じるゼーベック効果を利用し、熱エネルギーを直接電気エネルギーに変換する技術である。この技術は、僻地用電源、宇宙用電源、軍事用電源等で実用化されている。   Thermoelectric power generation is a technology that directly converts thermal energy into electrical energy using the Seebeck effect in which an electromotive force is generated in proportion to the temperature difference applied to both ends of a substance. This technology has been put to practical use in remote power supplies, space power supplies, military power supplies, and the like.

従来の熱発電デバイスは、キャリアの符号が異なるP型半導体とN型半導体を組み合わせ、熱的に並列に、かつ電気的に直列につないだ、いわゆるπ型構造と呼ばれる平板状の構造を有している。この平板状のデバイスの一方の面を熱源に接触させ、他方の面を冷却することによってデバイスに温度差を生じさせ、発電が行われる。   A conventional thermoelectric power generation device has a plate-like structure called a π-type structure that combines a P-type semiconductor and an N-type semiconductor with different carrier codes, and is connected in parallel and electrically in series. ing. One surface of the flat device is brought into contact with a heat source, and the other surface is cooled to cause a temperature difference in the device to generate power.

また、本発明者らは金属と熱電材料であるBiからなる異種材料の積層構造における熱電気特性の異方性を利用したデバイスにおいて、積層体における各材料の厚さの比(以下、積層比と書く)と積層方向の傾斜角度qを適切に選択することによって優れた発電性能が実現することを見いだし、これを利用した熱発電デバイスを発明した(特許文献1)。   In addition, the present inventors have used a device utilizing the anisotropy of thermoelectric properties in a laminated structure of different materials made of Bi, which is a metal and a thermoelectric material, in the thickness ratio of each material in the laminated body (hereinafter referred to as the lamination ratio). And the inventors have found that excellent power generation performance is realized by appropriately selecting the inclination angle q in the stacking direction, and invented a thermoelectric power generation device using this (Patent Document 1).

特許第4078392号公報Japanese Patent No. 4078392

様々な素性の熱源から発電を行うには前記熱発電デバイスのサイズを適宜設定する必要がある。しかしながら、本発明者らが研究を進めた結果、デバイスの長さに対するデバイスの厚み(d)が大きくなれば積層構造両端における起電圧に損失が生じ、発電効率が著しく低下するということが分った。前述の通り、従来の熱電変換デバイスでは、デバイスの厚みに制約があり、厚みによっては電圧損失が生じる。従ってデバイスの厚みが大きくなるような場合においては効率的な熱発電を行うことが出来ない。   In order to generate power from a heat source having various features, it is necessary to appropriately set the size of the thermoelectric power generation device. However, as a result of research conducted by the present inventors, it has been found that if the thickness (d) of the device with respect to the length of the device increases, a loss occurs in the electromotive voltage at both ends of the laminated structure, and the power generation efficiency is significantly reduced. It was. As described above, in the conventional thermoelectric conversion device, the thickness of the device is limited, and voltage loss occurs depending on the thickness. Therefore, in the case where the thickness of the device becomes large, efficient thermoelectric generation cannot be performed.

本発明は前記従来の課題を解決するものであり、熱発電デバイスの形状を適宜設定可能とし、様々な熱源に対する熱発電を実現するものである。   The present invention solves the above-described conventional problems, and allows the shape of a thermoelectric power generation device to be set as appropriate, thereby realizing thermoelectric power generation for various heat sources.

前記従来の課題を解決するために本発明らは鋭意研究を重ねた結果、金属層と熱電材料層とが積層方向に対して傾斜して積層された積層体を温度勾配が生じる方向に積み重ねることで、電圧損失を生じることなく、効率的な発電が可能なことを見出した。   In order to solve the above-described conventional problems, the present inventors have made extensive studies and, as a result, stacked a stacked body in which a metal layer and a thermoelectric material layer are inclined with respect to the stacking direction in a direction in which a temperature gradient is generated. Thus, it has been found that efficient power generation is possible without causing voltage loss.

本発明によって、デバイスの厚みに制約なく、高い発電性能を持ったデバイスを実現できる。   According to the present invention, a device having high power generation performance can be realized without restriction on the thickness of the device.

本発明の実施の形態1における傾斜積層体の断面図Sectional drawing of the inclination laminated body in Embodiment 1 of this invention 本発明の実施の形態1における熱発電デバイスの断面図Sectional drawing of the thermoelectric power generation device in Embodiment 1 of this invention 本発明の実施の形態2における熱発電デバイスの断面図Sectional view of thermoelectric power generation device in Embodiment 2 of the present invention 本発明の実施の形態3における熱発電デバイスの斜視図The perspective view of the thermoelectric generator in Embodiment 3 of this invention 本発明の実施の形態4における熱発電デバイスの斜視図FIG. 7 is a perspective view of a thermoelectric generator device according to Embodiment 4 of the present invention. 本発明の実施の形態5における熱発電デバイスの斜視図A perspective view of a thermoelectric generator device according to a fifth embodiment of the present invention 本発明の実施例1における比較例1の断面図Sectional drawing of the comparative example 1 in Example 1 of this invention 本発明の実施例1における比較例2の断面図Sectional drawing of the comparative example 2 in Example 1 of this invention 本発明の実施例1における発電デバイスの断面図Sectional drawing of the electric power generation device in Example 1 of this invention

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
本発明の熱発電デバイスを構成する熱発電デバイスを図1に示す。図1に一例を示すとおり、熱発電デバイスは、金属11及び熱電材料12が交互に一定の積層比で積層された構造を持つ材料を組み合わせて構成される。本材料を傾斜積層体とする。金属11と熱電材料12との境界線に平行な方向13は温度勾配と垂直な方向14(積層方向)に対して角度θで傾斜している。積層比及び傾斜角度の好適な範囲は金属及び熱電材料の組み合わせによって決定される。例えばCuとBiの組み合わせであればθは5°以上45°以下の範囲が好ましい。積層比は1:9から9:1の範囲から選択することが出来る。
(Embodiment 1)
A thermoelectric generator constituting the thermoelectric generator of the present invention is shown in FIG. As shown in FIG. 1, the thermoelectric power generation device is configured by combining materials having a structure in which the metal 11 and the thermoelectric material 12 are alternately laminated at a constant lamination ratio. This material is an inclined laminate. A direction 13 parallel to the boundary line between the metal 11 and the thermoelectric material 12 is inclined at an angle θ with respect to a direction 14 (stacking direction) perpendicular to the temperature gradient. The preferred range of stacking ratio and tilt angle is determined by the combination of metal and thermoelectric material. For example, in the case of a combination of Cu and Bi, θ is preferably in the range of 5 ° to 45 °. The stacking ratio can be selected from the range of 1: 9 to 9: 1.

図2に本発明の熱発電デバイスを図示する。熱発電デバイスは、図1の傾斜積層体21及び図1の傾斜積層体21における傾斜の向きが反転した傾斜積層体22を交互にデバイスの厚み方向20に積層したデバイスである。また、この積層体には、直列に配線25が配置されている。また電気的に短絡しないように各傾斜積層体の上下面を熱伝導性の高い電気絶縁体23でコーティングすることが必要である。また電力を取り出すためには傾斜積層体21および傾斜積層体22の両端を電極24で挟む必要がある。   FIG. 2 illustrates the thermoelectric power generation device of the present invention. The thermoelectric power generation device is a device in which the inclined laminated body 21 in FIG. 1 and the inclined laminated body 22 in which the inclination direction in the inclined laminated body 21 in FIG. 1 is reversed are alternately laminated in the thickness direction 20 of the device. In addition, wirings 25 are arranged in series in this laminate. In addition, it is necessary to coat the upper and lower surfaces of each inclined laminate with an electrical insulator 23 having high thermal conductivity so as not to be electrically short-circuited. In addition, in order to extract electric power, it is necessary to sandwich both ends of the inclined laminate 21 and the inclined laminate 22 between the electrodes 24.

また図3に本発明の熱発電デバイスを図示する。熱発電デバイスは図1の傾斜積層体31を積層して構成される。また電気的に短絡しないように各傾斜積層体の上下面を熱伝導性の高い電気絶縁層33でコーティングすることが必要である。更に電力を取り出すためには傾斜積層体を図で示すように電極32を設置の後、配線34を施すことが必要となる。   FIG. 3 shows a thermoelectric power generation device of the present invention. The thermoelectric generator is configured by laminating the inclined laminated body 31 of FIG. Further, it is necessary to coat the upper and lower surfaces of each inclined laminate with an electrically insulating layer 33 having high thermal conductivity so as not to cause an electrical short circuit. Further, in order to extract electric power, it is necessary to provide wiring 34 after installing the electrode 32 as shown in the drawing of the inclined laminate.

金属11は、電気伝導および熱伝導の良い材料であれば特に限定されない。具体的にはCu、Ag、Al、Au等が良い。   The metal 11 is not particularly limited as long as it has a good electrical and thermal conductivity. Specifically, Cu, Ag, Al, Au, etc. are good.

熱電材料12は、Bi、Bi2Te3、又は、Sb、Seなどによるドーピングを行ったBi、Bi2Te3、又は、CoSi、PbTeなどが良いが、これらに限定されるものではなく、様々な熱電材料を用いることができる。 Thermoelectric material 12, Bi, Bi 2 Te 3, or, Sb, Bi which was doped due Se, Bi 2 Te 3, or, CoSi, but good like PbTe, is not limited to, various Any thermoelectric material can be used.

電機絶縁体23は、例えば酸化アルミ、窒化アルミ、窒化硼素、酸化シリコン、窒化シリコン、酸化ジルコニウム、窒化ジルコニウム、酸化タンタル、ポリイミド、フッ素樹脂などを用いることができる。また、これらの材料でコーティングされた金属を用いても良い。   As the electrical insulator 23, for example, aluminum oxide, aluminum nitride, boron nitride, silicon oxide, silicon nitride, zirconium oxide, zirconium nitride, tantalum oxide, polyimide, fluorine resin, or the like can be used. Further, a metal coated with these materials may be used.

電極24は電気伝導の良い材料であれば特に限定されない。各傾斜積層体の両端が金属11になるように構成すれば電極24を省略することもできる。   The electrode 24 is not particularly limited as long as it is a material having good electrical conductivity. The electrode 24 can be omitted if the both ends of each inclined laminate are made of the metal 11.

また電極間を接続する配線25は電気伝導の良い材料であれば特に限定されない。形状・方法においても電極間を電気的に結線できれば限定されない。例としてワイヤーはもちろんのこと、ペースト状の導電材料を使うことによって簡便に電極間を電気的に結線することが出来る。そのほか、配線25として薄い金属板を用いればデバイスの機械的強度を上げることが出来る。   Further, the wiring 25 for connecting the electrodes is not particularly limited as long as it is a material having good electrical conductivity. The shape and method are not limited as long as the electrodes can be electrically connected. For example, not only wires but also paste-like conductive materials can be used to electrically connect electrodes easily. In addition, if a thin metal plate is used as the wiring 25, the mechanical strength of the device can be increased.

本発明の熱発電デバイスの作製方法は、上記の構造を実現できれば特に限定されず、様々な方法を用いることができる。例えば予め金属11と熱電材料12を平板上に加工したものを積み重ねて加熱および加圧を行うことによって接合したのちに傾斜角がθとなるように切り出す方法等がある。   The method for manufacturing the thermoelectric generator of the present invention is not particularly limited as long as the above structure can be realized, and various methods can be used. For example, there is a method in which the metal 11 and the thermoelectric material 12 previously processed on a flat plate are stacked and joined by heating and pressing, and then cutting so that the inclination angle becomes θ.

(実施の形態2)
図4を用いながら、より高い起電圧を実現する本発明の熱発電デバイスの構成について説明する。本構成を用いることによってより高い起電圧を実現することが出来、より汎用的な用途に使用できる。本実施の形態の熱発電デバイスは、実施の形態1と同様の行程で作製した複数個の熱発電デバイス41を所望の大きさに成型し、電極42を介して電気的に接続することによって得られる。このとき、温度差によって発生する起電圧が隣り合う熱発電デバイス41同士で打ち消しあわないように配線を施す必要がある。よって配線43は図3に示すとおり、起電圧が大きくなるように直列に結線する。
(Embodiment 2)
The configuration of the thermoelectric generator of the present invention that realizes a higher electromotive voltage will be described with reference to FIG. By using this configuration, a higher electromotive voltage can be realized, and it can be used for a more general purpose. The thermoelectric power generation device of the present embodiment is obtained by molding a plurality of thermoelectric power generation devices 41 manufactured in the same process as in the first embodiment into a desired size and electrically connecting them through the electrodes 42. It is done. At this time, it is necessary to perform wiring so that the electromotive voltage generated due to the temperature difference does not cancel out between the adjacent thermoelectric generators 41. Therefore, as shown in FIG. 3, the wiring 43 is connected in series so as to increase the electromotive voltage.

(実施の形態3)
図5を用いながら、より高い起電圧を実現する本発明の熱発電デバイスの構成について説明する。本構成を用いることによってより高い起電圧を実現することが出来るほか、各傾斜積層体間の配線が比較的容易に行える。本実施の形態における熱発電デバイスは実施の形態1と同様の行程で作製できる熱発電デバイス41及び傾斜の向きが反転した熱発電デバイス52を交互に設置することによって構成される。
(Embodiment 3)
The configuration of the thermoelectric generator of the present invention that realizes a higher electromotive voltage will be described with reference to FIG. By using this configuration, a higher electromotive voltage can be realized, and wiring between the inclined laminated bodies can be relatively easily performed. The thermoelectric power generation device in the present embodiment is configured by alternately installing thermoelectric power generation devices 41 that can be manufactured in the same process as in the first embodiment and thermoelectric power generation devices 52 in which the inclination directions are reversed.

配線54は、温度差によって発生する起電圧が隣り合う熱発電デバイス同士で打ち消しあわないように、図5の通り起電圧が大きくなるように直列に結線し、電極53はそれぞれの傾斜積層体の両端に配置する。以上の構成を持ってより高い起電圧を実現でき、比較的容易に配線を行うことができる熱発電デバイスができる。   The wiring 54 is connected in series so that the electromotive force is increased as shown in FIG. 5 so that the electromotive voltage generated due to the temperature difference does not cancel out between adjacent thermoelectric generation devices, and the electrode 53 is connected to each inclined laminate. Place at both ends. With the above configuration, a thermoelectric power generation device that can realize a higher electromotive voltage and can be wired relatively easily can be obtained.

(実施の形態4)
図6を用いながら、本発明の熱発電デバイスの構成について説明する。本構成を用いることにより実施の形態2同様に高い起電圧を実現することが出来、またデバイスを比較的簡便に作製できるという利点がある。まず、実施の形態1で作製した傾斜積層体61を複数個作製した後、積層方向が反転するように構成し、加圧及び過熱を行う。その際、各傾斜積層体の間で電気的に絶縁するため電気絶縁層64を設置する。その後、上方62及び下方63から切れ込みを入れて熱による起電圧が打ち消しあわないように直列に配線66を施す。また電極65はそれぞれの傾斜積層体の両端に配置する。本構成を持って本実施の形態の熱発電デバイスは完成する。
(Embodiment 4)
The configuration of the thermoelectric generator of the present invention will be described with reference to FIG. By using this configuration, there is an advantage that a high electromotive voltage can be realized as in the second embodiment, and a device can be manufactured relatively easily. First, after producing a plurality of inclined laminated bodies 61 produced in Embodiment 1, the laminated direction is reversed, and pressurization and overheating are performed. At that time, an electrical insulating layer 64 is provided in order to electrically insulate between the inclined laminated bodies. Thereafter, a cut is made from the upper 62 and the lower 63, and the wiring 66 is provided in series so that the electromotive voltage due to heat does not cancel out. Further, the electrodes 65 are disposed at both ends of each inclined laminated body. With this configuration, the thermoelectric generator of this embodiment is completed.

切れ込み62、63は図の通りの構造が実現できれば限定されずに様々な方法を用いて作成することが出来る。方法としては円盤のこぎりやカッター等で切れ込みを入れる方法等がある。   The notches 62 and 63 can be created using various methods without limitation as long as the structure shown in the figure can be realized. As a method, there is a method of making a cut with a disk saw or a cutter.

金属として無酸素銅を、熱電材料としてBi0.5Sb1.5Te3を用いて本発明の熱発電デバイスを作製した。あらかじめ平板上に加工した7枚の無酸素銅と6枚のBi0.5Sb1.5Te3を交互に積み重ね、積層方向に一定に圧力がかかるように材料上に1kgの銅ブロックを設置した。また銅ブロックと材料との加熱による接着を避けるため、材料との間にグラファイトシートを挿入した。このとき無酸素銅とBi0.5Sb1.5Te3の積層比は1:4となるように設計し、それぞれの厚みは2mm、8mmとした。このようにして組み合わせた積層体をArフローした箱型炉において、500℃で2時間加熱して圧着し、室温までの冷却後に取り出した。次に傾斜角度が30oとなるように積層体を精密切断機で切断した後に切断面に窒化アルミを厚さ2mmでコーティングし、電気絶縁膜を形成した。本傾斜積層体の大きさは6.5×1×2cm3であった。傾斜積層体の長さに対する厚みの比は0.14となる。 The thermoelectric generator of the present invention was produced using oxygen-free copper as the metal and Bi 0.5 Sb 1.5 Te 3 as the thermoelectric material. Seven pieces of oxygen-free copper and six pieces of Bi 0.5 Sb 1.5 Te 3 previously processed on a flat plate were alternately stacked, and a 1 kg copper block was placed on the material so that a constant pressure was applied in the stacking direction. In addition, a graphite sheet was inserted between the copper block and the material in order to avoid adhesion due to heating. At this time, the stacking ratio of oxygen-free copper and Bi 0.5 Sb 1.5 Te 3 was designed to be 1: 4, and the thicknesses were 2 mm and 8 mm, respectively. The laminated body thus assembled was heated and pressure-bonded at 500 ° C. for 2 hours in an Ar-flowed box furnace, and taken out after cooling to room temperature. Next, the laminate was cut with a precision cutting machine so that the inclination angle was 30 °, and then the cut surface was coated with aluminum nitride at a thickness of 2 mm to form an electrical insulating film. The size of the inclined laminate was 6.5 × 1 × 2 cm 3 . The ratio of the thickness to the length of the tilted laminate is 0.14.

同様の行程を繰り返し、上記傾斜積層体を合計7個作製した。それらを図2に示すとおりに、隣り合う傾斜積層体の傾斜の向きが交互に反転するように配置し、再度同様の行程でArフローした箱型炉において、500℃で2時間加熱した後、室温まで冷却した。次に室温で硬化する銀ペーストを塗布して電極を作製した。最後に銀ペーストを用いて図2のように電極間を銅線で接続し、本発明の熱発電デバイスが得られた。本デバイスを実施例1とする。   The same process was repeated to produce a total of seven tilted laminates. As shown in FIG. 2, arranged so that the direction of inclination of the adjacent inclined laminates are alternately reversed, and again in a box furnace that was Ar-flowed in the same process, after heating at 500 ° C. for 2 hours, Cooled to room temperature. Next, a silver paste that hardens at room temperature was applied to produce an electrode. Finally, a silver paste was used to connect the electrodes with a copper wire as shown in FIG. 2 to obtain the thermoelectric generator of the present invention. This device is referred to as Example 1.

(比較例1−1)
比較例1-1の熱発電デバイスを図7に示す構成で作製した。平板状のBi0.5Sb1.5Te3及び無酸素銅を実施例1と同じ厚み及び厚みの比で交互に重ね、実施例1と同様の行程で傾斜積層体61を形成した。その後、傾斜角度が30°となるように傾斜積層体71を成型した。本比較例におけるデバイスの大きさは6.5×7×2cm3であった。また電極72については実施例1と同様に銀ペーストを用いて設置した。
(Comparative Example 1-1)
A thermoelectric generation device of Comparative Example 1-1 was fabricated with the configuration shown in FIG. Flat Bi 0.5 Sb 1.5 Te 3 and oxygen-free copper were alternately stacked at the same thickness and thickness ratio as in Example 1 to form a tilted laminate 61 in the same process as in Example 1. Thereafter, the inclined laminate 71 was molded so that the inclination angle was 30 °. The size of the device in this comparative example was 6.5 × 7 × 2 cm 3 . The electrode 72 was installed using a silver paste as in Example 1.

(比較例1−2)
比較例1-2の熱発電デバイスを図8に示す構成で作製した。比較例1と同様の行程で作製した傾斜積層体81を傾斜の向きが逆になるように配置して構成した。それぞれの傾斜積層体71は6.5×7×1cm3であった。また電極82については実施例2と同様に銀ペーストを用いて設置した。また比較例1−2において傾斜積層体81を6.5×1×1cmの大きさで作製した場合には電力を取り出すことが可能であった。
(Comparative Example 1-2)
A thermoelectric generation device of Comparative Example 1-2 was produced with the configuration shown in FIG. The inclined laminated body 81 produced in the same process as that of Comparative Example 1 was arranged so that the inclination directions were reversed. Each inclined laminated body 71 was 6.5 × 7 × 1 cm 3 . The electrode 82 was installed using a silver paste as in Example 2. In Comparative Example 1-2, when the inclined laminate 81 was produced with a size of 6.5 × 1 × 1 cm 3 , electric power could be taken out.

(比較結果)
厚さ1μmの窒化アルミでコーティングした銅製のヒートシンク92、93を2個用いて本実施例における熱発電デバイス91を挟み込んでアピエゾングリースによって固定し、図9に示すような発電デバイスを作製した。銅製のヒートシンク92、93の内部には銅パイプが埋め込まれている。このパイプに冷水を流すことによりヒートシンク92、93を冷却することができ、またパイプに温水を流すことによってヒートシンク92、93を加熱することができる。比較例においても同様の発電デバイスを作成した。
(Comparison result)
Using two copper heat sinks 92 and 93 coated with aluminum nitride with a thickness of 1 μm, the thermoelectric generator 91 in this example was sandwiched and fixed with Apiezon grease, and an electric generator as shown in FIG. 9 was produced. Copper pipes are embedded in the copper heat sinks 92 and 93. The heat sinks 92 and 93 can be cooled by flowing cold water through the pipe, and the heat sinks 92 and 93 can be heated by flowing hot water through the pipe. A similar power generation device was also produced in the comparative example.

銅製ヒートシンク92、93の一方に15℃の冷水を流し他方に65℃の温水を流すことによって、発電デバイスに温度差をつけた。その際の各デバイスの発電量を表1に示す。比較例比較例1−1,1−2においてはそれぞれ0mWの発電量であったのに対して、実施例1においては50℃の温度差によって最大50mWの電力を取り出すことが出来た。   A temperature difference was given to the power generation device by flowing 15 ° C. cold water on one of the copper heat sinks 92 and 93 and flowing hot water of 65 ° C. on the other. Table 1 shows the power generation amount of each device at that time. Comparative Example In Comparative Examples 1-1 and 1-2, the power generation amount was 0 mW, whereas in Example 1, a maximum power of 50 mW could be extracted due to a temperature difference of 50 ° C.

Figure 2012069626
Figure 2012069626

実施例1と同様にして本発明の熱発電デバイスを作製した。あらかじめ平板上に加工した7枚の無酸素銅と6枚のBi0.5Sb1.5Te3を交互に積み重ね、積層方向に一定に圧力がかかるように材料上に1kgの銅ブロックを設置した。また銅ブロックと材料との加熱による接着を避けるため、材料との間にグラファイトシートを挿入した。このとき無酸素銅とBi0.5Sb1.5Te3の積層比は1:4となるように設計し、それぞれの厚みは2mm、8mmとした。このようにして組み合わせた積層体をArフローした箱型炉において、500℃で2時間加熱して圧着し、室温までの冷却後に取り出した。次に傾斜角度が30oとなるように積層体を精密切断機で切断した後に切断面に窒化アルミを厚さ2mmでコーティングし、電気絶縁膜を形成した。本傾斜積層体の大きさは6.5×1×2cm3であった。傾斜積層体の長さに対する厚みの比は0.14となる。 A thermoelectric power generation device of the present invention was produced in the same manner as in Example 1. Seven pieces of oxygen-free copper and six pieces of Bi 0.5 Sb 1.5 Te 3 previously processed on a flat plate were alternately stacked, and a 1 kg copper block was placed on the material so that a constant pressure was applied in the stacking direction. In addition, a graphite sheet was inserted between the copper block and the material in order to avoid adhesion due to heating. At this time, the stacking ratio of oxygen-free copper and Bi 0.5 Sb 1.5 Te 3 was designed to be 1: 4, and the thicknesses were 2 mm and 8 mm, respectively. The laminated body thus assembled was heated and pressure-bonded at 500 ° C. for 2 hours in an Ar-flowed box furnace, and taken out after cooling to room temperature. Next, the laminate was cut with a precision cutting machine so that the inclination angle was 30 °, and then the cut surface was coated with aluminum nitride at a thickness of 2 mm to form an electrical insulating film. The size of the inclined laminate was 6.5 × 1 × 2 cm 3 . The ratio of the thickness to the length of the tilted laminate is 0.14.

同様の行程を繰り返し、上記傾斜積層体を合計7個作製した。それらを図2に示すとおりに、隣り合う傾斜積層体の傾斜の向きが同じ方向になるように配置し、再度同様の行程でArフローした箱型炉において、500℃で2時間加熱した後、室温まで冷却した。次に室温で硬化する銀ペーストを塗布して電極を作製した。最後に銀ペーストを用いて図3のように電極間を銅線で接続し、本発明の熱発電デバイスが得られた。本デバイスを実施例2とする。   The same process was repeated to produce a total of seven tilted laminates. As shown in FIG. 2, they are arranged so that the inclination directions of adjacent inclined laminates are the same direction, and again in a box furnace in which Ar was flown in the same process, after heating at 500 ° C. for 2 hours, Cooled to room temperature. Next, a silver paste that hardens at room temperature was applied to produce an electrode. Finally, a silver paste was used to connect the electrodes with a copper wire as shown in FIG. 3 to obtain the thermoelectric generator of the present invention. This device is referred to as Example 2.

(比較例2−1)
比較例2-1の熱発電デバイスを図7に示す構成で作製した。平板状のBi0.5Sb1.5Te3及び無酸素銅を実施例1と同じ厚み及び厚みの比で交互に重ね、実施例1と同様の行程で傾斜積層体71を形成した。その後、傾斜角度が30°となるように傾斜積層体71を成型した。本比較例におけるデバイスの大きさは6.5×7×2cm3であった。また電極72については実施例1と同様に銀ペーストを用いて設置した。
(Comparative Example 2-1)
A thermoelectric power generation device of Comparative Example 2-1 was fabricated with the configuration shown in FIG. Flat Bi 0.5 Sb 1.5 Te 3 and oxygen-free copper were alternately stacked at the same thickness and thickness ratio as in Example 1 to form an inclined laminate 71 in the same process as in Example 1. Thereafter, the inclined laminate 71 was molded so that the inclination angle was 30 °. The size of the device in this comparative example was 6.5 × 7 × 2 cm 3 . The electrode 72 was installed using a silver paste as in Example 1.

(比較例2−2)
比較例2-2の熱発電デバイスを図8に示す構成で作製した。比較例1と同様の行程で作製した傾斜積層体71を傾斜の向きが逆になるように配置して構成した。それぞれの傾斜積層体71は6.5×7×1cm3であった。また電極82については実施例2と同様に銀ペーストを用いて設置した。
(Comparative Example 2-2)
The thermoelectric power generation device of Comparative Example 2-2 was fabricated with the configuration shown in FIG. The inclined laminated body 71 produced in the same process as in Comparative Example 1 was arranged and arranged so that the direction of inclination was reversed. Each inclined laminated body 71 was 6.5 × 7 × 1 cm 3 . The electrode 82 was installed using a silver paste as in Example 2.

(比較結果)
厚さ1μmの窒化アルミでコーティングした銅製のヒートシンク92、93を2個用いて本実施例における熱発電デバイス91を挟み込んでアピエゾングリースによって固定し、図9に示すような発電デバイスを作製した。銅製のヒートシンク92、93の内部には銅パイプが埋め込まれている。このパイプに冷水を流すことによりヒートシンク92、93を冷却することができ、またパイプに温水を流すことによってヒートシンク92、93を加熱することができる。比較例においても同様の発電デバイスを作成した。
(Comparison result)
Using two copper heat sinks 92 and 93 coated with aluminum nitride with a thickness of 1 μm, the thermoelectric generator 91 in this example was sandwiched and fixed with Apiezon grease, and an electric generator as shown in FIG. 9 was produced. Copper pipes are embedded in the copper heat sinks 92 and 93. The heat sinks 92 and 93 can be cooled by flowing cold water through the pipe, and the heat sinks 92 and 93 can be heated by flowing hot water through the pipe. A similar power generation device was also produced in the comparative example.

銅製ヒートシンク92、93の一方に15℃の冷水を流し他方に65℃の温水を流すことによって、発電デバイスに温度差をつけた。その際の各デバイスの発電量を表1に示す。比較例比較例2−1,2−2においてはそれぞれ0mWの発電量であったのに対して、実施例1においては50℃の温度差によって最大25mWの電力を取り出すことが出来た。   A temperature difference was given to the power generation device by flowing 15 ° C. cold water on one of the copper heat sinks 92 and 93 and flowing hot water of 65 ° C. on the other. Table 1 shows the power generation amount of each device at that time. Comparative Examples In Comparative Examples 2-1 and 2-2, the power generation amount was 0 mW, whereas in Example 1, a maximum power of 25 mW could be extracted due to a temperature difference of 50 ° C.

Figure 2012069626
Figure 2012069626

金属としてニッケルを、熱電材料としてBi0.3Sb1.7Te3を用いて本発明の熱発電デバイスを作製した。あらかじめ平板上に加工した7枚のニッケルと6枚のBi0.3Sb1.7Te3を交互に積み重ね、積層方向に一定に圧力がかかるように材料上に1kgの銅ブロックを設置した。また銅ブロックと材料との加熱による接着を避けるため、材料との間にグラファイトシートを挿入した。このときニッケルとBi0.3Sb1.7Te3の積層比は1:4となるように設計し、それぞれの厚みは2mm,8mmとした。このようにして組み合わせた積層体を実施例1と同様の手法で作製した。次に傾斜角度が35oとなるように積層体を精密切断機で切断した後に切断面に窒化アルミを厚さ2mmでコーティングし、電気絶縁膜を形成した。本傾斜積層体の大きさは6.5×1×2cm3であった。傾斜積層体の長さに対する厚みの比は0.14となる。 The thermoelectric generator of the present invention was fabricated using nickel as the metal and Bi 0.3 Sb 1.7 Te 3 as the thermoelectric material. Seven nickel and six Bi 0.3 Sb 1.7 Te 3 previously processed on a flat plate were alternately stacked, and a 1 kg copper block was placed on the material so that a constant pressure was applied in the stacking direction. In addition, a graphite sheet was inserted between the copper block and the material in order to avoid adhesion due to heating. At this time, the stacking ratio of nickel and Bi 0.3 Sb 1.7 Te 3 was designed to be 1: 4, and the thicknesses were 2 mm and 8 mm, respectively. The laminated body thus combined was produced in the same manner as in Example 1. Next, the laminate was cut with a precision cutting machine so that the inclination angle was 35 °, and then the cut surface was coated with aluminum nitride with a thickness of 2 mm to form an electrical insulating film. The size of the inclined laminate was 6.5 × 1 × 2 cm 3 . The ratio of the thickness to the length of the tilted laminate is 0.14.

同様の行程を繰り返し、上記傾斜積層体を合計7個作製した。それらを図2に示すとおりに、隣り合う傾斜積層体の傾斜の向きが交互に反転するように配置し、再度同様の行程でArフローした箱型炉において、500℃で2時間加熱した。次に室温で硬化する銀ペーストを塗布して電極を作製した。最後に銀ペーストを用いて図2のように電極間を銅線で接続し、本発明の熱発電デバイスが得られた。本デバイスを実施例2とする。   The same process was repeated to produce a total of seven tilted laminates. As shown in FIG. 2, they were arranged so that the inclination directions of adjacent inclined laminated bodies were alternately reversed, and again heated at 500 ° C. for 2 hours in a box furnace in which Ar was flowed in the same process. Next, a silver paste that hardens at room temperature was applied to produce an electrode. Finally, a silver paste was used to connect the electrodes with a copper wire as shown in FIG. 2 to obtain the thermoelectric generator of the present invention. This device is referred to as Example 2.

(比較例3−1)
比較例3−1の熱発電デバイスを図7に示す構成で作製した。平板状のBi0.3Sb1.7Te3及びニッケルを実施例と同じ厚み及び厚みの比で交互に重ね、実施例2と同様の行程で傾斜積層体61を形成した。その後、傾斜角度が30°となるように傾斜積層体71を成型した。本比較例におけるデバイスの大きさは6.5×7×2cm3であった。また電極72については実施例3と同様に銀ペーストを用いて設置した。
(Comparative Example 3-1)
A thermoelectric power generation device of Comparative Example 3-1 was fabricated with the configuration shown in FIG. Flat Bi 0.3 Sb 1.7 Te 3 and nickel were alternately stacked at the same thickness and thickness ratio as in the example, and the inclined laminate 61 was formed in the same process as in the example 2. Thereafter, the inclined laminate 71 was molded so that the inclination angle was 30 °. The size of the device in this comparative example was 6.5 × 7 × 2 cm 3 . The electrode 72 was installed using a silver paste as in Example 3.

(比較例3−2)
比較例3-2の熱発電デバイスを図8に示す構成で作製した。比較例3−1と同様の行程で作製した傾斜積層体81を傾斜の向きが逆になるように配置して構成した。それぞれの傾斜積層体81は6.5×7×1cm3であった。また電極82については実施例3と同様に銀ペーストを用いて設置した。
(Comparative Example 3-2)
A thermoelectric generator of Comparative Example 3-2 was fabricated with the configuration shown in FIG. The inclined laminated body 81 produced in the same process as that of Comparative Example 3-1 was arranged so that the direction of inclination was reversed. Each inclined laminated body 81 was 6.5 × 7 × 1 cm 3 . The electrode 82 was installed using a silver paste as in Example 3.

(比較結果)
実施例1と同様にして厚さ1μmの窒化アルミでコーティングした銅製のヒートシンク92、93を2個用いて本実施例における熱発電デバイス91を挟み込んでアピエゾングリースによって固定し、図9に示すような発電デバイスを作製した。銅製のヒートシンク92、93の内部には銅パイプが埋め込まれている。このパイプに冷水を流すことによりヒートシンク92、93を冷却することができ、またパイプに温水を流すことによってヒートシンク92、93を加熱することができる。比較例においても同様の発電デバイスを作成した。
(Comparison result)
As in Example 1, two copper heat sinks 92 and 93 coated with aluminum nitride having a thickness of 1 μm were used to sandwich the thermoelectric generation device 91 in this example and fixed with Apiezon grease, as shown in FIG. A simple power generation device was fabricated. Copper pipes are embedded in the copper heat sinks 92 and 93. The heat sinks 92 and 93 can be cooled by flowing cold water through the pipe, and the heat sinks 92 and 93 can be heated by flowing hot water through the pipe. A similar power generation device was also produced in the comparative example.

銅製ヒートシンク92、93の一方に15℃の冷水を流し他方に65℃の温水を流すことによって、発電デバイスに温度差をつけた。その際の各デバイスの発電量を表2に示す。比較例3-1,3-2においてはそれぞれ0mWの発電量であったのに対して、実施例3においては50℃の温度差によって最大45mWの電力を取り出すことが出来た。   A temperature difference was given to the power generation device by flowing 15 ° C. cold water on one of the copper heat sinks 92 and 93 and flowing hot water of 65 ° C. on the other. Table 2 shows the amount of power generated by each device. In Comparative Examples 3-1 and 3-2, each had a power generation amount of 0 mW, whereas in Example 3, a maximum power of 45 mW could be taken out due to a temperature difference of 50 ° C.

Figure 2012069626
Figure 2012069626

金属として無酸素銅を、熱電材料としてBiを用いて本発明の熱発電デバイスを作製した。実施例2と同様の手法を用い、無酸素銅とBiの積層比は1:1となるように設計し、それぞれの厚みは4mm,4mmとした。このようにして組み合わせた積層体をArフローした箱型炉において、200℃で2時間加熱して圧着し、室温までの冷却後に取り出した。次に傾斜角度が40oとなるように積層体を精密切断機で切断した後に切断面に窒化アルミを厚さ2mmでコーティングし、電気絶縁膜を形成した。本傾斜積層体の大きさは6.5×1×2cm3であった。傾斜積層体の長さに対する厚みの比は0.14となる。 The thermoelectric generator of the present invention was produced using oxygen-free copper as the metal and Bi as the thermoelectric material. Using the same method as in Example 2, the stacking ratio of oxygen-free copper and Bi was designed to be 1: 1, and the respective thicknesses were 4 mm and 4 mm. The laminated body thus combined was pressure-bonded by heating at 200 ° C. for 2 hours in an Ar-flowed box furnace, and taken out after cooling to room temperature. Next, the laminate was cut with a precision cutting machine so that the inclination angle was 40 °, and then the cut surface was coated with aluminum nitride at a thickness of 2 mm to form an electrical insulating film. The size of the inclined laminate was 6.5 × 1 × 2 cm 3 . The ratio of the thickness to the length of the tilted laminate is 0.14.

同様の行程を繰り返し、上記傾斜積層体を合計7個作製した。それらを図2に示すとおりに、隣り合う傾斜積層体の傾斜の向きが交互に反転するように配置し、再度同様の行程でArフローした箱型炉において、200℃で2時間加熱した後、室温まで冷却した。次に室温で硬化する銀ペーストを塗布して電極を作製した。最後に銀ペーストを用いて図2のように電極間を銅線で接続し、またデバイスの裏側についても熱による起電力が大きくなるように配線を施した。上記の方法を持って本発明の熱発電デバイスが得られた。本デバイスを実施例3とする。   The same process was repeated to produce a total of seven tilted laminates. As shown in FIG. 2, arranged so that the direction of inclination of the adjacent inclined laminates are alternately reversed, and again in a box furnace that was Ar-flowed in the same process, after heating at 200 ° C. for 2 hours, Cooled to room temperature. Next, a silver paste that hardens at room temperature was applied to produce an electrode. Finally, silver paste was used to connect the electrodes with a copper wire as shown in FIG. 2, and wiring was applied to the back side of the device so that the electromotive force due to heat was increased. The thermoelectric power generation device of the present invention was obtained using the above method. This device is referred to as Example 3.

(比較例4−1)
比較例4−1の熱発電デバイスを図7に示す構成で作製した。平板状のBi及び無酸素銅を実施例4と同じ厚み及び厚みの比で交互に重ね、実施例1と同様の行程で傾斜積層体71を形成した。その後、傾斜角度が40°となるように傾斜積層体71を成型した。本比較例におけるデバイスの大きさは6.5×7×2cm3であった。また電極62については実施例4と同様に銀ペーストを用いて設置した。
(Comparative Example 4-1)
A thermoelectric power generation device of Comparative Example 4-1 was fabricated with the configuration shown in FIG. Flat Bi and oxygen-free copper were alternately stacked at the same thickness and thickness ratio as in Example 4 to form an inclined laminate 71 in the same process as in Example 1. Thereafter, the inclined laminated body 71 was molded so that the inclination angle was 40 °. The size of the device in this comparative example was 6.5 × 7 × 2 cm 3 . The electrode 62 was installed using a silver paste as in Example 4.

(比較例4−2)
比較例4-2の熱発電デバイスを図8に示す構成で作製した。比較例4-1と同様の行程で作製した傾斜積層体81を傾斜の向きが逆になるように配置して構成した。それぞれの傾斜積層体71は6.5×7×1cm3であった。また電極82については実施例4と同様に銀ペーストを用いて設置した。
(Comparative Example 4-2)
A thermoelectric power generation device of Comparative Example 4-2 was fabricated with the configuration shown in FIG. The inclined laminated body 81 produced in the same process as that of Comparative Example 4-1 was arranged and arranged so that the direction of inclination was reversed. Each inclined laminated body 71 was 6.5 × 7 × 1 cm 3 . The electrode 82 was installed using a silver paste as in Example 4.

(比較結果)
厚さ1μmの窒化アルミでコーティングした銅製のヒートシンク92、93を2個用いて本実施例における熱発電デバイス91を挟み込んでアピエゾングリースによって固定し、図9に示すような発電デバイスを作製した。銅製のヒートシンク92、93の内部には銅パイプが埋め込まれている。このパイプに冷水を流すことによりヒートシンク92、93を冷却することができ、またパイプに温水を流すことによってヒートシンク92、93を加熱することができる。比較例においても同様の発電デバイスを作成した。
(Comparison result)
Using two copper heat sinks 92 and 93 coated with aluminum nitride with a thickness of 1 μm, the thermoelectric generator 91 in this example was sandwiched and fixed with Apiezon grease, and an electric generator as shown in FIG. 9 was produced. Copper pipes are embedded in the copper heat sinks 92 and 93. The heat sinks 92 and 93 can be cooled by flowing cold water through the pipe, and the heat sinks 92 and 93 can be heated by flowing hot water through the pipe. A similar power generation device was also produced in the comparative example.

銅製ヒートシンク92、93の一方に15℃の冷水を流し他方に65℃の温水を流すことによって、発電デバイスに温度差をつけた。その際の各デバイスの発電量を表4に示す。比較例4-1,4-2においてはそれぞれ0mWの発電量であったのに対して、実施例4においては50℃の温度差によって最大15mWの電力を取り出すことが出来た。   A temperature difference was given to the power generation device by flowing 15 ° C. cold water on one of the copper heat sinks 92 and 93 and flowing hot water of 65 ° C. on the other. Table 4 shows the amount of power generated by each device. In Comparative Examples 4-1 and 4-2, the power generation amount was 0 mW, respectively, whereas in Example 4, a maximum power of 15 mW could be extracted due to a temperature difference of 50 ° C.

Figure 2012069626
Figure 2012069626

金属としてアルミニウムを、熱電材料としてPbTeを用いて本発明の熱発電デバイスを作製した。実施例1と同様の手法を用い、ニッケルとPbTeの積層比は1:4となるように設計した。それぞれの厚みは2mm,8mmとした。このようにして組み合わせた積層体をArフローした箱型炉において、500℃で2時間加熱して圧着し、室温までの冷却後に取り出した。次に傾斜角度が30oとなるように積層体を精密切断機で切断した後に切断面に窒化アルミを厚さ2mmでコーティングし、電気絶縁膜を形成した。本傾斜積層体の大きさは6.5×1×2cm3であった。傾斜積層体の長さに対する厚みの比は0.14となる。 The thermoelectric generator of the present invention was fabricated using aluminum as the metal and PbTe as the thermoelectric material. The same method as in Example 1 was used, and the stacking ratio of nickel and PbTe was designed to be 1: 4. Each thickness was 2 mm and 8 mm. The laminated body thus assembled was heated and pressure-bonded at 500 ° C. for 2 hours in an Ar-flowed box furnace, and taken out after cooling to room temperature. Next, the laminate was cut with a precision cutting machine so that the inclination angle was 30 °, and then the cut surface was coated with aluminum nitride at a thickness of 2 mm to form an electrical insulating film. The size of the inclined laminate was 6.5 × 1 × 2 cm 3 . The ratio of the thickness to the length of the tilted laminate is 0.14.

同様の行程を繰り返し、上記傾斜積層体を合計7個作製した。それらを図2に示すとおりに、隣り合う傾斜積層体の傾斜の向きが交互に反転するように配置し、再度同様の行程でArフローした箱型炉において、500℃で2時間加熱した後、室温まで冷却した。次に室温で硬化する銀ペーストを塗布して電極を作製した。最後に銀ペーストを用いて図2のように電極間を銅線で接続し、またデバイスの裏側についても熱による起電力が大きくなるように配線を施した。上記の方法を持って本発明の熱発電デバイスが得られた。本デバイスを実施例1とする。   The same process was repeated to produce a total of seven tilted laminates. As shown in FIG. 2, arranged so that the direction of inclination of the adjacent inclined laminates are alternately reversed, and again in a box furnace that was Ar-flowed in the same process, after heating at 500 ° C. for 2 hours, Cooled to room temperature. Next, a silver paste that hardens at room temperature was applied to produce an electrode. Finally, silver paste was used to connect the electrodes with a copper wire as shown in FIG. 2, and wiring was applied to the back side of the device so that the electromotive force due to heat was increased. The thermoelectric power generation device of the present invention was obtained using the above method. This device is referred to as Example 1.

(比較例5−1)
比較例5−1の熱発電デバイスを図7に示す構成で作製した。平板状のPbTe及びニッケルを実施例1と同じ厚み及び厚みの比で交互に重ね、実施例1と同様の行程で傾斜積層体71を形成した。その後、傾斜角度が30°となるように傾斜積層体71を成型した。本比較例におけるデバイスの大きさは6.5×7×2cm3であった。また電極72については実施例1と同様に銀ペーストを用いて設置した。
(Comparative Example 5-1)
A thermoelectric power generation device of Comparative Example 5-1 was fabricated with the configuration shown in FIG. Flat-shaped PbTe and nickel were alternately stacked at the same thickness and thickness ratio as in Example 1 to form an inclined laminate 71 in the same process as in Example 1. Thereafter, the inclined laminate 71 was molded so that the inclination angle was 30 °. The size of the device in this comparative example was 6.5 × 7 × 2 cm 3 . The electrode 72 was installed using a silver paste in the same manner as in Example 1.

(比較例5−2)
比較例5−2の熱発電デバイスを図8に示す構成で作製した。比較例1と同様の行程で作製した傾斜積層体81を傾斜の向きが逆になるように配置して構成した。それぞれの傾斜積層体81は6.5×7×1cm3であった。また電極82については実施例2と同様に銀ペーストを用いて設置した。
(Comparative Example 5-2)
A thermoelectric power generation device of Comparative Example 5-2 was fabricated with the configuration shown in FIG. The inclined laminated body 81 produced in the same process as that of Comparative Example 1 was arranged so that the direction of inclination was reversed. Each inclined laminated body 81 was 6.5 × 7 × 1 cm 3 . The electrode 82 was installed using a silver paste as in Example 2.

(比較結果)
厚さ1μmの窒化アルミでコーティングした銅製のヒートシンク92、93を2個用いて本実施例における熱発電デバイス91を挟み込んでアピエゾングリースによって固定し、図9に示すような発電デバイスを作製した。銅製のヒートシンク92、93の内部には銅パイプが埋め込まれている。このパイプに冷水を流すことによりヒートシンク92、93を冷却することができ、またパイプに温水を流すことによってヒートシンク92、93を加熱することができる。比較例においても同様の発電デバイスを作成した。
(Comparison result)
Using two copper heat sinks 92 and 93 coated with aluminum nitride with a thickness of 1 μm, the thermoelectric generator 91 in this example was sandwiched and fixed with Apiezon grease, and an electric generator as shown in FIG. 9 was produced. Copper pipes are embedded in the copper heat sinks 92 and 93. The heat sinks 92 and 93 can be cooled by flowing cold water through the pipe, and the heat sinks 92 and 93 can be heated by flowing hot water through the pipe. A similar power generation device was also produced in the comparative example.

銅製ヒートシンク92、93の一方に15℃の冷水を流し他方に65℃の温水を流すことによって、発電デバイスに温度差をつけた。その際の各デバイスの発電量を表5に示す。比較例5-1,5-2においてはそれぞれ0mWの発電量であったのに対して、実施例5においては50℃の温度差によって最大30mWの電力を取り出すことが出来た。   A temperature difference was given to the power generation device by flowing 15 ° C. cold water on one of the copper heat sinks 92 and 93 and flowing hot water of 65 ° C. on the other. Table 5 shows the power generation amount of each device at that time. In Comparative Examples 5-1 and 5-2, the power generation amount was 0 mW, while in Example 5, a maximum power of 30 mW could be extracted due to a temperature difference of 50 ° C.

Figure 2012069626
Figure 2012069626

実施例1と同様の方法で、図2で示されるような実施例1と同様の熱発電デバイスを作製した。本実施例におけるすべてのデバイスの大きさは6.5×7×2cm3で同様であるが、デバイスを構成する傾斜積層体の数が表2のように異なる。 A thermoelectric power generation device similar to that in Example 1 as shown in FIG. 2 was produced in the same manner as in Example 1. The size of all the devices in this example is 6.5 × 7 × 2 cm 3 , which is the same, but the number of inclined laminated bodies constituting the devices is different as shown in Table 2.

本実施例における各デバイスの上下面に50℃の温度差を付けて測定した各デバイスの発電量を表6に示す。本実施例の結果よりデバイスの長さに対する厚みが大きくなるにつれて発電量が減少していることが明らかになった。   Table 6 shows the power generation amount of each device measured by attaching a temperature difference of 50 ° C. to the upper and lower surfaces of each device in this example. From the results of this example, it was found that the power generation amount decreased as the thickness with respect to the device length increased.

Figure 2012069626
Figure 2012069626

実施例1と同様の方法で無酸素銅及びBi0.5Sb1.5Te3からなる傾斜積層体を4個作製し、それらを加熱圧着することによって熱発電デバイスを作成した。得られたデバイスの大きさは6.5×7×4cm3であった。得られたデバイスを精密切断機で5個に切断し、図4で示すように熱発電デバイスを構成した。 Four graded laminates made of oxygen-free copper and Bi 0.5 Sb 1.5 Te 3 were produced in the same manner as in Example 1, and thermoelectric power generation devices were produced by thermocompression bonding them. The size of the obtained device was 6.5 × 7 × 4 cm 3 . The obtained device was cut into five pieces with a precision cutting machine, and a thermoelectric power generation device was constructed as shown in FIG.

それぞれの傾斜積層体を温度差によって発生する起電圧を打ち消さないように直列に結線した。その際、電極には常温硬化銀ペーストを用い、結線には銅線を用いた。   Each inclined laminate was connected in series so as not to cancel the electromotive voltage generated by the temperature difference. At that time, room-temperature-curing silver paste was used for the electrodes, and copper wires were used for the connection.

実施例1同様の発電デバイスを作成し、本デバイスの上下面に50℃の温度差を設定した。その際に測定して得られた起電圧は50mVであった。実施例1と同様の構成で同じ大きさのデバイスと比較した際、約4倍の起電圧が得られた。   A power generation device similar to that of Example 1 was prepared, and a temperature difference of 50 ° C. was set on the upper and lower surfaces of the device. The electromotive voltage obtained by measurement at that time was 50 mV. When compared with a device having the same configuration and the same size as in Example 1, an electromotive voltage of about 4 times was obtained.

実施例7と同様にして5個の熱発電デバイスを得た。それぞれ隣り合うデバイスにおいて傾斜積層体の傾斜の向きが反転するように設置した。   In the same manner as in Example 7, five thermoelectric generator devices were obtained. It installed so that the direction of the inclination of an inclination laminated body might reverse in each adjacent device.

それぞれの傾斜積層体を温度差によって発生する起電圧を打ち消さないように直列に結線した。その際、電極には常温硬化銀ペーストを用い、結線には銅線を用いた。実施例6と比較して、結線に用いる銅線が交差せず本実施例では比較的簡単に結線を行うことが出来た。   Each inclined laminate was connected in series so as not to cancel the electromotive voltage generated by the temperature difference. At that time, room-temperature-curing silver paste was used for the electrodes, and copper wires were used for the connection. Compared with Example 6, the copper wires used for connection did not intersect, and in this example, connection could be performed relatively easily.

またデバイスの上下面に50℃の温度差を設定した場合の起電力は実施例7と同様であった。   The electromotive force when a temperature difference of 50 ° C. was set on the upper and lower surfaces of the device was the same as in Example 7.

実施例1と同様の行程を用いて2種類の大きさの傾斜積層体から構成される熱発電デバイスを作製した。一方は11×6.5×1cm3であり、他方は11×6.5×0.5cm3であった。この大きさの異なる傾斜積層体の上底面を厚さ2mmの窒化アルミでコーティングし、図6に示すように交互に重ねてArフローした箱型炉において500℃で2時間加熱圧着した。その後、精密切断機において切れ込みを入れた。その際切れ込みは図5に示すとおり上・下方向より交互に入れた。上からの場合は最下の傾斜積層体の上面まで、下からの場合は最上の傾斜積層体の底面まで切れ込みを入れた。次に端部の電極については常温硬化する銀ペーストを用いることで結線し、配線には銅線を用いた。 Using the same process as in Example 1, a thermoelectric generator device composed of two types of graded laminates was produced. One was 11 × 6.5 × 1 cm 3 and the other was 11 × 6.5 × 0.5 cm 3 . The top and bottom surfaces of the inclined laminates having different sizes were coated with aluminum nitride having a thickness of 2 mm, and heat-pressed at 500 ° C. for 2 hours in a box furnace in which Ar layers were alternately stacked as shown in FIG. Thereafter, a cut was made in a precision cutting machine. At that time, the cuts were alternately made from the upper and lower directions as shown in FIG. In the case of from the top, a cut was made up to the upper surface of the bottom inclined laminate, and in the case of the bottom, a cut was made to the bottom surface of the top inclined laminate. Next, the electrodes at the ends were connected by using a silver paste that hardens at room temperature, and copper wires were used for the wiring.

実施例1同様の発電デバイスを作成し、本デバイスの上下面に50℃の温度差を設定した。その際に測定して得られた起電圧は35mVであった。実施例1と同様の構成で同じ大きさのデバイスと比較した際、約3倍の起電圧が得られた。   A power generation device similar to that of Example 1 was prepared, and a temperature difference of 50 ° C. was set on the upper and lower surfaces of the device. The electromotive voltage obtained by measurement at that time was 35 mV. When compared with a device having the same configuration and the same size as in Example 1, an electromotive voltage of about three times was obtained.

以上の実施の形態、実施例で記載した本願発明により、デバイスの厚みに制約なく、高い発電性能を持ったデバイスを実現できる。これは、上述のように、積層された傾斜積層体を温度勾配方向に積み上げたからである。特に、積層体間で、金属および熱電材料の傾斜が反転するように構成すると、より大きい発電量が期待できる。そのため、電極は必須の構成要素ではなく、本願発明の熱電デバイスで生じる起電力を取り出すことができれば、電極以外の構成でも良い。   According to the present invention described in the above embodiments and examples, a device having high power generation performance can be realized without restriction on the thickness of the device. This is because, as described above, the laminated inclined laminated bodies are stacked in the temperature gradient direction. In particular, when the inclination of the metal and the thermoelectric material is reversed between the stacked bodies, a larger amount of power generation can be expected. Therefore, the electrode is not an essential component, and any configuration other than the electrode may be used as long as an electromotive force generated in the thermoelectric device of the present invention can be taken out.

本発明にかかる熱発電デバイスは、デバイスの厚みが大きい際の電圧損失の課題を解決し、より効率的かつ設計性の高いデバイスとして有用である。   The thermoelectric power generation device according to the present invention solves the problem of voltage loss when the thickness of the device is large, and is useful as a more efficient and highly designable device.

11 金属
12 熱電材料
13 層に平行な方向
14 温度勾配に垂直な方向
20 デバイスの厚み方向
21 傾斜積層体
22 傾斜の向きが反転した傾斜積層体
23 電気絶縁層
24 電極
25 配線
31 傾斜積層体
32 電極
33 電気絶縁層
34 配線
41 傾斜積層体
42 電極
43 配線
51 傾斜積層体
52 傾斜の向きが反転した傾斜積相体
53 電極
54 配線
61 傾斜積層体
62 上方
63 下方
64 電気絶縁層
65 電極
66 配線
71 傾斜積層体
72 電極
81 傾斜積層体
82 電極
91 集熱体
92 放熱体
93 熱発電デバイス
DESCRIPTION OF SYMBOLS 11 Metal 12 Thermoelectric material 13 Direction parallel to layer 14 Direction perpendicular to temperature gradient 20 Device thickness direction 21 Inclined laminated body 22 Inclined laminated body in which inclination direction is reversed 23 Electrical insulating layer 24 Electrode 25 Wiring 31 Inclined laminated body 32 Electrode 33 Electrical insulating layer 34 Wiring 41 Inclined laminated body 42 Electrode 43 Wiring 51 Inclined laminated body 52 Inclined stacking body in which inclination direction is reversed 53 Electrode 54 Wiring 61 Inclined laminated body 62 Upper 63 Lower 64 Electrical insulating layer 65 Electrode 66 Wiring 71 Inclined Laminate 72 Electrode 81 Inclined Laminate 82 Electrode 91 Heat Collector 92 Heat Dissipator 93 Thermoelectric Device

Claims (11)

金属層と熱電材料層とが積層方向に対して傾斜して積層された第1積層体と、
前記積層方向と前記第1積層体が傾斜している方向とが含まれる面において、前記積層方向に垂直な軸である厚み方向の前記第1積層体上に配置され、前記厚み方向に対して前記第1積層体が傾斜する第1角度と対称となる第2角度で、金属層と熱電材料層とが傾斜している第2積層体と、
を具備する熱電デバイス。
A first laminate in which a metal layer and a thermoelectric material layer are laminated with an inclination with respect to the lamination direction;
In a plane including the stacking direction and the direction in which the first stack is inclined, the first stack is disposed on the first stack in the thickness direction which is an axis perpendicular to the stacking direction. A second laminate in which the metal layer and the thermoelectric material layer are inclined at a second angle that is symmetrical to the first angle at which the first laminate is inclined;
A thermoelectric device comprising:
さらに、前記積層方向と厚み方向とに対して垂直な方向に、前記第1積層体と前記第2積層体とに並ぶように配置され、金属層と熱電材料層とが前記第1角度と同一方向に傾斜する第3積層体と、
前記厚み方向の前記第3積層体上に配置され、金属層と熱電材料層とが前記第2角度と同一方向に傾斜する第4積層体と、
を具備する請求項1記載の熱電デバイス。
Further, the first stacked body and the second stacked body are arranged in a direction perpendicular to the stacking direction and the thickness direction, and the metal layer and the thermoelectric material layer have the same angle as the first angle. A third laminate inclined in the direction;
A fourth laminated body disposed on the third laminated body in the thickness direction, wherein the metal layer and the thermoelectric material layer are inclined in the same direction as the second angle;
The thermoelectric device according to claim 1, comprising:
前記第1積層体と前記第3積層体、および、前記第2積層体と前記第4積層体が、前記垂直な方向において並ぶように配置された請求項2記載の熱電デバイス。 The thermoelectric device according to claim 2, wherein the first stacked body and the third stacked body, and the second stacked body and the fourth stacked body are arranged so as to be aligned in the perpendicular direction. 前記第1積層体と前記第4積層体、および、前記第2積層体と前記第3積層体が、前記垂直な方向において並ぶように配置された請求項2記載の熱電デバイス。 The thermoelectric device according to claim 2, wherein the first stacked body and the fourth stacked body, and the second stacked body and the third stacked body are arranged so as to be aligned in the perpendicular direction. さらに、前記積層方向における、前記第1積層体と前記第2積層体の両端部に電極を備える、請求項1記載の熱電デバイス。 Furthermore, the thermoelectric device of Claim 1 provided with an electrode in the both ends of the said 1st laminated body and the said 2nd laminated body in the said lamination direction. さらに、前記積層方向における、前記第1積層体と前記第2積層体と前記第3積層体と前記第4積層体との両端部に電極を備える、請求項3記載の熱電デバイス。 The thermoelectric device according to claim 3, further comprising electrodes at both ends of the first stacked body, the second stacked body, the third stacked body, and the fourth stacked body in the stacking direction. さらに、前記積層方向における、前記第1積層体と前記第2積層体と前記第3積層体と前記第4積層体との両端部に電極を備える、請求項4記載の熱電デバイス。 5. The thermoelectric device according to claim 4, further comprising electrodes at both ends of the first stacked body, the second stacked body, the third stacked body, and the fourth stacked body in the stacking direction. 前記第1積層体および前記第2積層体の両端部のうちのいずれかの同じ端部に備えられた電極において、前記第1角度を有する積層体と前記第2角度を有する積層体とを接続する、請求項5記載の熱電デバイス。 In the electrode provided at the same end of either of the first stacked body and the second stacked body, the stacked body having the first angle and the stacked body having the second angle are connected. The thermoelectric device according to claim 5. 前記第1積層体および前記第2積層体および前記第3積層体および前記第4積層体の両端部のうちのいずれかの同じ端部に備えられた電極において、前記第1角度を有する積層体と前記第2角度を有する積層体とを接続する、請求項6記載の熱電デバイス。 A laminate having the first angle in an electrode provided at the same end of any one of both ends of the first laminate, the second laminate, the third laminate, and the fourth laminate. The thermoelectric device according to claim 6, wherein the laminate having the second angle is connected. さらに、前記厚み方向における、前記第2積層体上と前記第4積層体上に配置され、金属層と熱電材料層とが前記第1角度で傾斜して積層された第5積層体を備える、
請求項3記載の熱電デバイス。
And a fifth stacked body that is disposed on the second stacked body and the fourth stacked body in the thickness direction and in which a metal layer and a thermoelectric material layer are stacked at an inclination of the first angle.
The thermoelectric device according to claim 3.
金属層と熱電材料層とが積層方向に対して傾斜して積層された第1積層体と、
前記積層方向と前記第1積層体が傾斜している方向とが含まれる面において、前記積層方向に垂直な軸である厚み方向の前記第1積層体上に配置され、前記厚み方向に対して前記第1積層体が傾斜する第1角度で、金属層と熱電材料層とが傾斜している第6積層体と、
前記第1積層体の両端に備えられた電極と、
前記第6積層体の両端に備えられた電極と、
を具備する熱電デバイス。
A first laminate in which a metal layer and a thermoelectric material layer are laminated with an inclination with respect to the lamination direction;
In a plane including the stacking direction and the direction in which the first stack is inclined, the first stack is disposed on the first stack in the thickness direction which is an axis perpendicular to the stacking direction. A sixth laminate in which the metal layer and the thermoelectric material layer are inclined at a first angle at which the first laminate is inclined;
Electrodes provided at both ends of the first laminate,
Electrodes provided at both ends of the sixth laminate,
A thermoelectric device comprising:
JP2010211766A 2010-09-22 2010-09-22 Thermal power generation device Pending JP2012069626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010211766A JP2012069626A (en) 2010-09-22 2010-09-22 Thermal power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211766A JP2012069626A (en) 2010-09-22 2010-09-22 Thermal power generation device

Publications (1)

Publication Number Publication Date
JP2012069626A true JP2012069626A (en) 2012-04-05

Family

ID=46166562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211766A Pending JP2012069626A (en) 2010-09-22 2010-09-22 Thermal power generation device

Country Status (1)

Country Link
JP (1) JP2012069626A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141658A1 (en) * 2013-03-12 2014-09-18 パナソニック株式会社 Thermoelectric generation system
WO2016164695A1 (en) * 2015-04-09 2016-10-13 Nitto Denko Corporation Thermoelectric component and method of making same
CN107257210A (en) * 2016-03-28 2017-10-17 精工爱普生株式会社 Piezo-activator, piezo-electric motor, robot, hand and pump
KR20180130656A (en) * 2017-05-30 2018-12-10 최병규 Semiconductor device
JP2021072382A (en) * 2019-10-31 2021-05-06 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device equipped with the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014141658A1 (en) * 2013-03-12 2014-09-18 パナソニック株式会社 Thermoelectric generation system
JP5715739B2 (en) * 2013-03-12 2015-05-13 パナソニック株式会社 Thermal power generation system
US10170677B2 (en) 2013-03-12 2019-01-01 Panasonic Corporation Thermoelectric generator system
US10873018B2 (en) 2013-03-12 2020-12-22 Panasonic Corporation Thermoelectric generator system
WO2016164695A1 (en) * 2015-04-09 2016-10-13 Nitto Denko Corporation Thermoelectric component and method of making same
CN107257210A (en) * 2016-03-28 2017-10-17 精工爱普生株式会社 Piezo-activator, piezo-electric motor, robot, hand and pump
KR20180130656A (en) * 2017-05-30 2018-12-10 최병규 Semiconductor device
KR102037154B1 (en) * 2017-05-30 2019-10-29 최병규 Semiconductor device
JP2021072382A (en) * 2019-10-31 2021-05-06 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device equipped with the same
WO2021085039A1 (en) * 2019-10-31 2021-05-06 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device provided with same
JP7342623B2 (en) 2019-10-31 2023-09-12 Tdk株式会社 Thermoelectric conversion element and thermoelectric conversion device equipped with the same
US11963449B2 (en) 2019-10-31 2024-04-16 Tdk Corporation Thermoelectric conversion element and thermoelectric conversion device having the same

Similar Documents

Publication Publication Date Title
US20100326487A1 (en) Thermoelectric element and thermoelectric device
US8940571B2 (en) Thermoelectric conversion element
JPWO2008056466A1 (en) Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device
JP2012069626A (en) Thermal power generation device
KR101237235B1 (en) Manufacturing Method of Thermoelectric Film
JP5067352B2 (en) Thermoelectric conversion module and power generator using the same
JP2013062275A (en) Thermal power generation device
JPS63253677A (en) Multilayered thermoelectric conversion device
JP2018148085A (en) Thermoelectric conversion module
JP4584355B2 (en) Thermoelectric power generation device and power generation method using the same
JP5126518B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
Basu Thermoelectric modules: key issues in architectural design and contact optimization
KR102441699B1 (en) Thermoelectric element
JP6781982B2 (en) Thermoelectric conversion module and its manufacturing method
JP5200884B2 (en) Thermoelectric power generation device
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
WO2012120572A1 (en) Electricity generation method using thermoelectric generation element, thermoelectric generation element and manufacturing method thereof, and thermoelectric generation device
JP6957916B2 (en) Thermoelectric conversion module
JPS58153092A (en) Heat exchanger used in thermoelectric generator
JP2023128248A (en) Thermoelectric conversion module and method of manufacturing thermoelectric conversion module
JP5176607B2 (en) Thermoelectric device element
JP5200885B2 (en) Thermoelectric power generation device
JP2023128250A (en) Thermoelectric conversion module and method of manufacturing thermoelectric conversion module
JP5200883B2 (en) Thermoelectric power generation device
JP2021057383A (en) Thermoelectric conversion device