JP2013062275A - Thermal power generation device - Google Patents

Thermal power generation device Download PDF

Info

Publication number
JP2013062275A
JP2013062275A JP2011197967A JP2011197967A JP2013062275A JP 2013062275 A JP2013062275 A JP 2013062275A JP 2011197967 A JP2011197967 A JP 2011197967A JP 2011197967 A JP2011197967 A JP 2011197967A JP 2013062275 A JP2013062275 A JP 2013062275A
Authority
JP
Japan
Prior art keywords
power generation
thermoelectric
electrode
nickel
generation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011197967A
Other languages
Japanese (ja)
Inventor
Akihiro Sakai
章裕 酒井
Tsutomu Sugano
勉 菅野
Kohei Takahashi
宏平 高橋
Atsushi Omote
篤志 表
Yuka Yamada
由佳 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011197967A priority Critical patent/JP2013062275A/en
Publication of JP2013062275A publication Critical patent/JP2013062275A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To achieve a low power generation amount per unit weight due to a heavy device.SOLUTION: A thermal power generation device has a device constitution where a laminate sandwiched between a first electrode 11 and a second electrode 12 is provided, the laminate includes porous metal and a thermoelectric material which are alternatively laminated, and the lamination plane of the metal and the thermoelectric material is tilted in the lamination direction of the laminate. Effective power generation can be performed by installing the device at a site where temperature difference is generated.

Description

本発明は熱を電力に変換する熱電変換技術に関するものである。   The present invention relates to a thermoelectric conversion technique for converting heat into electric power.

熱を電力に変換する熱電変換技術において、熱電変換材料から構成される熱電変換デバイスは比較的低温の熱量を電力に変換することが出来、また小さく発電設備が構成できる点やメンテナンスフリーで設備を維持できる点で他の発電技術より優れていると言える。   In thermoelectric conversion technology that converts heat into electric power, thermoelectric conversion devices composed of thermoelectric conversion materials can convert heat at a relatively low temperature into electric power, and can also be used to maintain power generation equipment that is small and maintenance-free. It can be said that it is superior to other power generation technologies in that it can be maintained.

熱電変換材料を用いた従来のデバイスは主にπ型構造からなる。π型構造とは素子内材料で電子キャリアの符号が異なるP型半導体とN型半導体を組み合わせ、熱的に並列に、かつ電気的に直列につないだ構造で構成される。このデバイスの一方の面を熱源に接触させ、他方の面を冷却することによってデバイスに温度差を生じさせ、発電を行うような構成となっている。   Conventional devices using thermoelectric conversion materials mainly have a π-type structure. The π-type structure is a structure in which a P-type semiconductor and an N-type semiconductor, which are different from each other in the material of the element and have different electron carrier signs, are combined and are connected in parallel and electrically in series. This device is configured to generate power by bringing one surface of the device into contact with a heat source and cooling the other surface to cause a temperature difference in the device.

本発明者らは金属と熱電変換材料からなる異種材料の積層構造における熱電気特性の異方性を利用した非対角熱電変換材料おいて、積層体における各材料の厚さの比(以下、積層比と書く)と積層方向の傾斜角度を適切に選択することによって優れた発電性能が実現することを見いだし、これを利用した熱発電デバイスを発明した(特許文献1)。前記非対角熱電変換材料を含む熱発電デバイスは従来のπ型構造とはまったく異なる構成でデバイス構築される。   In the non-diagonal thermoelectric conversion material using the anisotropy of thermoelectric properties in a laminated structure of different materials composed of a metal and a thermoelectric conversion material, the present inventors have determined the ratio of the thickness of each material in the laminate (hereinafter referred to as the thickness ratio). It was found that excellent power generation performance was realized by appropriately selecting the stacking ratio and the inclination angle in the stacking direction, and invented a thermoelectric power generation device using this (Patent Document 1). The thermoelectric power generation device including the non-diagonal thermoelectric conversion material is constructed with a completely different configuration from the conventional π-type structure.

前記非対角熱電変換材料を用いた発電性能の改善には現在までの本発明者らの知見より異種材料間、即ち熱電変換材料と金属の熱電気特性の非類似性を必要とする材料設計指針が分かっている。例えば熱伝導率においては金属の大きな熱伝導率及び熱電変換材料の小さな熱伝導率を組み合わせることが必要であり、熱伝導率の差異がより高い発電性能を生み出すこととなる。   In order to improve the power generation performance using the non-diagonal thermoelectric conversion material, material design that requires dissimilarity between different materials, that is, thermoelectric properties of the thermoelectric conversion material and metal, based on the knowledge of the present inventors to date I know the guidelines. For example, in terms of thermal conductivity, it is necessary to combine the large thermal conductivity of metals and the small thermal conductivity of thermoelectric conversion materials, and the difference in thermal conductivity will produce higher power generation performance.

異種材料間における非類似性が高いほど、高い発電性能が得られる前記指針はGoldsmidらによるシミュレーションの結果からも指摘されている。非特許文献1のGoldsmidらは異種熱電変換材料の組み合わせにおいて一方の熱電変換材料の熱電気物性すなわち熱伝導率を低く、電気抵抗率を高く変化させることにより異種材料間の非類似性を生じせしめることにより発電性能が単調に改善することを報告している。   The above-mentioned guideline for obtaining higher power generation performance as the dissimilarity between different materials is higher is pointed out from the result of simulation by Goldsmid et al. Goldsmid et al. In Non-Patent Document 1 cause dissimilarity between different materials by changing the thermoelectric properties of one thermoelectric conversion material, that is, the thermal conductivity, and changing the electric resistivity high in a combination of different thermoelectric conversion materials. It is reported that the power generation performance improves monotonously.

特許第4078392号公報Japanese Patent No. 4078392 特開2010−027895号公報JP 2010-027895 A

Goldsmid, phys. stat. sol. 205, 2966 (2008)Goldsmid, phys.stat.sol. 205, 2966 (2008)

しかしながら、前記熱発電デバイスを用いた発電を考えた場合、構成材料となる熱電変換材料や金属は比重が大きく、よってデバイス自体の重量が大きくなるという課題がある。例えば車載機器への応用を考慮する場合には、車両の燃料効率が下がる原因となる。   However, when power generation using the thermoelectric power generation device is considered, there is a problem that the thermoelectric conversion material or metal as a constituent material has a large specific gravity, and thus the weight of the device itself increases. For example, when considering application to in-vehicle equipment, the fuel efficiency of the vehicle is reduced.

本発明は、前記従来の課題を解決するものあり、熱発電デバイスの質量あたりの発電量が増大することでより汎用的な用途に向けた軽重量かつ高い発電性能を有する熱発電デバイスを提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a thermoelectric power generation device having a light weight and high power generation performance for a more general purpose by increasing the amount of power generation per mass of the thermoelectric power generation device. For the purpose.

本発明者らは異種材料の積層構造における異方熱電特性について研究を重ねた結果、金属材料の多孔化により、熱電気物性を変化させることで本発明の熱発電デバイスがより軽量かつ高い発電性能を持つことを見出した。熱電気物性を変化させる方法として構成材料の多孔化を用いる方法は非特許文献1においても指摘されている。しかし、その目的としては前記指針として記述の通り、異種材料間の非類似性を大きくするためである。対して、本発明者らが今回得た知見は前記指針に反して金属の熱伝導率を低減する、すなわち熱電材料の値に近づけるという非類似性を小さくするという方策により発電性能が改善するというものである。   As a result of repeated research on anisotropic thermoelectric characteristics in a laminated structure of different materials, the inventors have made the thermoelectric device of the present invention lighter and have higher power generation performance by changing the thermoelectric properties by making the metal material porous. Found to have. Non-Patent Document 1 also points out a method of making the constituent material porous as a method of changing the thermoelectric properties. However, the purpose is to increase the dissimilarity between different materials as described in the guideline. On the other hand, the findings obtained by the present inventors that the power generation performance is improved by a measure of reducing the thermal conductivity of the metal, that is, reducing the dissimilarity close to the value of the thermoelectric material, contrary to the guideline. Is.

本構成によって、より軽量かつ高い発電性能を有する熱発電デバイスを実現することができる。   With this configuration, a thermoelectric power generation device that is lighter and has higher power generation performance can be realized.

本発明によってより汎用的な用途に向けた熱発電デバイスを提供することが出来る。   According to the present invention, it is possible to provide a thermoelectric power generation device for a more general purpose use.

本発明の実施の形態1における熱発電デバイスの断面図Sectional drawing of the thermoelectric power generation device in Embodiment 1 of this invention 本発明の実施の形態1における熱発電ユニットの断面図Sectional drawing of the thermoelectric generator unit in Embodiment 1 of this invention 本発明の実施の形態1における熱発電デバイスを構成する成型体の図The figure of the molded object which comprises the thermoelectric power generation device in Embodiment 1 of this invention 本発明の実施の形態2における熱発電デバイスの正面図Front view of thermoelectric power generation device according to Embodiment 2 of the present invention 本発明の実施の形態2における熱発電デバイスの断面図Sectional drawing of the thermoelectric power generation device in Embodiment 2 of this invention 本発明の実施の形態2における熱発電デバイスを構成する成型体の図The figure of the molded object which comprises the thermoelectric power generation device in Embodiment 2 of this invention

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
実施の形態1における熱発電デバイスの断面図は図1に一例を示したとおり、多孔金属11および熱電材料12が交互に一定の積層比で積層された積層体の両端を第1電極15および第2電極16で挟み込んだような平板型の構造である。また図2に実施の形態1における熱発電デバイスの断面図に示す。金属11と熱電材料12の積層面は積層方向23に対して一定の角度θを有していて、積層した際に積層界面に隙間ができにくいようになっている。
(Embodiment 1)
The cross-sectional view of the thermoelectric generator in Embodiment 1 is shown in FIG. 1 as an example, and both ends of the laminate in which the porous metal 11 and the thermoelectric material 12 are alternately laminated at a constant lamination ratio are connected to the first electrode 15 and the first electrode 15. It has a flat plate structure sandwiched between two electrodes 16. FIG. 2 is a cross-sectional view of the thermoelectric generator device according to the first embodiment. The laminated surface of the metal 11 and the thermoelectric material 12 has a certain angle θ with respect to the laminating direction 23, so that it is difficult to form a gap at the laminating interface when laminated.

多孔金属11は、電気伝導および熱伝導の良い材料から得られるものであれば特に限定されない。具体的にはCu、Ag、Au、Ni、Fe、Coおよびこれらの金属間化合物等が良く、多孔金属の密度としてはそれぞれの材料の理論密度と比較して5〜50%程度ものが好ましい。多孔金属11の作成方法については前記密度を実現できれば方法は特に限定されず、様々な方法を用いることが出来る。例えば、ウレタンテンプレート法を用いるものや前記金属を含むスラリーを発泡させる方法等が考えられる。   The porous metal 11 is not particularly limited as long as it is obtained from a material having good electrical and thermal conductivity. Specifically, Cu, Ag, Au, Ni, Fe, Co, and intermetallic compounds thereof are good, and the density of the porous metal is preferably about 5 to 50% as compared with the theoretical density of each material. The method for producing the porous metal 11 is not particularly limited as long as the density can be realized, and various methods can be used. For example, a method using a urethane template method or a method of foaming a slurry containing the metal can be considered.

角度θと積層比の好適な範囲は多孔金属11と熱電材料12との組み合わせによって異なる。例えば多孔化したニッケルとBi0.5Sb1.5Te3の組み合わせであればθは10°以上60°以下の範囲が好ましく、ニッケルとBi0.5Sb1.5Te3の積層における厚みの比率は1:4〜4:1の範囲にあることが好ましい。 A suitable range of the angle θ and the lamination ratio varies depending on the combination of the porous metal 11 and the thermoelectric material 12. For example, in the case of a combination of porous nickel and Bi 0.5 Sb 1.5 Te 3 , θ is preferably in the range of 10 ° to 60 °, and the thickness ratio in the lamination of nickel and Bi 0.5 Sb 1.5 Te 3 is 1: 4 to 4 : 1 is preferable.

図2において、熱発電デバイス上部の熱浴21が高温の場合は下部の熱浴22は低温とし、また下部の熱浴21が低温の場合は上部の熱浴22は高温とすると、デバイスの上下に温度差が生じ、発電を行うことができる。得られた電力は本発明の熱発電デバイスの両端に設けられた第1電極15および第2電極16に電気負荷を接続するなどして取り出すことができる。また熱浴部の材質が金属的な性質を持つものの場合は熱発電デバイスとの間に絶縁物を挟み、電気的短絡を防止する必要がある。その際、絶縁物は熱発電デバイスの上下間に生じる温度差を大きく損なわない程度に薄いものが望ましい。   In FIG. 2, when the heat bath 21 at the upper part of the thermoelectric generator is high, the lower heat bath 22 is at a low temperature, and when the lower heat bath 21 is at a low temperature, the upper heat bath 22 is at a high temperature. A temperature difference occurs between the two and power generation can be performed. The obtained electric power can be taken out by connecting an electric load to the first electrode 15 and the second electrode 16 provided at both ends of the thermoelectric generator of the present invention. Further, when the material of the heat bath portion has a metallic property, it is necessary to prevent an electrical short circuit by sandwiching an insulator with the thermoelectric generator device. In that case, it is desirable that the insulator is thin enough not to greatly impair the temperature difference between the upper and lower sides of the thermoelectric generator.

熱電材料12は、Bi、Bi2Te3あるいはこれらにSb、Seなどによるドーピングを行ったもの、YbAl3、PbTeなどが良いが、これらに限定されるものではなく、様々な熱電材料を用いることができる。 The thermoelectric material 12 may be Bi, Bi 2 Te 3 or those doped with Sb, Se, or the like, YbAl 3 , PbTe, or the like, but is not limited thereto, and various thermoelectric materials are used. Can do.

第1電極15および第2電極16は電気伝導の良い材料であれば特に限定されない。積層構造の両端が多孔金属11になるように構成すれば、第1電極15および第2電極16を省略することもできるが、多孔金属の理論密度比が小さくなる場合においては前記電極を別に設けるのが望ましい。ここで理論密度比は得られた多孔金属の密度を理想密度で割ったものと定義する。   The first electrode 15 and the second electrode 16 are not particularly limited as long as the materials have good electrical conductivity. The first electrode 15 and the second electrode 16 can be omitted if both ends of the laminated structure are made of the porous metal 11, but the electrode is provided separately when the theoretical density ratio of the porous metal is small. Is desirable. Here, the theoretical density ratio is defined as the density of the obtained porous metal divided by the ideal density.

上記の構造を実現できれば方法は特に限定されず、様々な方法を用いることができる。例えば、予め金属11と熱電材料12を図3に示すような形状の成型体30に加工したものを積み重ねて加熱および加圧を行うことによって接合し、積層構造を作製することができる。その際、幅31、厚み32、角度θ33、高さ34、を均一にして作成することによって異種材料の積層界面の密着性を向上でき、隙間無くデバイスを作成することが出来る。また半田や導電性ペースト等の導電性材料を薄く塗布することによって金属11と熱電材料12を接着し、デバイスを構成する方法も有効である。   The method is not particularly limited as long as the above structure can be realized, and various methods can be used. For example, the metal 11 and the thermoelectric material 12 previously processed into a molded body 30 having a shape as shown in FIG. 3 can be stacked and bonded by heating and pressurizing to produce a laminated structure. At that time, by making the width 31, the thickness 32, the angle θ33, and the height 34 uniform, the adhesion at the laminated interface of different materials can be improved, and the device can be created without a gap. It is also effective to form a device by bonding the metal 11 and the thermoelectric material 12 by thinly applying a conductive material such as solder or conductive paste.

本実施の形態を用いたデバイスを用いて図2のデバイス断面図に示すように高温の上部の熱浴及び低温の下部の熱浴で挟み、温度差を付けて熱発電ユニットとする。本構成を実現することにより発電性能の評価を行うことが可能である。   A device using this embodiment is sandwiched between a hot upper hot bath and a lower hot bath as shown in the device cross-sectional view of FIG. By realizing this configuration, it is possible to evaluate the power generation performance.

(実施の形態2)
実施の形態2における熱発電デバイスは平板型に限られるものではなく、図4に例を示したとおり、金属11および熱電材料12が交互に一定の積層比で積層されたパイプ状の積層体41でも構成可能である。本実施の形態における熱発電デバイスはパイプ上の積層体の両端を第1電極15および第2電極16で挟み込んだような構造で、内部に貫通孔42を有している。また図4の断面図を図5に示す。金属11と熱電材料12の積層面は貫通孔の軸方向53に対して一定の角度θを有していて、積層した際に積層界面に隙間ができにくいようになっている。貫通孔は貫通構造を有していればその断面形状は円に限定されず、楕円、多角形、あるいは不定形の形状でもよい。
(Embodiment 2)
The thermoelectric generator in the second embodiment is not limited to the flat plate type, and as shown in the example in FIG. 4, a pipe-like laminate 41 in which the metal 11 and the thermoelectric material 12 are alternately laminated at a constant lamination ratio. But it is configurable. The thermoelectric generator in the present embodiment has a structure in which both ends of a laminate on a pipe are sandwiched between the first electrode 15 and the second electrode 16 and has a through hole 42 inside. 4 is a cross-sectional view of FIG. The laminated surface of the metal 11 and the thermoelectric material 12 has a certain angle θ with respect to the axial direction 53 of the through-hole, and it is difficult to form a gap at the laminated interface when laminated. If the through hole has a through structure, the cross-sectional shape is not limited to a circle, and may be an ellipse, a polygon, or an indeterminate shape.

金属11と熱電材料12を隙間の無いように積層し、パイプ内側及び外側に防水処理を施すことによって内側と外側それぞれを流れる流体が互いに混ざらないようにすることができる。図5において、内側の流体51が高温流体の場合は外側の流体52は低温流体とし、また内側の流体51が低温流体の場合は外側の流体52は高温流体とすると、デバイスの内側と外側との間に温度差が生じ、発電を行うことができる。発電された電力はパイプ型熱発電デバイスの両端に設けられた第1電極15および第2電極16に電気負荷を接続するなどして取り出すことができる。   By laminating the metal 11 and the thermoelectric material 12 without any gaps and applying waterproofing treatment to the inside and outside of the pipe, it is possible to prevent the fluids flowing inside and outside from being mixed with each other. In FIG. 5, when the inner fluid 51 is a hot fluid, the outer fluid 52 is a cold fluid, and when the inner fluid 51 is a cold fluid, the outer fluid 52 is a hot fluid. A temperature difference occurs between the two and power generation can be performed. The generated electric power can be taken out by connecting an electric load to the first electrode 15 and the second electrode 16 provided at both ends of the pipe-type thermoelectric power generation device.

上記の構造を実現できれば異種材料の積層方法は特に限定されず、様々な方法を用いることができる。例えば、予め金属11と熱電材料12を図6に示すようにカップ型に加工した成型体を積み重ねて加熱および加圧を行うことによって接合し、積層構造を作製することができる。その際、内径61、外径62、角度θ63、高さ64、を均一に作成することによって異種材料の積層界面の密着性を向上でき、隙間無くデバイスを作成することが出来る。また半田や導電性ペーストを用いることで比較的簡便に金属11と熱電材料12を接合でき、デバイスを作成できる。   As long as the above structure can be realized, a method for stacking different materials is not particularly limited, and various methods can be used. For example, as shown in FIG. 6, the metal 11 and the thermoelectric material 12 previously processed into a cup shape are stacked and bonded together by heating and pressurization to produce a laminated structure. At that time, by uniformly forming the inner diameter 61, the outer diameter 62, the angle θ63, and the height 64, the adhesion at the laminated interface of different materials can be improved, and the device can be formed without a gap. Further, by using solder or conductive paste, the metal 11 and the thermoelectric material 12 can be joined relatively easily, and a device can be created.

前期の通り、流体を用いて温度差を生じせしめる場合においては、多孔金属を介したパイプ内外の温冷流体の染み出しについての問題がある。このような流体の染み出しは温度差の減少を引き起こすためデバイスの内外表面において止水の必要がある。止水処理については図5に示すように止水層50を設置する等、様々な方法が可能である。その際はパイプ内外に生じる温度差を出来るだけ大きくすることが重要となり、防水処理に用いる材料を出来るだけ薄くデバイス表面に被膜する必要がある。簡便な方法としては防水性のゲルをパイプ内外壁に薄く塗布した後、乾燥させて防水処理を施す方法がある。上記の機能が実現できれば方法・構成は特に限定されず、様々な方法を用いることができる。   As in the previous period, in the case where a temperature difference is generated using a fluid, there is a problem regarding the seepage of hot and cold fluid inside and outside the pipe through the porous metal. Since such fluid seepage causes a decrease in temperature difference, it is necessary to stop water on the inner and outer surfaces of the device. For the water stop treatment, various methods such as installing a water stop layer 50 as shown in FIG. 5 are possible. In that case, it is important to make the temperature difference generated inside and outside the pipe as large as possible, and it is necessary to coat the material used for waterproofing as thinly as possible on the device surface. As a simple method, there is a method in which a waterproof gel is thinly applied to the inner and outer walls of a pipe and then dried to give a waterproof treatment. The method and configuration are not particularly limited as long as the above functions can be realized, and various methods can be used.

本発明の熱発電デバイスを用いて発電を行う際には、図5で示すようにパイプ外部・内部をそれぞれ低温・高温流体で満たし、パイプ内外に出来る温度差を利用する熱発電ユニットとする。本構成を実現することにより発電性能の評価を行うことが可能である。   When power generation is performed using the thermoelectric power generation device of the present invention, as shown in FIG. 5, the thermoelectric power generation unit uses the temperature difference that can be created inside and outside the pipe by filling the outside and inside of the pipe with low-temperature and high-temperature fluid, respectively. By realizing this configuration, it is possible to evaluate the power generation performance.

以下、本発明のより具体的な実施例を説明する。   Hereinafter, more specific examples of the present invention will be described.

(実施例1)
以下に実施例1−1についての作成方法を詳述する。多孔金属として多孔化したニッケルを、熱電材料としてBi0.5Sb1.5Te3を用いて本発明の熱発電デバイスを作製した。ニッケルの多孔化については以下に記述する通りの方法で行った。まず、粒径が3〜5マイクロメートルのニッケル微粉末を8Wt%ポリビニル水溶液に20vol%の分量となるように投入した。その後、発泡剤となる5vol%の分量のペンタンを投入し、ニッケルを水溶液中に分散させスラリーを作製した。その際の分散剤には中性洗剤を用いた。得られたスラリーを50×50×20mmのプラスチック製の型枠に流し込み、保冷庫に24時間保持することによりスラリーはゲル化する。次にゲル化したスラリーを55℃の恒温槽に挿入して発泡処理を行い、発泡金属前駆体を作製する。最終的に発泡金属前駆体をアルミナの容器に入れ、真空炉において10Paの真空中で1000℃で30分焼結処理することによりニッケル多孔金属が得られた。得られたニッケル多孔体を10mm角の立方体に成型して密度を測定したところ、0.9g/cm3であり、ニッケルの理論密度である8.9g/cm3と比較して理論密度比で10%まで多孔化できていることが分った。続いてニッケル多孔金属を図7に示すように角度θが30°となるようにワイヤソーを用いて成型した。成型体のサイズは幅30mm、高さ2mm、厚み2mmからなるものであった。同様の行程を経て複数個からなるニッケル多孔金属を得た。これらのニッケル多孔体及び同形状に加工した理論密度よりなるBi0.5Sb1.5Te3を交互に積層させ30×30×2mmの平板状の熱発電デバイスを得た。多孔金属及び熱電材料の接合は接合面にBi−Sn系の半田ペーストを塗布、150℃で過熱することによって行った。
Example 1
The production method for Example 1-1 is described in detail below. The thermoelectric power generation device of the present invention was manufactured using nickel which was made porous as a porous metal and Bi 0.5 Sb 1.5 Te 3 as a thermoelectric material. Nickel porosity was performed by the method described below. First, nickel fine powder having a particle size of 3 to 5 micrometers was charged into an 8 Wt% polyvinyl aqueous solution so as to have an amount of 20 vol%. Thereafter, 5 vol% of pentane serving as a blowing agent was added, and nickel was dispersed in an aqueous solution to prepare a slurry. A neutral detergent was used as a dispersant at that time. The resulting slurry is poured into a 50 × 50 × 20 mm plastic mold and kept in a cool box for 24 hours to gel the slurry. Next, the gelled slurry is inserted into a constant temperature bath at 55 ° C. and subjected to foaming treatment to produce a foam metal precursor. Finally, the foam metal precursor was placed in an alumina container and sintered in a vacuum furnace at 1000 ° C. for 30 minutes in a vacuum of 10 Pa to obtain a nickel porous metal. The obtained nickel porous body was molded into a 10 mm square cube and the density was measured. The density was 0.9 g / cm 3, which is a theoretical density ratio compared to 8.9 g / cm 3 , which is the theoretical density of nickel. It was found that the porosity was increased to 10%. Subsequently, the nickel porous metal was molded using a wire saw so that the angle θ was 30 ° as shown in FIG. The size of the molded body was 30 mm wide, 2 mm high, and 2 mm thick. A plurality of nickel porous metals were obtained through the same process. Bi 0.5 Sb 1.5 Te 3 composed of these nickel porous bodies and the theoretical density processed into the same shape was alternately laminated to obtain a plate-like thermoelectric power generation device of 30 × 30 × 2 mm. Bonding of the porous metal and the thermoelectric material was performed by applying Bi-Sn solder paste to the bonding surface and heating at 150 ° C.

多孔体を作る際の投入するニッケル量を変化させ、数種類の異なる理論密度比(20%、30%、50%)からなるニッケル多孔金属を作製した。それぞれの密度における多孔金属を用いて、実施例1−1と同様の手法で得られた熱発電デバイスをそれぞれ実施例1−2、1−3、1−4とする。   A nickel porous metal having several different theoretical density ratios (20%, 30%, 50%) was produced by changing the amount of nickel to be charged when making the porous body. Thermoelectric power generation devices obtained by the same method as in Example 1-1 using porous metals at the respective densities are referred to as Examples 1-2, 1-3, and 1-4, respectively.

次に比較例1−5の作成方法について詳述する。比較例1−5はほぼ理論密度からなるニッケルと熱電材料となるBi0.5Sb1.5Te3を用いて作製した。前記実施例1−1と同様のサイズ及び手法でそれぞれニッケル及びBi0.5Sb1.5Te3を成型・接合した。 Next, the production method of Comparative Example 1-5 will be described in detail. Comparative Example 1-5 was manufactured using nickel having a substantially theoretical density and Bi 0.5 Sb 1.5 Te 3 serving as a thermoelectric material. Nickel and Bi 0.5 Sb 1.5 Te 3 were respectively molded and joined in the same size and method as in Example 1-1.

上述の手順で得られた熱発電デバイスの両端部にインジウムを用いて2本の銅線を接続し、厚さ1 μmの窒化アルミでコーティングした銅製のヒートシンクを2個用いてそれぞれ本実施例1−1を挟み込んでアピエゾングリースによって固定し、図4に示すような発電ユニットを作製した。銅製のヒートシンクの内部には銅パイプが埋め込まれている。このパイプに冷水を流すことによりヒートシンクを冷却することができ、またパイプに温水を流すことによってヒートシンクを加熱することができる。比較例1−2においても同様の発電デバイスを作成した。銅製ヒートシンクの一方に15 ℃の冷水を流し他方に80 ℃の温水を流すことによって、熱発電デバイスに温度差をつけた。その際の発電量を表1に示す。比較例1−5においては0.04W/gの発電量であったのに対して、それぞれの実施例においては同様の構成において比較例1−5と比較して最大約3倍の電力を取り出すことが出来た。また本実施例では発電量が金属の多孔化に大きく依存し、最適な多孔度を持つことが明らかになった。この結果は(非特許文献1)における結果、即ち材料を多孔化すればするほど発電量が大きくなるという結果とは明らかに異なることが解った。   In this embodiment, two copper wires are connected to both ends of the thermoelectric power device obtained by the above procedure using indium, and two copper heat sinks coated with aluminum nitride having a thickness of 1 μm are used. -1 was sandwiched and fixed with Apiezon grease to produce a power generation unit as shown in FIG. A copper pipe is embedded inside the copper heat sink. The heat sink can be cooled by flowing cold water through the pipe, and the heat sink can be heated by flowing hot water through the pipe. In Comparative Example 1-2, a similar power generation device was created. A temperature difference was given to the thermoelectric power generation device by flowing 15 ° C. cold water through one of the copper heat sinks and 80 ° C. hot water through the other. Table 1 shows the power generation at that time. In Comparative Example 1-5, the power generation amount was 0.04 W / g, whereas in each Example, a maximum of about three times as much power as that of Comparative Example 1-5 was extracted in the same configuration. I was able to do it. Also, in this example, it was revealed that the amount of power generation greatly depends on the porosity of the metal and has an optimal porosity. It was found that this result is clearly different from the result in (Non-patent Document 1), that is, the result that the power generation amount increases as the material becomes more porous.

Figure 2013062275
Figure 2013062275

(実施例2)
本実施例では熱電材料と多孔金属の積層角度による発電性能の依存性について述べる。
(Example 2)
In this example, the dependency of the power generation performance on the lamination angle of the thermoelectric material and the porous metal will be described.

実施例1と同様の手法を用いて理論密度比が10、20、30、50%からなるニッケル多孔金属を作製した。角度による発電性能の依存性を確認するために、それぞれの理論密度比のニッケル多孔金属を図3に示す角度θが20°、30°、45°となるようにワイヤソーを用いて切断・成型した。成型体のサイズは幅20mm、高さ2mm、厚み2mmからなるものであった。同様の行程を経てそれぞれの角度及び理論密度比のニッケル多孔体を複数個作製した。次に交互積層させる熱電材料Bi0.5Sb1.5Te3を同様のサイズに成型・接合により30×30×2mmの平板状の熱発電デバイスを得た。多孔金属及び熱電材料の接合は接合面にBi−Sn系の半田ペーストを塗布、150℃で過熱することによって行った。それぞれの理論密度比10、20、30、50%からなるニッケル多孔金属を用いた熱発電デバイスを実施例2−1、2−2、2−3、2−4とする。 Using the same method as in Example 1, nickel porous metals having a theoretical density ratio of 10, 20, 30, and 50% were produced. In order to confirm the dependence of the power generation performance on the angle, nickel porous metals having respective theoretical density ratios were cut and molded using a wire saw so that the angles θ shown in FIG. 3 were 20 °, 30 °, and 45 °. . The size of the molded body was 20 mm wide, 2 mm high, and 2 mm thick. Through a similar process, a plurality of nickel porous bodies having respective angles and theoretical density ratios were produced. Next, thermoelectric material Bi 0.5 Sb 1.5 Te 3 to be alternately laminated was formed into a similar size, and a plate-like thermoelectric power generation device of 30 × 30 × 2 mm was obtained. Bonding of the porous metal and the thermoelectric material was performed by applying Bi-Sn solder paste to the bonding surface and heating at 150 ° C. Thermoelectric power generation devices using nickel porous metals having respective theoretical density ratios of 10, 20, 30, and 50% are referred to as Examples 2-1, 2-2, 2-3, and 2-4.

次に比較例2−4の作成方法について詳述する。比較例2−5はほぼ理論密度からなるニッケルと熱電材料となるBi0.5Sb1.5Te3を用いて作製した。実施例2と同様に図3に示す角度θが20°、30°、45°となるようにニッケルとBi0.5Sb1.5Te3を切断・成型した。また接合についても同様の手法で接合した。 Next, a method for producing Comparative Example 2-4 will be described in detail. Comparative Example 2-5 was manufactured using nickel having a substantially theoretical density and Bi 0.5 Sb 1.5 Te 3 serving as a thermoelectric material. Similarly to Example 2, nickel and Bi 0.5 Sb 1.5 Te 3 were cut and molded so that the angle θ shown in FIG. 3 was 20 °, 30 °, and 45 °. In addition, the same method was used for bonding.

発電性能の評価についても実施例1と同様の方法で行った。窒化アルミでコーティングした銅製のヒートシンクを2個用いてそれぞれ本実施例及び比較例の熱発電デバイスを挟み込んでアピエゾングリースによって固定し、発電ユニットを作製した。銅製ヒートシンクの一方に15 ℃の冷水を流し他方に80 ℃の温水を流すことによって、熱発電デバイスに温度差をつけた。その際の発電量を表2に示す。全ての角度において実施例の発電量は比較例より増大する結果が得られた。   The power generation performance was evaluated in the same manner as in Example 1. Using two copper heat sinks coated with aluminum nitride, the thermoelectric power generation devices of the present example and the comparative example were sandwiched and fixed with Apiezon grease to produce a power generation unit. A temperature difference was given to the thermoelectric power generation device by flowing 15 ° C. cold water through one of the copper heat sinks and 80 ° C. hot water through the other. Table 2 shows the power generation at that time. The results showed that the power generation amount of the example was larger than that of the comparative example at all angles.

Figure 2013062275
Figure 2013062275

(実施例3)
本実施例では熱電材料と多孔金属の厚みの比による発電性能の依存性について述べる。
(Example 3)
In this example, the dependency of the power generation performance on the ratio of the thickness of the thermoelectric material to the porous metal will be described.

実施例1と同様の手法を用いて理論密度比が10、20、30、50%からなるニッケル多孔金属を作製し、多孔金属と熱電材料の厚みの比による発電性能の依存性を確認した。それぞれの理論密度比のニッケル多孔金属を図3に示す角度θが30°となるようにワイヤソーを用いて切断・成型し、成型体のサイズを幅30mm、高さ2mmとし、異なる厚み1、2、3mmを持つものとした。同様の行程を経てそれぞれの厚み及び理論密度比のニッケル多孔体を複数個作製し、次に交互積層させる熱電材料Bi0.5Sb1.5Te3においても同様のサイズ30mm、高さ2mm、厚み(t)が1、2、3mmとなるように成型した。厚みtの比tBiSbTe/tNiが3、1、0.33となるようにそれぞれの厚みの成型体を組み合わせ、接合により30×30×5mmの平板状の熱発電デバイスを得た。多孔金属及び熱電材料の接合は前記実施例と同様にして行った。それぞれの理論密度比における熱発電デバイスを実施例3−1、3−2、3−3、3−4とする。 A nickel porous metal having a theoretical density ratio of 10, 20, 30, and 50% was produced using the same method as in Example 1, and the dependency of the power generation performance on the ratio of the thickness of the porous metal to the thermoelectric material was confirmed. The nickel porous metal of each theoretical density ratio is cut and molded using a wire saw so that the angle θ shown in FIG. 3 is 30 °, the size of the molded body is 30 mm in width, 2 mm in height, and different thicknesses 1, 2 3 mm. A plurality of porous nickel bodies having respective thicknesses and theoretical density ratios are produced through the same process, and the same size 30 mm, height 2 mm, thickness (t) in the thermoelectric material Bi 0.5 Sb 1.5 Te 3 to be alternately laminated. Was formed to be 1, 2, 3 mm. Thickness ratios t BiSbTe / t Ni were combined such that the thicknesses were 3, 1, and 0.33, and the respective thermoformed devices of 30 × 30 × 5 mm were obtained by bonding. Bonding of the porous metal and the thermoelectric material was performed in the same manner as in the above example. The thermoelectric power generation devices at the respective theoretical density ratios are referred to as Examples 3-1, 3-2, 3-3, and 3-4.

次に比較例3−5の作成方法について詳述する。比較例3−5はほぼ理論密度からなるニッケルとBi0.5Sb1.5Te3を用いて作製した。実施例3と同様に厚みの比tBiSbTe/tNiが3、1,0.33となるようにそれぞれニッケルとBi0.5Sb1.5Te3からなる成型体を組み合わせ、接合により30×30×2mmの平板状の熱発電デバイスを得た。また接合についても同様の手法で接合した。その際の発電量を表3に示す。全ての厚みの比において実施例の発電量は比較例より増大する結果が得られた。 Next, a method for producing Comparative Example 3-5 will be described in detail. Comparative Example 3-5 was prepared using nickel and Bi 0.5 Sb 1.5 Te 3 having a substantially theoretical density. In the same manner as in Example 3, a molded body made of nickel and Bi 0.5 Sb 1.5 Te 3 was combined so that the thickness ratio t BiSbTe / t Ni would be 3, 1 , 0.33, respectively. A flat thermoelectric device was obtained. In addition, the same method was used for bonding. Table 3 shows the power generation at that time. In all thickness ratios, the power generation amount of the example was larger than that of the comparative example.

Figure 2013062275
Figure 2013062275

(実施例4)
本実施例ではパイプ形状で構成される本発明の熱発電デバイスについて述べる。
Example 4
In this embodiment, a thermoelectric power generation device of the present invention configured in a pipe shape will be described.

パイプ型熱発電デバイスを構成するに当たり、本発明者らは図6に示すカップ形状の多孔金属および熱電材料を作製した。多孔金属としては多孔化したニッケルを、熱電材料としてBi0.5Sb1.5Te3を用いた。カップ状の多孔金属はスラリーから発泡させる前記実施例1に詳述する方法・条件で得た。カップ状への成型についてはカップ状の型枠を用いて行った。またカップ状のBi0.5Sb1.5Te3は鋳造法によって作製した。作成したカップの形状・サイズは異種材料間でほぼ同様のものであり、内径10mm、外径14mm、高さ5.4mmとした。同様の行程を経てそれぞれ24個のカップを作成した。またカップ状の部品を積層した際の積層面は、積層方向に対して30°の角度となるようにした。多孔金属及び熱電材料の接合は接合面にBi−Sn系の半田ペーストを塗布、150℃で過熱することによって行った。以上の行程から内径10mm、外径14mm、長さ100mm、傾斜角度30°のパイプ型熱発電素子を作成した。以上のパイプ型熱発電素子を実施例4−1とする。さらに多孔体を作成する際の投入するニッケル量を変化させ、数種類の異なる理論密度比(20%、30%、50%)からなるニッケル多孔金属を作製した。それぞれの密度における多孔金属を用いて、実施例4−1と同様の手法で得られた熱発電デバイスをそれぞれ実施例4−2、4−3、4−4とする。 In constructing a pipe-type thermoelectric power generation device, the present inventors produced a cup-shaped porous metal and a thermoelectric material shown in FIG. Porous nickel was used as the porous metal, and Bi 0.5 Sb 1.5 Te 3 was used as the thermoelectric material. The cup-shaped porous metal was obtained by the method and conditions described in detail in Example 1 for foaming from the slurry. The cup-shaped molding was performed using a cup-shaped mold. Cup-shaped Bi 0.5 Sb 1.5 Te 3 was produced by a casting method. The shape and size of the produced cup were almost the same among different materials, and the inner diameter was 10 mm, the outer diameter was 14 mm, and the height was 5.4 mm. 24 cups were prepared through the same process. Further, the lamination surface when the cup-shaped components were laminated was set to an angle of 30 ° with respect to the lamination direction. Bonding of the porous metal and the thermoelectric material was performed by applying Bi-Sn solder paste to the bonding surface and heating at 150 ° C. From the above process, a pipe-type thermoelectric generator having an inner diameter of 10 mm, an outer diameter of 14 mm, a length of 100 mm, and an inclination angle of 30 ° was produced. The above pipe type thermoelectric generator is referred to as Example 4-1. Furthermore, the amount of nickel to be charged when creating the porous body was changed to produce nickel porous metal having several different theoretical density ratios (20%, 30%, 50%). The thermoelectric power generation devices obtained by the same method as in Example 4-1 using the porous metal at each density are referred to as Examples 4-2, 4-3, and 4-4, respectively.

比較例として次に比較例4−5の作成方法について詳述する。比較例4−5はほぼ理論密度からなるニッケルと熱電材料となるBi0.5Sb1.5Te3を用いて作製した。カップ形状のニッケルとBi0.5Sb1.5Te3は鋳造法を用いて作成し、それぞれの接合については上記実施例と同様の方法で行った。 As a comparative example, a method for producing Comparative Example 4-5 will be described in detail below. Comparative Example 4-5 was fabricated using nickel having a substantially theoretical density and Bi 0.5 Sb 1.5 Te 3 serving as a thermoelectric material. Cup-shaped nickel and Bi 0.5 Sb 1.5 Te 3 were prepared using a casting method, and the respective joints were performed in the same manner as in the above examples.

上述の手順で得られたパイプ型熱発電デバイスのパイプ内外表面にコーキング剤を塗布し、止水処理した後、パイプの両端部にインジウムを用いて2本の銅線を接続した。次にパイプ型熱発電デバイスの両端にシリコーンチューブを接続し、80℃の温水をパイプ内部に循環させ、パイプ型熱発電デバイス全体を水温20℃に保持した水槽中に沈め、それぞれの実施例及び比較例について発電性能を測定した。その際の発電量を表4に示す。比較例4−5においては0.017W/gの発電量であったのに対して、それぞれの実施例においては同様の構成において比較例1−5と比較して発電量が増大し、最大4.7倍の電力を取り出すことが出来た。   After applying a caulking agent to the inner and outer surfaces of the pipe of the pipe-type thermoelectric power generation device obtained by the above-described procedure and performing a water stop treatment, two copper wires were connected to both ends of the pipe using indium. Next, a silicone tube is connected to both ends of the pipe-type thermoelectric power generation device, 80 ° C hot water is circulated inside the pipe, and the entire pipe-type thermoelectric power generation device is submerged in a water tank maintained at a water temperature of 20 ° C. The power generation performance of the comparative example was measured. Table 4 shows the power generation at that time. In Comparative Example 4-5, the power generation amount was 0.017 W / g, whereas in each Example, the power generation amount increased in comparison with Comparative Example 1-5 in the same configuration, and the maximum 4 .7 times more power could be taken out.

Figure 2013062275
Figure 2013062275

(実施例5)
本実施例ではパイプ形状で構成される本発明の熱発電デバイスにおいて熱電材料と多孔金属の積層角度による発電性能の依存性について述べる。
(Example 5)
In this example, the dependence of the power generation performance on the lamination angle of the thermoelectric material and the porous metal in the thermoelectric power generation device of the present invention configured in a pipe shape will be described.

実施例1と同様の手法を用いて理論密度比の異なるニッケル多孔金属を作製した。角度による発電性能の依存性を確認するために、それぞれの理論密度比のニッケル多孔金属を図6に示す角度θが20°、30°、45°となるようにスラリーをゲル化させる際の型枠の角度を調整した。同様の行程を経てそれぞれの角度及び理論密度比のニッケル多孔体をそれぞれ24個作製した。次に交互積層させる熱電材料Bi0.5Sb1.5Te3を同様のサイズ及び角度となるように鋳造法で作成し、実施例4同様、接合を行い、それぞれの積層角度において内径10mm、外径14mm、長さ100mmからなるパイプ型熱発電デバイスを作成した。それぞれの理論密度比における熱発電デバイスを実施例5−1、5−2、5−3、5−4とする。 Using the same method as in Example 1, nickel porous metals having different theoretical density ratios were produced. In order to confirm the dependence of the power generation performance on the angle, the molds used for gelling the slurry so that the angle θ shown in FIG. 6 is 20 °, 30 °, and 45 ° for the nickel porous metal having the respective theoretical density ratios. The frame angle was adjusted. Through the same process, 24 nickel porous bodies with respective angles and theoretical density ratios were produced. Next, the thermoelectric material Bi 0.5 Sb 1.5 Te 3 to be alternately laminated is prepared by a casting method so as to have the same size and angle, and joined in the same manner as in Example 4, and at each lamination angle, an inner diameter of 10 mm, an outer diameter of 14 mm, A pipe-type thermoelectric power generation device having a length of 100 mm was prepared. The thermoelectric power generation devices at the respective theoretical density ratios are referred to as Examples 5-1, 5-2, 5-3, and 5-4.

次に比較例5−4の作成方法について詳述する。ほぼ理論密度からなるニッケルと熱電材料となるBi0.5Sb1.5Te3を用いて作製した。実施例2と同様に図6に示す角度θが20°、30°、45°となるようにニッケルとBi0.5Sb1.5Te3を鋳造法により、成型した。また接合についても同様の手法で接合した。 Next, a method for producing Comparative Example 5-4 will be described in detail. It was fabricated using nickel having a substantially theoretical density and Bi 0.5 Sb 1.5 Te 3 serving as a thermoelectric material. Similarly to Example 2, nickel and Bi 0.5 Sb 1.5 Te 3 were molded by a casting method so that the angle θ shown in FIG. 6 was 20 °, 30 °, and 45 °. In addition, the same method was used for bonding.

上述の手順で得られたパイプ型熱発電デバイスにおいて実施例4と同様の構成及び条件においてそれぞれの実施例及び比較例について発電性能を測定した。その際の発電量を表5に示す。全ての角度において比較例より大きな発電量がそれぞれの実施例で得られた。   In the pipe-type thermoelectric power generation device obtained by the above-described procedure, the power generation performance was measured for each example and comparative example under the same configuration and conditions as in Example 4. Table 5 shows the power generation at that time. The power generation amount larger than that of the comparative example was obtained in each example at all angles.

Figure 2013062275
Figure 2013062275

(実施例6)
本実施例ではパイプ形状で構成される本発明の熱発電デバイスにおいて熱電材料と多孔金属の厚みの比による発電性能の依存性について述べる
実施例4及び実施例5と同様の手法を用いて理論密度比が10、20、30、50%からなるカップ形状のニッケル多孔金属を作製し、多孔金属と熱電材料の厚みの比による発電性能の依存性を確認した。それぞれの理論密度比のニッケル多孔金属を図6に示す角度θが30°となるようにワイヤソーを用いて切断・成型した。成型体のサイズを内径10mm、外径14mmとし、高さがそれぞれ4.4、5.4、6.4mmとなるようにカップ形状の厚みを調整した。同様の行程を経てそれぞれの厚み及び理論密度比のニッケル多孔体を複数個作製し、次に交互積層させる熱電材料Bi0.5Sb1.5Te3においても同様のサイズ30mm、高さ2mm、厚み(t)が1、2、3mmとなるように成型した。厚みの比tBiSbTe/tNiが3、1、0.33となるようにそれぞれの厚みの成型体を組み合わせ、内径10mm、外径14mm、長さ100mmからなるパイプ型熱発電デバイスを作成した。多孔金属及び熱電材料の接合は前記実施例と同様にして行った。それぞれの理論密度比における熱発電デバイスを実施例6−1、6−2、6−3、6−4とする。
(Example 6)
In this example, the dependence of the power generation performance on the ratio of the thickness of the thermoelectric material to the porous metal in the thermoelectric power generation device of the present invention configured in a pipe shape will be described. The theoretical density is calculated using the same method as in Example 4 and Example 5. A cup-shaped nickel porous metal having a ratio of 10, 20, 30, and 50% was prepared, and the dependency of the power generation performance on the ratio of the thickness of the porous metal to the thermoelectric material was confirmed. Nickel porous metals having respective theoretical density ratios were cut and molded using a wire saw so that the angle θ shown in FIG. 6 was 30 °. The size of the molded body was 10 mm in inner diameter and 14 mm in outer diameter, and the cup-shaped thickness was adjusted so that the heights were 4.4, 5.4, and 6.4 mm, respectively. A plurality of porous nickel bodies having respective thicknesses and theoretical density ratios are produced through the same process, and the same size 30 mm, height 2 mm, thickness (t) in the thermoelectric material Bi 0.5 Sb 1.5 Te 3 to be alternately laminated. Was formed to be 1, 2, 3 mm. Thickness ratios t BiSbTe / t Ni were combined so that the thicknesses were 3, 1, and 0.33, and a pipe-type thermoelectric power generation device having an inner diameter of 10 mm, an outer diameter of 14 mm, and a length of 100 mm was produced. Bonding of the porous metal and the thermoelectric material was performed in the same manner as in the above example. The thermoelectric power generation devices at the respective theoretical density ratios are referred to as Examples 6-1, 6-2, 6-3, and 6-4.

次に比較例6−5の作成方法について詳述する。比較例6−5はほぼ理論密度からなるニッケルとBi0.5Sb1.5Te3を用いて作製した。実施例6と同様に厚みの比tBiSbTe/tNiが3、1,0.33となるようにそれぞれニッケルとBi0.5Sb1.5Te3からなる成型体を組み合わせ、接合により30×30×2mmの平板状の熱発電デバイスを得た。また接合についても同様の手法で接合した。その際の発電量を表6に示す。全ての厚みの比において実施例の発電量は比較例より増大する結果が得られた。 Next, a method for producing Comparative Example 6-5 will be described in detail. Comparative Example 6-5 was fabricated using nickel and Bi 0.5 Sb 1.5 Te 3 having a substantially theoretical density. In the same manner as in Example 6, a molded body made of nickel and Bi 0.5 Sb 1.5 Te 3 was combined so that the thickness ratio t BiSbTe / t Ni would be 3, 1 , 0.33, respectively, and 30 × 30 × 2 mm by joining. A flat thermoelectric device was obtained. In addition, the same method was used for bonding. Table 6 shows the power generation at that time. In all thickness ratios, the power generation amount of the example was larger than that of the comparative example.

Figure 2013062275
Figure 2013062275

本発明にかかる熱発電デバイスは、デバイス重量あたりの発電量が大きく改善されることによって車載用熱発電デバイス等に有用である。

上記の開示から導出される発明は以下の通りである。

1. 熱発電デバイスを用いて電気を発生させる方法であって、以下の工程を具備する:

(a) 以下を具備する前記熱発電デバイスを用意する工程、
第1電極(15)、
第2電極(16)、および
複数の多孔金属層(11)および複数の熱電材料層(12)が交互に積層された板状の積層体、ここで
断面視において、前記板状の積層体は前記第1電極(15)および前記第2電極(16)の間に挟まれており、かつ
1つの前記多孔金属層(11)および前記1つの多孔金属層(11)に隣接する熱電材料層(12)によって形成される積層面が、前記第1電極(15)および前記第2電極(16)が互いに対向する方向に対して傾斜しており、そして

(b)、前記板状の積層体の上面および下面の間に温度差を印加し、前記第1電極(15)および前記第2電極(16)の間に電圧差を発生させる工程。
The thermoelectric power generation device according to the present invention is useful for an in-vehicle thermoelectric power generation device or the like because the power generation amount per device weight is greatly improved.

The invention derived from the above disclosure is as follows.

1. A method for generating electricity using a thermoelectric device comprising the following steps:

(A) preparing the thermoelectric power generation device comprising:
First electrode (15),
A plate-like laminate in which a second electrode (16), and a plurality of porous metal layers (11) and a plurality of thermoelectric material layers (12) are alternately laminated, wherein in cross-sectional view, the plate-like laminate is A thermoelectric material layer (sandwiched between the first electrode (15) and the second electrode (16) and adjacent to the one porous metal layer (11) and the one porous metal layer (11) ( 12) is inclined with respect to the direction in which the first electrode (15) and the second electrode (16) face each other, and

(B) A step of generating a voltage difference between the first electrode (15) and the second electrode (16) by applying a temperature difference between the upper surface and the lower surface of the plate-shaped laminate.

Figure 2013062275
Figure 2013062275

11 多孔金属
12 熱電材料
15 第一電極
16 第ニ電極
21 下部の熱浴
22 上部の熱浴
23 積層方向
30 成型体
31 幅
32 厚み
33 角度
34 高さ
41 パイプ状の積層体
42 貫通孔
50 止水層
51 内側の流体
52 外側の流体
53 貫通孔の軸方向
61 内径
62 外径
63 角度
64 高さ
DESCRIPTION OF SYMBOLS 11 Porous metal 12 Thermoelectric material 15 1st electrode 16 2nd electrode 21 Lower heat bath 22 Upper heat bath 23 Lamination direction 30 Molding body 31 Width 32 Thickness 33 Angle 34 Height 41 Pipe-shaped laminated body 42 Through-hole 50 Stop Water layer 51 Inner fluid 52 Outer fluid 53 Axial direction of through hole 61 Inner diameter 62 Outer diameter 63 Angle 64 Height

Claims (3)

第1電極と、
前記第1電極に対向する第2電極と、
前記第1電極および前記第2電極との間に挟まれ、前記第1電極および前記第2電極のいずれにも電気的に接続された積層体とを具備し、
前記積層体は多孔金属と熱電材料が交互に積層されてなり、前記金属と前記熱電材料の積層面は、前記積層体の積層方向に対して傾斜している、
熱発電デバイス。
A first electrode;
A second electrode facing the first electrode;
A laminated body sandwiched between the first electrode and the second electrode and electrically connected to both the first electrode and the second electrode;
The laminate is formed by alternately laminating a porous metal and a thermoelectric material, and a laminate surface of the metal and the thermoelectric material is inclined with respect to a lamination direction of the laminate.
Thermoelectric power generation device.
前記積層体の形状が平板状よりなることを特徴とする前記請求項1記載の熱発電デバイス。   The thermoelectric power generation device according to claim 1, wherein the laminated body has a flat plate shape. 前記積層体の形状が円筒状よりなることを特徴とする前記請求項1記載の熱発電デバイス。   The thermoelectric power generation device according to claim 1, wherein the laminated body has a cylindrical shape.
JP2011197967A 2011-09-12 2011-09-12 Thermal power generation device Withdrawn JP2013062275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011197967A JP2013062275A (en) 2011-09-12 2011-09-12 Thermal power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011197967A JP2013062275A (en) 2011-09-12 2011-09-12 Thermal power generation device

Publications (1)

Publication Number Publication Date
JP2013062275A true JP2013062275A (en) 2013-04-04

Family

ID=48186726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011197967A Withdrawn JP2013062275A (en) 2011-09-12 2011-09-12 Thermal power generation device

Country Status (1)

Country Link
JP (1) JP2013062275A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9306144B2 (en) 2013-03-28 2016-04-05 Panasonic Corporation Thermoelectric generator and production method for thermoelectric generator
US9368708B2 (en) 2013-03-12 2016-06-14 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric generation unit and thermoelectric generation system
US9755132B2 (en) 2013-03-12 2017-09-05 Panasonic Corporation Thermoelectric generation unit and thermoelectric generation system
CN109109725A (en) * 2018-09-04 2019-01-01 邓海燕 A kind of caravan with thermo-electric generation function
US10170677B2 (en) 2013-03-12 2019-01-01 Panasonic Corporation Thermoelectric generator system
JP2019500757A (en) * 2015-10-27 2019-01-10 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible thermoelectric element and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368708B2 (en) 2013-03-12 2016-06-14 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric generation unit and thermoelectric generation system
US9755132B2 (en) 2013-03-12 2017-09-05 Panasonic Corporation Thermoelectric generation unit and thermoelectric generation system
US10170677B2 (en) 2013-03-12 2019-01-01 Panasonic Corporation Thermoelectric generator system
US10873018B2 (en) 2013-03-12 2020-12-22 Panasonic Corporation Thermoelectric generator system
US9306144B2 (en) 2013-03-28 2016-04-05 Panasonic Corporation Thermoelectric generator and production method for thermoelectric generator
JP2019500757A (en) * 2015-10-27 2019-01-10 コリア アドバンスト インスティチュート オブ サイエンス アンド テクノロジー Flexible thermoelectric element and manufacturing method thereof
CN109109725A (en) * 2018-09-04 2019-01-01 邓海燕 A kind of caravan with thermo-electric generation function

Similar Documents

Publication Publication Date Title
JP6794732B2 (en) Thermoelectric conversion module and thermoelectric conversion device
US6563039B2 (en) Thermoelectric unicouple used for power generation
JP2013062275A (en) Thermal power generation device
JP5212937B2 (en) Thermoelectric conversion element, thermoelectric module including the thermoelectric conversion element, and method for manufacturing thermoelectric conversion element
JP2017085179A (en) Method for manufacturing thermoelectric converter, and thermoelectric converter
JP5427462B2 (en) Thermoelectric conversion module
JP4663469B2 (en) Heat exchanger
CN103403899A (en) Thermoelectric device and thermoelectric module having the same, and method of manufacturing the same
JP2019522349A (en) Thermoelectric leg and thermoelectric element including the same
JP4524382B2 (en) Thermoelectric power generation elements that are subject to temperature differences
CN106159077B (en) Bismuth telluride-based thermoelectric power generation element and preparation method thereof
JP2012069626A (en) Thermal power generation device
CN109065700B (en) Preparation method of annular thermoelectric power generation device
WO2017057259A1 (en) Thermoelectric conversion module and thermoelectric conversion device
US20180287517A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
TW201834276A (en) Thermoelectric conversion device having insulating diamond-like film, method for making the same and thermoelectric conversion module
JP2017143094A (en) Heat sink, thermoelectric conversion module, method of manufacturing heat sink
KR102281066B1 (en) Thermoelectric device moudule and device using the same
US11380833B1 (en) Thermoelectric device assembly with fusion layer structure suitable for thermoelectric Seebeck and Peltier devices
JP2011134745A (en) Thermoelectric powder, thermoelectric conversion element employing the same, and thermoelectric conversion module
US9306144B2 (en) Thermoelectric generator and production method for thermoelectric generator
JP6708339B2 (en) Thermoelectric conversion element, thermoelectric conversion module
KR101375620B1 (en) Thermoelectric device having high interface matching and manufacturing method of the same
KR102355281B1 (en) Thermo electric element
KR102441699B1 (en) Thermoelectric element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202