JP5200884B2 - Thermoelectric power generation device - Google Patents

Thermoelectric power generation device Download PDF

Info

Publication number
JP5200884B2
JP5200884B2 JP2008297546A JP2008297546A JP5200884B2 JP 5200884 B2 JP5200884 B2 JP 5200884B2 JP 2008297546 A JP2008297546 A JP 2008297546A JP 2008297546 A JP2008297546 A JP 2008297546A JP 5200884 B2 JP5200884 B2 JP 5200884B2
Authority
JP
Japan
Prior art keywords
metal
power generation
layer
metal layer
electrical insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008297546A
Other languages
Japanese (ja)
Other versions
JP2010123827A (en
Inventor
章裕 酒井
勉 菅野
宏平 高橋
聡史 四橋
秀明 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008297546A priority Critical patent/JP5200884B2/en
Publication of JP2010123827A publication Critical patent/JP2010123827A/en
Application granted granted Critical
Publication of JP5200884B2 publication Critical patent/JP5200884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hybrid Cells (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は熱エネルギーから電気エネルギーへの変換を行う熱発電デバイスに関する。   The present invention relates to a thermoelectric power generation device that converts thermal energy into electrical energy.

熱発電は、物質の両端に印加された温度差に比例して起電力が生じるゼーベック効果を利用し、熱エネルギーを直接電気エネルギーに変換する技術である。この技術は、僻地用電源、宇宙用電源、軍事用電源等で実用化されている。   Thermoelectric power generation is a technology that directly converts thermal energy into electrical energy using the Seebeck effect in which an electromotive force is generated in proportion to the temperature difference applied to both ends of a substance. This technology has been put to practical use in remote power supplies, space power supplies, military power supplies, and the like.

従来の熱発電デバイスは、キャリアの符号が異なるp型半導体とn型半導体を組み合わせ、熱的に並列に、かつ電気的に直列につないだ、いわゆるπ型構造と呼ばれる構成となっている。   A conventional thermoelectric power generation device has a so-called π-type structure in which a p-type semiconductor and an n-type semiconductor having different carrier signs are combined and thermally connected in parallel and electrically in series.

熱電変換デバイスに用いられる熱電変換材料の性能は、性能指数Zまたは絶対温度をかけて無次元化された性能指数ZTで評価される事が多い。ZTは、物質のS=ゼーベック係数、ρ=電気抵抗率、κ=熱伝導率、を用いて、ZT=ST/ρκで記述される量である。また一方で、ゼーベック係数Sと電気抵抗率ρだけを考慮したS/ρはパワーファクターと呼ばれ、温度差を一定とした場合の熱電材料の発電性能の良否を決定する基準となる。 The performance of a thermoelectric conversion material used for a thermoelectric conversion device is often evaluated by a figure of merit ZT or a figure of merit ZT made dimensionless by applying an absolute temperature. ZT is a quantity described as ZT = S 2 T / ρκ, using S = Seebeck coefficient, ρ = electric resistivity, κ = thermal conductivity of the substance. On the other hand, S 2 / ρ considering only the Seebeck coefficient S and the electrical resistivity ρ is called a power factor, and is a standard for determining the quality of the power generation performance of the thermoelectric material when the temperature difference is constant.

現在、熱電変換材料として実用化されているBi2−aSbTe(0≦a≦2)などのBiTe系材料は、ZTが1程度、パワーファクターが40〜50μW/cmKであり、現状では比較的高い特性を持つ。しかし、それでも通常のπ型のデバイス構成にした場合には発電性能はあまり高くなく、より多くの用途においては実用化されていない。 Bi 2 Te 3 materials such as Bi 2-a Sb a Te 3 (0 ≦ a ≦ 2) that are currently in practical use as thermoelectric conversion materials have a ZT of about 1 and a power factor of 40 to 50 μW / cmK 2. In the present situation, it has relatively high characteristics. However, the power generation performance is not so high when a normal π-type device configuration is used, and it has not been put to practical use in more applications.

一方、π型以外のデバイス構成として、自然に、又は、人工的に作られた積層構造における熱電気特性の異方性を利用したものが古くから提案されている(非特許文献1を参照)。   On the other hand, as a device configuration other than the π-type, a device using anisotropy of thermoelectric properties in a naturally or artificially laminated structure has been proposed for a long time (see Non-Patent Document 1). .

しかし、非特許文献1によれば、このようなデバイスではZTの改善が見られないことから、熱発電用途ではなく主に赤外線センサなど測定用途への応用が想定された開発が行われている。   However, according to Non-Patent Document 1, since improvement of ZT is not seen in such a device, development that is mainly applied to measurement applications such as infrared sensors is being performed instead of thermoelectric generation applications. .

そういった中、本発明者らは金属と熱電材料であるBiからなる異種材料の積層構造における熱電気特性の異方性を利用したデバイスにおいて、積層体における各材料の厚さの比と積層方向の傾斜角度を適切に選択することによって、パワーファクターがBi単独、あるいは優れた熱電材料とされるBiTe系材料のパワーファクターを大きく上回ることを見いだし、これを利用した熱発電デバイスを発明した(特許文献1)。
特許第4078392号公報 THERMOELECTRICS HANDBOOK,Chapter 45,CRC Press(2006)
In such a situation, the present inventors, in a device utilizing the thermoelectric property anisotropy in a laminated structure of different materials made of Bi, which is a metal and a thermoelectric material, have a thickness ratio of each material in the laminated body and a lamination direction. By appropriately selecting the inclination angle, it was found that the power factor greatly exceeded the power factor of Bi 2 Te 3 system material, which is considered to be Bi or Te2, and a thermoelectric power generation device using this was invented. (Patent Document 1).
Japanese Patent No. 4078392 THERMOELECTRICS HANDBOOK, Chapter 45, CRC Press (2006)

前述の通り、従来のπ型構造をとる熱発電デバイスでは、多くの用途において充分なだけの発電性能を得ることができない。   As described above, a conventional thermoelectric power generation device having a π-type structure cannot obtain sufficient power generation performance in many applications.

本発明は異種材料の積層構造における熱電気特性の異方性を利用した、高い発電特性を有する新しい熱発電デバイスを提供することを目的とする。   An object of the present invention is to provide a new thermoelectric power generation device having high power generation characteristics utilizing anisotropy of thermoelectric characteristics in a laminated structure of different materials.

前記従来の課題を解決するために、本発明の熱発電デバイスは、互いに対向して配置された第1電極および第2電極と、前記第1および第2電極に挟まれ、前記第1および第2電極の双方に電気的に接続され、かつ、前記第1および第2電極が対向する方向に対して直交する積層方向に対して、金属と電気絶縁体とを有する第1金属層、Bi −aSbaTe 層(aは0≦a≦2)、金属と電気絶縁体とを有する第2金属層の順に積層された層で構成される積層体と、を備え、前記第1および第2金属層における前記電気絶縁体は、それぞれ、前記金属が前記Bi −aSbaTe 層と接する面と対向する面に接し、前記金属との接続面の角度が、前記第1および第2電極が対向する方向に対して角度θ傾斜する状態で、前記第1および第2電極が対向する方向に対して周期的、又は、周期的に近い配置され、かつ、互いに半周期、又は、半周期近くずれて配置され、前記第1金属層における前記電気絶縁体の前記積層方向の長さは、前記第1金属層の長さ以上、かつ、前記第1金属層、前記Bi −aSbaTe 層および前記第2金属層の合計の長さ未満であり、前記第2金属層における前記電気絶縁体の前記積層方向の長さは、前記第2金属層の長さ以上、かつ、前記第1金属層、前記Bi −aSbaTe 層および前記第2金属層の合計の長さ未満であるように構成される。 In order to solve the conventional problem, a thermoelectric power generation device of the present invention is sandwiched between a first electrode and a second electrode arranged opposite to each other, and the first and second electrodes. A first metal layer Bi 2 that is electrically connected to both of the two electrodes and has a metal and an electrical insulator with respect to the stacking direction perpendicular to the direction in which the first and second electrodes oppose each other; -ASbaTe 3 layers (a is 0.ltoreq.a.ltoreq.2), and a laminate composed of layers laminated in order of a second metal layer having a metal and an electrical insulator, and the first and second metals. The electrical insulator in each layer is in contact with a surface facing the surface where the metal is in contact with the Bi 2 -aSbaTe 3 layer, and an angle of a connection surface with the metal is opposed to the first and second electrodes. In the state where the angle θ is inclined with respect to the direction. And the second electrodes are arranged periodically or close to the opposite direction, and are arranged so as to be shifted from each other by a half cycle or near a half cycle, and the second electrode is disposed in the first metal layer. The length in the stacking direction is equal to or longer than the length of the first metal layer and less than the total length of the first metal layer, the Bi 2 -aSbaTe 3 layer, and the second metal layer, The length of the electrical insulator in the two metal layers in the stacking direction is equal to or greater than the length of the second metal layer, and the total of the first metal layer, the Bi 2 -aSbaTe 3 layer, and the second metal layer. Configured to be less than the length of.

本発明の熱発電デバイスによれば、第1および第2金属層を構成する金属と電気絶縁体の接続面と第1および第2電極の対向方向とがなす傾斜角度θ、第1および第2金属層における電気絶縁体を配置する周期と第1および第2金属層の厚みの比、前記電気絶縁体を配置する周期とBi2−aSbTe層の厚みの比、を適切に選択することで構成材料単独の性能を大きく超える高い発電特性が得られる。これにより従来の性能を超える熱発電が可能となり、実用的な熱発電デバイスが実現する。すなわち熱と電気とのエネルギー変換の応用を促進させるものであり、本発明の工業的価値は高い。 According to the thermoelectric power generation device of the present invention, the inclination angle θ formed by the metal constituting the first and second metal layers, the connecting surface of the electrical insulator, and the opposing direction of the first and second electrodes, the first and second Appropriate selection of the ratio between the period in which the electrical insulator is disposed in the metal layer and the thickness of the first and second metal layers, and the ratio between the period in which the electrical insulator is disposed and the thickness of the Bi 2-a Sb a Te 3 layer By doing so, it is possible to obtain high power generation characteristics that greatly exceed the performance of the constituent material alone. As a result, thermoelectric power generation exceeding the conventional performance becomes possible, and a practical thermoelectric power generation device is realized. That is, it promotes the application of energy conversion between heat and electricity, and the industrial value of the present invention is high.

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施の形態1)
図1から図3は、本発明の実施の形態1における熱発電デバイスの構成を示した図である。なお、図1は、熱発電デバイスの斜視図であり、図2は、熱発電デバイスの正面図であり、図3は、熱発電デバイスの平面図である。
(Embodiment 1)
1 to 3 are diagrams showing a configuration of a thermoelectric generator device according to Embodiment 1 of the present invention. 1 is a perspective view of the thermoelectric generator, FIG. 2 is a front view of the thermoelectric generator, and FIG. 3 is a plan view of the thermoelectric generator.

図1に示すように、対向するように配置された第1電極11と第2電極12によって積層体を挟むように熱発電デバイスが構成されている。積層体は第1金属層13、Bi2−aSbTe層15,第2金属層14の順に電気的に接続されており、積層体の積層方向Zは電極の対向方向Xに対して直交している。第1金属層13、第2金属層14はそれぞれ金属16と電気絶縁体17とが周期的に接続されており、Bi2−aSbTe層15はBi2−aSbTeと電気絶縁体17が一部接続されている。ここでaは0≦a≦2の範囲にある数値である。Bi2−aSbTe層15は作製方法により組成ずれを起こすことがあるが、表記組成比より20%以内のずれであれば性能を著しく損なうことはないので許容できる。 As shown in FIG. 1, the thermoelectric generator is configured such that the stacked body is sandwiched between the first electrode 11 and the second electrode 12 that are arranged to face each other. The stacked body is electrically connected in the order of the first metal layer 13, the Bi 2−a Sb a Te 3 layer 15, and the second metal layer 14, and the stacking direction Z of the stacked body is relative to the opposing direction X of the electrodes. Orthogonal. The metal 16 and the electrical insulator 17 are periodically connected to the first metal layer 13 and the second metal layer 14, respectively, and the Bi 2-a Sb a Te 3 layer 15 is formed from the Bi 2-a Sb a Te 3 and A part of the electrical insulator 17 is connected. Here, a is a numerical value in the range of 0 ≦ a ≦ 2. The Bi 2-a Sb a Te 3 layer 15 may cause a compositional deviation depending on the manufacturing method, but if the deviation is within 20% from the composition ratio, the performance is not significantly impaired, and thus it is acceptable.

図2の正面図に示したように各々の接続面の方向21は電極の対向方向Xに対して角度θだけ傾斜している。また電気絶縁体17の配置は、図3の平面図に示したように、同一の距離周期(図2のx)を設けて配置されている。それとともに、第1金属層における電気絶縁体17間の距離周期と、第2金属層における電気絶縁体17間の距離周期とは、互いに半周期ずれた構造である。   As shown in the front view of FIG. 2, the direction 21 of each connection surface is inclined by an angle θ with respect to the opposing direction X of the electrodes. Further, as shown in the plan view of FIG. 3, the electrical insulators 17 are arranged with the same distance period (x in FIG. 2). At the same time, the distance cycle between the electrical insulators 17 in the first metal layer and the distance cycle between the electrical insulators 17 in the second metal layer are shifted from each other by a half cycle.

積層体の積層方向(図1のZ)における電気絶縁体17の深さは金属層の厚さ以上であれば良く、図3のように片側の金属層とBi2−aSbTe層の厚さを合わせた長さに等しいことが好ましい。また、図4のように電気絶縁体がBi2−aSbTe層の一部だけに入り込む形になっていても良い。さらに、図5のように積層構造体全体が電気絶縁体によって完全に分断されない限りにおいて、電気絶縁体が他方の面の金属に一部到達していても良い。 The depth of the electrical insulator 17 in the stacking direction (Z in FIG. 1) of the stacked body only needs to be equal to or greater than the thickness of the metal layer, and the metal layer on one side and the Bi 2-a Sb a Te 3 layer as shown in FIG. It is preferable to be equal to the total length of the thicknesses. Further, as shown in FIG. 4, the electric insulator may be formed so as to enter only a part of the Bi 2-a Sb a Te 3 layer. Further, as long as the entire laminated structure is not completely divided by the electrical insulator as shown in FIG. 5, the electrical insulator may partially reach the metal on the other surface.

このように構成された熱発電デバイスを駆動する際に温度差を印加する方向、すなわち温度勾配が生じる方向Yは、図1に示すように電極の対向方向Xに対して直交している。そして、発生した電力は第1電極11と第2電極12を介して取り出される。具体的には図6に示したように、熱発電デバイス61の電極を配置しない一方の面に高温部62を、他方の面に低温部63を密着させて熱発電デバイスに対して温度差を印加する。この構成において、温度勾配が生じる方向Yは図6に示したように電極の対向方向に対して垂直となる。   A direction in which a temperature difference is applied when driving the thermoelectric device configured as described above, that is, a direction Y in which a temperature gradient is generated is orthogonal to the opposing direction X of the electrodes as shown in FIG. The generated power is taken out through the first electrode 11 and the second electrode 12. Specifically, as shown in FIG. 6, the high temperature portion 62 is closely attached to one surface where the electrode of the thermoelectric generation device 61 is not disposed, and the low temperature portion 63 is closely attached to the other surface, so that a temperature difference with respect to the thermoelectric generation device is obtained. Apply. In this configuration, the direction Y in which the temperature gradient occurs is perpendicular to the opposing direction of the electrodes as shown in FIG.

π型構造を有する従来の熱発電デバイスでは、温度差を印加する方向に対して平行方向だけに起電力が生じ、垂直方向に起電力が生じることは無い。詳細は後述する実施例で述べるが、本発明者等は様々な条件を検討し最適化することにより、所定条件と、熱発電性能との関係を詳細に検討していく過程で、予想外に大きな熱発電性能が得られることを見出した。より具体的には、金属16と電気絶縁体17の接続面の方向21と電極の対向方向Xとがなす角度と熱発電性能の関係について検討した。また、第1および第2金属層において電気絶縁体17を配置する周期と金属層の厚みの比と熱発電性能の関係について検討した。また、前記周期とBi2−aSbTe層15の厚みの比、と熱発電性能の関係について検討した。 In a conventional thermoelectric power generation device having a π-type structure, an electromotive force is generated only in the direction parallel to the direction in which the temperature difference is applied, and no electromotive force is generated in the vertical direction. Although details will be described in the examples described later, the present inventors have unexpectedly examined the relationship between the predetermined conditions and the thermoelectric power generation performance by examining and optimizing various conditions. It was found that a large thermoelectric power generation performance can be obtained. More specifically, the relationship between the thermoelectric generation performance and the angle formed by the direction 21 of the connection surface between the metal 16 and the electrical insulator 17 and the facing direction X of the electrode was examined. In addition, the relationship between the cycle of arranging the electrical insulator 17 in the first and second metal layers, the ratio of the thickness of the metal layer, and the thermoelectric generation performance was examined. Further, the relationship between the cycle and the thickness ratio of the Bi 2 -a Sb a Te 3 layer 15 and the thermoelectric generation performance was examined.

本発明の熱発電デバイスにおける第1電極11および第2電極12は電気伝導の良い材料であれば特に限定されない。具体的にはCu、Ag、Mo、W、Al、Ti、Cr、Au、Pt、In等の金属またはTiN、スズ添加酸化インジウム(ITO)、SnO等の窒化物または酸化物が良い。また、はんだや導電性ペーストを用いることもできる。 The first electrode 11 and the second electrode 12 in the thermoelectric generator of the present invention are not particularly limited as long as the materials have good electrical conductivity. Specifically, metals such as Cu, Ag, Mo, W, Al, Ti, Cr, Au, Pt, and In or nitrides or oxides such as TiN, tin-added indium oxide (ITO), and SnO 2 are preferable. Also, solder or conductive paste can be used.

第1金属層13および第2金属層14を構成する金属16は熱伝導率が高く、かつ電気抵抗率が小さいものが良い。具体的にはCu、Ag、Au、Alあるいはこれらの材料からなる合金であるが、この中でもCu、Ag、Auが好ましく、CuとAgが特に好ましい。   The metal 16 constituting the first metal layer 13 and the second metal layer 14 should preferably have a high thermal conductivity and a low electrical resistivity. Specifically, it is Cu, Ag, Au, Al or an alloy made of these materials, among which Cu, Ag, and Au are preferable, and Cu and Ag are particularly preferable.

電気絶縁体17は電気的な絶縁体であれば特に限定されない。具体的にはSiO、Al2O、ZrO、Taなどの酸化物、Siなどの窒化物、エポキシなどの樹脂などが良い。また電気絶縁体17は空気、窒素などの気体または真空であっても良い。 The electrical insulator 17 is not particularly limited as long as it is an electrical insulator. Specifically, oxides such as SiO 2 , Al 2 O 3 , ZrO 2 , Ta 2 O 5 , nitrides such as Si 3 N 4, and resins such as epoxy are preferable. The electrical insulator 17 may be a gas such as air, nitrogen, or a vacuum.

本発明の熱発電デバイスの作製方法の一例について図7を参照しながら説明する。   An example of a method for manufacturing a thermoelectric generator according to the present invention will be described with reference to FIG.

第1金属層13、第2金属層14、およびBi2−aSbTe層15からなる3層の積層体は、例えばBi2−aSbTeの長方形状の板を2枚の長方形状の金属板で挟んで加熱および圧着を行って作製することができる(図7のS1)。 The three-layered laminate including the first metal layer 13, the second metal layer 14, and the Bi 2-a Sb a Te 3 layer 15 includes, for example, two rectangular plates of Bi 2-a Sb a Te 3 It can be manufactured by heating and pressure-bonding with a rectangular metal plate (S1 in FIG. 7).

次に、3層の積層構造体に刃物などによって溝加工を施す(図7のS2)。この際、溝の長手方向が積層構造体の長辺に対して予め傾斜するように加工を行っても良い。また、任意の方向に溝加工を行い、後に切削加工によって積層構造体を切り出し、外形線と溝のなす傾斜角度を調整しても良い。溝加工は積層構造体両面からそれぞれ行うが、この際両面における溝の位置の周期は同一周期とし、かつ溝の位置は、両面間で互いに半周期ずれるように配置する。溝の深さは各々の溝によって金属16を完全に分断されるように、金属16の厚さ以上であることが必要である。   Next, grooving is performed on the three-layer laminated structure with a blade or the like (S2 in FIG. 7). At this time, the processing may be performed so that the longitudinal direction of the groove is inclined in advance with respect to the long side of the laminated structure. Further, groove processing may be performed in an arbitrary direction, and the laminated structure may be cut out later by cutting to adjust the inclination angle formed by the outline and the groove. Groove processing is performed from both sides of the laminated structure, and at this time, the period of the groove positions on both surfaces is the same period, and the groove positions are arranged so as to be shifted from each other by a half period. The depth of the groove needs to be equal to or greater than the thickness of the metal 16 so that the metal 16 is completely divided by each groove.

次に、溝部に電気絶縁体の粉体を含むペーストを充填した後に、熱処理などにより固化させたり、液状の樹脂を充填した後に乾燥させることによって溝部に電気絶縁体17を形成することができる(図7のS3)。   Next, after filling the groove with the paste containing the electric insulator powder, the electric insulator 17 can be formed in the groove by solidifying by heat treatment or the like, or by drying after filling with a liquid resin ( S3 in FIG.

次に、積層体のX方向に対向する両側面に第1電極11および第2電極12を作製することによって、本発明の熱発電デバイスを作製することができる(図7のS4)。   Next, the thermoelectric power generation device of the present invention can be manufactured by manufacturing the first electrode 11 and the second electrode 12 on both side surfaces facing the X direction of the laminate (S4 in FIG. 7).

第1電極11および第2電極12の作製方法は、蒸着法、スパッタ法などの気相成長の他に、導電性ペーストの塗布、めっき、溶射、はんだによる接合など様々な方法を用いることができる。   As a method for manufacturing the first electrode 11 and the second electrode 12, various methods such as coating of conductive paste, plating, thermal spraying, and joining by soldering can be used in addition to vapor deposition such as vapor deposition and sputtering. .

本デバイスを構成する積層体における電気絶縁体17が配置される周期xと、第1金属層13および第2金属層14と厚みの比は、100:1から1:1の範囲にあることが好ましく、40:1から1:1の範囲に有ることがより好ましい。また電気絶縁体17が配置される周期xとBi2−aSbTe層15の厚みの比(周期x:Bi2−aSbTe層)は、1000:1から10:1の範囲にあることが好ましく、400:1から10:1の範囲にあることがより好ましい。この理由は、後述する実施例2からも理解されるように、この範囲外であると、パワーファクター(S/ρ)の値が十分大きくならないからである。 The ratio of the thickness x of the period x in which the electrical insulator 17 is disposed in the laminate constituting the device to the first metal layer 13 and the second metal layer 14 may be in the range of 100: 1 to 1: 1. Preferably, it is in the range of 40: 1 to 1: 1. The ratio of the period x in which the electrical insulator 17 is arranged to the thickness of the Bi 2-a Sb a Te 3 layer 15 (period x: Bi 2-a Sb a Te 3 layer) is 1000: 1 to 10: 1. It is preferably in the range, more preferably in the range of 400: 1 to 10: 1. This is because the power factor (S 2 / ρ) does not become sufficiently large outside this range, as will be understood from Example 2 described later.

また、電気絶縁体17の接続面の方向21と電極の対向方向18とがなす角度θは、10°から70°の範囲にあるように作製することが好ましく、20°から50°であることがより好ましい。この理由は、後述する実施例1からも理解されるように、10°未満または70°を超えると、パワーファクター(S/ρ)の値が十分大きくならないからである。 Further, it is preferable that the angle θ formed by the direction 21 of the connecting surface of the electrical insulator 17 and the facing direction 18 of the electrode is in the range of 10 ° to 70 °, and is 20 ° to 50 °. Is more preferable. This is because the power factor (S 2 / ρ) does not increase sufficiently when the angle is less than 10 ° or exceeds 70 °, as will be understood from Example 1 described later.

本発明の熱発電デバイスの作製方法は、本デバイス構造を実現する手法であれば特に上記方法に限定されるものではない。例えば長方形状の熱電材料の板の両面に、平行四辺形状の金属板を一定の間隔を保ちながら周期的に接着することによって図7のS2に示したような積層体を作製し、さらに後工程を加えることによって本発明の熱発電デバイスを作製することも可能である。   The manufacturing method of the thermoelectric power generation device of the present invention is not particularly limited to the above method as long as it is a method for realizing the device structure. For example, a laminated body as shown in S2 of FIG. 7 is manufactured by periodically bonding parallelogram-shaped metal plates to both surfaces of a rectangular thermoelectric material plate at a constant interval, and further a post-process. It is also possible to produce the thermoelectric power generation device of the present invention by adding

(実施の形態2)
図8は本発明の実施の形態2における熱発電デバイスの構成を示した図である。
(Embodiment 2)
FIG. 8 is a diagram showing a configuration of a thermoelectric generator device according to Embodiment 2 of the present invention.

図8で示したのは、実施の形態1と同様の手順で作製される板状の積層体を、接続電極81を介して電気的に接続して平板状に構成したものである。このように構成される熱発電デバイスを用いて適用面積を大きくすることにより、全体としてより多くの発電量を得ることができる。   In FIG. 8, a plate-like laminate manufactured in the same procedure as in the first embodiment is electrically connected via a connection electrode 81 to form a flat plate. By increasing the application area using the thermoelectric power generation device configured as described above, a larger amount of power generation can be obtained as a whole.

本デバイスにおける接続電極81は電気伝導の良い材料であれば特に限定されない。具体的にはCu、Ag、Mo、W、Al、Ti、Cr、Au、Pt、In等の金属またはTiN、スズ添加酸化インジウム(ITO)、SnO等の窒化物や酸化物が良い。また、はんだや導電性ペーストを用いることも可能である。作製方法は、蒸着法、スパッタ法などの気相成長の他にめっき、溶射など様々な方法を用いることができる。 The connection electrode 81 in this device is not particularly limited as long as it is a material having good electrical conductivity. Specifically, metals such as Cu, Ag, Mo, W, Al, Ti, Cr, Au, Pt, and In, or nitrides and oxides such as TiN, tin-added indium oxide (ITO), and SnO 2 are preferable. Also, solder or conductive paste can be used. As a manufacturing method, various methods such as plating and thermal spraying can be used in addition to vapor deposition such as vapor deposition and sputtering.

このようにして作製される熱発電デバイスを駆動する際は、平板状のデバイスの一方の面に高温部、他方の面に低温部を密着して熱流を生じさせることによって温度差を印加する。熱流から本デバイスによって変換された電力は取り出し電極82を介して外部に取り出すことができる。   When driving the thermoelectric power generation device manufactured in this way, a temperature difference is applied by causing a high temperature part to adhere to one surface of the flat device and a low temperature part to the other surface to generate a heat flow. The electric power converted by the present device from the heat flow can be extracted to the outside through the extraction electrode 82.

本実施の形態における熱発電デバイスを構成するにあたり、積層体は接続電極を介して電気的に直列に接続する他に、電気的に並列に接続しても良い。積層体を直列に接続すると電力を取り出す際の電圧が大きくなる。積層体を並列に接続すると、熱発電デバイス全体の内部抵抗を小さくすることの他に、電気的な接続が一部断線してもデバイス全体としての電気的な接続を保つことにも利点がある。すなわち、これら直列および並列接続を適切に組み合わせることによって、高い発電能力を有する熱発電デバイスを構成できる。   In configuring the thermoelectric power generation device in the present embodiment, the laminates may be electrically connected in parallel in addition to being electrically connected in series via the connection electrodes. When the laminates are connected in series, the voltage for extracting power increases. In addition to reducing the internal resistance of the entire thermoelectric power generation device, connecting the stacked bodies in parallel has the advantage of maintaining the electrical connection of the entire device even if the electrical connection is partially broken. . That is, a thermoelectric power generation device having high power generation capability can be configured by appropriately combining these series and parallel connections.

(実施例)
以下、本発明のより具体的な実施例を説明する。
(Example)
Hereinafter, more specific examples of the present invention will be described.

(実施例1)
熱電材料と、幾つかの金属材料を用いて本発明の熱発電デバイスを作製した。熱電材料としてBi0.5Sb1.5Teを用いた。また金属としてAu、Ag、Cu、Alを用いた。第1電極11および第2電極12にはAuを用いた。熱電材料と金属の積層体は、図3に示すような200mm×5mm×0.2mmの熱電材料からなる板材の両面に、200mm×5mm×2mmの金属板を熱圧着して得た。次に金属/熱電材料/金属の積層体の金属部分に両側から幅0.5mm、深さ2.2mm、かつ積層体の長辺に対する傾斜角度θが30°であるような溝加工をエンドミルによって行った。図1のxに対応する溝間の距離は20mmとし、溝は周期的に配置した。また、溝の位置は互いの面において半周期ずれるように配置した。
Example 1
The thermoelectric power generation device of the present invention was fabricated using a thermoelectric material and several metal materials. Bi 0.5 Sb 1.5 Te 3 was used as the thermoelectric material. Further, Au, Ag, Cu, and Al were used as metals. Au was used for the first electrode 11 and the second electrode 12. The laminate of the thermoelectric material and the metal was obtained by thermocompression bonding a metal plate of 200 mm × 5 mm × 2 mm on both sides of a plate made of a thermoelectric material of 200 mm × 5 mm × 0.2 mm as shown in FIG. Next, an end mill is used to groove the metal portion of the metal / thermoelectric material / metal laminate so that the width from both sides is 0.5 mm, the depth is 2.2 mm, and the inclination angle θ with respect to the long side of the laminate is 30 °. went. The distance between the grooves corresponding to x in FIG. 1 was 20 mm, and the grooves were arranged periodically. Further, the positions of the grooves were arranged so as to be shifted by a half cycle on each surface.

その後スパッタ法により長辺の両端にAuからなる電極を形成し、図1に示したような構造のデバイスを作製した。   Thereafter, electrodes made of Au were formed on both ends of the long side by sputtering, and a device having a structure as shown in FIG. 1 was produced.

作製した試料に対して発電性能の評価を行った。図6に示すように平板デバイスの片側をヒータで40℃に加熱し、もう片側を水冷で30℃に冷却して端子間の起電圧と電気抵抗を測定した。金属板に銅を用いて溝を30°傾斜させたデバイスの場合、起電圧18.4mVで抵抗は0.44mΩであった。これよりパワーファクターは457μW/cmKと見積もられた。同様の手順で、各金属材料を用いた傾斜角度の異なるデバイスの性能を測定したところ、表1の結果となった。 The power generation performance was evaluated for the prepared samples. As shown in FIG. 6, one side of the flat plate device was heated to 40 ° C. with a heater, the other side was cooled to 30 ° C. with water cooling, and the electromotive voltage and electrical resistance between the terminals were measured. In the case of a device in which the groove is inclined by 30 ° using copper as the metal plate, the electromotive force was 18.4 mV and the resistance was 0.44 mΩ. From this, the power factor was estimated to be 457 μW / cmK 2 . When the performance of devices having different inclination angles using each metal material was measured in the same procedure, the results shown in Table 1 were obtained.

Figure 0005200884
Figure 0005200884

以上の結果から、Alを除く各金属材料に関して傾斜角度が20°〜50°の時に、200μW/cmKを超える優れたデバイス特性が得られることが判った。特に金属材料として、AgあるいはCuを用いた場合、他の金属に比べて性能が高いことが確認された。Alにおいても傾斜角度が10°〜70°の時にBiTeと同等以上の性能が得られた。 From the above results, it was found that excellent device characteristics exceeding 200 μW / cmK 2 can be obtained when the inclination angle is 20 ° to 50 ° for each metal material except Al. In particular, when Ag or Cu was used as the metal material, it was confirmed that the performance was higher than other metals. In Al, the same or better performance as Bi 2 Te 3 was obtained when the inclination angle was 10 ° to 70 °.

(実施例2)
実施例1と同様の手法で、金属材料にCuとAgを用いて金属の厚みの異なる積層デバイスを構成した。熱電材料としてBi1.0Sb1.0Teを用いた。溝の傾斜角度は30°、溝の間の距離20mmを周期とした。また、熱電材料の厚みは0.2mmに固定し、金属板の厚みを0.1mm、0.2mm、0.5mm、1mm、2mm、5mm、20mm、50mmと変化させて熱電材料との積層構造を作製した。デバイス外形は長さ200mm、幅5mmとした。金属に銅を用いた熱発電デバイスのパワーファクターの測定結果は表2のようになった。溝の周期とCuの厚みの比により性能が左右され、10:1付近で最も良い性能であることが確認された。またこの傾向は金属材料にAgを用いた場合についても同じ傾向であった。
(Example 2)
In the same manner as in Example 1, multilayer devices having different metal thicknesses were configured using Cu and Ag as metal materials. Bi 1.0 Sb 1.0 Te 3 was used as the thermoelectric material. The inclination angle of the grooves was 30 °, and the distance between the grooves was 20 mm. Also, the thickness of the thermoelectric material is fixed to 0.2 mm, and the thickness of the metal plate is changed to 0.1 mm, 0.2 mm, 0.5 mm, 1 mm, 2 mm, 5 mm, 20 mm, 50 mm, and the laminated structure with the thermoelectric material Was made. The device outer shape was 200 mm long and 5 mm wide. Table 2 shows the measurement result of the power factor of the thermoelectric power generation device using copper as the metal. The performance was influenced by the ratio of the groove period and the Cu thickness, and it was confirmed that the best performance was obtained in the vicinity of 10: 1. This tendency was the same when Ag was used as the metal material.

Figure 0005200884
Figure 0005200884

(実施例3)
実施例1と同様の手法で、金属材料にCuとAgを用いて熱電材料の厚みの異なる積層デバイスを構成した。熱電材料としてBi1.5Sb0.5Teを用いた。溝の傾斜角度は30°、溝の周期は20mm、金属材料の厚みは10mmに固定し、熱電材料板の厚みを0.01mm、0.02mm、0.05mm、0.4mm、0.8mm、1mm、2mm、3mmと変化させて金属との積層構造を作製した。デバイス外形は長さ200mm、高さ5mmとした。金属に銅を用いた熱発電デバイスのパワーファクターの測定結果は表3のようになった。溝の周期と熱電材料の厚みの比により性能が左右され、100:1付近で最も良い性能であることが確認された。またこの傾向は金属材料にAgを用いた場合についても同じ傾向であった。
(Example 3)
In the same manner as in Example 1, laminated devices having different thermoelectric material thicknesses were configured using Cu and Ag as metal materials. Bi 1.5 Sb 0.5 Te 3 was used as the thermoelectric material. The inclination angle of the groove is 30 °, the period of the groove is 20 mm, the thickness of the metal material is fixed to 10 mm, and the thickness of the thermoelectric material plate is 0.01 mm, 0.02 mm, 0.05 mm, 0.4 mm, 0.8 mm, A laminated structure with metal was manufactured by changing the thickness to 1 mm, 2 mm, and 3 mm. The external shape of the device was 200 mm long and 5 mm high. Table 3 shows the measurement results of the power factor of the thermoelectric power generation device using copper as the metal. The performance was influenced by the ratio of the groove period and the thickness of the thermoelectric material, and it was confirmed that the performance was the best around 100: 1. This tendency was the same when Ag was used as the metal material.

Figure 0005200884
Figure 0005200884

(実施例4)
実装面積をより広くし、さらに多くの発電量を得るために、金属材料、接続電極81、取り出し電極82としてCuを用いた、図8に示したような熱発電デバイスを作製した。
Example 4
In order to increase the mounting area and obtain a larger amount of power generation, a thermoelectric power generation device as shown in FIG. 8 using Cu as the metal material, the connection electrode 81, and the extraction electrode 82 was produced.

Cuと熱電材料のBi0.5Sb1.5Teからなる積層体は実施例1と同様の手順で作製した。まず200mm×5mm×0.2mmのBi0.5Sb1.5Teからなる板材の両面に、200mm×5mm×2mmのCu板を熱圧着して得た。次に金属/熱電材料/金属の積層体の金属部分に両側から幅0.5mm、深さ2.2mm、かつ積層体の長辺に対する傾斜角度θが30°であるような溝加工をエンドミルによって行った。図1のxに対応する溝の周期は20mmとし、溝の位置は互いの面において半周期ずれるように配置した。 A laminate made of Cu and the thermoelectric material Bi 0.5 Sb 1.5 Te 3 was produced in the same procedure as in Example 1. First, a Cu plate of 200 mm × 5 mm × 2 mm was obtained by thermocompression bonding on both surfaces of a plate material made of Bi 0.5 Sb 1.5 Te 3 of 200 mm × 5 mm × 0.2 mm. Next, an end mill is used to groove the metal portion of the metal / thermoelectric material / metal laminate so that the width from both sides is 0.5 mm, the depth is 2.2 mm, and the inclination angle θ with respect to the long side of the laminate is 30 °. went. The groove period corresponding to x in FIG. 1 was 20 mm, and the positions of the grooves were arranged so as to be shifted by a half period on each surface.

上記の工程で同様の積層体を計15個作製した。また、接続電極81および取り出し電極82のCuは厚さ0.5mmの板を使用した。   A total of 15 similar laminates were produced in the above process. In addition, a plate having a thickness of 0.5 mm was used as Cu for the connection electrode 81 and the extraction electrode 82.

作製した15個の積層体を1mm間隔で配列し、接続電極81および取り出し電極82を50μm厚のIn箔を用い加熱および加圧することによって電気的接続を行った。この際、熱流による起電力が相殺されないよう、図8に示したように隣り合う積層体の傾斜構造は互いに逆向きになるように配置した。そして、隣り合う積層体の間の隙間と積層体の溝部を樹脂で充填することで、約200mm×80mm×5mmの平板状の熱発電デバイスを作製した。取り出し電極82間の抵抗値を測定したところ、9mΩであった。   The 15 laminates thus prepared were arranged at intervals of 1 mm, and the connection electrode 81 and the extraction electrode 82 were electrically connected by heating and pressing using a 50 μm thick In foil. At this time, in order not to cancel the electromotive force due to the heat flow, the inclined structures of the adjacent stacked bodies are arranged so as to be opposite to each other as shown in FIG. And the space | interval between adjacent laminated bodies and the groove part of a laminated body were filled with resin, and the flat thermoelectric device of about 200 mm x 80 mm x 5 mm was produced. When the resistance value between the extraction electrodes 82 was measured, it was 9 mΩ.

以上の手順で作製した本実施例の熱発電デバイスの発電特性を評価した。本デバイスの200mm×80mmの片面を、アルミナ板を介して水冷することで低温部とした。本デバイスの他方の面に高温部となるセラミックヒーターを密着させた。このような構成で低温部を25℃、高温部を40℃に保持したところ、開放端起電力は0.35Vとなり、パワーファクターを見積もると240μW/cmKという高い値が得られた。この結果、本デバイスから最大4.4Wの電力を取り出すことができた。 The power generation characteristics of the thermoelectric power generation device of this example produced by the above procedure were evaluated. One side of the device of 200 mm × 80 mm was cooled with water through an alumina plate to form a low temperature part. A ceramic heater serving as a high temperature part was adhered to the other surface of the device. When the low temperature part was kept at 25 ° C. and the high temperature part was kept at 40 ° C. with such a configuration, the open end electromotive force was 0.35 V, and a high value of 240 μW / cmK 2 was obtained when the power factor was estimated. As a result, a maximum of 4.4 W of power could be extracted from this device.

以上より、本発明にかかる熱発電デバイスは、優れた発電特性を有しており、自動車や工場から排出される排ガスなどの熱を用いた発電機として利用可能である。   As described above, the thermoelectric power generation device according to the present invention has excellent power generation characteristics and can be used as a power generator using heat such as exhaust gas discharged from an automobile or a factory.

また、小型の携帯発電機などの用途にも応用できる。   It can also be applied to small portable generators.

本発明は、本発明は熱エネルギーから電気エネルギーへの変換を行う熱発電デバイスに利用可能である。   The present invention is applicable to a thermoelectric power generation device that converts thermal energy into electrical energy.

本発明の実施の形態1における熱発電デバイスの構成を示した図The figure which showed the structure of the thermoelectric power generation device in Embodiment 1 of this invention 本発明の実施の形態1における熱発電デバイスの正面図Front view of thermoelectric power generation device according to Embodiment 1 of the present invention 本発明の実施の形態1における熱発電デバイスの平面図The top view of the thermoelectric-power generation device in Embodiment 1 of this invention 本発明の実施の形態1における熱発電デバイスの平面図The top view of the thermoelectric-power generation device in Embodiment 1 of this invention 本発明の実施の形態1における熱発電デバイスの平面図The top view of the thermoelectric-power generation device in Embodiment 1 of this invention 本発明の実施の形態1における熱発電デバイスを駆動する際の構成を示した図The figure which showed the structure at the time of driving the thermoelectric power generation device in Embodiment 1 of this invention 本発明の実施の形態1における熱発電デバイスの製造工程を示した図The figure which showed the manufacturing process of the thermoelectric-power generation device in Embodiment 1 of this invention 本発明の実施の形態2における熱発電デバイスの構成を示した図The figure which showed the structure of the thermoelectric power generation device in Embodiment 2 of this invention

符号の説明Explanation of symbols

11 第1電極
12 第2電極
13 第1金属層
14 第2金属層
15 Bi2−aSbTe
16 金属
17 電気絶縁体
21 接続面の方向
61 熱発電デバイス
62 高温部
63 低温部
64 温度勾配が生じる方向
81 接続電極
82 取り出し電極
DESCRIPTION OF SYMBOLS 11 1st electrode 12 2nd electrode 13 1st metal layer 14 2nd metal layer 15 Bi 2-a Sb a Te 3 layer 16 Metal 17 Electrical insulator 21 Direction of connection surface 61 Thermoelectric power generation device 62 High temperature part 63 Low temperature part 64 Direction of temperature gradient 81 Connection electrode 82 Extraction electrode

Claims (24)

熱発電デバイスに温度差を発生させて前記デバイスから電力を得る、熱発電デバイスを用いた発電方法であって、
前記デバイスは、
互いに対向して配置された第1電極および第2電極と、
前記第1および第2電極に挟まれ、前記第1および第2電極の双方に電気的に接続され、かつ、前記第1および第2電極が対向する方向に対して直交する積層方向に、金属と電気絶縁体とを有する第1金属層、Bi−aSbaTe層(aは0≦a≦2)、金属と電気絶縁体とを有する第2金属層の順に積層された層で構成される積層体と、を備え、
前記第1および第2金属層における前記電気絶縁体は、それぞれ、前記金属が前記Bi −aSbaTe 層と接する面と対向する面に接し、前記金属との接続面の角度が、前記第1および第2電極が対向する方向に対して角度θ傾斜する状態で、前記第1および第2電極が対向する方向に対して周期的、又は、周期的に近い配置がされ、かつ、互いに半周期、又は、半周期近くずれて配置され、
前記第1金属層における前記電気絶縁体の前記積層方向の長さは、前記第1金属層の長さ以上、かつ、前記第1金属層、前記Bi −aSbaTe 層および前記第2金属層の合計の長さ未満であり、
前記第2金属層における前記電気絶縁体の前記積層方向の長さは、前記第2金属層の長さ以上、かつ、前記第1金属層、前記Bi −aSbaTe 層および前記第2金属層の合計の長さ未満であり、
前記第1および第2電極が対向する方向と前記積層方向とに対して直交する方向に温度差を印加することによって、前記第1および前記第2電極を介して電力を取り出す、発電方法。
A power generation method using a thermoelectric generation device that generates a temperature difference in the thermoelectric generation device and obtains electric power from the device,
The device is
A first electrode and a second electrode disposed opposite to each other;
A metal sandwiched between the first and second electrodes, electrically connected to both the first and second electrodes, and in a stacking direction perpendicular to the direction in which the first and second electrodes face each other. And a first metal layer having an electrical insulator, a Bi 2 -aSbaTe 3 layer (a is 0 ≦ a ≦ 2), and a second metal layer having a metal and an electrical insulator are stacked in this order. A laminate, and
The electrical insulators in the first and second metal layers are respectively in contact with a surface facing the surface where the metal contacts the Bi 2 -aSbaTe 3 layer, and an angle of a connection surface with the metal is the first In a state where the angle θ is inclined with respect to the direction in which the second electrode and the second electrode are opposed to each other, the first and second electrodes are arranged in a periodical manner or close to the periodicity, and are half a cycle from each other. Or arranged with a half-cycle offset,
The length of the electrical insulator in the first metal layer in the stacking direction is equal to or greater than the length of the first metal layer, and the first metal layer, the Bi 2 -aSbaTe 3 layer, and the second metal layer. Is less than the total length of
The length of the electrical insulator in the second metal layer in the stacking direction is equal to or longer than the length of the second metal layer, and the first metal layer, the Bi 2 -aSbaTe 3 layer, and the second metal layer. Is less than the total length of
A power generation method for extracting electric power through the first and second electrodes by applying a temperature difference in a direction orthogonal to the direction in which the first and second electrodes oppose each other and the stacking direction.
前記金属と前記電気絶縁体とがなす接続面が、前記第1および第2電極が対向する方向に対してなす角度θが10°以上70°以下である、
請求項1に記載の熱発電デバイスを用いた発電方法。
The angle θ formed by the connection surface formed by the metal and the electrical insulator with respect to the direction in which the first and second electrodes face each other is 10 ° or more and 70 ° or less.
A power generation method using the thermoelectric power generation device according to claim 1.
前記角度θが20°以上50°以下である、
請求項1に記載の熱発電デバイスを用いた発電方法。
The angle θ is 20 ° or more and 50 ° or less.
A power generation method using the thermoelectric power generation device according to claim 1.
前記金属が、Al、Cu、Ag、またはAuを含む、
請求項1に記載の熱発電デバイスを用いた発電方法。
The metal comprises Al, Cu, Ag, or Au;
A power generation method using the thermoelectric power generation device according to claim 1.
前記金属が、Cu、Ag、またはAuを含む、
請求項1に記載の熱発電デバイスを用いた発電方法。
The metal includes Cu, Ag, or Au;
A power generation method using the thermoelectric power generation device according to claim 1.
前記金属が、CuまたはAgを含む、
請求項1に記載の熱発電デバイスを用いた発電方法。
The metal comprises Cu or Ag;
A power generation method using the thermoelectric power generation device according to claim 1.
前記第1および第2金属層において前記電気絶縁体が設けられる周期と前記第1金属層および前記第2金属層の厚みとの比が100:1から1:1までの範囲内にあり、
前記第1および第2金属層において前記電気絶縁体が設けられる周期と前記Bi−aSbaTe層の厚みとの比が1000:1から10:1までの範囲内にある、
請求項1に記載の熱発電デバイスを用いた発電方法。
A ratio of a period in which the electrical insulator is provided in the first and second metal layers to a thickness of the first metal layer and the second metal layer is in a range from 100: 1 to 1: 1;
The ratio of the period in which the electrical insulator is provided in the first and second metal layers to the thickness of the Bi 2 -aSbaTe 3 layer is in the range of 1000: 1 to 10: 1;
A power generation method using the thermoelectric power generation device according to claim 1.
前記第1および第2金属層において前記電気絶縁体が設けられる周期と前記第1金属層および前記第2金属層の厚みとの比が40:1から1:1までの範囲内にあり、
前記第1および第2金属層において前記電気絶縁体が設けられる周期と前記Bi−aSbaTe層の厚みとの比が400:1から10:1までの範囲内にある、
請求項1に記載の熱発電デバイスを用いた発電方法。
The ratio of the period in which the electrical insulator is provided in the first and second metal layers to the thickness of the first metal layer and the second metal layer is in the range of 40: 1 to 1: 1;
The ratio of the period in which the electrical insulator is provided in the first and second metal layers to the thickness of the Bi 2 -aSbaTe 3 layer is in the range of 400: 1 to 10: 1;
A power generation method using the thermoelectric power generation device according to claim 1.
前記デバイスのパワーファクターが100(μW/(cm・K))以上である請求項1に記載の熱発電デバイスを用いた発電方法。 The power generation method using the thermoelectric power generation device according to claim 1, wherein a power factor of the device is 100 (μW / (cm · K 2 )) or more. 前記第1および第2金属層における前記金属が、Al、Cu、AgまたはAuを含み、
前記第1および第2金属層において前記電気絶縁体が設けられる周期と前記第1金属層および前記第2金属層の厚みとの比が100:1から1:1までの範囲内にあり、
前記第1および第2金属層において前記電気絶縁体が設けられる周期と前記Bi−aSbaTe層の厚みとの比が1000:1から10:1までの範囲内にある、
請求項2に記載の熱発電デバイスを用いた発電方法。
The metal in the first and second metal layers comprises Al, Cu, Ag or Au;
A ratio of a period in which the electrical insulator is provided in the first and second metal layers to a thickness of the first metal layer and the second metal layer is in a range from 100: 1 to 1: 1;
The ratio of the period in which the electrical insulator is provided in the first and second metal layers to the thickness of the Bi 2 -aSbaTe 3 layer is in the range of 1000: 1 to 10: 1;
A power generation method using the thermoelectric power generation device according to claim 2.
前記第1および第2金属層における前記金属が、CuまたはAgを含み、
前記第1および第2金属層において前記電気絶縁体が設けられる周期と前記第1金属層および前記第2金属層の厚みとの比が40:1から1:1までの範囲内にあり、
前記第1および第2金属層において前記電気絶縁体が設けられる周期と前記Bi−aSbaTe層の厚みとの比が400:1から10:1までの範囲内にある、
請求項3に記載の熱発電デバイスを用いた発電方法。
The metal in the first and second metal layers comprises Cu or Ag;
The ratio of the period in which the electrical insulator is provided in the first and second metal layers to the thickness of the first metal layer and the second metal layer is in the range of 40: 1 to 1: 1;
The ratio of the period in which the electrical insulator is provided in the first and second metal layers to the thickness of the Bi 2 -aSbaTe 3 layer is in the range of 400: 1 to 10: 1;
A power generation method using the thermoelectric power generation device according to claim 3.
前記デバイスのパワーファクターが100(μW/(cm・K))以上である請求項11に記載の熱発電デバイスを用いた発電方法。 The power generation method using the thermoelectric generator according to claim 11, wherein the power factor of the device is 100 (μW / (cm · K 2 )) or more. 互いに対向して配置された第1電極および第2電極と、
前記第1および第2電極に挟まれ、前記第1および第2電極の双方に電気的に接続され、かつ、前記第1および第2電極が対向する方向に対して直交する積層方向に対して、金属と電気絶縁体とを有する第1金属層、Bi−aSbaTe層(aは0≦a≦2)、
金属と電気絶縁体とを有する第2金属層の順に積層された層で構成される積層体と、を備え、
前記第1および第2金属層における前記電気絶縁体は、それぞれ、前記金属が前記Bi −aSbaTe 層と接する面と対向する面に接し、前記金属との接続面の角度が、前記第1および第2電極が対向する方向に対して角度θ傾斜する状態で、前記第1および第2電極が対向する方向に対して周期的、又は、周期的に近い配置され、かつ、互いに半周期、又は、半周期近くずれて配置され、
前記第1金属層における前記電気絶縁体の前記積層方向の長さは、前記第1金属層の長さ以上、かつ、前記第1金属層、前記Bi −aSbaTe 層および前記第2金属層の合計の長さ未満であり、
前記第2金属層における前記電気絶縁体の前記積層方向の長さは、前記第2金属層の長さ以上、かつ、前記第1金属層、前記Bi −aSbaTe 層および前記第2金属層の合計の長さ未満である、熱発電デバイス。
A first electrode and a second electrode disposed opposite to each other;
With respect to the stacking direction sandwiched between the first and second electrodes, electrically connected to both the first and second electrodes, and orthogonal to the direction in which the first and second electrodes face each other A first metal layer having a metal and an electrical insulator, a Bi 2 -aSbaTe 3 layer (a is 0 ≦ a ≦ 2),
A laminate composed of layers laminated in order of a second metal layer having a metal and an electrical insulator,
The electrical insulators in the first and second metal layers are respectively in contact with a surface facing the surface where the metal contacts the Bi 2 -aSbaTe 3 layer, and an angle of a connection surface with the metal is the first And in a state where the second electrode is inclined at an angle θ with respect to the opposing direction, the first and second electrodes are arranged periodically or close to the periodicity with respect to the opposing direction, and are half a period of each other. Or it is arranged with a shift of nearly half a cycle ,
The length of the electrical insulator in the first metal layer in the stacking direction is equal to or greater than the length of the first metal layer, and the first metal layer, the Bi 2 -aSbaTe 3 layer, and the second metal layer. Is less than the total length of
The length of the electrical insulator in the second metal layer in the stacking direction is equal to or longer than the length of the second metal layer, and the first metal layer, the Bi 2 -aSbaTe 3 layer, and the second metal layer. The thermoelectric device that is less than the total length of .
前記金属と前記電気絶縁体とがなす接続面が、前記第1および第2電極が対向する方向に対してなす角度θが10°以上70°以下である、
請求項13に記載の熱発電デバイス。
The angle θ formed by the connection surface formed by the metal and the electrical insulator with respect to the direction in which the first and second electrodes face each other is 10 ° or more and 70 ° or less.
The thermoelectric power generation device according to claim 13.
前記角度θが20°以上50°以下である、
請求項13に記載の熱発電デバイス。
The angle θ is 20 ° or more and 50 ° or less.
The thermoelectric power generation device according to claim 13.
前記金属が、Al、Cu、Ag、またはAuを含む、
請求項13に記載の熱発電デバイス。
The metal comprises Al, Cu, Ag, or Au;
The thermoelectric power generation device according to claim 13.
前記金属が、Cu、Ag、またはAuを含む、
請求項13に記載の熱発電デバイス。
The metal includes Cu, Ag, or Au;
The thermoelectric power generation device according to claim 13.
前記金属が、CuまたはAgを含む、
請求項13に記載の熱発電デバイス。
The metal comprises Cu or Ag;
The thermoelectric power generation device according to claim 13.
前記第1および第2金属層において前記電気絶縁体が設けられる周期:前記第1金属層および前記第2金属層の厚みの比が100:1から1:1までの範囲内にあり、
かつ前記第1および第2金属層において前記電気絶縁体が設けられる周期:前記Bi−aSbaTe層の厚みの比が1000:1から10:1までの範囲内にある、
請求項13に記載の熱発電デバイス。
A period in which the electrical insulator is provided in the first and second metal layers: a ratio of the thicknesses of the first metal layer and the second metal layer is in a range from 100: 1 to 1: 1;
And the ratio of the period in which the electrical insulator is provided in the first and second metal layers: the thickness of the Bi 2 -aSbaTe 3 layer is in the range of 1000: 1 to 10: 1.
The thermoelectric power generation device according to claim 13.
前記第1および第2金属層において前記電気絶縁体が設けられる周期:前記第1金属層および前記第2金属層の厚みの比が40:1から1:1までの範囲内にあり、
かつ前記第1および第2金属層において前記電気絶縁体が設けられる周期:前記Bi−aSbaTe層の厚みの比が400:1から10:1までの範囲内にある、
請求項13に記載の熱発電デバイス。
The period in which the electrical insulator is provided in the first and second metal layers: the ratio of the thickness of the first metal layer and the second metal layer is in the range of 40: 1 to 1: 1;
And the ratio of the period in which the electrical insulator is provided in the first and second metal layers: the thickness of the Bi 2 -aSbaTe 3 layer is in the range from 400: 1 to 10: 1.
The thermoelectric power generation device according to claim 13.
前記デバイスのパワーファクターが100(μW/(cm・K))以上である請求項13に記載の熱発電デバイス。 The thermoelectric power generation device according to claim 13, wherein a power factor of the device is 100 (μW / (cm · K 2 )) or more. 前記第1および第2金属層における前記金属が、Al、Cu、AgまたはAuを含み、
前記第1および第2金属層において前記電気絶縁体が設けられる周期:前記第1金属層および前記第2金属層の厚みの比が100:1から1:1までの範囲内にあり、
かつ前記第1および第2金属層において前記電気絶縁体が設けられる周期:前記Bi−aSbaTe層の厚みの比が1000:1から10:1までの範囲内にある、
請求項14に記載の熱発電デバイス。
The metal in the first and second metal layers comprises Al, Cu, Ag or Au;
A period in which the electrical insulator is provided in the first and second metal layers: a ratio of the thicknesses of the first metal layer and the second metal layer is in a range from 100: 1 to 1: 1;
And the ratio of the period in which the electrical insulator is provided in the first and second metal layers: the thickness of the Bi 2 -aSbaTe 3 layer is in the range of 1000: 1 to 10: 1.
The thermoelectric power generation device according to claim 14.
前記第1および第2金属層における前記金属が、CuまたはAgを含み、
前記第1および第2金属層において前記電気絶縁体が設けられる周期:前記第1金属層および前記第2金属層の厚みの比が40:1から1:1までの範囲内にあり、
かつ前記第1および第2金属層において前記電気絶縁体が設けられる周期:前記Bi−aSbaTe層の厚みの比が400:1から10:1までの範囲内にある、
請求項15に記載の熱発電デバイス。
The metal in the first and second metal layers comprises Cu or Ag;
The period in which the electrical insulator is provided in the first and second metal layers: the ratio of the thickness of the first metal layer and the second metal layer is in the range of 40: 1 to 1: 1;
And the ratio of the period in which the electrical insulator is provided in the first and second metal layers: the thickness of the Bi 2 -aSbaTe 3 layer is in the range from 400: 1 to 10: 1.
The thermoelectric power generation device according to claim 15.
前記デバイスのパワーファクターが100(μW/(cm・K))以上である請求項23に記載の熱発電デバイス。
The thermoelectric power generation device according to claim 23, wherein the power factor of the device is 100 (μW / (cm · K 2 )) or more.
JP2008297546A 2008-11-21 2008-11-21 Thermoelectric power generation device Active JP5200884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008297546A JP5200884B2 (en) 2008-11-21 2008-11-21 Thermoelectric power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008297546A JP5200884B2 (en) 2008-11-21 2008-11-21 Thermoelectric power generation device

Publications (2)

Publication Number Publication Date
JP2010123827A JP2010123827A (en) 2010-06-03
JP5200884B2 true JP5200884B2 (en) 2013-06-05

Family

ID=42324888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008297546A Active JP5200884B2 (en) 2008-11-21 2008-11-21 Thermoelectric power generation device

Country Status (1)

Country Link
JP (1) JP5200884B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130126035A (en) * 2012-05-10 2013-11-20 삼성전자주식회사 Thermoelectric material having distortion of electronic density of states, thermoelectric module and thermoelectric apparatus comprising same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056466A1 (en) * 2006-11-10 2008-05-15 Panasonic Corporation Power generation method employing thermal power generation element, thermal power generation element and method for fabricating the same
JP2008130813A (en) * 2006-11-21 2008-06-05 Tokai Rika Co Ltd Thermal power generating device

Also Published As

Publication number Publication date
JP2010123827A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
JP4078392B1 (en) Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device
JP4124807B1 (en) Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device
US20100326487A1 (en) Thermoelectric element and thermoelectric device
US7449628B2 (en) Electric power generation method using thermoelectric power generation element, thermoelectric power generation element and method of producing the same, and thermoelectric power generation device
KR20220098096A (en) Thermo electric element
WO2010007729A1 (en) Method of manufacturing a thermoelectric device
JP4584355B2 (en) Thermoelectric power generation device and power generation method using the same
JP5176610B2 (en) Thermoelectric device element
JP5200884B2 (en) Thermoelectric power generation device
JP5176609B2 (en) Thermoelectric device element
JP5200885B2 (en) Thermoelectric power generation device
JP5200883B2 (en) Thermoelectric power generation device
JP5176602B2 (en) Thermoelectric device element
JP5176607B2 (en) Thermoelectric device element
WO2012120572A1 (en) Electricity generation method using thermoelectric generation element, thermoelectric generation element and manufacturing method thereof, and thermoelectric generation device
JP4882855B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP5176608B2 (en) Thermoelectric device element
JP5176606B2 (en) Thermoelectric device element
JP4130845B1 (en) Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device
JP2003234515A (en) Thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110523

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R151 Written notification of patent or utility model registration

Ref document number: 5200884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3