JPH02271683A - Thermoelectric element and manufacture thereof - Google Patents

Thermoelectric element and manufacture thereof

Info

Publication number
JPH02271683A
JPH02271683A JP1093512A JP9351289A JPH02271683A JP H02271683 A JPH02271683 A JP H02271683A JP 1093512 A JP1093512 A JP 1093512A JP 9351289 A JP9351289 A JP 9351289A JP H02271683 A JPH02271683 A JP H02271683A
Authority
JP
Japan
Prior art keywords
metal
semiconductor
thermoelectric element
peltier effect
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1093512A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Tanaka
博由 田中
Yoshiaki Yamamoto
義明 山本
Fumitoshi Nishiwaki
文俊 西脇
Yasushi Nakagiri
康司 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1093512A priority Critical patent/JPH02271683A/en
Publication of JPH02271683A publication Critical patent/JPH02271683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To improve adhesive properties of a semiconductor material for causing Peltier effect with metal, to enhance performance and to facilitate manufacture thereof by forming a metal film on the surface of the semiconductor, and adhering the metal film with electrode metal by solder or conductive adhering material. CONSTITUTION:Metal films 9a, 9b are formed on the surfaces of semiconductors 8p, 8n for causing Peltier effect, and electrode metals 10a, 10b are adhered to the films 9a, 9b by solder or conductive adhering material. Thus, since the adherence is rigid and the metals are adhered, the adhering surface does not repel the solder. Accordingly, air bubbles are scarcely introduced, both thermal resistance and electric resistance are reduced to improve the efficiency of a thermoelectric element. Thus, the adherence is rigid, and the efficiency of the element can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はペルチェ効果を利用し、電気的に冷房もしくは
暖房を行う空調装置、もしくはゼーベック効果により温
度差を用いて発電を行う発電装置に用いる熱電素子及び
その製造方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thermoelectric element used in an air conditioner that electrically cools or heats air by utilizing the Peltier effect, or a power generating device that generates electricity by using a temperature difference due to the Seebeck effect. and improvement of its manufacturing method.

従来の技術 従来、熱を電気に変換し、もしくは電気を熱に変換する
熱電素子は、第4図従来例に示す様に金属板1、及び金
属板2によってP型半導体4、もしくはN型半導体3を
挟み込む構成を有し、両側の金属の温度差により発電を
行い、もしくは電圧を与え電流を通ずることにより冷却
又は発熱を行うものである。
2. Description of the Related Art Conventionally, a thermoelectric element that converts heat into electricity or electricity into heat is used to convert a P-type semiconductor 4 or an N-type semiconductor into a P-type semiconductor 4 or an N-type semiconductor using a metal plate 1 and a metal plate 2, as shown in a conventional example in FIG. 3, and generates electricity by the temperature difference between metals on both sides, or cools or generates heat by applying voltage and passing current.

発明が解決しようとする課題 このような従来の熱電装置では、第4図にみられるよう
に半導体3.4を金属板1または2に電気的かつ熱的に
接合させて、セラミック等の基板7に張り付けて保持し
ている。これらの半導体3.4と金属板1.2間の接合
は一般には半田をもちいて行われているが、半田と半導
体3.4とのなじみが悪く、はずれ易く信頼性が低いと
いう問題があった。また発熱側もしくは冷却側は基板7
により支える必要があるが、基板7は熱抵抗となり熱電
素子の発熱側と冷却側の温度差を増加させるため、熱電
素子の性能を著しく低下させる。またこのような構成で
は、伝熱面積を増加させるためには、新たに基板7側、
もしくはその反対側に、放熱フィンを接合する必要があ
るが、接合面が限られている為フィン効率が悪化するば
かりでなく、接触抵抗による効率の低下が生じるという
課題があり、重量もかさばるという課題もあった。
Problems to be Solved by the Invention In such a conventional thermoelectric device, as shown in FIG. It is attached and held. Bonding between the semiconductor 3.4 and the metal plate 1.2 is generally performed using solder, but there is a problem that the solder and the semiconductor 3.4 are not compatible with each other and easily come off, resulting in low reliability. Ta. Also, the heating side or cooling side is the substrate 7.
However, since the substrate 7 becomes a thermal resistance and increases the temperature difference between the heat generating side and the cooling side of the thermoelectric element, it significantly deteriorates the performance of the thermoelectric element. In addition, in such a configuration, in order to increase the heat transfer area, it is necessary to newly add the substrate 7 side,
Alternatively, it is necessary to bond a heat dissipation fin to the opposite side, but since the bonding surface is limited, the fin efficiency not only deteriorates, but also there is a problem that the efficiency decreases due to contact resistance, and it is also bulky. There were also challenges.

本発明は、これらの従来技術の課題に鑑み、ペルチェ効
果を生じる半導体材料と金属との接合性を改善すると共
に、伝熱面積が広く取れる構成を提供することにより、
性能が高く、製造が容易な熱電素子及びその製造方法を
提供することを目的とするものである。
In view of these problems of the prior art, the present invention improves the bonding between the semiconductor material and metal that causes the Peltier effect, and provides a configuration that allows a large heat transfer area.
The object of the present invention is to provide a thermoelectric element that has high performance and is easy to manufacture, and a method for manufacturing the same.

課題を解決するための手段 本発明は上記の課題を解決するためのものであって、次
のような手段を含む。
Means for Solving the Problems The present invention is intended to solve the above problems, and includes the following means.

(1)ペルチェ効果を生じる半導体の表面に金属膜を形
成し、この結果半導体と金属を直接的に接合させること
ができる。次いで半田、もしくは導電性の接合材を用い
ることにより電極金属と前記金属膜とを接合するという
熱電素子の製造方法。
(1) A metal film is formed on the surface of a semiconductor that causes the Peltier effect, and as a result, the semiconductor and metal can be directly bonded. A method for manufacturing a thermoelectric element, in which the electrode metal and the metal film are then bonded using solder or a conductive bonding material.

(2)その金属を棒状または線状としペルチェ効果を生
じる半導体を挟み込んで接合させてなる熱電素子。
(2) A thermoelectric element made by making the metal rod-shaped or wire-shaped and sandwiching and bonding a semiconductor that produces a Peltier effect.

(3)ペルチェ効果を生じるP型半導体とN型半導体を
金属棒もしくは金属線にて交互に挟み込んで接合させる
とともに、金属棒もしくは金属線をU字状に折り曲げ、
半導体がほぼ一列にまとまって配置されるように構成さ
れた熱電素子。なお、半導体が断熱壁の内部に配置され
ることが好ましく4)金属棒もしくは金属線、または金
属板の端面にペルチェ効果を生じる半導体を製膜し、次
に金属を製膜した後、金属棒もしくは金属線、または金
属板を半田もしくは導電性の接合材により接合するとい
つ熱電素子の製造方法。
(3) P-type semiconductors and N-type semiconductors that produce a Peltier effect are alternately sandwiched and bonded using metal rods or metal wires, and the metal rods or metal wires are bent into a U-shape.
A thermoelectric element configured so that semiconductors are arranged almost in a line. Note that it is preferable that the semiconductor be placed inside the heat insulating wall. 4) After forming a film of a semiconductor that produces a Peltier effect on the end face of a metal rod, metal wire, or metal plate, and then forming a film of metal, Or, a method for manufacturing a thermoelectric element by joining metal wires or metal plates with solder or a conductive bonding material.

作   用 上記のような手段によって、得られる作用は次の通りで
ある。
Effects The effects obtained by the above means are as follows.

(1)半導体と薄膜金属を直接的に接合させ、その金属
と電極金属を半田等の方法で接合しているため接合が強
固である。また金属どうしの結合であるので、接合面が
半田をはじかないため、気泡が入りに(<、熱抵抗、電
気抵抗共に低くなり、熱電素子の効率が向上する。
(1) The semiconductor and thin film metal are directly bonded, and the metal and electrode metal are bonded by a method such as soldering, so the bond is strong. In addition, since it is a metal-to-metal bond, the bonding surface does not repel solder, which allows air bubbles to enter.Both thermal resistance and electrical resistance are lowered, improving the efficiency of the thermoelectric element.

(2)基板を用いず、金属棒もしくは金属線により半導
体を挟み込んで構成しているために伝熱面積が広く取れ
放熱もしくは吸熱効率が高い。
(2) Since the semiconductor is sandwiched between metal rods or wires without using a substrate, the heat transfer area is wide and heat radiation or heat absorption efficiency is high.

(3)断熱壁内に半導体部を設けたために、高温側から
低温側への熱の漏れが少ない。
(3) Since the semiconductor section is provided within the heat insulating wall, there is little heat leakage from the high temperature side to the low temperature side.

(4)変形が容易な金属部をU字状に折り曲げて波状に
しているため製作が容易であり、放熱量の調整が容易で
ある。
(4) Since the easily deformable metal part is bent into a U-shape to form a wave shape, manufacturing is easy and the amount of heat dissipation can be easily adjusted.

(5)半導体の両側で接合している金属が、棒状もしく
は線状もしくは細い板状であるため、境界層の発達が少
なく、熱伝達率の高い放熱フィンとすることができる。
(5) Since the metal bonded on both sides of the semiconductor is rod-shaped, linear, or thin plate-shaped, the development of a boundary layer is small and a heat dissipation fin with high heat transfer coefficient can be obtained.

(6)金属棒もしくは金属線、または金属板の端面にペ
ルチェ効果を生じる半導体を製膜し、次に金属を製膜し
た後、金属棒もしくは金属線、または金属板を半田もし
くは導電性の接合材により接、合する製造方法を用いて
いるので、工程が簡単であり作成が容易である。また薄
膜を用いているので、希少金属材料の使用量が少ない。
(6) After forming a film of a semiconductor that produces a Peltier effect on the end face of a metal rod, metal wire, or metal plate, and then forming a metal film, solder or conductive joining the metal rod, metal wire, or metal plate. Since a manufacturing method is used in which materials are joined together, the process is simple and it is easy to create. Furthermore, since a thin film is used, the amount of rare metal materials used is small.

実施例 以下に本発明による実施例を図面により説明する。第1
図は本発明の一実施例における線状熱電素子の概略構成
を示したものである。
Examples Examples according to the present invention will be described below with reference to the drawings. 1st
The figure shows a schematic configuration of a linear thermoelectric element in an embodiment of the present invention.

第1図において、P型半導体8PとN型半導体8nの各
両端表面には真空蒸着、メツキ、溶射等のプロセスを用
いて、薄い銅薄膜9as9bが製膜されている。また、
この銅薄膜θas9bは、銅線10a、10bと半田に
よって接合されている。銅線10a、10bはそのほぼ
中央部が折り曲げられたU字状構造となっており、半導
体8P18nは熱電素子のほぼ中央部に位置するように
構成されている。この線状熱電素子の両端に電圧を印加
し、電流を通ずることによって、P型、N型の各半導体
8P、8nの両端に発熱部と冷却部が生じ、その熱は、
導線10a110bを伝わって、外気と熱交換を行う。
In FIG. 1, a thin copper film 9as9b is formed on each end surface of a P-type semiconductor 8P and an N-type semiconductor 8n using a process such as vacuum evaporation, plating, or thermal spraying. Also,
This copper thin film θas9b is joined to copper wires 10a and 10b by solder. The copper wires 10a and 10b have a U-shaped structure in which their substantially central portions are bent, and the semiconductor 8P18n is configured to be located substantially in the center of the thermoelectric element. By applying a voltage to both ends of this linear thermoelectric element and passing a current, a heat generating part and a cooling part are generated at both ends of each of the P-type and N-type semiconductors 8P and 8n, and the heat is
The heat exchanges with the outside air through the conducting wire 10a110b.

本実施例ではP型とN型の半導体8P18nを交互に配
置しているので、各々の銅線10a側、もしくは10b
側が全て、高温側か低温側になる。
In this embodiment, since P-type and N-type semiconductors 8P18n are arranged alternately, each copper wire 10a side or 10b
All sides are either hot or cold.

この様な素子製造方法、および構成によって、銅線10
a110bと半導体8Pt8nは強固に接合され、丈夫
であるばかりでな(、接合面の半田の濡れ状態がよく、
気泡等による接合不良がないため、接触抵抗が低く、熱
抵抗も小さくなり、熱電性能が向上する。また、銅線1
0a110bの長さを負荷に応じて適当に調整すること
ができるため、適切な放熱もしくは吸熱が可能となる。
With such an element manufacturing method and configuration, the copper wire 10
The a110b and the semiconductor 8Pt8n are not only strongly bonded and durable (but also the solder on the bonding surface is well wetted,
Since there are no bonding defects due to bubbles, etc., contact resistance is low, thermal resistance is also reduced, and thermoelectric performance is improved. Also, copper wire 1
Since the length of 0a110b can be adjusted appropriately according to the load, appropriate heat radiation or heat absorption is possible.

銅線10a、10bには場合により、フィン等を付ける
ことも容易であり、熱負荷に対して非常に柔軟に対応で
きる。
It is easy to attach fins or the like to the copper wires 10a and 10b depending on the case, so that they can respond very flexibly to thermal loads.

第2図は本発明の他の実施例における熱電素子であり、
薄膜半導体を用いたものである。第1図に示した実施例
と異なり本実施例では銅板11aの端面に半導体薄膜1
2を蒸着等のプロセスを用いて製膜し、その上部に銅薄
膜13を製膜する。
FIG. 2 shows a thermoelectric element in another embodiment of the present invention,
It uses a thin film semiconductor. Unlike the embodiment shown in FIG. 1, this embodiment has a semiconductor thin film 1 on the end face of the copper plate 11a.
2 is formed into a film using a process such as vapor deposition, and a copper thin film 13 is formed on top of the film.

その後、銅薄膜13と銅板11bとは半田もしく。Thereafter, the copper thin film 13 and the copper plate 11b are soldered or soldered.

は導電接合材によって接合することで、熱電素子を構成
するのである。本実施例も電圧を銅板11a11Lbに
印加し電流を流すと半導体薄膜12と銅薄膜13との界
面、及び半導体薄膜12との界面に吸熱部と発熱部が生
じ、それぞれ銅板11a111bを伝わって周囲と熱交
換を行う。このように薄膜半導体12を用いれば、バル
クの場合と比較して、材料の使用量を減少させることが
でき、重量も軽量化できる。
By bonding them together using a conductive bonding material, a thermoelectric element is constructed. In this embodiment as well, when a voltage is applied to the copper plate 11a11Lb and a current is caused to flow, a heat absorbing part and a heat generating part are generated at the interface between the semiconductor thin film 12 and the copper thin film 13, and at the interface with the semiconductor thin film 12, which are transmitted through the copper plate 11a111b and connected to the surroundings. Perform heat exchange. By using the thin film semiconductor 12 in this manner, the amount of material used can be reduced and the weight can be reduced compared to the case of bulk.

本実施例では単一の素子を示したが、第1図の実施例に
示したように、半導体薄膜12を銅板11a、11bの
側端面に製膜してもよいし、また、P型とN型の半導体
を交互に直列に連続して接合し、その間の銅板を折り曲
げた構成にしてもよいことは言うまでもない。
Although a single element is shown in this embodiment, the semiconductor thin film 12 may be formed on the side end surfaces of the copper plates 11a and 11b as shown in the embodiment of FIG. Needless to say, it is also possible to have a structure in which N-type semiconductors are alternately connected in series and the copper plates between them are bent.

第3図は本実施例の熱電素子をもちいた冷却、加熱機の
一使用例であり、第1図に示した熱電素子の半導体8a
s8bを覆うように、断熱壁15を設けたものである。
FIG. 3 shows an example of the use of a cooling/heating machine using the thermoelectric element of this embodiment, and the semiconductor 8a of the thermoelectric element shown in FIG.
A heat insulating wall 15 is provided to cover s8b.

この断熱壁15の両側には銅線10 a、  10 b
が突き出しており、流動する空気17a、17bと熱交
換を行うように構成されている。この断熱壁15の厚み
は空気17a117bの温度差によって、厚みを変化さ
せる必要があるが、その際、常に気流と銅線10a、1
0bが十分に熱交換できるように、銅線10a11ob
の長さを適当に変化させる。この線状熱電素子14に電
流を流すことで、空気17a、17bの一方は加熱され
、一方は冷却される。つまりヒートポンプ空調機や冷蔵
庫用として用いることが出来るのである。
Copper wires 10a and 10b are installed on both sides of this heat insulating wall 15.
protrudes and is configured to exchange heat with the flowing air 17a, 17b. The thickness of the heat insulating wall 15 needs to be changed depending on the temperature difference between the air 17a and 117b.
Copper wire 10a11ob so that 0b can sufficiently exchange heat
Change the length appropriately. By passing a current through this linear thermoelectric element 14, one of the air 17a, 17b is heated and the other is cooled. In other words, it can be used for heat pump air conditioners and refrigerators.

また、冷却側と発熱側の放熱量に応じて、銅線10a、
10bの長さを変化させれば、経済性、効率面からみて
最適な放熱状態が実現できるので、性能が良く、安価な
冷却、加熱機となる。また、線状熱電素子14の複数本
を並列に接続し、出力を上げる構成も容易であることか
ら、様々な負荷に対する自由度も高い。また鋼線10a
、10bを細線で形成すれば線状熱電素子14が非常に
柔軟になるため、破損しにくいという特徴もある。
In addition, depending on the amount of heat dissipation on the cooling side and the heat generation side, the copper wire 10a,
By changing the length of 10b, the optimum heat dissipation condition can be achieved from the viewpoint of economy and efficiency, resulting in a cooling and heating machine with good performance and low cost. Further, since it is easy to connect a plurality of linear thermoelectric elements 14 in parallel to increase the output, there is a high degree of freedom in dealing with various loads. Also steel wire 10a
, 10b made of thin wires, the linear thermoelectric element 14 becomes very flexible, so that it is less likely to be damaged.

もちろん本発明によるこの構成を有する熱電索子はゼー
ベック効果によって熱源の熱を電気に変換する際にも使
用が可能であり、その場合にも同様な効果を生じること
は言うまでもない。
Of course, the thermoelectric cord having this configuration according to the present invention can also be used when converting heat from a heat source into electricity by the Seebeck effect, and it goes without saying that similar effects will be produced in that case as well.

発明の効果 本発明は次のような効果を奏する。Effect of the invention The present invention has the following effects.

(1)半田等の接合材は常に金属面間の接合に用いられ
るので、接合が強固であり、熱抵抗や電気抵抗が小さく
素子効率が高い。 (2)非常にフレキシブルで軽く材
料費も安価ある。 (3)伝熱面積が広く取れるため外
部負荷との間の温度差が小さくなり放熱効率が向上する
。(4)高温側と低温側を断熱壁によって分離し、かつ
その中に熱電素子を設置したため、漏れ熱量が少なくな
り、総合的な冷却もしくは加熱性能が向上する。 (5
)金属電極上に半導体と金属を薄膜状にして形成させ、
しかる後半田等により金属電極と接合する製造方法を用
いているので、作製が容易であるばかりでなく、安価に
、強固で軽く、性能のよい熱電素子を製造できる。
(1) Since a bonding material such as solder is always used to bond metal surfaces, the bond is strong, has low thermal resistance and electrical resistance, and has high element efficiency. (2) It is extremely flexible, lightweight, and has low material costs. (3) Since the heat transfer area can be widened, the temperature difference with the external load is reduced, and heat radiation efficiency is improved. (4) Since the high-temperature side and the low-temperature side are separated by a heat insulating wall and the thermoelectric element is installed within the wall, the amount of heat leaked is reduced and the overall cooling or heating performance is improved. (5
) A thin film of semiconductor and metal is formed on a metal electrode,
Since a manufacturing method is used in which the thermoelectric element is bonded to a metal electrode by soldering or the like, it is not only easy to manufacture, but also a thermoelectric element that is strong, lightweight, and has good performance can be manufactured at low cost.

つまり、本発明を実施することで、非常に強固で軽量、
かつ経済性に富み、しかも冷却もしくは加熱性能の高い
熱電素子が安定に生産することが可能となるものである
In other words, by implementing the present invention, it is extremely strong, lightweight,
Moreover, it is possible to stably produce a thermoelectric element that is highly economical and has high cooling or heating performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるの線状熱電素子の概
略構成図、第2図は本発明の他の実施例における板状熱
電素子の概略構成図、第3図は第1図の線状熱電素子を
用いた加熱、冷却機の一使用例を示す斜視図、第4図は
従来の熱電素子の斜視図である。 8P、8ns  12.、、半導体、10 all 0
 b 。 9.銅線、lla、llb、、、銅板、12 、、、半
導体薄膜、13 、、、銅薄膜、15.、、断熱壁。 代理人の氏名 弁理士 粟野重孝 はが1名14尊状需
叱素チ 第3図 2図 婆 4 図 1ど手導仲簿戦
FIG. 1 is a schematic diagram of a linear thermoelectric element according to an embodiment of the present invention, FIG. 2 is a schematic diagram of a plate thermoelectric element according to another embodiment of the present invention, and FIG. A perspective view showing an example of the use of a heating/cooling machine using a linear thermoelectric element. FIG. 4 is a perspective view of a conventional thermoelectric element. 8P, 8ns 12. ,,semiconductor,10 all 0
b. 9. Copper wire, lla, llb,... Copper plate, 12... Semiconductor thin film, 13... Copper thin film, 15. ,,insulated walls. Name of agent: Patent attorney Shigetaka Awano 1 person

Claims (5)

【特許請求の範囲】[Claims] (1)真空製膜法もしくは常圧製膜法により、ペルチェ
効果を生じる半導体の表面に金属膜を形成し、前記金属
膜と電極金属を半田もしくは導電性の接合材により接合
した熱電素子の製造方法。
(1) Manufacturing a thermoelectric element in which a metal film is formed on the surface of a semiconductor that produces a Peltier effect using a vacuum film forming method or an atmospheric pressure film forming method, and the metal film and electrode metal are bonded using solder or a conductive bonding material. Method.
(2)ペルチェ効果を生じる半導体を、金属棒もしくは
金属線間に挟み込んでこれらに接合させてなる熱電素子
(2) A thermoelectric element in which a semiconductor that produces the Peltier effect is sandwiched between metal rods or metal wires and bonded to them.
(3)金属棒もしくは金属線に間隔をおいてペルチェ効
果を生じるP型半導体とN型半導体を交互に挟み込んで
接合させ、前記P型半導体及びN型半導体がほぼ一列に
まとまって配置されるように、前記金属棒もしくは金属
線をU字状に折り曲げてなる熱電素子。
(3) P-type semiconductors and N-type semiconductors that produce a Peltier effect are sandwiched and bonded alternately between metal rods or metal wires at intervals, so that the P-type semiconductors and N-type semiconductors are arranged almost in a line. and a thermoelectric element formed by bending the metal rod or metal wire into a U-shape.
(4)ペルチェ効果を生じる半導体を断熱壁の内部に配
置した請求項3記載の熱電素子。
(4) The thermoelectric element according to claim 3, wherein the semiconductor that produces the Peltier effect is disposed inside the heat insulating wall.
(5)金属棒もしくは金属線、または金属板の端面にペ
ルチェ効果を生じる半導体を製膜し、次に金属を製膜し
た後、金属棒もしくは金属線、または金属板を半田もし
くは導電性の接合材により接合した熱電素子の製造方法
(5) After forming a film of a semiconductor that produces a Peltier effect on the end face of a metal rod, metal wire, or metal plate, and then forming a metal film, solder or conductive joining the metal rod, metal wire, or metal plate. A method for manufacturing thermoelectric elements bonded by materials.
JP1093512A 1989-04-13 1989-04-13 Thermoelectric element and manufacture thereof Pending JPH02271683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1093512A JPH02271683A (en) 1989-04-13 1989-04-13 Thermoelectric element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1093512A JPH02271683A (en) 1989-04-13 1989-04-13 Thermoelectric element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02271683A true JPH02271683A (en) 1990-11-06

Family

ID=14084402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1093512A Pending JPH02271683A (en) 1989-04-13 1989-04-13 Thermoelectric element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02271683A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018422A1 (en) * 1990-05-14 1991-11-28 Kabushiki Kaisha Komatsu Seisakusho Method of manufacturing thermoelectric device
JP2008053686A (en) * 2006-07-27 2008-03-06 Denso Corp Method of manufacturing thermoelectric conversion device
JP2013543255A (en) * 2010-09-13 2013-11-28 テンプロニクス,インコーポレイテッド Distributed thermoelectric strings and insulation panels and their application in local heating, local cooling, and thermoelectric generation
JP2016092017A (en) * 2014-10-29 2016-05-23 アイシン高丘株式会社 Thermoelectric module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991018422A1 (en) * 1990-05-14 1991-11-28 Kabushiki Kaisha Komatsu Seisakusho Method of manufacturing thermoelectric device
JP2008053686A (en) * 2006-07-27 2008-03-06 Denso Corp Method of manufacturing thermoelectric conversion device
JP2013543255A (en) * 2010-09-13 2013-11-28 テンプロニクス,インコーポレイテッド Distributed thermoelectric strings and insulation panels and their application in local heating, local cooling, and thermoelectric generation
JP2016092017A (en) * 2014-10-29 2016-05-23 アイシン高丘株式会社 Thermoelectric module

Similar Documents

Publication Publication Date Title
JP2636119B2 (en) Thermoelectric element sheet and manufacturing method thereof
US20060042675A1 (en) Thermoelectric device and method of manufacturing the same
US4463214A (en) Thermoelectric generator apparatus and operation method
JP2005522893A (en) Thermoelectric device using double-sided Peltier junction and manufacturing method thereof
JP2006294935A (en) High efficiency and low loss thermoelectric module
WO2017182005A1 (en) Refrigeration structure of semiconductor laser, and semiconductor laser and stack thereof
JP2007035907A (en) Thermoelectric module
JP4481606B2 (en) Thermoelectric converter
JPH01208876A (en) Thermoelectric device and manufacture thereof
JPH02271683A (en) Thermoelectric element and manufacture thereof
JPH0430586A (en) Thermoelectric device
JP3501394B2 (en) Thermoelectric conversion module
JP3920403B2 (en) Thermoelectric converter
JPH07106641A (en) Integral ring type thermoelectric conversion element and device employing same
JP2996305B2 (en) High thermal resistance thermoelectric generator
JP3404841B2 (en) Thermoelectric converter
JP3469811B2 (en) Line type thermoelectric conversion module
JPH02198179A (en) Thermoelectric element and manufacture thereof
CN109372059B (en) Nanometer small molecule water generating device
JP3062754B1 (en) Thermoelectric generation module
JPH09162448A (en) Thermoelectric element
JPH0485973A (en) Thermoelectric generator
JPH0714029B2 (en) Power semiconductor device
JPS58153092A (en) Heat exchanger used in thermoelectric generator
JP2566330B2 (en) Thermoelectric power generation method and apparatus