JPH01208876A - Thermoelectric device and manufacture thereof - Google Patents

Thermoelectric device and manufacture thereof

Info

Publication number
JPH01208876A
JPH01208876A JP63034207A JP3420788A JPH01208876A JP H01208876 A JPH01208876 A JP H01208876A JP 63034207 A JP63034207 A JP 63034207A JP 3420788 A JP3420788 A JP 3420788A JP H01208876 A JPH01208876 A JP H01208876A
Authority
JP
Japan
Prior art keywords
film
metal
thermoelectric device
copper
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63034207A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Tanaka
博由 田中
Yoshiyuki Tsuda
善行 津田
Yuji Mukai
裕二 向井
Hideaki Yasui
秀明 安井
Masaaki Adachi
安立 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63034207A priority Critical patent/JPH01208876A/en
Publication of JPH01208876A publication Critical patent/JPH01208876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To reduce the weight, to compact the size, and to enhance the effi ciency of a thermoelectric device by directly intermetallically adhering a thin filmlike N- or P-type semiconductor and a plate or thin filmlike metal by a vacuum thin film manufacturing process. CONSTITUTION:An N-type semiconductor film 10 is formed by a vacuum depositing method on a copper substrate 9. A copper film 11 is deposited on the top of the semiconductor 10, the semiconductor 10 and the film 11 are repeatedly laminated to hold the uppermost and lowermost parts between a copper film 11' and the substrate 9. Then, a copper plate 12 is adhered by soldering to the film 11' at the uppermost part for electrodes and reinforcing. A voltage is externally applied to this thermoelectric device to be cooled and heated. With thus construction, the temperature difference between a low temper ature part and a high temperature part is increased, Joule heat is suppressed, and an available metal amount can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はペルチェ効果を利用し、電気的に冷房もしくは
暖房を行う空調装置、もしくはゼーベック効果により温
度差を用いて発電を行う発電装置等の熱電装置とその5
2造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to thermoelectric devices such as air conditioners that electrically cool or heat air using the Peltier effect, or power generators that generate electricity using temperature differences due to the Seebeck effect. and part 5
Concerning the two-manufacturing method.

従来の技術 従来、熱を電気に変換し、もしくは電気を熱に変換する
熱電装置7は、第4図の従来例に示す様に金属板l及び
金属板2によってP型半導体4もしくはN型の半導体3
を挟み込む構成を有し、両側の金属の温度差により発電
を行い、もしくは電界を与え電流を通ずることにより冷
却を行うものである。
2. Description of the Related Art Conventionally, a thermoelectric device 7 that converts heat into electricity or electricity into heat converts a P-type semiconductor 4 or an N-type semiconductor into a P-type semiconductor 4 or an N-type semiconductor using a metal plate 1 and a metal plate 2, as shown in a conventional example in FIG. semiconductor 3
It has a structure in which the metals are sandwiched between the two sides, and generates electricity by using the temperature difference between the metals on both sides, or cools the metal by applying an electric field and passing a current.

特に、第4図の従来例はN型の半導体3とP型の半導体
4を交互に直列的に配列した熱電装置であり、端子5と
端子6間に電位を与えると、金属板の一方が冷却され、
他方が加熱される。
In particular, the conventional example shown in FIG. 4 is a thermoelectric device in which N-type semiconductors 3 and P-type semiconductors 4 are arranged alternately in series, and when a potential is applied between terminals 5 and 6, one of the metal plates cooled,
The other is heated.

発明が解決しようとする課題 しかしながら、このような従来の熱電装置では、半導体
3または4はBi、Te等の元素からなり溶融、焼成等
の手段を用いてバルクの状態で作られる。そのため (1)非常に脆く、たわみによって破損し易い。
Problems to be Solved by the Invention However, in such conventional thermoelectric devices, the semiconductor 3 or 4 is made of elements such as Bi and Te and is produced in a bulk state by means of melting, firing, etc. Therefore, (1) it is very brittle and easily damaged by bending.

(2)カスケード方式により積層し、低温と高温の温度
差を大きくしようとすると、 厚みが増加し、!R呈が
増すだけでなく、電気抵抗が増加し性能が低下する。
(2) If you try to increase the temperature difference between low and high temperatures by stacking layers using the cascade method, the thickness will increase! Not only does R-resistance increase, but electrical resistance increases and performance deteriorates.

(3)脆いためフレキシブルな基板が使えず円筒管等の
曲面を有する物体の加熱冷却が困難である。
(3) Because it is brittle, flexible substrates cannot be used and it is difficult to heat and cool objects with curved surfaces such as cylindrical tubes.

(4)半田による接合か圧着しかできず、接合面でのジ
ュール熱による損失が大きい。
(4) Bonding can only be done by soldering or crimping, and the loss due to Joule heat at the bonding surface is large.

(5)希少金属を大量に使用するため、材料コストが高
い。
(5) Material costs are high due to the use of large quantities of rare metals.

等の課題があった。There were other issues.

本発明は、上記課題に基づき、熱電装置を薄膜状に積層
した構成とし、真空プロセスにて直接金属間接合して作
製することによって新規な熱電装置とその製造方法を提
供しようとするものである。
Based on the above-mentioned problems, the present invention aims to provide a novel thermoelectric device and a method for manufacturing the same, by forming the thermoelectric device into a thin film-layered structure and manufacturing the thermoelectric device by direct metal-to-metal bonding in a vacuum process. .

課題を解決するための手段 本発明による熱電装置は、薄膜状のN型、もしくはP型
の半導体と、板もしくは薄膜状の金属とを、真空薄膜作
製プロセスにより直接的に金属間接合させて積層し、最
上面及び最下面を金属として構成したものである。
Means for Solving the Problems The thermoelectric device according to the present invention is a stacking method in which a thin film of N-type or P-type semiconductor and a plate or thin film of metal are directly bonded to each other by a vacuum thin film manufacturing process. However, the uppermost surface and the lowermost surface are made of metal.

作用 上記のような構成もしくは方法によって、得られる作用
は次の通りである。
Effects The effects obtained by the above configuration or method are as follows.

(1)熱電装置が薄膜状の半導体と板もしくは薄膜状の
金属とを金属間接合させて積層した形状であるため、非
常にフレキシブルに形状を変化させることができる。
(1) Since the thermoelectric device has a shape in which a thin film semiconductor and a plate or thin film metal are laminated by metal-to-metal bonding, the shape can be changed very flexibly.

(2)fffF!構造としているため薄い板状の両面で
、低温部と高温部がつくれ、かつ、その温度差を大きく
できる。
(2) fffF! Because of its structure, a low temperature area and a high temperature area can be created on both sides of the thin plate, and the temperature difference between them can be increased.

(3)半導体と金属の接合面に半田等を使用せず、直接
的に接合する構成としているため、接合面での電気抵抗
によるジュール熱の発生を抑えることが出来る。
(3) Since the semiconductor and metal are directly bonded without using solder or the like on the bonding surface, generation of Joule heat due to electrical resistance at the bonding surface can be suppressed.

(4)半導体、金属ともに1μm以下の膜厚とすること
ができるため、非常に薄くて軽量である。
(4) Both the semiconductor and metal can have a film thickness of 1 μm or less, making it extremely thin and lightweight.

(5)使用する金属の量も非常にわずかで済む。(5) The amount of metal used is also very small.

実施例 以下に本発明による実施例を図面により説明する。第1
図は本発明による一実施例であり、熱電装置の概略断面
の構成を示す図である。
Examples Examples according to the present invention will be described below with reference to the drawings. 1st
The figure is an embodiment according to the present invention, and is a diagram showing a schematic cross-sectional configuration of a thermoelectric device.

本実施例の熱電装置は、銅基板9上に構成されたもので
あり、その上部にN型の半導体膜10が真空蒸着法によ
って、製膜されている。また半導体10の上部には銅膜
11が蒸着されており、図に示すごとく半導体10と銅
膜11が繰り返して積層され、最上部と最下部は銅膜1
1’と鋼基板9で挟み込んでいる。本実施例では電極及
び補強用として銅板12を最上部の銅膜11’に半田付
けにて接合している。この熱電装置には外部から電圧を
加えることにより冷却と加熱が行われる。
The thermoelectric device of this embodiment is constructed on a copper substrate 9, on which an N-type semiconductor film 10 is formed by vacuum evaporation. Further, a copper film 11 is deposited on the top of the semiconductor 10, and as shown in the figure, the semiconductor 10 and the copper film 11 are repeatedly laminated, and the top and bottom are covered with a copper film 11.
1' and a steel substrate 9. In this embodiment, a copper plate 12 for electrodes and reinforcement is joined to the uppermost copper film 11' by soldering. Cooling and heating are performed by applying voltage from the outside to this thermoelectric device.

また第2図は第1図に示した熱電装置を電気的に直列に
接合した実施例であり、 (a)は正面図、(b)はX
−Y断面図である。以下説明の都合上、各個別の熱電装
置を熱電素子部と呼び、それらを結合した全体を熱電装
置と呼ぶ。第1図に示した実施例では、熱電装置は基板
に銅板9を用いていたが本実施例ではポリイミド基板1
3を用い、その上に銅膜14、P型半導体15を繰り返
して積層した構成としている。最下部にある銅膜14と
最り部にある銅膜14’は、隣接する積層された熱電素
子部16と接合され電気的に直列になる様に配置されて
いる。ただし、この接合された熱電素子部は、放熱面と
加熱面が各熱電素子部16で同一面に向くように、N型
とP型の半導体を使用した熱電素子部16を交互に接合
する方式を用いている。最上部が接合した各熱電素子部
間には、絶縁物17が挿入されている、本実施例の熱電
装置の製作はりソゲラフイエ法を用いて作製している。
Fig. 2 shows an example in which the thermoelectric devices shown in Fig. 1 are electrically connected in series, (a) is a front view, and (b) is an
-Y sectional view. For convenience of explanation, each individual thermoelectric device will be referred to as a thermoelectric element section, and the entirety of these components will be referred to as a thermoelectric device. In the embodiment shown in FIG. 1, the thermoelectric device used a copper plate 9 as a substrate, but in this embodiment, a polyimide substrate 1 was used.
3, and a copper film 14 and a P-type semiconductor 15 are repeatedly laminated thereon. The copper film 14 at the bottom and the copper film 14' at the edge are connected to the adjacent stacked thermoelectric element section 16 and arranged so as to be electrically in series. However, this joined thermoelectric element part is a method in which thermoelectric element parts 16 using N-type and P-type semiconductors are joined alternately so that the heat dissipation surface and the heating surface face the same surface in each thermoelectric element part 16. is used. The thermoelectric device of this embodiment, in which an insulator 17 is inserted between each thermoelectric element portion joined at the top, is manufactured using the Sogera Huie method.

絶縁物17はレジストを残存させて構成し、その−上部
に両側の熱電素子部16を橋渡しするがごとくに銅膜1
49をスパッタ蒸着する。この熱電装置には引出し電極
18から電気を流し上面と下面で冷却と加熱を行う。
The insulator 17 is formed by leaving a resist, and a copper film 1 is placed on top of the resist to bridge the thermoelectric element parts 16 on both sides.
49 is sputter-deposited. Electricity is passed through this thermoelectric device from the extraction electrode 18 to perform cooling and heating on the upper and lower surfaces.

第3図は本発明による他の実施例の熱電装置の断面図を
示したものである。本実施例では、前述の熱電装置を絶
縁層を介して2段に積み上げたものであるが、この段数
は、もちろん適宜何段にしても良い。本実施例では、基
板19にガラスを使用している。また1段と2段の熱電
装置間は、ダイヤモンド絶縁膜20により絶縁を行う。
FIG. 3 shows a cross-sectional view of a thermoelectric device according to another embodiment of the present invention. In this embodiment, the above-mentioned thermoelectric devices are stacked in two stages with an insulating layer interposed therebetween, but the number of stages may of course be any number as appropriate. In this embodiment, glass is used for the substrate 19. Further, insulation is provided between the first and second stage thermoelectric devices by a diamond insulating film 20.

また図中の21はN型もしくはP型の半導体膜、22は
銅膜であり、23.24は引出し電極である。引出し電
極には電圧を印加するが、並列に印加しても、直列でも
よい。 − 以上のように本発明の実施例を用いることで、次のよう
な効果が期待できる。
Further, in the figure, 21 is an N-type or P-type semiconductor film, 22 is a copper film, and 23 and 24 are extraction electrodes. A voltage is applied to the extraction electrodes, and the voltage may be applied in parallel or in series. - By using the embodiments of the present invention as described above, the following effects can be expected.

(1) Fff層構造としているため厚みは薄くとも、
低温部と高温部の温度差が大きくとれる。
(1) Due to the Fff layer structure, although the thickness is thin,
A large temperature difference can be maintained between the low temperature section and the high temperature section.

(2)半導体と金属の接合面に半田等を使用せず、直接
的に接合する構成としているため、接合面での電気抵抗
によるジュール熱の発生を抑えることが出来る。
(2) Since the semiconductor and metal are directly bonded without using solder or the like on the bonding surface, generation of Joule heat due to electrical resistance at the bonding surface can be suppressed.

(3)半導体、金属ともに1μ以下の膜厚とすることが
できるため、非常に薄くかつ軽く出来る。
(3) Since both the semiconductor and metal can have a film thickness of 1 μm or less, it can be extremely thin and light.

(4)使用する金属の量は非常にわずかとすることがで
きる。
(4) The amount of metal used can be very small.

(5)真空プロセスを用いてバターニング、製膜を行っ
ているためポリイミド等の樹脂上にも容易に熱電装置を
構成できる。
(5) Since buttering and film formation are performed using a vacuum process, thermoelectric devices can be easily constructed even on resins such as polyimide.

(6)薄い金属または樹脂上に熱電装置を構成すること
ができるため、非常にフレキシブルであり、曲面の加熱
冷却にも用意に利用できる。
(6) Since the thermoelectric device can be constructed on a thin metal or resin, it is extremely flexible and can be easily used for heating and cooling curved surfaces.

(7)各熱電素子部はりソグラフィプロセスで使用した
レジストにより、絶縁を行っているため、工法が簡便と
なり、かつ短絡による不良を防止できる。
(7) Each thermoelectric element is insulated by the resist used in the lithography process, which simplifies the construction method and prevents defects due to short circuits.

(8)薄膜をfn層した構成であるため非常に小さな面
積から大きな面積まで製作が自在である。
(8) Since it has a structure with fn layers of thin films, it can be manufactured from a very small area to a large area.

(9)各熱電装置が非常に薄く構成され、なん枚でも重
ねて用いることが出来るので、低温部と高温部の温度差
を自在にコントロールできる。
(9) Since each thermoelectric device is extremely thin and can be used in any number of layers, it is possible to freely control the temperature difference between the low-temperature part and the high-temperature part.

(lO)また、重ねられた各a電装置部は、ダイヤモン
ド薄膜にて絶縁、接合しているため、熱損失が少ない。
(lO) Also, since each of the stacked electric device parts is insulated and bonded with a diamond thin film, there is little heat loss.

発明の効果 以上のように本発明による熱電装置は、薄膜状のN型、
もしくはP型の半導体と、板もしくは薄膜状の金属とを
、真空薄膜作製プロセスにより直接的に金属間接合させ
て積層し、最上面及び最下面を金属として構成し、ある
いはそれらの複数個を最上面と最下面を電気の流入、流
出端として直列的に接合して構成しているため、次のよ
うな効果を奏する。
Effects of the Invention As described above, the thermoelectric device according to the present invention has thin film-like N type,
Alternatively, a P-type semiconductor and a metal plate or thin film may be laminated by direct metal-to-metal bonding using a vacuum thin film fabrication process, and the top and bottom surfaces may be made of metal, or a plurality of these may be stacked as metal. Since the upper surface and the lowermost surface are connected in series as the inflow and outflow ends of electricity, the following effects are achieved.

(1)非常にフレキシブルな構成として製作できるため
、形状的な制約がすくないばかりでなく、軽歌でかつコ
ンパクトにできる。
(1) Since it can be manufactured with a very flexible structure, there are not only few restrictions on shape, but it can also be light and compact.

(2)高温部と低温部の温度差を大きくとることができ
るカスケード方式としても、装置の厚みは薄く構成出来
る。
(2) The thickness of the device can be made thin by using a cascade system that allows a large temperature difference between the high temperature section and the low temperature section.

(3)各層が真空中で直接的に金属間接合して積層され
ているので、高温と低温の温度差が大きく、しかも積層
部でのジュール熱によるエネルギー損失が少ないため高
効率である。
(3) Since each layer is laminated by direct metal-to-metal bonding in a vacuum, there is a large temperature difference between high and low temperatures, and there is little energy loss due to Joule heat in the laminated portion, resulting in high efficiency.

(4)薄膜方式であるため材料の使用層が少なく、材料
コストが低減できる。
(4) Since it is a thin film method, fewer layers of material are used, reducing material costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の熱電装置の概略断面図、第
2図aは本発明の他の実施例の正面図、第2図すは第2
図aのX−Y断面図、第3図は本発明の第三の実施例の
概略断面図、第4図は従来の熱電素子の実婁桝斜視図で
ある。 2.4.15,22・・−半導体、17,20・・φ絶
縁物、13.19・・・基板。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 I2 V銅墓販 第2図 × 13ポリイミド甚沃
FIG. 1 is a schematic sectional view of a thermoelectric device according to one embodiment of the present invention, FIG. 2a is a front view of another embodiment of the present invention, and FIG.
FIG. 3 is a schematic sectional view of a third embodiment of the present invention, and FIG. 4 is an actual perspective view of a conventional thermoelectric element. 2.4.15,22...-semiconductor, 17,20...φ insulator, 13.19...substrate. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 1 I2 V copper grave sales Figure 2 × 13 Polyimide Jinyo

Claims (2)

【特許請求の範囲】[Claims] (1)薄膜状のN型、もしくはP型の半導体を、板もし
くは薄膜状の金属と上面もしくは下面にて、直接的に金
属間接合させて積層し、最上面及び最下面を前記金属と
なした熱電装置。
(1) A thin film of N-type or P-type semiconductor is laminated with a plate or thin film of metal by direct metal-to-metal bonding on the top or bottom surface, and the top and bottom surfaces are stacked with the metal. thermoelectric device.
(2)薄膜状のN型、もしくはP型の半導体と、板もし
くは薄膜状の金属とを、最上面及び最下面が金属となる
ように直接的に金属間接合させて積層するに際し、真空
を利用したプロセスにより作製する熱電装置の製造方法
(2) When laminating a thin film N-type or P-type semiconductor and a plate or thin film metal by directly metal-to-metal bonding so that the top and bottom surfaces are metal, vacuum is not applied. A method for manufacturing a thermoelectric device using the process used.
JP63034207A 1988-02-17 1988-02-17 Thermoelectric device and manufacture thereof Pending JPH01208876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63034207A JPH01208876A (en) 1988-02-17 1988-02-17 Thermoelectric device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63034207A JPH01208876A (en) 1988-02-17 1988-02-17 Thermoelectric device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01208876A true JPH01208876A (en) 1989-08-22

Family

ID=12407712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63034207A Pending JPH01208876A (en) 1988-02-17 1988-02-17 Thermoelectric device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01208876A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288336A (en) * 1988-11-18 1994-02-22 Dr. Harold Aspden Thermoelectric energy conversion
WO1994014200A1 (en) * 1992-12-11 1994-06-23 Joel Miller Laminated thermoelement
US5439528A (en) * 1992-12-11 1995-08-08 Miller; Joel Laminated thermo element
WO2001084641A1 (en) * 2000-05-02 2001-11-08 Gerhard Span Thermoelectric element
KR100309659B1 (en) * 1997-06-10 2002-01-30 다까다 요시유끼 High Speed Thin Film Cooling System
WO2011003685A1 (en) * 2009-07-10 2011-01-13 O-Flexx Technologies Gmbh Module having a plurality of thermoelectric elements
US8003879B2 (en) * 2006-04-26 2011-08-23 Cardiac Pacemakers, Inc. Method and apparatus for in vivo thermoelectric power system
US8039727B2 (en) 2006-04-26 2011-10-18 Cardiac Pacemakers, Inc. Method and apparatus for shunt for in vivo thermoelectric power system
JP2011222873A (en) * 2010-04-13 2011-11-04 Fujitsu Ltd Thermoelectric conversion element and method of manufacturing the same
JP2012124480A (en) * 2010-12-09 2012-06-28 Samsung Electro-Mechanics Co Ltd Thermoelectric element and manufacturing method for the same
US8538529B2 (en) 2006-04-26 2013-09-17 Cardiac Pacemakers, Inc. Power converter for use with implantable thermoelectric generator
JP2015043412A (en) * 2013-07-22 2015-03-05 国立大学法人山梨大学 Thermoelectric element and method of manufacturing the same
WO2016002061A1 (en) * 2014-07-04 2016-01-07 株式会社日立製作所 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5288336A (en) * 1988-11-18 1994-02-22 Dr. Harold Aspden Thermoelectric energy conversion
WO1994014200A1 (en) * 1992-12-11 1994-06-23 Joel Miller Laminated thermoelement
US5439528A (en) * 1992-12-11 1995-08-08 Miller; Joel Laminated thermo element
KR100309659B1 (en) * 1997-06-10 2002-01-30 다까다 요시유끼 High Speed Thin Film Cooling System
WO2001084641A1 (en) * 2000-05-02 2001-11-08 Gerhard Span Thermoelectric element
US6762484B2 (en) 2000-05-02 2004-07-13 Gerhard Span Thermoelectric element
US8538529B2 (en) 2006-04-26 2013-09-17 Cardiac Pacemakers, Inc. Power converter for use with implantable thermoelectric generator
US8003879B2 (en) * 2006-04-26 2011-08-23 Cardiac Pacemakers, Inc. Method and apparatus for in vivo thermoelectric power system
US8039727B2 (en) 2006-04-26 2011-10-18 Cardiac Pacemakers, Inc. Method and apparatus for shunt for in vivo thermoelectric power system
WO2011003685A1 (en) * 2009-07-10 2011-01-13 O-Flexx Technologies Gmbh Module having a plurality of thermoelectric elements
US8581089B2 (en) 2009-07-10 2013-11-12 O-Flexx Technologies Gmbh Module having a plurality of thermoelectric elements
JP2011222873A (en) * 2010-04-13 2011-11-04 Fujitsu Ltd Thermoelectric conversion element and method of manufacturing the same
JP2012124480A (en) * 2010-12-09 2012-06-28 Samsung Electro-Mechanics Co Ltd Thermoelectric element and manufacturing method for the same
JP2015043412A (en) * 2013-07-22 2015-03-05 国立大学法人山梨大学 Thermoelectric element and method of manufacturing the same
WO2016002061A1 (en) * 2014-07-04 2016-01-07 株式会社日立製作所 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material

Similar Documents

Publication Publication Date Title
JP3447915B2 (en) Thermoelectric element and thermoelectric element module using the same
EP0870337B1 (en) Fabrication of thermoelectric modules and solder for such fabrication
EP1405353B1 (en) Thermoelectric module with thin film substrates
US7619158B2 (en) Thermoelectric device having P-type and N-type materials
US4032363A (en) Low power high voltage thermopile
US7871847B2 (en) System and method for high temperature compact thermoelectric generator (TEG) device construction
JP3927784B2 (en) Method for manufacturing thermoelectric conversion member
JP5493562B2 (en) Thermoelectric conversion module
JPH01208876A (en) Thermoelectric device and manufacture thereof
JPH09107129A (en) Semiconductor device and its manufacturing method
JP2781608B2 (en) Thermoelectric converter
KR101237235B1 (en) Manufacturing Method of Thermoelectric Film
JPH05226704A (en) Thermoelectric device and its manufacture
JPS63253677A (en) Multilayered thermoelectric conversion device
JP2003282970A (en) Thermoelectric converter and thermoelectric conversion element and their manufacturing method
JP2003282972A (en) Thermoelectric element
RU2131156C1 (en) Thermoelectric converter
JPH02198179A (en) Thermoelectric element and manufacture thereof
JPH02155280A (en) Thermoelectric device
JPH02130877A (en) Thermoelectric device and manufacture thereof
JPH0258279A (en) Thermoelectric device and its manufacture
JP4280064B2 (en) Method for manufacturing thermoelectric conversion module
JPH02194658A (en) Thermoelectric device
JP2517103B2 (en) Thin film thermoelectric element
JP2512213B2 (en) Thermoelectric device and manufacturing method thereof