JP4280064B2 - Method for manufacturing thermoelectric conversion module - Google Patents

Method for manufacturing thermoelectric conversion module Download PDF

Info

Publication number
JP4280064B2
JP4280064B2 JP2002380091A JP2002380091A JP4280064B2 JP 4280064 B2 JP4280064 B2 JP 4280064B2 JP 2002380091 A JP2002380091 A JP 2002380091A JP 2002380091 A JP2002380091 A JP 2002380091A JP 4280064 B2 JP4280064 B2 JP 4280064B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type
substrate
solder
fixing step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002380091A
Other languages
Japanese (ja)
Other versions
JP2004214306A (en
Inventor
康弘 鈴木
潤 贄川
Original Assignee
岡野電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岡野電線株式会社 filed Critical 岡野電線株式会社
Priority to JP2002380091A priority Critical patent/JP4280064B2/en
Publication of JP2004214306A publication Critical patent/JP2004214306A/en
Application granted granted Critical
Publication of JP4280064B2 publication Critical patent/JP4280064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば光通信用部品、理化学機器、携帯用クーラ、半導体プロセス中でのプロセス温度管理等に用いられて冷却や加熱を行う熱電変換モジュールや、ゼーベック効果を利用して発電を行う熱電変換モジュールの製造方法に関するものである。
【0002】
【背景技術】
ペルチェモジュール等の熱電変換モジュールが、光通信分野等の様々な分野に用いられている。熱電変換モジュールは、例えば図3(a)に示すように、互いに間隔を介して上下に配置された第1の基板6と第2の基板7の間に、複数の熱電変換素子5(5a,5b)を立設配置して形成されている。
【0003】
基板6,7は、電気絶縁性を有する電気絶縁性基板であり、例えばアルミナ(Al)等のセラミックにより形成されている。基板6,7には、それぞれ、その片面側(対向面側)に複数の導通用の電極2が互いに間隔を介して配列形成されている。第1の基板6と第2の基板7は、電極2の位置を互いにずらした状態で電極形成面16,17を対向させて配置されており、前記熱電変換素子5が対応する電極2を介して直列に接続されている。なお、電極2上には図示されていない半田が形成されて該半田を介して熱電変換素子5が電極2上に固定されている。
【0004】
熱電変換素子5(5a,5b)は、ペルチェ素子として一般的に知られており、P型半導体により形成されたP型の熱電変換素子5aと、N型半導体により形成されたN型の熱電変換素子5bとを有する。P型の熱電変換素子5aとN型の熱電変換素子5bは交互に配置され、電極2を介して直列に接続されてPN素子対が形成されている。
【0005】
P型の熱電変換素子5aとN型の熱電変換素子5bは、それぞれ、例えばビスマス・テルル等の金属間化合物にアンチモン、セレン等の元素を添加することにより形成されている。従来の一般的なペルチェモジュールにおいて、1つの熱電変換素子5(5a,5b)は直径0.6〜3mm程度、長さ0.5〜3mm程度の円柱形状または同程度の大きさの角柱形状に形成されている。また、前記基板6,7は、例えば厚さ3mm程度に形成され、例えば一辺の長さが10mm程度の四辺形状に形成されている。
【0006】
熱電変換モジュール製造するときは、例えば図3(b)に示すように、基板6,7の片面側にそれぞれ電極2を形成し、この電極2の表面側に半田(図示せず)を形成し、第2の基板7上に形成された電極2上に前記半田を介してP型の熱電変換素子5aとN型の熱電変換素子5bを交互に配置する。そして、これらのP型の熱電変換素子5aとN型の熱電変換素子5b上に第1の基板6を設け、この状態で行われる加熱により半田を融解させて、P型の熱電変換素子5aとN型の熱電変換素子5bを、半田を介して対応する電極2上に固定する。
【0007】
熱電変換モジュールの製造方法は、上記以外にも様々な方法が提案されている(例えば、特許文献1参照。)。
【0008】
熱電変換モジュールは、リード線28から電極2に電流を流すと、P型の熱電変換素子5aとN型の熱電変換素子5bに電流が流れて、熱電変換素子5(5a,5b)と電極2との接合部(界面)で冷却・加熱効果が生じる。つまり、前記接合部を流れる電流の方向によって熱電変換素子5(5a,5b)の一方の端部が発熱せしめられると共に他方の端部が冷却せしめられるいわゆるペルチェ効果が生じる。
【0009】
このペルチェ効果によって熱電変換素子5(5a,5b)の一方の端部、例えば上端部が発熱せしめられると、この熱が第1の基板6を介して、基板6の上側に設けられた部材に伝えられ、この部材の加熱が行われる。また、その逆に、ペルチェ効果によって熱電変換素子5(5a,5b)の例えば上端部が冷却せしめられると、第1の基板6を介し、基板6の上側に設けられた部材の冷却(吸熱)が行われる。
【0010】
【特許文献1】
特開平8−222770号公報
【0011】
【発明が解決しようとする課題】
しかしながら、近年、例えば基板6,7の大きさが2〜3mm四方の熱電変換モジュール等、小型の熱電変換モジュールが形成されるようになり、この小型の熱電変換モジュールに適用される熱電変換素子5の大きさも小さくなっているため、図3(b)に示したように、P型の熱電変換素子5aとN型の熱電変換素子5bを交互に配置して熱電変換モジュールを形成する作業は非常に大変であった。そのため、小型の熱電変換モジュールを歩留まりよく製造することが難しかった。
【0012】
本発明は、上記課題を解決するために成されたものであり、その目的は、小型の熱電変換モジュールであっても、容易に歩留まりよく製造することができる熱電変換モジュールの製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明は次のような構成をもって課題を解決するための手段としている。すなわち、第1の発明は、P型の熱電変換素子形成用板部材とN型の熱電変換素子形成用板部材を交互に両面接着熱収縮シートを介して複数重ね合わせ固定して第1の積層体を形成し、該第1の積層体を熱電変換素子形成用板部材の板面と略直交する方向に切断することによりP型とN型の熱電変換素子形成用部材が前記両面接着熱収縮シートを介して交互に縞状に配設固定されたPN交互配置板材を複数形成し、一方のPN交互配置板材のP型と積層方向に隣り合う他方のPN交互配置板材のN型が互い違いに配置されるように複数のPN交互配置板材の上下の重ね位置をずらして両面接着熱収縮シートを介して複数重ね合わせ固定して第2の積層体を形成し、該第2の積層体を前記縞と略直交する方向に切断することによりP型とN型の熱電変換素子が前記両面接着熱収縮シートを介して互い違いに千鳥格子縞状に配設固定されたPN格子縞状配置板材を形成し、該PN格子縞状配置板材の表面と裏面のP型熱電変換素子とN型熱電変換素子との境界領域にマスキングして該マスキング領域を除く領域に金属膜を形成することにより、複数のP型とN型の熱電変換素子のそれぞれの表面と裏面に同時に又は片面ずつ一括して金属膜を形成した後、該金属膜上に半田を形成する工程と、この半田形成工程の後に行われて、前記PN格子縞状配置板材の表面を該表面に形成されている半田の加熱溶融によって、予め用意した第1の基板の電極形成面に固定してP型とN型の熱電変換素子を一括して第1の基板上の対応する電極に半田固定する第1の基板半田固定工程と、PN格子縞状配置板材の裏面を該裏面に形成されている半田の加熱溶融によって、前記第1の基板と上下に間隔を介して配置される第2の基板の電極形成面に固定してP型とN型の熱電変換素子を一括して第2の基板上の対応する電極に半田固定する第2の基板半田固定工程と、前記半田の加熱溶融時に熱収縮することにより前記熱電変換素子から剥がれた状態でP型とN型の熱電変換素子の境界領域に設けられている両面接着熱収縮シートを除去するシート除去工程とを有する構成をもって課題を解決する手段としている。
【0014】
また、第2の発明は、上記第1の発明の構成に加え、前記第1の基板半田固定工程と第2の基板半田固定工程は、そのいずれか一方の工程を先に行うという如く、時間をずらして行い、第1の基板半田固定工程と第2の基板半田固定工程のいずれか一方の工程の後にシート除去工程を行い、然る後に前記第1の基板半田固定工程と第2の基板半田固定工程の他方を行う構成をもって課題を解決する手段としている。
【0015】
さらに、第3の発明は、上記第1の発明の構成に加え、前記第1の基板半田固定工程と第2の基板半田固定工程を同時に行い、然る後にシート除去工程を行う構成をもって課題を解決する手段としている。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して説明する。なお、本実施形態例の説明において、従来例と同一名称部分には同一符号を付し、その重複説明は省略又は簡略化する。
【0018】
図1には、本発明に係る熱電変換モジュールの製造方法の第1実施形態例が模式的に示されている。本実施形態例では、まず、図1(a)に示すように、熱電変換素子形成用板部材である板状のP型とN型の熱電変換素子形成用部材1(1a,1b)をそれぞれ用意する。そして、P型の熱電変換素子形成用板部材1(1a)とN型の熱電変換素子形成用板部材1(1b)を交互に両面接着熱収縮シート3を介して複数重ね合わせ固定し、図1(b)に示す第1の積層体11を形成する。なお、P型およびN型の熱電変換素子形成用部材1(1a,1b)は、周知の如く、例えばインゴットをスライス加工して板状に形成される。
【0019】
次に、図1(b)に示すように、第1の積層体11を熱電変換素子形成用部材1a,1bの板面と略直交する方向に、例えば切断線20に沿って切断する。この切断により、図1(c)に示すように、P型の熱電変換素子形成用部材1aとN型の熱電変換素子形成用部材1bが前記両面接着熱収縮シート3を介して交互に縞状に配設固定されたPN交互配置板材13を複数形成する。なお、図1(c)には、PN交互配置板材13を2枚のみ示している。
【0020】
次に、図1(d)に示すように、一方のPN交互配置板材13のP型と積層方向に隣り合う他方のPN交互配置板材13のN型が互い違いに配置されるように、複数のPN交互配置板材13の上下の重ね位置をずらして両面接着熱収縮シート3を介して複数重ね合わせ固定して、図1(e)に示すような第2の積層体12を形成する。
【0021】
そして、この第2の積層体12を、例えば切断線20に沿って、前記縞(P型の熱電変換素子形成用部材1aとN型の熱電変換素子形成用部材1bの配列縞)と略直交する方向に切断することにより、図1(f)に示すように、P型とN型の熱電変換素子5(5a,5b)が前記両面接着熱収縮シート3を介して互い違いに千鳥格子縞状に配設固定されたPN格子縞状配置板材14を形成する。なお、図1は模式図であり、図1(e)〜図1(k)において、必ずしも熱電変換素子5(5a,5b)の数や配置形態は一致していない。
【0022】
次に、図1(g)に示すように、PN格子縞状配置板材14の表面と裏面のP型熱電変換素子5(5a)とN型熱電変換素子5(5b)との境界領域にマスキングして(マスク8を形成して)、該マスキング領域を除く領域に金属膜9を形成することにより、複数のP型とN型の熱電変換素子5(5a,5b)のそれぞれの表面と裏面に、同時に又は片面ずつ一括して金属膜9を形成する。なお、図1(g)は、PN格子縞状配置板材14の端部を一部除いて形成している。
【0023】
次に、図1(h)に示すように、上記金属膜9上に半田(ここでは半田バンプ)10を例えば印刷により形成する。半田バンプは、PN格子縞状配置板材14の表裏両面に形成され、P型とN型の熱電変換素子5(5a,5b)のそれぞれの表面と裏面に、例えば1つずつ形成される。
【0024】
この半田形成工程の後、図1(i)に示すように、予め用意した第1の基板6と、該第1の基板6と上下に間隔を介して配置される第2の基板7によりPN格子縞状配置板材14を上下両側から挟み、図1(j)に示すように、例えばセラミックヒーター21等の加熱手段を用いて第1と第2の基板6,7を加熱し、この基板6,7に、PN格子縞状配置板材14の表裏両面に形成されている半田10を介してPN格子縞状配置板材14を固定する。
【0025】
つまり、PN格子縞状配置板材14の表面を該表面に形成されている半田10の加熱溶融によって第1の基板6の電極形成面16に固定して、P型とN型の熱電変換素子5(5a,5b)を一括して第1の基板6上の対応する電極2(図1には図示せず)に半田固定する第1の基板半田固定工程と、PN格子縞状配置板材14の裏面を該裏面に形成されている半田10の加熱溶融によって第2の基板7の電極形成面17に固定して、P型とN型の熱電変換素子5(5a,5b)を一括して第2の基板上の対応する電極に半田固定する第2の基板半田固定工程を同時に行う。
【0026】
なお、これらの半田固定工程は、望ましくは水素還元性の雰囲気中にて半田10を加熱溶融することが、酸化物の影響を排除し、半田接合を行えるので都合がよい。もちろん、フラックスを利用し、大気中でのホットプレート等を用いて加熱溶融する方式も可能である。
【0027】
次に、前記半田10の加熱溶融時に接着力を無くし、かつ、熱収縮することにより、前記熱電変換素子5(5a,5b)から剥がれた状態でP型とN型の熱電変換素子5(5a,5b)の境界領域に設けられている両面接着熱収縮シート3を、例えば吸引等により除去し、図1(h)に示すような熱電変換モジュールを形成する。また、熱電変換モジュールには、図3に示したリード線28を適宜の位置に設ける。
【0028】
本実施形態例は以上のようにして熱電変換モジュールを製造するものであり、複数のP型の熱電変換素子5aと複数のN型の熱電変換素子5bを互い違いに千鳥格子縞状に配設固定されたPN格子縞状配置板材14を容易に形成し、P型とN型の熱電変換素子5(5a,5b)を対応する第1、第2の基板6,7上に一括して配列固定できる。
【0029】
そして、本実施形態例では、P型とN型の熱電変換素子5(5a,5b)の基板6,7への固定後に、P型とN型の熱電変換素子5(5a,5b)の境界領域に設けられた両面接着熱収縮シート3を容易に除去できるので、歩留まりよく熱電変換モジュールを製造することができる。
【0030】
次に、本発明に係る熱電変換モジュールの製造方法の第2実施形態例について説明する。第2実施形態例は上記第1実施形態例とほぼ同様の製造方法を適用しており、第2実施形態例が上記第1実施形態例と異なる特徴的なことは、半田形成工程後の工程を以下のようにしたことである。つまり、第2実施形態例では、第1の基板半田固定工程と第2の基板半田固定工程は、そのいずれか一方の工程を先に行うという如く、時間をずらして行い、第1の基板半田固定工程の後にシート除去工程を行い、然る後に第2の基板半田固定工程を行う。
【0031】
図2には、第1の基板半田固定工程によって、PN格子縞状配置板材14のP型とN型の熱電変換素子5(5a,5b)をそれぞれ一括して基板6の電極形成面16に固定した状態を示している。このように、第1の基板半田固定工程の後にシート除去工程を行う場合、PN格子縞状配置板材14の裏面側が露出された状態で両面接着熱収縮シート3の除去を行う。
【0032】
第2実施形態例も上記第1実施形態例と同様の効果を奏することができ、また、第2実施形態例は、上記のように、PN格子縞状配置板材14の裏面側が露出された状態でシート除去を行うことができるので、例えばブラッシング等によってシート除去を行うことができ、シート除去作業をより一層容易に行うことができる。
【0033】
なお、本発明は上記各実施形態例に限定されることはなく、様々な実施の態様を採り得る。例えば、上記第2実施形態例では、第1の基板半田固定工程を第2の基板半田固定工程よりも先に行って、第1の基板半田固定工程後にシート除去工程を行い、然る後に第2の基板半田固定工程を行ったが、その逆に、第2の基板半田固定工程を先に行い、その後にシート除去工程を行い、然る後に第1の基板半田固定工程を行ってもよい。
【0036】
また、上記第1実施形態例では、図1(j)に示したように、セラミックヒーター21を用いて、第1、第2の基板6,7を加熱したが、第1の基板半田固定工程と第2の基板半田固定工程を同時に行う場合は、第1、第2の基板7の間にPN格子縞状配置板材14を挟んで仮組み固定し、その状態で、リフロー炉中を通してリフロー炉で半田10を溶解させ、その後、凝固させてもよい。
【0037】
さらに、PN格子縞状配置板材14の表面と裏面のいずれか一方に半田10を形成した後、この半田10によって、PN格子縞状配置板材14を第1と第2の基板6,7の一方に固定し、その後、PN格子縞状配置板材14の表面と裏面の他方に半田10を形成して、この半田10によって、PN格子縞状配置板材14を第1と第2の基板6,7の他方に固定してもよい。
【0038】
さらに、上記説明は熱電変換モジュールとしてのペルチェモジュールの製造方法について例を挙げて説明したが、本発明の熱電変換モジュールの製造方法は、ゼーベック効果を利用して発電を行う熱電変換モジュールの製造方法にも適用できる。
【0039】
【発明の効果】
本発明によれば、複数のP型の熱電変換素子と複数のN型の熱電変換素子を互い違いに千鳥格子縞状に配設固定されたPN格子縞状配置板材を容易に形成し、P型とN型の熱電変換素子を対応する第1、第2の基板上に一括して配列固定でき、例えばP型とN型の熱電変換素子の境界領域に設けられた両面接着熱収縮シートを容易に除去して歩留まりよく熱電変換モジュールを製造することができる。
【0040】
また、本発明において、第1の基板半田固定工程と第2の基板半田固定工程のいずれか一方の工程の後にシート除去工程を行い、然る後に前記第1の基板半田固定工程と第2の基板半田固定工程の他方を行う構成においては、シート除去工程をより一層容易に行うことができる。
【0041】
さらに、本発明において、第1の基板半田固定工程と第2の基板半田固定工程を同時に行い、然る後にシート除去工程を行う構成によれば、P型とN型の熱電変換素子を対応する基板に半田固定する工程を一度に行うことができ、熱電変換モジュールの製造工程を簡略化できる。
【図面の簡単な説明】
【図1】本発明に係る熱電変換モジュールの製造方法の第1実施形態例を模式的に示す説明図である。
【図2】本発明に係る熱電変換モジュールの製造方法の第2実施形態例における第1基板半田固定工程後の状態を示す説明図である。
【図3】従来の熱電変換モジュールとその製造方法例を示す説明図である。
【符号の説明】
1,1a,1b 熱電変換素子形成用部材
2 電極
3 両面接着熱収縮シート
5,5a,5b 熱電変換素子
6 第1の基板
7 第2の基板
9 金属膜
11 第1の積層体
12 第2の積層体
13 PN交互配置板材
14 PN格子縞状配置板材
[0001]
BACKGROUND OF THE INVENTION
The present invention includes, for example, optical communication parts, physics and chemistry equipment, portable coolers, thermoelectric conversion modules that are used for process temperature management in semiconductor processes and the like, and thermoelectric modules that generate electricity using the Seebeck effect. The present invention relates to a method for manufacturing a conversion module.
[0002]
[Background]
Thermoelectric conversion modules such as Peltier modules are used in various fields such as the optical communication field. For example, as shown in FIG. 3A, the thermoelectric conversion module includes a plurality of thermoelectric conversion elements 5 (5a, 5a, 5b) between a first substrate 6 and a second substrate 7 that are arranged vertically with a space therebetween. 5b) is arranged upright.
[0003]
The substrates 6 and 7 are electrically insulating substrates having electrical insulating properties, and are made of ceramic such as alumina (Al 2 O 3 ), for example. On the substrates 6 and 7, a plurality of conductive electrodes 2 are arranged on one side (opposite side) of the substrates 6 and 7 so as to be spaced from each other. The first substrate 6 and the second substrate 7 are arranged with the electrode formation surfaces 16 and 17 facing each other with the position of the electrode 2 being shifted from each other, and the thermoelectric conversion element 5 passes through the corresponding electrode 2. Connected in series. A solder (not shown) is formed on the electrode 2, and the thermoelectric conversion element 5 is fixed on the electrode 2 through the solder.
[0004]
The thermoelectric conversion element 5 (5a, 5b) is generally known as a Peltier element, and a P-type thermoelectric conversion element 5a formed of a P-type semiconductor and an N-type thermoelectric conversion formed of an N-type semiconductor. And an element 5b. P-type thermoelectric conversion elements 5a and N-type thermoelectric conversion elements 5b are alternately arranged and connected in series via the electrode 2 to form a PN element pair.
[0005]
The P-type thermoelectric conversion element 5a and the N-type thermoelectric conversion element 5b are each formed by adding an element such as antimony or selenium to an intermetallic compound such as bismuth or tellurium. In a conventional general Peltier module, one thermoelectric conversion element 5 (5a, 5b) has a cylindrical shape with a diameter of about 0.6 to 3 mm and a length of about 0.5 to 3 mm, or a prismatic shape with the same size. Is formed. The substrates 6 and 7 are formed to have a thickness of about 3 mm, for example, and are formed in a quadrilateral shape having a side length of about 10 mm, for example.
[0006]
When producing the thermoelectric conversion module, for example, as shown in FIG. 3 (b), respectively to form the electrode 2 on one side of the substrate 6, forming a solder (not shown) on the surface side of the electrode 2 Then, P-type thermoelectric conversion elements 5a and N-type thermoelectric conversion elements 5b are alternately arranged on the electrodes 2 formed on the second substrate 7 via the solder. Then, the first substrate 6 is provided on the P-type thermoelectric conversion element 5a and the N-type thermoelectric conversion element 5b, and the solder is melted by heating performed in this state, so that the P-type thermoelectric conversion element 5a and The N-type thermoelectric conversion element 5b is fixed on the corresponding electrode 2 via solder.
[0007]
Various methods other than the above have been proposed as a method for manufacturing a thermoelectric conversion module (see, for example, Patent Document 1).
[0008]
In the thermoelectric conversion module, when a current flows from the lead wire 28 to the electrode 2, a current flows through the P-type thermoelectric conversion element 5 a and the N-type thermoelectric conversion element 5 b, and the thermoelectric conversion elements 5 (5 a, 5 b) and the electrode 2. Cooling / heating effect occurs at the joint (interface). That is, a so-called Peltier effect is generated in which one end portion of the thermoelectric conversion element 5 (5a, 5b) is heated while the other end portion is cooled depending on the direction of the current flowing through the junction.
[0009]
When one end, for example, the upper end of the thermoelectric conversion element 5 (5a, 5b) is caused to generate heat by the Peltier effect, this heat is applied to the member provided on the upper side of the substrate 6 via the first substrate 6. It is transmitted and heating of this member is performed. On the contrary, when the upper end portion of the thermoelectric conversion element 5 (5a, 5b) is cooled by the Peltier effect, the member provided on the upper side of the substrate 6 is cooled (heat absorption) via the first substrate 6. Is done.
[0010]
[Patent Document 1]
JP-A-8-222770
[Problems to be solved by the invention]
However, in recent years, for example, small thermoelectric conversion modules such as thermoelectric conversion modules whose substrates 6 and 7 have a size of 2 to 3 mm square have been formed, and the thermoelectric conversion element 5 applied to this small thermoelectric conversion module. As shown in FIG. 3B, it is very difficult to form a thermoelectric conversion module by alternately arranging P-type thermoelectric conversion elements 5a and N-type thermoelectric conversion elements 5b, as shown in FIG. It was hard. Therefore, it has been difficult to manufacture a small thermoelectric conversion module with a high yield.
[0012]
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of manufacturing a thermoelectric conversion module that can be easily manufactured with high yield even if it is a small thermoelectric conversion module. There is.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, in the first invention, a plurality of P-type thermoelectric conversion element forming plate members and N-type thermoelectric conversion element forming plate members are alternately stacked and fixed via a double-sided adhesive heat-shrink sheet. The P-type and N-type thermoelectric conversion element forming members are bonded and thermally contracted by cutting the first laminate in a direction substantially perpendicular to the plate surface of the thermoelectric conversion element forming plate member. A plurality of PN alternately arranged plate members arranged alternately and fixed in a striped manner via sheets are formed, and the P type of one PN alternately arranged plate material and the N type of the other PN alternately arranged plate material adjacent to each other in the stacking direction are staggered. The upper and lower overlapping positions of the plurality of PN alternately arranged plate materials are shifted so as to be arranged, and a plurality of overlapping and fixing is performed via the double-sided adhesive heat-shrinkable sheet to form a second laminate, and the second laminate is P-type and N-type by cutting in a direction substantially perpendicular to the stripe Forming PN checkered arrangement plate materials in which electric conversion elements are alternately arranged and fixed in a staggered pattern via the double-sided adhesive heat-shrink sheet, and P-type thermoelectric conversion elements on the front and back surfaces of the PN checkered arrangement plate material, By masking the boundary region with the N-type thermoelectric conversion element and forming a metal film in a region excluding the masking region, the surface and the back surface of each of the plurality of P-type and N-type thermoelectric conversion elements can be formed simultaneously or on one side. After forming the metal film in a lump, a step of forming solder on the metal film, and after the solder formation step, the surface of the PN grid stripe arrangement plate material is formed on the surface. First substrate solder for fixing P-type and N-type thermoelectric conversion elements collectively to corresponding electrodes on the first substrate by fixing to the electrode formation surface of the first substrate prepared in advance by heating and melting. Fixing process and PN grid pattern The rear surface of the placement plate is fixed to the electrode formation surface of the second substrate that is disposed above and below the first substrate by heating and melting the solder formed on the rear surface. In a state where the thermoelectric conversion elements are peeled off from the thermoelectric conversion elements by heat shrinking when the solder is heated and melted, and a second board solder fixing process of soldering the thermoelectric conversion elements collectively to corresponding electrodes on the second substrate. A structure having a sheet removing step for removing the double-sided adhesive heat-shrinkable sheet provided in the boundary region between the P-type and N-type thermoelectric conversion elements is used as a means for solving the problem.
[0014]
Further, in the second invention, in addition to the configuration of the first invention, the first substrate solder fixing step and the second substrate solder fixing step are performed in such a manner that either one of the steps is performed first. And the sheet removing step is performed after one of the first substrate solder fixing step and the second substrate solder fixing step, and then the first substrate solder fixing step and the second substrate are performed. A configuration for performing the other side of the solder fixing step is a means for solving the problem.
[0015]
Further, the third invention has a problem in that in addition to the configuration of the first invention, the first substrate solder fixing step and the second substrate solder fixing step are simultaneously performed, and thereafter the sheet removing step is performed. As a means to solve.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are assigned to the same names as those in the conventional example, and the duplicate description is omitted or simplified.
[0018]
FIG. 1 schematically shows a first embodiment of a method for manufacturing a thermoelectric conversion module according to the present invention. In this embodiment, first, as shown in FIG. 1A, plate-like P-type and N-type thermoelectric conversion element forming members 1 (1a, 1b), which are thermoelectric conversion element forming plate members, are respectively provided. prepare. Then, a plurality of P-type thermoelectric conversion element-forming plate members 1 (1a) and N-type thermoelectric conversion element-forming plate members 1 (1b) are alternately stacked and fixed via double-sided adhesive heat-shrinkable sheets 3, The 1st laminated body 11 shown to 1 (b) is formed. Note that the P-type and N-type thermoelectric conversion element forming members 1 (1a, 1b) are formed in a plate shape by, for example, slicing an ingot.
[0019]
Next, as shown in FIG. 1B, the first laminate 11 is cut in a direction substantially orthogonal to the plate surfaces of the thermoelectric conversion element forming members 1a and 1b, for example, along a cutting line 20. By this cutting, as shown in FIG. 1 (c), the P-type thermoelectric conversion element forming member 1 a and the N-type thermoelectric conversion element forming member 1 b are alternately striped through the double-sided adhesive heat-shrinkable sheet 3. A plurality of PN alternately arranged plate members 13 arranged and fixed to each other are formed. In FIG. 1C, only two PN alternately arranged plate members 13 are shown.
[0020]
Next, as shown in FIG. 1 (d), a plurality of P-types of one PN alternately arranged plate member 13 and N-types of the other PN alternately arranged plate member 13 adjacent in the stacking direction are alternately arranged. A plurality of second stacked bodies 12 as shown in FIG. 1 (e) are formed by shifting the upper and lower overlapping positions of the PN alternately arranged plate materials 13 and overlapping and fixing them via the double-sided adhesive heat-shrinkable sheet 3.
[0021]
And this 2nd laminated body 12 is substantially orthogonal to the said stripe | stripes (array stripe of the P-type thermoelectric conversion element formation member 1a and the N-type thermoelectric conversion element formation member 1b) along the cutting line 20, for example. By cutting in such a direction, the P-type and N-type thermoelectric conversion elements 5 (5a, 5b) are staggered in a staggered pattern via the double-sided adhesive heat-shrinkable sheet 3, as shown in FIG. A PN grid-like arrangement plate material 14 which is arranged and fixed is formed. FIG. 1 is a schematic diagram, and the number and arrangement of the thermoelectric conversion elements 5 (5a, 5b) do not necessarily match in FIGS. 1 (e) to 1 (k).
[0022]
Next, as shown in FIG. 1 (g), masking is performed on the boundary region between the P-type thermoelectric conversion element 5 (5 a) and the N-type thermoelectric conversion element 5 (5 b) on the front surface and the back surface of the PN grid stripe arrangement plate material 14. (By forming a mask 8), a metal film 9 is formed in a region excluding the masking region, thereby forming a plurality of P-type and N-type thermoelectric conversion elements 5 (5a, 5b) on the front and back surfaces. The metal film 9 is formed simultaneously or simultaneously on one side. Note that FIG. 1G is formed by removing a part of the end portion of the PN grid stripe arrangement plate material 14.
[0023]
Next, as shown in FIG. 1H, solder (here, solder bumps) 10 is formed on the metal film 9 by, for example, printing. The solder bumps are formed on both the front and back surfaces of the PN grid stripe arrangement plate material 14, and are formed, for example, one on each of the front and back surfaces of the P-type and N-type thermoelectric conversion elements 5 (5a, 5b).
[0024]
After this solder formation step, as shown in FIG. 1 (i), a first substrate 6 prepared in advance and a second substrate 7 disposed above and below the first substrate 6 with a space therebetween are used for PN. As shown in FIG. 1 (j), the first and second substrates 6 and 7 are heated by using a heating means such as a ceramic heater 21 as shown in FIG. 7, the PN checkered arrangement plate 14 is fixed via the solder 10 formed on both front and back surfaces of the PN checkered arrangement plate 14.
[0025]
That is, the surface of the PN grid-arranged plate member 14 is fixed to the electrode forming surface 16 of the first substrate 6 by heating and melting the solder 10 formed on the surface, and the P-type and N-type thermoelectric conversion elements 5 ( 5a, 5b) are collectively soldered to the corresponding electrodes 2 (not shown in FIG. 1) on the first substrate 6, and the back surface of the PN grid stripe arrangement plate material 14 is attached. The solder 10 formed on the back surface is fixed to the electrode forming surface 17 of the second substrate 7 by heating and melting, and the P-type and N-type thermoelectric conversion elements 5 (5a, 5b) are integrated into the second. A second substrate solder fixing process is performed simultaneously for solder fixing to corresponding electrodes on the substrate.
[0026]
In these solder fixing steps, it is preferable to heat and melt the solder 10 in a hydrogen reducing atmosphere because the influence of the oxide can be eliminated and solder bonding can be performed. Of course, it is possible to use a method of heating and melting using a hot plate or the like in the air using a flux.
[0027]
Next, the adhesive force is lost when the solder 10 is heated and melted, and the solder 10 is thermally contracted, so that the P-type and N-type thermoelectric conversion elements 5 (5a) are peeled off from the thermoelectric conversion elements 5 (5a, 5b). , 5b), the double-sided adhesive heat-shrinkable sheet 3 provided in the boundary region is removed by, for example, suction to form a thermoelectric conversion module as shown in FIG. Further, the thermoelectric conversion module is provided with the lead wires 28 shown in FIG. 3 at appropriate positions.
[0028]
In this embodiment, a thermoelectric conversion module is manufactured as described above, and a plurality of P-type thermoelectric conversion elements 5a and a plurality of N-type thermoelectric conversion elements 5b are alternately arranged and fixed in a staggered pattern. In addition, the PN latticed arrangement plate material 14 can be easily formed, and the P-type and N-type thermoelectric conversion elements 5 (5a, 5b) can be collectively arranged and fixed on the corresponding first and second substrates 6 and 7.
[0029]
In this embodiment, after the P-type and N-type thermoelectric conversion elements 5 (5a, 5b) are fixed to the substrates 6 and 7, the boundary between the P-type and N-type thermoelectric conversion elements 5 (5a, 5b). Since the double-sided adhesive heat-shrinkable sheet 3 provided in the region can be easily removed, a thermoelectric conversion module can be manufactured with a high yield.
[0030]
Next, a second embodiment of the method for manufacturing a thermoelectric conversion module according to the present invention will be described. The second embodiment applies a manufacturing method substantially similar to that of the first embodiment, and the second embodiment is different from the first embodiment in that the process after the solder formation process Is as follows. In other words, in the second embodiment, the first substrate solder fixing step and the second substrate solder fixing step are performed at different times such that one of the steps is performed first, and the first substrate solder fixing step is performed. A sheet removing process is performed after the fixing process, and then a second substrate solder fixing process is performed.
[0031]
In FIG. 2, the P-type and N-type thermoelectric conversion elements 5 (5 a, 5 b) of the PN grid stripe arrangement plate material 14 are collectively fixed to the electrode forming surface 16 of the substrate 6 by the first substrate solder fixing step. Shows the state. Thus, when performing a sheet | seat removal process after a 1st board | substrate solder fixing process, the double-sided adhesive heat-shrink sheet 3 is removed in the state in which the back surface side of the PN grid stripe arrangement | positioning board | plate material 14 was exposed.
[0032]
The second embodiment can also achieve the same effects as the first embodiment, and in the second embodiment, as described above, the back side of the PN checkered arrangement plate material 14 is exposed. Since the sheet can be removed, the sheet can be removed by, for example, brushing, and the sheet removing operation can be performed more easily.
[0033]
The present invention is not limited to the above-described embodiments, and can take various forms. For example, in the second embodiment, the first substrate solder fixing step is performed before the second substrate solder fixing step, the sheet removing step is performed after the first substrate solder fixing step, and then the first substrate solder fixing step is performed. Although the second substrate solder fixing step is performed, the second substrate solder fixing step may be performed first, followed by the sheet removing step, and then the first substrate solder fixing step. .
[0036]
In the first embodiment, the first and second substrates 6 and 7 are heated using the ceramic heater 21 as shown in FIG. 1 (j). And the second substrate solder fixing step, the PN lattice stripe arrangement plate material 14 is sandwiched and fixed between the first and second substrates 7, and in that state, the reflow oven is passed through the reflow oven. The solder 10 may be dissolved and then solidified.
[0037]
Furthermore, after forming the solder 10 on either the front surface or the back surface of the PN checkered arrangement plate material 14, the solder 10 fixes the PN checkered arrangement plate material 14 to one of the first and second substrates 6 and 7. Thereafter, the solder 10 is formed on the other of the front and back surfaces of the PN checkered arrangement plate material 14, and the solder 10 fixes the PN checkered arrangement plate material 14 to the other of the first and second substrates 6 and 7. May be.
[0038]
Furthermore, although the above description has been described with reference to an example of a method for manufacturing a Peltier module as a thermoelectric conversion module, the method for manufacturing a thermoelectric conversion module of the present invention is a method for manufacturing a thermoelectric conversion module that generates power using the Seebeck effect. It can also be applied to.
[0039]
【The invention's effect】
According to the present invention, the P-type and N-type thermoelectric conversion elements and the plurality of N-type thermoelectric conversion elements are alternately formed in a staggered pattern and fixed in a staggered pattern, and the P-type and N-type plates are easily formed. Type thermoelectric conversion elements can be arranged and fixed collectively on the corresponding first and second substrates, for example, the double-sided adhesive heat-shrink sheet provided in the boundary region between P-type and N-type thermoelectric conversion elements can be easily removed Thus, the thermoelectric conversion module can be manufactured with a high yield.
[0040]
In the present invention, the sheet removing step is performed after one of the first substrate solder fixing step and the second substrate solder fixing step, and then the first substrate solder fixing step and the second substrate solder fixing step. In the configuration in which the other of the board solder fixing process is performed, the sheet removing process can be performed more easily.
[0041]
Furthermore, in the present invention, according to the configuration in which the first substrate solder fixing step and the second substrate solder fixing step are performed simultaneously, and then the sheet removing step is performed, the P-type and N-type thermoelectric conversion elements are supported. The process of solder fixing to the substrate can be performed at a time, and the manufacturing process of the thermoelectric conversion module can be simplified.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing a first embodiment of a method for manufacturing a thermoelectric conversion module according to the present invention.
FIG. 2 is an explanatory view showing a state after a first substrate solder fixing step in a second embodiment of the method for manufacturing a thermoelectric conversion module according to the present invention.
FIG. 3 is an explanatory view showing a conventional thermoelectric conversion module and an example of a manufacturing method thereof.
[Explanation of symbols]
1, 1a, 1b Thermoelectric conversion element forming member 2 Electrode 3 Double-sided adhesive heat-shrinkable sheets 5, 5a, 5b Thermoelectric conversion element 6 First substrate 7 Second substrate 9 Metal film 11 First laminate 12 Second Laminate 13 PN alternately arranged plate 14 PN lattice stripe arranged plate

Claims (3)

P型の熱電変換素子形成用板部材とN型の熱電変換素子形成用板部材を交互に両面接着熱収縮シートを介して複数重ね合わせ固定して第1の積層体を形成し、該第1の積層体を熱電変換素子形成用板部材の板面と略直交する方向に切断することによりP型とN型の熱電変換素子形成用部材が前記両面接着熱収縮シートを介して交互に縞状に配設固定されたPN交互配置板材を複数形成し、一方のPN交互配置板材のP型と積層方向に隣り合う他方のPN交互配置板材のN型が互い違いに配置されるように複数のPN交互配置板材の上下の重ね位置をずらして両面接着熱収縮シートを介して複数重ね合わせ固定して第2の積層体を形成し、該第2の積層体を前記縞と略直交する方向に切断することによりP型とN型の熱電変換素子が前記両面接着熱収縮シートを介して互い違いに千鳥格子縞状に配設固定されたPN格子縞状配置板材を形成し、該PN格子縞状配置板材の表面と裏面のP型熱電変換素子とN型熱電変換素子との境界領域にマスキングして該マスキング領域を除く領域に金属膜を形成することにより、複数のP型とN型の熱電変換素子のそれぞれの表面と裏面に同時に又は片面ずつ一括して金属膜を形成した後、該金属膜上に半田を形成する工程と、この半田形成工程の後に行われて、前記PN格子縞状配置板材の表面を該表面に形成されている半田の加熱溶融によって、予め用意した第1の基板の電極形成面に固定してP型とN型の熱電変換素子を一括して第1の基板上の対応する電極に半田固定する第1の基板半田固定工程と、PN格子縞状配置板材の裏面を該裏面に形成されている半田の加熱溶融によって、前記第1の基板と上下に間隔を介して配置される第2の基板の電極形成面に固定してP型とN型の熱電変換素子を一括して第2の基板上の対応する電極に半田固定する第2の基板半田固定工程と、前記半田の加熱溶融時に熱収縮することにより前記熱電変換素子から剥がれた状態でP型とN型の熱電変換素子の境界領域に設けられている両面接着熱収縮シートを除去するシート除去工程とを有することを特徴とする熱電変換モジュールの製造方法。  A plurality of P-type thermoelectric conversion element forming plate members and N-type thermoelectric conversion element forming plate members are alternately stacked and fixed via a double-sided adhesive heat-shrinkable sheet to form a first laminate. Is cut in a direction substantially perpendicular to the plate surface of the thermoelectric conversion element forming plate member, whereby the P-type and N-type thermoelectric conversion element forming members are alternately striped through the double-sided adhesive heat-shrinkable sheet. A plurality of PN interleaved plate members arranged and fixed to each other are formed, and a plurality of PN interleaved plate materials are arranged alternately with a P type of one PN interleaved plate material and an N type of the other PN interleaved plate material adjacent in the stacking direction. The upper and lower overlapping positions of the alternately arranged plate materials are shifted and a plurality of overlapping and fixing are performed via a double-sided adhesive heat-shrink sheet to form a second laminated body, and the second laminated body is cut in a direction substantially perpendicular to the stripes P-type and N-type thermoelectric conversion elements Forming PN checkered arrangement plate materials alternately arranged in a zigzag checkered pattern via heat-shrink sheets, and forming P-type and N-type thermoelectric conversion elements on the front and back surfaces of the PN checkered arrangement plate material By forming the metal film in the boundary area and forming the metal film in the area excluding the masking area, the metal film is formed on the front and back surfaces of the plurality of P-type and N-type thermoelectric conversion elements simultaneously or one side at a time. After that, a step of forming solder on the metal film, and a surface of the PN grid stripe arrangement plate material prepared in advance by heating and melting the solder formed on the surface are performed after the solder formation step. A first substrate solder fixing step of fixing the P-type and N-type thermoelectric conversion elements to the corresponding electrodes on the first substrate by fixing them to the electrode forming surface of the first substrate; The back side of the plate The P-type and N-type thermoelectric conversion elements are collectively bonded to the electrode formation surface of the second substrate disposed above and below the first substrate by heating and melting the formed solder. A second substrate solder fixing step in which solder is fixed to a corresponding electrode on the second substrate; and P-type and N-type thermoelectric conversion in a state where the thermoelectric conversion element is removed by thermal contraction when the solder is heated and melted. A method of manufacturing a thermoelectric conversion module, comprising: a sheet removing step of removing a double-sided adhesive heat-shrinkable sheet provided in a boundary region of an element. 第1の基板半田固定工程と第2の基板半田固定工程は、そのいずれか一方の工程を先に行うという如く、時間をずらして行い、第1の基板半田固定工程と第2の基板半田固定工程のいずれか一方の工程の後にシート除去工程を行い、然る後に前記第1の基板半田固定工程と第2の基板半田固定工程の他方を行うことを特徴とする請求項1記載の熱電変換モジュールの製造方法。  The first substrate solder fixing step and the second substrate solder fixing step are performed at different times such that either one of the steps is performed first, and the first substrate solder fixing step and the second substrate solder fixing step are performed. 2. The thermoelectric conversion according to claim 1, wherein a sheet removing step is performed after any one of the steps, and then the other of the first substrate solder fixing step and the second substrate solder fixing step is performed. Module manufacturing method. 第1の基板半田固定工程と第2の基板半田固定工程を同時に行い、然る後にシート除去工程を行うことを特徴とする請求項1記載の熱電変換モジュールの製造方法。  2. The method of manufacturing a thermoelectric conversion module according to claim 1, wherein the first substrate solder fixing step and the second substrate solder fixing step are simultaneously performed, and thereafter the sheet removing step is performed.
JP2002380091A 2002-12-27 2002-12-27 Method for manufacturing thermoelectric conversion module Expired - Fee Related JP4280064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380091A JP4280064B2 (en) 2002-12-27 2002-12-27 Method for manufacturing thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380091A JP4280064B2 (en) 2002-12-27 2002-12-27 Method for manufacturing thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2004214306A JP2004214306A (en) 2004-07-29
JP4280064B2 true JP4280064B2 (en) 2009-06-17

Family

ID=32816409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380091A Expired - Fee Related JP4280064B2 (en) 2002-12-27 2002-12-27 Method for manufacturing thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP4280064B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144632A (en) * 1997-07-28 1999-02-16 Toa Medical Electronics Co Ltd Method for determining abnormality in data of particle-measuring device
JP6126577B2 (en) * 2012-02-28 2017-05-10 保土谷化学工業株式会社 Compound having pyridyl group having substituent and triphenylene ring structure, and organic electroluminescence device
KR101471021B1 (en) * 2013-10-15 2014-12-09 (주)포인트엔지니어링 Light emitting device substrate and method for manufacturing the substrate
KR102009446B1 (en) * 2015-03-12 2019-08-12 주식회사 엘지화학 Thermoelectric module and method for manufacturing the same

Also Published As

Publication number Publication date
JP2004214306A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP3828924B2 (en) Thermoelectric conversion element, method for manufacturing the same, and thermoelectric conversion apparatus using the element
JP4345279B2 (en) Method for manufacturing thermoelectric conversion device
JP5956608B2 (en) Thermoelectric module
JP5197954B2 (en) Thermoelectric element
US20110048489A1 (en) Combined thermoelectric/photovoltaic device for high heat flux applications and method of making the same
US20110048488A1 (en) Combined thermoelectric/photovoltaic device and method of making the same
US20090093078A1 (en) System and Method for High Temperature Compact Thermoelectric Generator (TEG) Device Construction
WO2014062559A2 (en) Structures and methods for multi-leg package thermoelectric devices
JP4280064B2 (en) Method for manufacturing thermoelectric conversion module
JP4284589B2 (en) Thermoelectric semiconductor manufacturing method, thermoelectric conversion element manufacturing method, and thermoelectric conversion device manufacturing method
JP2004221109A (en) Thermoelectric element module and manufacturing method therefor
JP2005259944A (en) Thin film thermo-electronic semiconductor device and manufacturing method thereof
JP3501394B2 (en) Thermoelectric conversion module
US20190334074A1 (en) Thermoelectric module
JP4275938B2 (en) Method for manufacturing thermoelectric conversion module
JP4362303B2 (en) Thermoelectric element and manufacturing method thereof
JP2005005526A (en) Method for manufacturing thermoelectric conversion module
JP5404025B2 (en) Production method of thermoelectric conversion module
JPH0870142A (en) Thermoelectric element
JP4124150B2 (en) Thermoelectric module manufacturing method
JP2004281930A (en) Method for producing thermoelectric conversion element
JP2018125498A (en) Thermoelectric conversion device
JP2004200270A (en) Thermoelectric module
JP5247531B2 (en) Thermoelectric conversion module
JPH11163424A (en) Manufacture of thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees