JPH05226704A - Thermoelectric device and its manufacture - Google Patents

Thermoelectric device and its manufacture

Info

Publication number
JPH05226704A
JPH05226704A JP4023503A JP2350392A JPH05226704A JP H05226704 A JPH05226704 A JP H05226704A JP 4023503 A JP4023503 A JP 4023503A JP 2350392 A JP2350392 A JP 2350392A JP H05226704 A JPH05226704 A JP H05226704A
Authority
JP
Japan
Prior art keywords
film
thermoelectric semiconductor
pair
semiconductor film
type thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4023503A
Other languages
Japanese (ja)
Inventor
Fumitoshi Nishiwaki
文俊 西脇
Yasushi Nakagiri
康司 中桐
Yoshiaki Yamamoto
義明 山本
Hisaaki Gyoten
久朗 行天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4023503A priority Critical patent/JPH05226704A/en
Publication of JPH05226704A publication Critical patent/JPH05226704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a small, light, and inexpensive thermoelectric device high in thermoelectric conversion efficiency and its manufacture. CONSTITUTION:At least a pair of projections 9 are provided at one side of one insulating plate 11, and a patterned electrode film 12 is provided between a pair of projections 9, and a p-type thermoelectric semiconductor film 13, on the electrode film 12 at one top of the projections 9 in a pair, and an n-type thermoelectric semiconductor film 14, on the electrode film 12 on the other top, are provided, and counter electrodes 15, which form a pair, are provided on the p-type thermoelectric semiconductor film 13 and the n-type thermoelectric semiconductor 14, and a pair of lead electrode films 16 are provided for the counter electrode films 15, and a pair of lead electrodes 16 are provided on one side of the other insulating plate 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ペルチェ効果により電
気的に吸熱または放熱を行う冷却・加熱装置、またはゼ
ーベック効果により温度差を利用して発電を行う発電装
置などに用いる熱電装置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric device used for a cooling / heating device that electrically absorbs or radiates heat by the Peltier effect, or a power generating device that uses the temperature difference due to the Seebeck effect to generate electricity, and its manufacture. Regarding the method.

【0002】[0002]

【従来の技術】従来の熱電装置は、図12に示すよう
に、金属板1および2によってN型熱電半導体3および
P型熱電半導体4を挟み込み、それらを交互に電電気的
に直列に、かつ熱的に並列に配列し、端子5と端子6間
に電位を与えると、一方の金属板が冷却され、他方が加
熱される。7は絶縁板である。(例えば、上村、西田著
「熱電半導体とその応用」日刊工業新聞社(1988)
p.39)このような熱電装置の製造方法は、以下のよ
うに行われている。
2. Description of the Related Art In a conventional thermoelectric device, as shown in FIG. 12, an N-type thermoelectric semiconductor 3 and a P-type thermoelectric semiconductor 4 are sandwiched between metal plates 1 and 2, and they are alternately electrically and electrically connected in series. When they are thermally arranged in parallel and a potential is applied between the terminals 5 and 6, one metal plate is cooled and the other is heated. Reference numeral 7 is an insulating plate. (For example, Uemura and Nishida, "Thermoelectric Semiconductor and Its Applications," Nikkan Kogyo Shimbun (1988).
p. 39) A method for manufacturing such a thermoelectric device is performed as follows.

【0003】熱電半導体としてはBi−Te系化合物が
主に用いられており、溶製,焼結などの製法を用いてP
型およびN型のブロックが作製され、その熱電半導体の
ブロックをダイヤモンド・カッターなどを用いて所定の
バルク形状に成形する。熱電半導体の形状は角柱状と円
柱状が一般的である。その大きさは、角柱状で最も小さ
な場合でも、1.4mm×1.4mm×1.7mm程度の大き
さを有する。金属板には銅板が用いられる。そして、多
数の金属板によって、P型熱電半導体4とN型熱電半導
体3を交互に挟み込み、電気的に直列に接続し、かつ熱
的に並列に接続した構成となるように、熱電半導体と金
属板をBi−Sn系共晶合金などで直接半田付けして接
合されていた。
Bi-Te compounds are mainly used as thermoelectric semiconductors, and P is produced by a manufacturing method such as melting or sintering.
A mold and an N-type block are prepared, and the thermoelectric semiconductor block is molded into a predetermined bulk shape using a diamond cutter or the like. The shape of the thermoelectric semiconductor is generally prismatic or cylindrical. The size of the prism is about 1.4 mm × 1.4 mm × 1.7 mm even if it is the smallest. A copper plate is used as the metal plate. Then, the P-type thermoelectric semiconductor 4 and the N-type thermoelectric semiconductor 3 are alternately sandwiched by a large number of metal plates, electrically connected in series, and thermally connected in parallel so that the thermoelectric semiconductor and the metal are connected. The plates were directly soldered with a Bi-Sn eutectic alloy or the like to be joined.

【0004】冷却能力の拡大は、熱電半導体の設置個数
を増加させることにより、また冷却部と発熱部の温度差
の拡大は図12に示した装置を多段に積層することによ
って行われていた。
The cooling capacity has been expanded by increasing the number of thermoelectric semiconductors installed, and the temperature difference between the cooling part and the heat generating part has been expanded by stacking the devices shown in FIG. 12 in multiple stages.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の熱電装置およびその製造方法では、下記の
問題があった。 (1)溶製,焼結などの製法により作製したバルクの熱
電半導体は、その性能を向上させることが困難であり、
効率が低かった。 (2)熱電半導体は脆い材料であるため、所定のバルク
形状(例えば、1.4mm×1.4mm×1.7mm程度に成
形する際に、角部が欠け易く、歩留まりが非常に低かっ
た。 (3)上記のような非常に小さな大きさで、多数(約2
00個程度)の熱電半導体を大きさのばらつきなく、し
かもP型とN型を交互に正確に配列することが困難であ
るため、歩留まりが非常に低かった。 (4)上記の製造上の課題のため、熱電半導体の大きさ
を小さくできず、そのため、熱電半導体の厚さが1mm以
下であるような薄い熱電装置を作製することは困難であ
った。 (5)製造工程が連続的でなく、個々の部品をそれぞれ
作製して組み立てるため、大量に製造する場合、時間と
手間がかかり製造コストを下げることが困難であった (6)希少金属を大量に使用するため、材料コストが高
くなり、熱電装置の重量および容積が大きくなる。 (7)カスケード方式により積層し、低温と高温の温度
差を大きくしようとすると、厚みが増加し、重量が増加
していた。
However, the above-mentioned conventional thermoelectric device and its manufacturing method have the following problems. (1) It is difficult to improve the performance of a bulk thermoelectric semiconductor manufactured by a manufacturing method such as melting or sintering.
The efficiency was low. (2) Since the thermoelectric semiconductor is a brittle material, when it is molded into a predetermined bulk shape (for example, about 1.4 mm × 1.4 mm × 1.7 mm), the corners are easily chipped and the yield is very low. (3) The size is very small as described above, and many (about 2
The yield was very low because it was difficult to accurately arrange P-type and N-type thermoelectric semiconductors without variation in size and the P-type and N-type were alternately arranged. (4) Due to the above manufacturing problems, the size of the thermoelectric semiconductor cannot be reduced. Therefore, it is difficult to manufacture a thin thermoelectric device in which the thickness of the thermoelectric semiconductor is 1 mm or less. (5) Since the manufacturing process is not continuous and individual parts are individually manufactured and assembled, it is difficult to reduce the manufacturing cost because it takes time and labor when manufacturing a large amount. (6) A large amount of rare metals Therefore, the material cost is increased, and the weight and volume of the thermoelectric device are increased. (7) When the layers are stacked by the cascade method to increase the temperature difference between the low temperature and the high temperature, the thickness is increased and the weight is increased.

【0006】本発明は、上記の問題を解決し、熱電変換
効率が高く、小型・軽量で安価な熱電装置およびその製
造方法の提供を目的とする。
An object of the present invention is to provide a thermoelectric device which solves the above problems, has a high thermoelectric conversion efficiency, is small and lightweight, and is inexpensive, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに本発明の熱電装置は、一方の絶縁板の一面に少なく
とも1対の突起を設け、その1対の突起間にパターニン
グされた電極膜を設け、上記1対の突起の一方の頂部の
電極膜上にP型熱電導体膜,他方の頂部の電極膜上にN
型熱電半導体膜を設け、そのP型熱電半導体膜およびN
型熱電半導体膜上に1対となる対向電極膜を設け、その
対向電極膜に接してパターニングされた1対の取り出し
電極膜を設け、その1対の取り出し電極膜が他方の絶縁
板の一面に設けられている構成とする。
In order to achieve the above object, a thermoelectric device of the present invention is provided with at least one pair of protrusions on one surface of one insulating plate, and electrodes patterned between the pair of protrusions. A film is provided, a P-type thermoconductor film is formed on the electrode film on one of the pair of protrusions, and an N film is formed on the electrode film on the other side.
Type thermoelectric semiconductor film is provided, and the P type thermoelectric semiconductor film and N type thermoelectric semiconductor film are provided.
A pair of counter electrode films is provided on the thermoelectric semiconductor film, and a pair of patterned extraction electrode films is provided in contact with the counter electrode film. The pair of extraction electrode films is provided on one surface of the other insulating plate. The configuration is provided.

【0008】[0008]

【作用】上記の構成によれば、熱的非平衡状態のもとで
作製した性能の高い熱電半導体膜と熱絶縁の良好な熱電
装置が構成できることによる。
According to the above structure, a thermoelectric semiconductor film having a high performance and a thermoelectric device having a good thermal insulation can be formed under the thermal non-equilibrium state.

【0009】[0009]

【実施例】(実施例1)以下に本発明の第1の実施例を
添付図面に基づいて説明する。
(Embodiment 1) A first embodiment of the present invention will be described below with reference to the accompanying drawings.

【0010】図1は本実施例の要部拡大縦断面図であ
る。同図において、8はその表面に突起9を機械加工な
どの方法により作製した一方のアルミニウム基板であ
る。1対の突起9は高さ1mm、頂部口0.1mm、底部口
1mmの四角錘であり、2.2mmピッチで形成されてい
る。一方のアルミニウム基板8の一面には、電気絶縁膜
として厚さ30μmのポリイミド樹脂フィルム10が設
けられて一方の絶縁板11を形成している。さらに、そ
の上面には、パターニングされた電極膜12(厚さ70
μm)が設けられている。電極膜12は、隣合う1対の
突起9の頂部同志を電気的に直列に接続し、他の突起の
頂部に設けられた電極膜とは絶縁されるようにパターニ
ングされている。1対の突起9の頂部の電極膜12上に
は、真空蒸着、溶射などの手法用いてマスキングしなが
らP型熱電半導体膜13とN型熱電半導体膜14を設
け、そのP型熱電半導体膜13およびN型熱電半導体膜
14上に1対となる対向電極膜15を設け、その対向電
極膜15に接して1対の取り出し電極膜16を設け、そ
の1対の取り出し電極膜16が厚さ30μmのポリイミ
ド樹脂フィルムの絶縁膜17を介して他方のアルミニウ
ム板18からなる他方の絶縁板19の一面に設けられて
いる。
FIG. 1 is an enlarged vertical sectional view of the essential part of this embodiment. In the figure, reference numeral 8 denotes one aluminum substrate having a projection 9 formed on its surface by a method such as machining. The pair of protrusions 9 is a quadrangular pyramid having a height of 1 mm, a top opening of 0.1 mm and a bottom opening of 1 mm, and is formed at a pitch of 2.2 mm. On one surface of one aluminum substrate 8, a polyimide resin film 10 having a thickness of 30 μm is provided as an electrical insulating film to form one insulating plate 11. Further, the patterned electrode film 12 (thickness 70
μm) is provided. The electrode film 12 is patterned so that the tops of the adjacent pair of protrusions 9 are electrically connected in series and are insulated from the electrode films provided on the tops of the other protrusions. A P-type thermoelectric semiconductor film 13 and an N-type thermoelectric semiconductor film 14 are provided on the electrode film 12 on top of the pair of protrusions 9 while masking using a technique such as vacuum deposition or thermal spraying. A pair of counter electrode films 15 are provided on the N-type thermoelectric semiconductor film 14, a pair of lead electrode films 16 is provided in contact with the counter electrode film 15, and the pair of lead electrode films 16 have a thickness of 30 μm. Is provided on one surface of the other insulating plate 19 made of the other aluminum plate 18 via the insulating film 17 of the polyimide resin film.

【0011】熱電半導体膜13および14の製膜の際に
は、その膜13と14を交互に電気的に直列になるよう
なマスクパターンを採用し、取り出し電極膜16は熱的
に並列によるようにパターニングされている。
When the thermoelectric semiconductor films 13 and 14 are formed, a mask pattern is adopted so that the films 13 and 14 are alternately electrically connected in series, and the extraction electrode film 16 is thermally parallel. Is patterned.

【0012】図2は本実施例の平面図でり、図1の熱電
半導体膜を多数設け、取り出し電極膜16は最終的に引
出し電極20および20′に接続されている。図3は図
2のX−X′線に沿った縦断面図、図4は同じく要部拡
大横断面図である。
FIG. 2 is a plan view of this embodiment, in which a large number of thermoelectric semiconductor films of FIG. 1 are provided, and the extraction electrode film 16 is finally connected to the extraction electrodes 20 and 20 '. 3 is a longitudinal sectional view taken along line XX 'in FIG. 2, and FIG. 4 is an enlarged lateral sectional view of the same.

【0013】以上のように構成された熱電装置におい
て、引出し電極20,20′の間に直流電圧を印加すれ
ば、P型熱電半導体膜13N型熱電半導体膜14,電極
膜12および取り出し電極膜16の界面でペルチェ効果
により吸熱もしくは発熱が生じる。その結果、熱電装置
の上下絶縁板の一方で冷却、他方で加熱を行なうことが
できる。すなわち、電気と熱の直接変換が可能となる。
In the thermoelectric device configured as described above, if a DC voltage is applied between the extraction electrodes 20 and 20 ', the P-type thermoelectric semiconductor film 13 N-type thermoelectric semiconductor film 14, the electrode film 12 and the extraction electrode film 16 are formed. Endotherm or heat generation occurs at the interface of due to the Peltier effect. As a result, one of the upper and lower insulating plates of the thermoelectric device can be cooled and the other can be heated. That is, direct conversion of electricity and heat is possible.

【0014】なお、この時絶縁板の一方は低温、他方は
高温となり、両板間に温度差が生じるが、絶縁板11上
に高さ1mmの突起9を設け、絶縁板11と絶縁板19の
間の距離を約1mmとしたことにより、高温側絶縁板から
低温側絶縁板へその間に存在する空気を介した熱伝導に
よる熱損失はほとんど無視できる。
At this time, one of the insulating plates has a low temperature and the other has a high temperature so that a temperature difference occurs between the two plates. However, a protrusion 9 having a height of 1 mm is provided on the insulating plate 11, and the insulating plate 11 and the insulating plate 19 are provided. By setting the distance between them to about 1 mm, the heat loss due to the heat conduction from the high temperature side insulating plate to the low temperature side insulating plate through the air existing therebetween can be almost ignored.

【0015】以上のように本実施例によれば、熱電半導
体を熱的非平衡状態のもとで作製した性能の高い薄膜と
することにより熱電装置の効率を従来に比べ著しく高く
することができる。
As described above, according to the present embodiment, the efficiency of the thermoelectric device can be remarkably increased as compared with the conventional one by using the thermoelectric semiconductor as a thin film having high performance, which is manufactured under the thermal non-equilibrium state. ..

【0016】また、真空蒸着などの製膜プロセスを用い
て、マスキングしながら電極膜上に熱電半導体を一括製
膜できるため、微細な膜形状の熱電半導体膜を位置精度
良く、しかも形状のばらつきが少なく形成することが可
能となる。さらに、熱電半導体を高密度に実装するた
め、単位面積あたりの吸熱量を増加させることが可能と
なり、発熱密度の大きな装置の冷却にも熱電装置が使用
できるようになる。
Further, since the thermoelectric semiconductor can be collectively formed on the electrode film while masking it by using a film forming process such as vacuum deposition, the fine film-shaped thermoelectric semiconductor film can be accurately positioned and the shape of the film can vary. It is possible to form a small number. Further, since the thermoelectric semiconductors are mounted at a high density, the amount of heat absorbed per unit area can be increased, and the thermoelectric device can be used for cooling a device having a large heat generation density.

【0017】さらに、熱電材料を薄膜としたため、使用
するBi,Teなどの希少金属の量が僅かとなり、材料
コスト費ひいては熱電装置のコストを低減することがで
きる。
Furthermore, since the thermoelectric material is a thin film, the amount of rare metals such as Bi and Te used is small, and the material cost and the cost of the thermoelectric device can be reduced.

【0018】以上、本実施例の熱電装置を冷却装置とし
て用いた場合について説明してきたが、この構成を有す
る熱電装置はゼーベック効果を利用して熱を電気に変換
する発電装置として利用できることは言うまでもない。
Although the case where the thermoelectric device of this embodiment is used as a cooling device has been described above, it goes without saying that the thermoelectric device having this configuration can be used as a power generation device that converts heat into electricity by using the Seebeck effect. Yes.

【0019】図5および図6により本実施例の熱電装置
の製造方法を説明する。まず、図5(a)に示すよう
に、2mm厚さの一方のアルミニウム板18を機械加工し
て、1mm厚さのアルミニウム板8上に高さ1mm、頂部口
0.1mm、底部口1mmの大きさの多数の四角錘の突起9
を2.2mmピッチで形成する。
A method of manufacturing the thermoelectric device of this embodiment will be described with reference to FIGS. First, as shown in FIG. 5 (a), one aluminum plate 18 having a thickness of 2 mm is machined to have a height of 1 mm, a top opening of 0.1 mm, and a bottom opening of 1 mm on an aluminum plate 8 having a thickness of 1 mm. Numerous square pyramidal protrusions 9
Are formed with a 2.2 mm pitch.

【0020】次に、(b)に示すように、厚さ70μm
の銅箔21上にポリアミド樹脂溶液を塗布し、硬化させ
て、厚さ30μmのポリイミド樹脂フィルムの絶縁膜1
0を形成する。
Next, as shown in (b), the thickness is 70 μm.
Insulating film 1 of polyimide resin film having a thickness of 30 μm
Form 0.

【0021】次に、(c)に示すように、銅箔21をリ
ソグラフィ工法を用いて所定の形状にパターニングし、
絶縁膜10上に電極膜12を形成する。
Next, as shown in (c), the copper foil 21 is patterned into a predetermined shape by a lithography method,
The electrode film 12 is formed on the insulating film 10.

【0022】次に、(d)に示すように、(a)で作製
した突起9を設けたアルミニウム板8を雄のプレス型と
し、突起9に対応した雌のプレス型22を用いて、電極
膜12を設けたポリイミド樹脂フィルムの絶縁膜10を
プレス加工する。その際、突起9を設けたアルミニウム
板8の表面にエポキシ系の接着剤を塗布している。その
結果、(e)に示すような、アルミニウム板8上に電極
膜12を設けたポリイミド樹脂フィルムの絶縁膜10を
熱的に接合したものを形成することができる。なお、電
極膜12は、隣合う2つの突起の頂部同志を電気的に直
列に接続し、他の突起の頂部に形成された電極膜とは絶
縁されるようにパターニングされている。
Next, as shown in (d), the aluminum plate 8 having the projection 9 prepared in (a) is used as a male press die, and a female press die 22 corresponding to the projection 9 is used to form an electrode. The insulating film 10 of the polyimide resin film provided with the film 12 is pressed. At that time, an epoxy adhesive is applied to the surface of the aluminum plate 8 provided with the protrusions 9. As a result, as shown in (e), it is possible to form the one in which the insulating film 10 of the polyimide resin film provided with the electrode film 12 on the aluminum plate 8 is thermally bonded. The electrode film 12 is patterned so that the tops of two adjacent protrusions are electrically connected in series and are insulated from the electrode films formed on the tops of the other protrusions.

【0023】次に、図6(a)に示すように、突起9の
頂部の電極膜12上に真空蒸着、溶射などの手法を用い
てマスキングしながらP型熱電半導体膜13とはN型熱
電半導体膜14を製膜する。熱電半導体膜の形状は約縦
100μm×横100μm×厚さ10μmである。熱電
半導体膜は、P型熱電半導体膜13とN型熱電半導体膜
14が交互になるように製膜している。
Next, as shown in FIG. 6 (a), the P-type thermoelectric semiconductor film 13 and the N-type thermoelectric semiconductor film 13 are masked on the electrode film 12 on the top of the projection 9 by a technique such as vacuum deposition or thermal spraying. The semiconductor film 14 is formed. The shape of the thermoelectric semiconductor film is approximately 100 μm in length × 100 μm in width × 10 μm in thickness. The thermoelectric semiconductor film is formed so that the P-type thermoelectric semiconductor film 13 and the N-type thermoelectric semiconductor film 14 alternate.

【0024】次に、(b)に示すように、熱電半導体膜
上に銅薄膜の方向電極膜15(約1μm厚さ)を同様の
方法を用いて製膜する。
Next, as shown in (b), a directional electrode film 15 (about 1 μm thick) of a copper thin film is formed on the thermoelectric semiconductor film by the same method.

【0025】次に、図5(b)〜(d)で示したのと同
様な方法により、他方のアルミニウム板18の一方の表
面にも、パターニングされた取り出し電極膜16を形成
したポリイミド樹脂フィルムの絶縁膜17を熱的に接着
し、図6(c)に示す上部の基板を作製する。
Next, by the same method as shown in FIGS. 5B to 5D, the polyimide resin film in which the patterned extraction electrode film 16 is formed on one surface of the other aluminum plate 18 as well. The insulating film 17 is thermally adhered to produce the upper substrate shown in FIG.

【0026】最後に、アルミニウム板18の一方の面に
形成した取り出し電極膜16上に所定のパターンのクリ
ーム半田層を印刷した後、取り出し電極膜16と、P型
熱電半導体膜13およびN型熱電半導体膜14上に形成
した対向電極膜15が接触するように組み合わせ、昇温
して半田層を硬化して、電気的接合を確保している。こ
のようにして、図6(d)に示すように、製膜された全
てのP型熱電半導体膜13とN型熱電半導体膜14が電
気的に直列で、かつ熱的に並列であるような熱電装置を
作製することができる。
Finally, after a cream solder layer having a predetermined pattern is printed on the extraction electrode film 16 formed on one surface of the aluminum plate 18, the extraction electrode film 16, the P-type thermoelectric semiconductor film 13 and the N-type thermoelectric film are formed. The counter electrode film 15 formed on the semiconductor film 14 is assembled so as to be in contact with the semiconductor film 14, and the temperature is raised to cure the solder layer to ensure electrical connection. In this way, as shown in FIG. 6D, all the P-type thermoelectric semiconductor films 13 and the N-type thermoelectric semiconductor films 14 thus formed are electrically connected in series and thermally connected in parallel. Thermoelectric devices can be made.

【0027】なお、本実施例では、銅箔21上にポリア
ミド樹脂溶液を塗布し、硬化させて、ポリイミド樹脂フ
ィルムの絶縁膜10を形成することにより、銅箔21と
ポリイミド樹脂フィルムの絶縁膜10の積層物を作製し
たが、同様な構成を有する市販の銅張り積層板を用いて
も良い。
In the present embodiment, the polyamide resin solution is applied on the copper foil 21 and cured to form the insulating film 10 of the polyimide resin film, thereby forming the insulating film 10 of the copper foil 21 and the polyimide resin film. However, a commercially available copper-clad laminate having a similar structure may be used.

【0028】以上のように、本実施例によれば、真空製
膜プロセスを用いて、マスキングしながら電極膜上にP
型熱電半導体膜およびN型熱電半導体膜を一括製膜でき
るため、所定の膜形状の熱電半導体を位置精度良く、し
かも形状のばらつき少なく形成することが可能となる。
その結果、熱電装置を歩留まり良く、低コストで大量に
製造することが可能である。さらに、製造プロセスの大
面積化が容易であり、連続プロセスで行うことができる
ため、量産性に優れ、製造コストを下げることが可能と
なる。また、真空製膜プロセスを用いるため、熱電半導
体膜の結晶成長面を制御することが容易となり、熱電材
料の性能を一層高めることができる。
As described above, according to this embodiment, P is formed on the electrode film while masking by using the vacuum film forming process.
Since the type thermoelectric semiconductor film and the N-type thermoelectric semiconductor film can be formed at one time, it is possible to form the thermoelectric semiconductor having a predetermined film shape with high positional accuracy and less variation in shape.
As a result, the thermoelectric device can be mass-produced at a good yield and at low cost. Further, since it is easy to increase the area of the manufacturing process and can be performed in a continuous process, the mass productivity is excellent and the manufacturing cost can be reduced. Further, since the vacuum film forming process is used, it becomes easy to control the crystal growth surface of the thermoelectric semiconductor film, and the performance of the thermoelectric material can be further improved.

【0029】(実施例2)図7は本発明の第2の実施例
の要部拡大縦断面図である。
(Embodiment 2) FIG. 7 is an enlarged vertical sectional view of a main portion of a second embodiment of the present invention.

【0030】同図において、1対のアルミニウム板18
a,18bは厚さ1mmであり、その1対のアルミニウム
板18a,18bの一面には、厚さ30μmのポリイミ
ド樹脂フィルムの絶縁膜10a,10bが形成され、絶
縁板19a,19bを構成している。そして一方の絶縁
板19aの一方の面上にはパターニングされた電極膜2
3が、他方の絶縁板19bの一方の面上には同様にして
取り出し電極膜24(いずれも厚さ70μm、幅1.4
mm、長さ3.6mm)が形成されている。一方の絶縁板1
9a上に形成した電極膜23の上に間隔2.2mmで少な
くとも1対の突起状の銅製の電極部25を設け、1対の
電極部25を電気的に接合している。この電極部25は
高さ1mm、頂部0.1mm角、底部1mm角の四角錘であ
る。この電極部25上には、真空蒸着、溶射などの手法
を用いてマスキングしながらP型熱電半導体膜26およ
びN型熱電半導体膜27を製膜し、さらにその上面には
銅薄膜の対向電極膜28を同様の方法を用いて製膜して
いる。熱電半導体膜の製膜の際には、隣合う電極部25
において、P型熱電半導体膜26とN型熱電半導体膜2
7が交互になるようなマスクパターンを採用した。そし
て、P型熱電半導体膜26およびN型熱電半導体膜27
上に設けられた銅薄膜の対向電極膜28と、他方の絶縁
板19bの一面に設けられた取り出し電極膜24が電気
的に接合するように組み立てられている。なお、電極膜
23および取り出し電極24は、製膜されたすべてのP
型熱電半導体膜26とN型熱電半導体膜27が電気的に
直列に、かつ熱的に並列になるようにパターニングされ
ている。
In the figure, a pair of aluminum plates 18
a and 18b have a thickness of 1 mm, and a pair of aluminum plates 18a and 18b are provided on one surface with insulating films 10a and 10b of a polyimide resin film having a thickness of 30 μm to form insulating plates 19a and 19b. There is. The patterned electrode film 2 is formed on one surface of the one insulating plate 19a.
3 is similarly formed on one surface of the other insulating plate 19b by the extraction electrode film 24 (each having a thickness of 70 μm and a width of 1.4 μm).
mm, length 3.6 mm). One insulating plate 1
On the electrode film 23 formed on 9a, at least one pair of projecting copper-made electrode portions 25 are provided with a spacing of 2.2 mm, and the pair of electrode portions 25 are electrically joined. The electrode portion 25 is a square pyramid having a height of 1 mm, a top portion of 0.1 mm square, and a bottom portion of 1 mm square. A P-type thermoelectric semiconductor film 26 and an N-type thermoelectric semiconductor film 27 are formed on the electrode portion 25 while masking using a technique such as vacuum deposition or thermal spraying, and a counter electrode film of a copper thin film is formed on the upper surface thereof. 28 is formed into a film by using the same method. When forming the thermoelectric semiconductor film, the adjacent electrode portions 25 are formed.
In, the P-type thermoelectric semiconductor film 26 and the N-type thermoelectric semiconductor film 2
A mask pattern in which 7 is alternated is adopted. Then, the P-type thermoelectric semiconductor film 26 and the N-type thermoelectric semiconductor film 27
The counter electrode film 28, which is a copper thin film provided above, and the extraction electrode film 24 provided on one surface of the other insulating plate 19b are assembled so as to be electrically joined. In addition, the electrode film 23 and the take-out electrode 24 are all formed of P.
The type thermoelectric semiconductor film 26 and the N-type thermoelectric semiconductor film 27 are patterned so as to be electrically in series and thermally in parallel.

【0031】第1の実施例と異なる点は、熱電半導体膜
をその上に形成する電極部25を薄膜ではなく、銅製の
四角錘ブロックとした点である。
The difference from the first embodiment is that the electrode portion 25 on which the thermoelectric semiconductor film is formed is not a thin film but a square pyramidal block made of copper.

【0032】以上のように構成された熱電装置に電流を
流せば、P型熱電半導体膜26,N型熱電半導体膜2
7,25および銅薄膜の対向電極膜28の界面でペルチ
ェ効果により吸熱もしくは発熱が生じる。その結果、熱
電装置の上下絶縁板の一方で冷却、他方で加熱を行なう
ことができる。すなわち、電気と熱の直接変換が可能と
なる。
By applying an electric current to the thermoelectric device having the above-described structure, the P-type thermoelectric semiconductor film 26 and the N-type thermoelectric semiconductor film 2 are formed.
Heat absorption or heat generation occurs due to the Peltier effect at the interface between 7, 25 and the counter electrode film 28 of the copper thin film. As a result, one of the upper and lower insulating plates of the thermoelectric device can be cooled and the other can be heated. That is, direct conversion of electricity and heat is possible.

【0033】以上のように本実施例によれば、熱電半導
体として、熱的非平衡状態のもとで作製した性能の高い
熱電半導体を用いることにより、熱電装置の効率を従来
に比べ著しく高くすることが可能となる。
As described above, according to the present embodiment, by using a thermoelectric semiconductor having a high performance manufactured under a thermal non-equilibrium state as the thermoelectric semiconductor, the efficiency of the thermoelectric device is remarkably increased as compared with the conventional one. It becomes possible.

【0034】また、電極部25を四角錘の銅製とし、電
流の流路断面積を増加させたため、電極部が薄膜である
場合に比べ、電極部におけるジュール発熱による熱損失
量を低減することができる。したがって、熱電装置の吸
熱量を増加させることが可能となり、一層、熱電装置の
効率を高くすることができる。
Further, since the electrode portion 25 is made of a quadrangular pyramid made of copper and the flow passage cross-sectional area of the current is increased, the amount of heat loss due to Joule heat generation in the electrode portion can be reduced as compared with the case where the electrode portion is a thin film. it can. Therefore, the amount of heat absorbed by the thermoelectric device can be increased, and the efficiency of the thermoelectric device can be further increased.

【0035】また、第1の実施例と同様に、熱電半導体
を高密度に実装することによる単位面積あたりの冷却能
力の増加および使用する熱電材料の量が僅かとなること
によるコストの低減を図ることができる。
Further, similar to the first embodiment, the cooling capacity per unit area is increased by mounting the thermoelectric semiconductors at a high density and the cost is reduced because the amount of the thermoelectric material used is small. be able to.

【0036】図7および図8により本実施例の熱電装置
の製造方法を説明する。まず、図8(a)に示すよう
に、厚さ70μmの銅箔21上にポリアミド樹脂溶液を
塗布し、硬化させて、厚さ30μmのポリイミド樹脂フ
ィルムの絶縁膜10aを形成する。
A method of manufacturing the thermoelectric device of this embodiment will be described with reference to FIGS. 7 and 8. First, as shown in FIG. 8A, a polyamide resin solution is applied onto a copper foil 21 having a thickness of 70 μm and cured to form an insulating film 10a of a polyimide resin film having a thickness of 30 μm.

【0037】次に、(b)に示すように、銅箔21をリ
ソグラフィ工法を用いて所定の形状にパターニングし、
ポリイミド樹脂フィルムの絶縁膜10a上に電極膜23
(厚さ70μm、幅1.4mm、長さ3.6mm)を形成す
る。
Next, as shown in (b), the copper foil 21 is patterned into a predetermined shape by a lithography method,
The electrode film 23 is formed on the insulating film 10a of the polyimide resin film.
(Thickness 70 μm, width 1.4 mm, length 3.6 mm) are formed.

【0038】次に(c)に示すように、アルミニウム板
18aの面にエポキシ系の接着剤を塗布した後、電極膜
23を設けたポリイミド樹フィルムの絶縁膜10aを設
置し、硬化させて、両者を熱的に接合して一方の絶縁板
19aを製造する。
Next, as shown in (c), after the epoxy adhesive is applied to the surface of the aluminum plate 18a, the insulating film 10a of the polyimide film provided with the electrode film 23 is set and cured, The two are thermally joined to manufacture one insulating plate 19a.

【0039】次に、(d)に示すように、電極膜23の
上に、間隔2.2mmで少なくも1対の突起状の銅製の電
極部25を設置し、両者を電気的に接合する。電極部2
5は高さ1mm、頂部0.1mm角、底部1mm角の四角錘の
銅ブロックであり、機械的に加工して作製している。そ
して、作製した四角錘の銅ブロックを所定の位置に四角
錘の凹部を形成した雌型(図示せず)上で配置させた
後、一括して電極膜23の上に配置させる。なお、電極
膜23上には予めクリーム半田を塗布している。その
後、昇温して、電極膜23と四角錘の銅製の電極部25
を電気的に接合する。
Next, as shown in (d), at least a pair of projecting copper-made electrode portions 25 having a spacing of 2.2 mm are provided on the electrode film 23, and both are electrically joined. .. Electrode part 2
Reference numeral 5 is a square pyramidal copper block having a height of 1 mm, a top portion of 0.1 mm square, and a bottom portion of 1 mm square, and is manufactured by mechanical processing. Then, the produced copper block of the quadrangular pyramid is placed on a female die (not shown) in which a concave portion of the quadrangular pyramid is formed at a predetermined position, and then is placed on the electrode film 23 at once. It should be noted that cream solder is applied on the electrode film 23 in advance. Then, the temperature is raised, and the electrode film 23 and the quadrangular pyramidal copper electrode portion 25 are formed.
To be electrically connected.

【0040】次に、(e)に示すように、四角錘の電極
部25の頂部には、真空蒸着,溶射などのに手法を用い
てマスキングしながらP型熱電半導体膜26およびN型
熱電半導体膜27を製膜する。熱電半導体膜26および
27の形状は約縦100μm×横100μm×厚さ10
μmである。熱電半導体膜は、P型熱電半導体膜26と
N型熱電半導体膜27が交互になるように製膜してい
る。
Next, as shown in (e), the P-type thermoelectric semiconductor film 26 and the N-type thermoelectric semiconductor are masked on the top of the quadrangular pyramidal electrode portion 25 using a technique such as vacuum deposition or thermal spraying. The film 27 is formed. The shape of the thermoelectric semiconductor films 26 and 27 is about 100 μm in length × 100 μm in width × thickness 10
μm. The thermoelectric semiconductor film is formed such that the P-type thermoelectric semiconductor film 26 and the N-type thermoelectric semiconductor film 27 are alternately arranged.

【0041】さらに、図9(a)に示すように、熱電半
導体膜上に銅薄膜の対向電極膜28(約1μm厚さ)を
上記と同様の方法を用いて製膜する。
Further, as shown in FIG. 9A, a counter electrode film 28 of copper thin film (about 1 μm thick) is formed on the thermoelectric semiconductor film by the same method as described above.

【0042】次に、図8(a)〜図8(c)で示したの
と同様な方法により、他方のアルミニウム板18bの面
にも、パターニングされた取り出し電極膜24を形成し
たポリイミド樹脂フィルムの絶縁膜10bを熱的に接着
し、図9(b)に示す上部基板を作製する。
Next, by the same method as shown in FIGS. 8A to 8C, the polyimide resin film having the patterned extraction electrode film 24 formed on the surface of the other aluminum plate 18b as well. The insulating film 10b is thermally bonded to produce the upper substrate shown in FIG. 9 (b).

【0043】最後に、上部基板上に形成した取り出し電
極膜24上に所定のパターンのクリーム半田層を印刷し
た後、取り出し電極膜24と銅薄膜の対向電極膜28が
接触するように組み合わせ、昇温して半田層を硬化し
て、電気的接合を確保する。このようにして、図9
(c)に示すように、製膜されたすべてのP型熱電半導
体膜26とN型熱電半導体膜27が電気的に直列で、か
つ熱的に並列であるような熱電装置を作製することがで
きる。
Finally, after a cream solder layer having a predetermined pattern is printed on the lead-out electrode film 24 formed on the upper substrate, the lead-out electrode film 24 and the counter electrode film 28 of a copper thin film are combined so that they are in contact with each other, and the ascending electrode layer 28 is raised. Warm to cure the solder layer and ensure electrical contact. In this way, FIG.
As shown in (c), it is possible to manufacture a thermoelectric device in which all the formed P-type thermoelectric semiconductor films 26 and N-type thermoelectric semiconductor films 27 are electrically in series and thermally in parallel. it can.

【0044】以上のように、本実施例によれば、基板を
機械加工することなく銅製の突起を絶縁板上に配置し
て、加熱するだけで容易に絶縁板上に突起を形成するこ
とができるため、一層、量産性に優れ、製造コストを下
げることが可能となる。
As described above, according to this embodiment, the protrusions made of copper can be arranged on the insulating plate without machining the substrate, and the protrusions can be easily formed on the insulating plate only by heating. Therefore, it is possible to further improve mass productivity and reduce manufacturing cost.

【0045】(実施例3)図10は本発明の第3の実施
例の縦断面図である。
(Embodiment 3) FIG. 10 is a vertical sectional view of a third embodiment of the present invention.

【0046】本実施例では、第1および第2の実施例で
示した2枚の上下絶縁板に挟まれた構成を有する熱電装
置を、熱的接触を確保しながら3段に積層したものであ
る。第1段目の熱電装置の上部の絶縁板29は第2段目
の熱電装置の下部の絶縁板として用い、また第2段目の
熱電装置の上部の絶縁板30は、第3の段目の熱電装置
の下部の絶縁板として用いている。そして、上段になる
ほど、1枚の絶縁板上に形成される熱電半導体膜の数、
すなわち熱電素子の数を少なくしている。なお、各段の
熱電装置に用いる熱電半導体膜の材料を、各段の温度に
おいて材料の性能指数が高くなるように変化させてい
る。すなわち、1段目および2段目にはBi−Te系材
料を、3段目にはBi−Sb系材料を用いた。
In this embodiment, the thermoelectric device having the structure sandwiched between the two upper and lower insulating plates shown in the first and second embodiments is laminated in three stages while ensuring thermal contact. is there. The upper insulating plate 29 of the first-stage thermoelectric device is used as the lower insulating plate of the second-stage thermoelectric device, and the upper insulating plate 30 of the second-stage thermoelectric device is the third-stage thermoelectric device. It is used as an insulating plate under the thermoelectric device. The number of thermoelectric semiconductor films formed on one insulating plate increases in the upper stage,
That is, the number of thermoelectric elements is reduced. The material of the thermoelectric semiconductor film used in the thermoelectric device at each stage is changed so that the figure of merit of the material becomes high at the temperature at each stage. That is, a Bi-Te based material was used in the first and second steps, and a Bi-Sb based material was used in the third step.

【0047】以上のように構成された熱電装置に電流を
流せば、熱電装置の最上部の絶縁板31と最下部の絶縁
板32の間に生じる温度差は、第1段から第3段のそれ
ぞれの熱電装置で発生する温度差の総和となる。
When an electric current is passed through the thermoelectric device constructed as described above, the temperature difference between the uppermost insulating plate 31 and the lowermost insulating plate 32 of the thermoelectric device is from the first stage to the third stage. It is the sum of the temperature differences generated in each thermoelectric device.

【0048】したがって、本実施例では、第1および第
2の実施例で述べた効果に加えて、薄い熱電装置を複数
枚積層することによって、熱電装置全体として発生する
温度差を増大できるという効果が得られる。また、各段
で用いる熱電半導体をその温度域で性能が高くなる材料
としたため、効率よく大きな温度差が得られる。
Therefore, in this embodiment, in addition to the effects described in the first and second embodiments, by stacking a plurality of thin thermoelectric devices, it is possible to increase the temperature difference generated in the thermoelectric device as a whole. Is obtained. Further, since the thermoelectric semiconductor used in each stage is made of a material having high performance in that temperature range, a large temperature difference can be efficiently obtained.

【0049】さらに、熱電半導体を薄膜としたため、熱
電装置全体の厚さを薄くすることが可能となり、コンパ
クト熱電装置を実現できる。
Furthermore, since the thermoelectric semiconductor is a thin film, the thickness of the entire thermoelectric device can be reduced, and a compact thermoelectric device can be realized.

【0050】(実施例4)図11は本発明の第4の実施
例の縦断面図である。
(Embodiment 4) FIG. 11 is a vertical sectional view of a fourth embodiment of the present invention.

【0051】本実施例では、図10に示した熱電装置の
下部に熱交換手段(放熱手段)として水冷のための冷却
路33を設けた放熱器34を設置している。すなわち、
図10の熱電装置の最下部の絶縁板32の他面に放熱器
34を熱伝導性接着剤で接着して熱的に接触させてい
る。
In this embodiment, a radiator 34 having a cooling passage 33 for water cooling is installed as a heat exchanging means (radiating means) under the thermoelectric device shown in FIG. That is,
A radiator 34 is adhered to the other surface of the lowermost insulating plate 32 of the thermoelectric device of FIG. 10 with a heat conductive adhesive so as to be in thermal contact.

【0052】このような構成とすることにより、発熱部
における放熱をより効率よく行うことが可能となり、冷
却効果をより高めることができる。
With such a structure, it is possible to more efficiently dissipate heat in the heat generating portion, and it is possible to further enhance the cooling effect.

【0053】なお、第1の実施例における突起9および
第2の実施例における電極部25の形状は四角錘とした
が、先細りの柱状構造であれば、いかなる形状の断面で
あっても同様の効果が得られる。
The shape of the protrusion 9 in the first embodiment and the shape of the electrode portion 25 in the second embodiment are quadrangular pyramids, but any tapered cross-section may have the same shape. The effect is obtained.

【0054】また、絶縁板をアルミニウム板の表面上に
絶縁膜を形成したもので説明したが、アルミなどの絶縁
板を用いてもよい。
Although the insulating plate has been described by forming the insulating film on the surface of the aluminum plate, an insulating plate made of aluminum or the like may be used.

【0055】[0055]

【発明の効果】以上のように本発明によれば、熱的非平
衡状態のもとで作製した性能の高い熱電半導体膜を用い
るため、従来より熱電変換効率が高く、小型・軽量で安
価な熱電装置が得られる。
As described above, according to the present invention, since the thermoelectric semiconductor film having high performance prepared under the thermal non-equilibrium state is used, the thermoelectric conversion efficiency is higher than before, and the size, weight and cost are low. A thermoelectric device is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における熱電装置の要部
拡大縦断面図
FIG. 1 is an enlarged vertical sectional view of an essential part of a thermoelectric device according to a first embodiment of the present invention.

【図2】同実施例における平面図FIG. 2 is a plan view of the same embodiment.

【図3】同実施例における縦断面図FIG. 3 is a vertical sectional view of the same embodiment.

【図4】同実施例における要部拡大横断面図FIG. 4 is an enlarged transverse cross-sectional view of the main part of the same embodiment.

【図5】(a)〜(e)同実施例の前半の製造工程図5A to 5E are manufacturing process diagrams of the first half of the embodiment.

【図6】(a)〜(d)同実施例の後半の製造工程図6A to 6D are manufacturing process diagrams of the latter half of the embodiment.

【図7】本発明の第2の実施例における要部拡大縦断面
FIG. 7 is an enlarged vertical sectional view of an essential part in the second embodiment of the present invention.

【図8】(a)〜(e)同実施例の前半の製造工程図8A to 8E are manufacturing process diagrams of the first half of the embodiment.

【図9】(a)〜(c)同実施例の後半の製造工程図FIG. 9A to FIG. 9C are manufacturing process diagrams of the latter half of the embodiment.

【図10】第3の実施例の縦断面図FIG. 10 is a vertical sectional view of a third embodiment.

【図11】第4の実施例の縦断面図FIG. 11 is a vertical sectional view of a fourth embodiment.

【図12】従来の熱電装置の斜視図FIG. 12 is a perspective view of a conventional thermoelectric device.

【符号の説明】[Explanation of symbols]

9 突起 11,19,19a,19b,29,30,31,32
絶縁板 12,23 電極膜 13,26 P型熱電半導体膜 14,27 N型熱電半導体膜 15,28 対向電極膜 16,24 取り出し電極膜 25 電極部 34 放熱器(熱交換手段)
9 protrusions 11, 19, 19a, 19b, 29, 30, 31, 32
Insulating plate 12,23 Electrode film 13,26 P-type thermoelectric semiconductor film 14,27 N-type thermoelectric semiconductor film 15,28 Counter electrode film 16,24 Extraction electrode film 25 Electrode part 34 Radiator (heat exchange means)

フロントページの続き (72)発明者 行天 久朗 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Kuro Gyoten 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一方の絶縁板の一面に少なくとも1対の
突起を設け、その1対の突起間にパターニングされた電
極膜を設け、上記1対の突起の一方の頂部の電極膜上に
P型熱電半導体膜、他方の頂部の電極膜上にN型熱電半
導体膜を設け、そのP型熱電半導体膜およびN型熱電半
導体膜上に1対となる対向電極膜を設け、その対向電極
膜に接してパターニングされた1対の取り出し電極膜を
設け、その1対の取り出し電極膜が他方の絶縁板の一面
に設けられている熱電装置。
1. At least one pair of protrusions is provided on one surface of one insulating plate, and a patterned electrode film is provided between the pair of protrusions, and P is formed on the electrode film on the top of one of the pair of protrusions. -Type thermoelectric semiconductor film, an N-type thermoelectric semiconductor film is provided on the other top electrode film, and a pair of counter electrode films is provided on the P-type thermoelectric semiconductor film and the N-type thermoelectric semiconductor film. A thermoelectric device in which a pair of extraction electrode films patterned in contact with each other is provided, and the pair of extraction electrode films is provided on one surface of the other insulating plate.
【請求項2】 一方の絶縁板上にパターニングされた電
極膜を設け、その電極膜上に少なくとも1対の電極部を
設け、前記1対の電極部の一方の頂部にP型熱電半導体
膜、他方の頂部にN型熱電半導体膜を設け、そのP型熱
電半導体膜およびN型熱電半導体膜上に1対となる対向
電極膜を設け、その対向電極膜に接してパターニングさ
れた1対の取り出し電極膜を設け、その1対の取り出し
電極膜が他方の絶縁板の一面に設けられている熱電装
置。
2. A patterned electrode film is provided on one insulating plate, at least one pair of electrode portions is provided on the electrode film, and a P-type thermoelectric semiconductor film is provided on one top of the pair of electrode portions. An N-type thermoelectric semiconductor film is provided on the other top portion, a pair of counter electrode films is provided on the P-type thermoelectric semiconductor film and the N-type thermoelectric semiconductor film, and a pair of patterned lead-outs are formed in contact with the counter electrode film. A thermoelectric device in which an electrode film is provided, and the pair of extraction electrode films is provided on one surface of the other insulating plate.
【請求項3】 請求項1または2記載の熱電装置を2層
以上積層した熱電装置。
3. A thermoelectric device comprising two or more layers of the thermoelectric device according to claim 1 or 2.
【請求項4】 請求項1,2または3記載の熱電装置の
一方の絶縁板の他面に熱的に接触した熱交換手段を設け
た熱電装置。
4. A thermoelectric device provided with a heat exchange means in thermal contact with the other surface of one insulating plate of the thermoelectric device according to claim 1, 2.
【請求項5】 一方の絶縁板の一面に少なくとも1対の
突起を形成する工程と、上記一面上にパターニングされ
た電極膜を形成する工程と、上記1対の突起の一方の頂
部の電極膜上にP型熱電半導体膜、他方の頂部の電極膜
上にN型熱電半導体膜を形成する工程と、上記P型熱電
半導体膜およびN型熱電半導体膜上に対向電極膜を形成
する工程と、他方の絶縁板の一面上にパターニングされ
た取り出し電極膜を形成する工程と、上記一方の絶縁板
の一面と上記他方の絶縁板の一面を電気的に接合させる
工程とからなる熱電装置の製造方法。
5. A step of forming at least one pair of protrusions on one surface of one insulating plate, a step of forming a patterned electrode film on the one surface, and an electrode film on one top of the pair of protrusions. A step of forming a P-type thermoelectric semiconductor film thereon, an N-type thermoelectric semiconductor film on the other top electrode film, and a step of forming a counter electrode film on the P-type thermoelectric semiconductor film and the N-type thermoelectric semiconductor film A method of manufacturing a thermoelectric device, comprising: a step of forming a patterned extraction electrode film on one surface of the other insulating plate; and a step of electrically bonding one surface of the one insulating plate and one surface of the other insulating plate. ..
【請求項6】 一方の絶縁板の一面にパターニングされ
た電極膜を形成する工程と、上記電極膜上に少なくとも
1対の電極部を形成する工程と、前記1対の電極部の一
方の頂部にP型熱電半導体膜、他方の頂部にN型熱電半
導体膜を形成する工程と、上記P型熱電半導体膜および
N型熱電半導体膜上に対向電極膜を形成する工程と、他
方の絶縁板の一面上にパターニングされた取り出し電極
膜を形成する工程と、上記一方の絶縁板の一面と上記他
方の絶縁板の一面を電気的に接合させる工程とからなる
熱電装置の製造方法。
6. A step of forming a patterned electrode film on one surface of one insulating plate, a step of forming at least one pair of electrode portions on the electrode film, and one top portion of the pair of electrode portions. Forming a P-type thermoelectric semiconductor film on the other top, an N-type thermoelectric semiconductor film on the other top, forming a counter electrode film on the P-type thermoelectric semiconductor film and the N-type thermoelectric semiconductor film, and forming the other insulating plate. A method of manufacturing a thermoelectric device, comprising: a step of forming a patterned extraction electrode film on one surface; and a step of electrically bonding one surface of the one insulating plate and one surface of the other insulating plate.
JP4023503A 1992-02-10 1992-02-10 Thermoelectric device and its manufacture Pending JPH05226704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4023503A JPH05226704A (en) 1992-02-10 1992-02-10 Thermoelectric device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4023503A JPH05226704A (en) 1992-02-10 1992-02-10 Thermoelectric device and its manufacture

Publications (1)

Publication Number Publication Date
JPH05226704A true JPH05226704A (en) 1993-09-03

Family

ID=12112279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4023503A Pending JPH05226704A (en) 1992-02-10 1992-02-10 Thermoelectric device and its manufacture

Country Status (1)

Country Link
JP (1) JPH05226704A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6384312B1 (en) * 2000-12-07 2002-05-07 International Business Machines Corporation Thermoelectric coolers with enhanced structured interfaces
US6403876B1 (en) * 2000-12-07 2002-06-11 International Business Machines Corporation Enhanced interface thermoelectric coolers with all-metal tips
US6608250B2 (en) 2000-12-07 2003-08-19 International Business Machines Corporation Enhanced interface thermoelectric coolers using etched thermoelectric material tips
WO2004040617A3 (en) * 2002-10-20 2004-08-19 Borealis Tech Ltd Thermoelectric material with integrated de broglie wave filter
JP2009021593A (en) * 2000-12-07 2009-01-29 Internatl Business Mach Corp <Ibm> Thermoelectric devices and thermal element
US7566897B2 (en) 2006-09-18 2009-07-28 Borealis Technical Limited Quantum interference device
US7658772B2 (en) 1997-09-08 2010-02-09 Borealis Technical Limited Process for making electrode pairs
WO2010063044A3 (en) * 2008-11-14 2010-11-18 Herbert Karl Fuchs Method for converting thermal energy into electric energy
US7935954B2 (en) 1998-06-08 2011-05-03 Borealis Technical Limited Artificial band gap
KR20120049730A (en) * 2010-11-09 2012-05-17 삼성전자주식회사 Thermoelectric device and method for forming the same
US8227885B2 (en) 2006-07-05 2012-07-24 Borealis Technical Limited Selective light absorbing semiconductor surface
US8330192B2 (en) 2005-01-24 2012-12-11 Borealis Technical Limited Method for modification of built in potential of diodes
WO2013067148A1 (en) * 2011-11-02 2013-05-10 Cardinal Solar Technologies Company Thermoelectric device technology
US8574663B2 (en) 2002-03-22 2013-11-05 Borealis Technical Limited Surface pairs
US8594803B2 (en) 2006-09-12 2013-11-26 Borealis Technical Limited Biothermal power generator
KR20170029972A (en) * 2015-09-08 2017-03-16 포항공과대학교 산학협력단 Thermoelectric device using asymmetric vertical nanowire array and a method for manufacturing the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7658772B2 (en) 1997-09-08 2010-02-09 Borealis Technical Limited Process for making electrode pairs
US7935954B2 (en) 1998-06-08 2011-05-03 Borealis Technical Limited Artificial band gap
JP2004515924A (en) * 2000-12-07 2004-05-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Enhanced interface thermoelectric cooler
US6608250B2 (en) 2000-12-07 2003-08-19 International Business Machines Corporation Enhanced interface thermoelectric coolers using etched thermoelectric material tips
JP4493706B2 (en) * 2000-12-07 2010-06-30 インターナショナル・ビジネス・マシーンズ・コーポレーション Thermoelectric device and thermal element
WO2002047177A3 (en) * 2000-12-07 2002-12-05 Ibm Enhanced interface thermoelectric coolers
US6740600B2 (en) 2000-12-07 2004-05-25 International Business Machines Corporation Enhanced interface thermoelectric coolers with all-metals tips
US6384312B1 (en) * 2000-12-07 2002-05-07 International Business Machines Corporation Thermoelectric coolers with enhanced structured interfaces
JP2004515925A (en) * 2000-12-07 2004-05-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Enhanced interface thermoelectric cooler
JP2004515926A (en) * 2000-12-07 2004-05-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Thermoelectric device
US6403876B1 (en) * 2000-12-07 2002-06-11 International Business Machines Corporation Enhanced interface thermoelectric coolers with all-metal tips
CN100345318C (en) * 2000-12-07 2007-10-24 国际商业机器公司 Enhanced interface thermoelectric coolers
JP2009021593A (en) * 2000-12-07 2009-01-29 Internatl Business Mach Corp <Ibm> Thermoelectric devices and thermal element
WO2002047178A3 (en) * 2000-12-07 2003-09-12 Ibm Thermoelectric devices
WO2002047176A3 (en) * 2000-12-07 2002-12-05 Ibm Enhanced interface thermoelectric coolers
US8574663B2 (en) 2002-03-22 2013-11-05 Borealis Technical Limited Surface pairs
WO2004040617A3 (en) * 2002-10-20 2004-08-19 Borealis Tech Ltd Thermoelectric material with integrated de broglie wave filter
US8330192B2 (en) 2005-01-24 2012-12-11 Borealis Technical Limited Method for modification of built in potential of diodes
US8227885B2 (en) 2006-07-05 2012-07-24 Borealis Technical Limited Selective light absorbing semiconductor surface
US8594803B2 (en) 2006-09-12 2013-11-26 Borealis Technical Limited Biothermal power generator
US7566897B2 (en) 2006-09-18 2009-07-28 Borealis Technical Limited Quantum interference device
US8519253B2 (en) 2008-11-14 2013-08-27 Herbert Karl Fuchs Method for converting thermal energy into electrical energy
WO2010063044A3 (en) * 2008-11-14 2010-11-18 Herbert Karl Fuchs Method for converting thermal energy into electric energy
KR20120049730A (en) * 2010-11-09 2012-05-17 삼성전자주식회사 Thermoelectric device and method for forming the same
US9601678B2 (en) 2010-11-09 2017-03-21 Samsung Electronics Co., Ltd. Thermoelectric device and method of manufacturing the same
US9882110B2 (en) 2011-11-02 2018-01-30 Cardinal Cg Company Thermoelectric device technology
WO2013067148A1 (en) * 2011-11-02 2013-05-10 Cardinal Solar Technologies Company Thermoelectric device technology
KR20170029972A (en) * 2015-09-08 2017-03-16 포항공과대학교 산학협력단 Thermoelectric device using asymmetric vertical nanowire array and a method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPH05226704A (en) Thermoelectric device and its manufacture
US4730459A (en) Thermoelectric modules, used in thermoelectric apparatus and in thermoelectric devices using such thermoelectric modules
US7619158B2 (en) Thermoelectric device having P-type and N-type materials
JP3447915B2 (en) Thermoelectric element and thermoelectric element module using the same
US6441295B2 (en) Method of fabricating thermoelectric device
US7871847B2 (en) System and method for high temperature compact thermoelectric generator (TEG) device construction
US8536439B2 (en) Thermoelectric device
US9257627B2 (en) Method and structure for thermoelectric unicouple assembly
KR101237235B1 (en) Manufacturing Method of Thermoelectric Film
KR20100025067A (en) Thermoelectric module using substrate with prominence and depression
KR101621750B1 (en) Manufacturing Method of Thermoelectric Film
JPH01208876A (en) Thermoelectric device and manufacture thereof
JP2006032850A (en) Thermoelectric conversion module
JPS63253677A (en) Multilayered thermoelectric conversion device
JP2003282970A (en) Thermoelectric converter and thermoelectric conversion element and their manufacturing method
JP4147800B2 (en) Method for manufacturing thermoelectric conversion device
JP7055113B2 (en) Thermoelectric module and its manufacturing method
JP4124150B2 (en) Thermoelectric module manufacturing method
JPS62145783A (en) Thin film thermoelectric module
JP4280064B2 (en) Method for manufacturing thermoelectric conversion module
JPH10313134A (en) Manufacture of thermoelectric module
JPH06181341A (en) Thermoelectric conversion module, thermoelectric cooling device and refrigerator
JPH0613664A (en) Thermoelectric device and manufacture of thermoelectric device
JPH0629581A (en) Thermoelectric element
JPH02130877A (en) Thermoelectric device and manufacture thereof