JPH09162448A - Thermoelectric element - Google Patents

Thermoelectric element

Info

Publication number
JPH09162448A
JPH09162448A JP7346400A JP34640095A JPH09162448A JP H09162448 A JPH09162448 A JP H09162448A JP 7346400 A JP7346400 A JP 7346400A JP 34640095 A JP34640095 A JP 34640095A JP H09162448 A JPH09162448 A JP H09162448A
Authority
JP
Japan
Prior art keywords
udcc
semiconductor layer
semiconductor
electrode
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7346400A
Other languages
Japanese (ja)
Inventor
Takayuki Izumi
孝幸 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP7346400A priority Critical patent/JPH09162448A/en
Publication of JPH09162448A publication Critical patent/JPH09162448A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To lighten thermal distortion by making this thermoelectric element has such structure that a semiconductor layer, which has thermoelectric function, is joined, at the face substantially vertical to the direction of the heat flux, with the electrode layer consisting of unidirectional carbon-carbon complex material where carbon fibers are arranged in substantially parallel with the direction of heat flux at the time of being used as a thermoelectric element. SOLUTION: One side of each semiconductor layer 1 and 1' which has p-type and n-type heat function is joined, at junction face 4, with a metallic electrode 2 on high temperature side. Residual one side is joined, at junction face 5, in Y direction (vertical) with a metallic electrode 2' on low temperature side through a UDCC electrode (unidirectional carbon-carbon complex material) 3 joined at the junction face 7. The semiconductor layer 1 and 1' are isolated and insulated with a heat insulating material 6. The junction between the UDCC face and the metal is good in solder adhesion such as metallic brazing agent or the like, so the formation is easy, and the thermal expansion coefficient in Y direction of the UDCC is about middle between that of the metal and that of the semiconductor, and also the elastic modulus in Y direction is small at 10GPa, so the thermal distortion can be lightened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱エネルギーを直
接電力に変換する熱発電装置の熱電素子、あるいは素子
に電流を流すことによって低温冷熱を作る熱電冷却装置
のペルチェ素子(広義の熱電素子)の改良に関し、特に
各種熱機関や工場の廃熱からの電力変換回収、小型の発
電機、あるいは構造が簡易な冷暖房システム、冷蔵庫に
有用な熱電素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric element of a thermoelectric generator that directly converts thermal energy into electric power, or a Peltier element (thermoelectric element in a broad sense) of a thermoelectric cooling apparatus that produces low temperature cold heat by passing an electric current through the element. In particular, the present invention relates to a thermoelectric element useful for power conversion and recovery from waste heat of various heat engines and factories, a small generator, a cooling / heating system having a simple structure, and a refrigerator.

【0002】[0002]

【従来の技術】従来の熱電素子には、図5に示されるよ
うに、p型とn型の熱電能を有する半導体層(10,1
0′)を、これらと比べて電気抵抗率がはるかに小さ
く、熱伝導率が大きい金属電極(20)と、接合面(3
0)にて接合した図5(a)で示されるようなπ形と、
p型とn型の半導体層(10,10′)の片側の接合面
(40)が直接接合からなる図5(b)で示されるU形
とがあるが、いずれも半導体層(10,10′)と金属
電極(20)との接合が必要である。しかも、この接合
を形成する技術が熱電素子製造の重要な問題点のひとつ
であり、これが高度あるいは複雑な技術を要するため
に、熱電素子が高価となり、一般に広く普及することの
妨げとなっている場合が多い。
2. Description of the Related Art As shown in FIG. 5, a conventional thermoelectric element has a semiconductor layer (10, 1) having p-type and n-type thermoelectric power.
0 ') with a metal electrode (20) having a much lower electrical resistivity and a higher thermal conductivity than these, and a joint surface (3).
0) and the π shape as shown in FIG.
There is a U-shape shown in FIG. 5B in which the junction surface (40) on one side of the p-type and n-type semiconductor layers (10, 10 ') is a direct junction. ′) And the metal electrode (20) must be joined. Moreover, the technique for forming this junction is one of the important problems in the production of thermoelectric elements, and this requires advanced or complicated techniques, which makes the thermoelectric elements expensive and hinders their general spread. In many cases.

【0003】熱電素子の半導体材料としては、ビスマス
・テルル系、鉛・ゲルマニウム・テルル系、シリコン・
ゲルマニウム系、セレン系、鉄ケイ化物系などあるが、
これらは使用温度域でできるだけ熱電能が大きく、電気
抵抗率と熱伝導率が小さい材料が用いられる。一方、電
極材料は、アルミ、銅、銀などの電気抵抗率が小さく且
つ熱伝導率ができるだけ大きな金属が好ましい。
Semiconductor materials for thermoelectric elements include bismuth-tellurium-based, lead-germanium-tellurium-based, and silicon-based materials.
There are germanium series, selenium series, iron silicide series,
For these, materials having a high thermoelectric power, a low electric resistivity and a low thermal conductivity in the operating temperature range are used. On the other hand, the electrode material is preferably a metal such as aluminum, copper or silver which has a low electric resistivity and a high thermal conductivity.

【0004】これらの熱電材料半導体と電極金属との接
合は、十分に密着し、機械的に強固で、急速な加熱冷却
の熱サイクルによって起る熱歪みに耐えること、また高
温で、接合界面での半導体とハンダなどとの化学反応や
拡散による劣化が起りにくい接合を形成することが要求
されるので、スプリングによる圧着、拡散バリア処理し
たハンダ付け、熱膨張係数を合わせた拡散接合など、高
度な複雑な技術が組合わされて用いられる場合が多い。
The bonding between these thermoelectric material semiconductors and the electrode metal is sufficiently adherent, mechanically strong, and capable of withstanding the thermal strain caused by the rapid heating / cooling thermal cycle, and at the bonding interface at high temperature. Since it is required to form a joint that is unlikely to deteriorate due to chemical reaction and diffusion between the semiconductor and the solder, it is necessary to use a high-performance product such as compression bonding with a spring, soldering with a diffusion barrier treatment, and diffusion bonding with a matched thermal expansion coefficient. Complex technologies are often used in combination.

【0005】例えば、200℃以下の比較的低温で用い
られるビスマス・テルル系の熱電素子でも、低温側は銅
電極とビスマス・スズ系の特殊なハンダで接合し、高温
側はアルミニウムなどの金属をプラズマ溶射するか、又
は半導体と電極金属の接合面にNiのメッキ若しくはプ
ラズマ溶射などの拡散バリア処理をした上で、高温用ハ
ンダで接合することが行われている(Teledyne EnergySy
stems, Eng. and Appl. Manual, Aug. 1983:参照)。
For example, even in a bismuth-tellurium-based thermoelectric element used at a relatively low temperature of 200 ° C. or lower, the low temperature side is joined with a copper electrode and a special bismuth / tin based solder, and the high temperature side is made of metal such as aluminum. Plasma spraying or diffusion barrier treatment such as Ni plating or plasma spraying on the bonding surface of the semiconductor and the electrode metal, and then bonding with high temperature solder has been performed (Teledyne EnergySy
stems, Eng. and Appl. Manual, Aug. 1983 :).

【0006】また、鉛・ゲルマニウム・テルル系の熱電
素子の一例では、図6に示されるように、p型及びn型
の円柱状の半導体(10,10’)の低温側は、それぞ
れ円柱状のNiキャップ(50)にNi−PbTe共晶
合金で溶着し、このNiキャップの外周面は、絶縁性の
セラミックスで被覆してあり、このNiキャップ部分を
低温側からスプリング(60)で高温側へ押しつけて、
高温側の半導体(10)と電極部(20)とを圧着する
方法をとることによって、高温側の加熱、冷却に伴う熱
歪みを緩和している(G. Guzzoni, Proc. 1st ICTEC, Ar
lington, p136,1976:参照)。なお、図6において、7
0は絶縁材、80は放熱ベッド、90は高温壁、100
は放熱フィンを、それぞれ示す。
Further, in an example of a lead-germanium-tellurium-based thermoelectric element, as shown in FIG. 6, the low temperature side of the p-type and n-type columnar semiconductors (10, 10 ') are respectively columnar. Ni-PbTe eutectic alloy is welded to the Ni cap (50) of No. 3, and the outer peripheral surface of the Ni cap is covered with insulating ceramics. The Ni cap portion is heated from the low temperature side to the high temperature side by the spring (60). Press down on
By adopting a method of pressure-bonding the semiconductor (10) on the high temperature side and the electrode part (20), the thermal strain due to heating and cooling on the high temperature side is relaxed (G. Guzzoni, Proc. 1st ICTEC, Ar
lington, p136, 1976 :). In addition, in FIG.
0 is an insulating material, 80 is a heat dissipation bed, 90 is a hot wall, 100
Indicates a radiation fin, respectively.

【0007】また、シリコン・ゲルマニウム系の惑星探
査機ボイジャーの電源用熱電素子の例では、高温接合
は、シリコン・ゲルマニウム系のp型、n型半導体と、
電極であるSi−Mo共晶合金でできた板とを、熱間プ
レスにより拡散接合しており、Si−Mo合金は熱伝導
率と電気抵抗の特性はあまり良くないが、これらを犠牲
にして熱歪みを回避している。また、低温側の接合も、
半導体と電極の熱歪みによる劣化を避けるため、タング
ステン板に溶着あるいは拡散接合した上で銅と接合して
いる(P. A. O'Rioda,Proc. 4th IECEC, Arlington, p1
5, 1982:参照)。
Further, in the example of the thermoelectric element for the power source of the silicon-germanium-based planetary explorer Voyager, the high temperature junction is a silicon-germanium-based p-type or n-type semiconductor,
A plate made of an Si-Mo eutectic alloy that is an electrode is diffusion bonded by hot pressing. The Si-Mo alloy has poor thermal conductivity and electrical resistance characteristics, but these are sacrificed. Avoids thermal distortion. Also, for low temperature side joining,
In order to avoid deterioration due to thermal distortion of the semiconductor and electrode, it is welded or diffusion bonded to a tungsten plate and then bonded to copper (PA O'Rioda, Proc. 4th IECEC, Arlington, p1
5, 1982: see).

【0008】このような例示でも理解されるように、従
来技術では、電極材料として、アルミニウム、銅、銀等
の低電気抵抗、高熱伝導率の合金が好ましいとされなが
らも、これらの金属と半導体の接合方法が難しく、特に
高温部や、加熱、冷却が繰返される部分は、これら金属
と半導体の熱膨張係数の差が大きいために、熱歪みによ
るヒビ割れ、剥離などの劣化が生じやすいので、これら
金属と半導体の直接の接着ができないという問題があっ
た。また、高温部(200℃以上)においては、ハンダ
成分が半導体層に化学反応したり、拡散したりして、半
導体層の特性を劣化する場合もあり、金属電極と半導体
の接合面に拡散バリア層を予め形成してからハンダ付け
する必要があった。
As can be understood from these examples, in the prior art, alloys of aluminum, copper, silver and the like having low electric resistance and high thermal conductivity are preferable as electrode materials, but these metals and semiconductors are used. The joining method of is difficult, especially in the high temperature part, the part where heating and cooling are repeated, since the difference in the thermal expansion coefficient of these metals and the semiconductor is large, cracking due to thermal strain, deterioration such as peeling easily occurs, There is a problem that these metals cannot be directly bonded to the semiconductor. Further, in a high temperature portion (200 ° C. or higher), a solder component may chemically react with or diffuse into the semiconductor layer, which may deteriorate the characteristics of the semiconductor layer. The layers had to be pre-formed and then soldered.

【0009】[0009]

【発明が解決しようとする課題】従って、本発明の目的
は、熱電素子の実用技術において、半導体と電極の接合
方法を容易にし、しかも半導体と電極の接合において、
熱歪みによる劣化の問題、あるいは半導体とハンダなど
との反応、拡散による劣化の問題を回避し得る新らしい
構造の熱電素子を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to facilitate a method for joining a semiconductor and an electrode in a practical technique of a thermoelectric element, and to join a semiconductor and an electrode.
It is an object of the present invention to provide a thermoelectric element having a novel structure which can avoid the problem of deterioration due to thermal strain, or the problem of deterioration due to reaction between semiconductor and solder or diffusion and diffusion.

【0010】[0010]

【課題を解決するための手段】本発明によれば、熱電能
を有する半導体層が、熱電素子としての使用時の熱流束
の方向と実質上平行に炭素繊維が配列している一方向性
炭素炭素複合材料からなる電極層に、それぞれの熱流束
の方向と実質上直角な面において接合されてなる構造を
有することを特徴とする熱電素子が提供される。
According to the present invention, a unidirectional carbon in which a semiconductor layer having thermoelectric power has carbon fibers arranged substantially parallel to the direction of heat flux when used as a thermoelectric element. There is provided a thermoelectric element having a structure in which an electrode layer made of a carbon composite material is bonded on a surface substantially perpendicular to the direction of each heat flux.

【0011】本発明者らは、一方向性炭素炭素複合材料
(一方向性炭素繊維強化炭素母材複合材料、以下UDC
Cと略記することがある)が耐熱性に優れた材料であ
り、炭素繊維の配列方向(以下、X方向と略記すること
がある)の熱伝導率が非常に高く、約700W/(m・
k)にもできること{アルミニウム:約240W/(m
・k)、銅:約400W/(m・k)、銀:約430W
/(m・k)}、また電気抵抗率は2×10-4Ω・cm
と十分に小さく、熱膨張係数も炭素繊維の配列方向と直
角方向(以下、Y方向と略記することがある)では5〜
10×10-6/Kと比較的小さくて半導体物質と金属の
中間くらいであり、且つY方向の弾性率が約10GPa
と非常に小さく、Y方向に伸縮性があるため、熱歪み緩
和能力があり、更に銀ロウ、銅ロウ等の高温ハンダとの
濡れ性や接着性も良好で、且つ半導体物質と高温のプラ
ズマ溶射あるいは熱間プレスなどによって接合性があ
る、などの特徴を有する材料であることを研究し、この
材料の熱電素子への応用について鋭意研究を重ねた結
果、本発明を完成したものである。
The present inventors have found that unidirectional carbon-carbon composite material (unidirectional carbon fiber reinforced carbon matrix composite material, hereinafter UDC).
C is sometimes abbreviated as a material having excellent heat resistance, and the thermal conductivity in the carbon fiber array direction (hereinafter sometimes abbreviated as X direction) is very high, and is about 700 W / (m ·
k) What can be done (aluminum: about 240 W / (m
・ K), copper: about 400W / (m ・ k), silver: about 430W
/ (M · k)}, and the electrical resistivity is 2 × 10 −4 Ω · cm
Is sufficiently small, and the coefficient of thermal expansion is 5 in the direction perpendicular to the carbon fiber array direction (hereinafter sometimes abbreviated as Y direction).
10 × 10 -6 / K, which is relatively small, about halfway between semiconductor materials and metals, and has an elastic modulus in the Y direction of about 10 GPa.
It is very small and has elasticity in the Y direction, so it has the ability to relax thermal strain, and also has good wettability and adhesion to high temperature solder such as silver solder and copper solder, and plasma spraying at high temperature with semiconductor materials. Alternatively, the present invention has been completed as a result of researching a material having characteristics such as having a bondability by hot pressing and the like, and earnestly researching application of this material to a thermoelectric element.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明の熱電素子は、例えば図1あるいは図2に示され
るような構造を有することを特徴とするものである。す
なわち、図1は半導体層の片面のみにUDCCを使用す
る場合で、図1(a)は低温側の片面のみに、図1
(b)は高温側の片面のみに、UDCCを使用するもの
である。また図2の構造は半導体層の両面にUDCCを
使用する場合である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
The thermoelectric element of the present invention is characterized by having a structure as shown in FIG. 1 or 2, for example. That is, FIG. 1 shows the case where the UDCC is used only on one side of the semiconductor layer, and FIG.
(B) uses UDCC only on one side on the high temperature side. The structure of FIG. 2 is a case where UDCC is used on both surfaces of the semiconductor layer.

【0013】詳しく説明すると、図1(a)は、p型と
n型の熱電能を有するそれぞれの半導体層(1,1’)
が、片面は高温側金属電極(2)と接合面(4)で接合
され、残りの片面は接合面(7)で接合されているUD
CC電極(3)を介して、接合面(5)で低温側金属電
極(2’)と接合されていて、半導体層(1)と
(1’)とは断熱絶縁材(6)で隔離された構造からな
っている場合を示す。また、図1(b)は、p型とn型
の熱電能を有するそれぞれの半導体層(1、1’)が、
UDCC電極(3)を介して、高温側金属電極(2)と
接合されている点のみが、図1(a)と異なっている場
合を示す。また、図2は、p型とn型の熱電能を有する
それぞれの半導体層(1、1’)の両面が、UDCC電
極(3)を介して、高温側金属電極(2)と低温側金属
電極(2’)とに接合されている点のみが、図1と異な
っている場合を示す。
More specifically, FIG. 1A shows a semiconductor layer (1, 1 ') having p-type and n-type thermoelectric power.
However, one surface is bonded to the high temperature side metal electrode (2) at the bonding surface (4), and the other surface is bonded at the bonding surface (7).
It is bonded to the low temperature side metal electrode (2 ') at the bonding surface (5) through the CC electrode (3), and the semiconductor layers (1) and (1') are isolated by a heat insulating material (6). It shows the case where it has a different structure. Further, FIG. 1B shows that the respective semiconductor layers (1, 1 ′) having p-type and n-type thermoelectric powers are
The case where it differs from FIG. 1A only in that it is joined to the high temperature side metal electrode (2) through the UDCC electrode (3). In addition, FIG. 2 shows that both sides of the respective semiconductor layers (1, 1 ′) having p-type and n-type thermoelectric powers have a high temperature side metal electrode (2) and a low temperature side metal via the UDCC electrode (3). Only the point of being joined to the electrode (2 ′) is different from that in FIG. 1.

【0014】用いられるUDCCは、X方向の熱伝導率
が室温で400〜700W/(m・k)、500Kの温
度でも300〜500W/(m・k)の範囲にあり、且
つ母材組織が十分に緻密で、精密な切削加工が可能なも
のが好ましく、例えば特願平6−323507号、特願
平2−44029号、特願平3−234166号などの
技術で得られる材料を、Y方向に回転ソーで1〜5mm
厚さに切断し、要すれば切断面を研磨した板状物(X方
向が厚さ方向である)が好適である。
The UDCC used has a thermal conductivity in the X direction of 400 to 700 W / (m · k) at room temperature and 300 to 500 W / (m · k) at a temperature of 500 K, and has a matrix structure. A material that is sufficiently dense and capable of precise cutting is preferable. For example, a material obtained by a technique such as Japanese Patent Application No. 6-323507, Japanese Patent Application No. 2-44029, and Japanese Patent Application No. 3-234166 may be used. 1-5 mm with a rotating saw in the direction
A plate-like object (the X direction is the thickness direction) cut into a thickness and, if necessary, a polished cut surface is suitable.

【0015】このようなUDCCの板状物は耐熱性が非
常に高いので、これを基板としてその上に例えば半導体
粉体のプラズマ溶射をすることによって、図3に示され
るような半導体層(1、1’)をUDCCの板状体
(3)の上に接合したユニット(8)を作製することが
容易である。このようなユニット(8)の製造方法とし
ては、UDCC基板(3)の上に半導体層(1)を付着
せしめる方法として、プラズマ溶射法に限らず、種々の
方法を採用することができる。例えば、1〜数μm程度
の非常に薄い半導体層をつける場合は、プラズマCVD
法、スパッタリング、イオンプレーティング法などを用
いることができる。また、半導体の粉体を熱分解性の粘
稠な液に分散してペースト状あるいはペイント状とし、
これをUDCC基板(3)の上に一定厚さで塗布あるい
は印刷して、焼成及び焼結することによって、UDCC
基板(3)上に10〜100μm程度の半導体(1、
1’)を持ったユニット(8)を得ることができる。
Since such a plate-shaped material of UDCC has a very high heat resistance, a semiconductor layer (1) as shown in FIG. 1 ') is bonded to the UDCC plate-like body (3) to easily prepare a unit (8). As a method for manufacturing such a unit (8), the method of depositing the semiconductor layer (1) on the UDCC substrate (3) is not limited to the plasma spraying method, and various methods can be adopted. For example, when a very thin semiconductor layer having a thickness of 1 to several μm is formed, plasma CVD is used.
Method, sputtering, ion plating method, or the like can be used. In addition, the semiconductor powder is dispersed in a thermally decomposable viscous liquid to form a paste or paint,
By applying or printing this on the UDCC substrate (3) with a constant thickness, firing and sintering,
On the substrate (3), a semiconductor (1,
You can get a unit (8) with 1 ').

【0016】このようなユニット(8)を半導体のp型
とn型について、予め多数製造し、このp型、n型の一
対のユニットのUDCCの面を、銅板などの低温側電極
板(2’)に銅ロウなどの高温ハンダで接着し、p型と
n型ユニットの間隙を石英粉等の断熱絶縁材料で埋め、
その後高温側電極(2)を適当な金属のプラズマ溶射で
形成すると、図1(a)の構造の熱電素子が製造され
る。
A large number of such units (8) are manufactured in advance for semiconductor p-type and n-type, and the UDCC surface of the pair of p-type and n-type units is attached to the low temperature side electrode plate (2) such as a copper plate. ') With high temperature solder such as copper solder, fill the gap between the p-type and n-type units with a heat insulating material such as quartz powder,
Then, the high temperature side electrode (2) is formed by plasma spraying of an appropriate metal, whereby the thermoelectric element having the structure of FIG. 1 (a) is manufactured.

【0017】図1(b)の構造の素子は、基本的には図
1(a)の構造において、高温側と低温側とを逆にした
ものである。低温側電極(2’)を金属のプラズマ溶射
で形成する場合は、図1(a)と全く同じで問題はない
が、これを金属板として半導体と接合する場合は、熱膨
張係数の差による熱歪みの問題や、界面でのハンダ元素
拡散反応等を使用温度によっては考慮して、接合方法を
選択する必要がある。しかし、この場合でもこの接合は
低温側であるため、問題はかなり軽減されるので、銅板
等との直接ロウ付けをすることも可能となる。
The element having the structure shown in FIG. 1B is basically the same as the structure shown in FIG. 1A except that the high temperature side and the low temperature side are reversed. When the low temperature side electrode (2 ′) is formed by plasma spraying of metal, there is no problem since it is exactly the same as in FIG. 1A, but when this is bonded to a semiconductor as a metal plate, it depends on the difference in thermal expansion coefficient. It is necessary to select the joining method in consideration of the problem of thermal strain, the solder element diffusion reaction at the interface, and the like depending on the operating temperature. However, even in this case, since the joining is on the low temperature side, the problem is considerably mitigated, and it is also possible to perform brazing directly to a copper plate or the like.

【0018】熱電素子の半導体層は、組成を予め調整し
た半導体粉体を熱間プレス法によって凝集焼結して形成
することが出来る場合が多く、また前述のUDCCの板
状物は耐熱性が高く、圧縮強度が十分高いので、この板
状物で一定量の半導体粉体を上下から挟み熱間プレスす
ることによって、図4に示されるようなユニット
(8’)を作製することができる。この場合、半導体層
の種類によっては、熱間プレスによってUDCC板状体
との接着が出来ないものもあるが、半導体層は予め冷間
プレスで予備成形しておき、これとUDCC板状体の界
面に適当な接着助剤を塗布してから、熱間プレスするこ
とによって、ユニット(8’)を作製することができ
る。半導体層がSi−Ge系の場合のように、ある温度
で半導体構成元素が界面でわずか反応して強い結合を作
る場合は、接合助剤は不要である。
In many cases, the semiconductor layer of the thermoelectric element can be formed by agglomerating and sintering a semiconductor powder whose composition has been adjusted in advance by a hot pressing method, and the UDCC plate-like material described above has a heat resistance. Since it is high and the compressive strength is sufficiently high, a unit (8 ′) as shown in FIG. 4 can be produced by sandwiching a certain amount of semiconductor powder from above and below with this plate-like material and hot pressing. In this case, some semiconductor layers cannot be bonded to the UDCC plate by hot pressing, but the semiconductor layer is preformed by cold pressing in advance, and the semiconductor layer and the UDCC plate are not formed. The unit (8 ′) can be prepared by applying an appropriate adhesion aid on the interface and then hot pressing. When the semiconductor constituent element slightly reacts at the interface at a certain temperature to form a strong bond, as in the case where the semiconductor layer is a Si-Ge system, the bonding aid is not necessary.

【0019】また、前述のプラズマ溶射法などで製造し
た図3のユニット(8)を、半導体側の面で二枚合わせ
て熱間プレスすることによっても、図4のユニット
(8’)を作製することができる。この方法は、いわゆ
る分割接合型熱電素子を製造するのに適している。すな
わち、高温側を高温域で性能の良い78原子%Si−G
e、低温側を中温域で性能の良い63.5原子%Si−
Geとして、これらの図3で示されるユニット(8)を
作製した後、これらを二枚合わせて熱間プレスすること
で図4のユニット(8’)を作製することができる。
The unit (8 ') shown in FIG. 4 is also manufactured by hot pressing the two units (8) shown in FIG. 3 manufactured by the plasma spraying method mentioned above on the semiconductor side. can do. This method is suitable for producing a so-called split junction type thermoelectric element. That is, 78 atom% Si-G with good performance in the high temperature region on the high temperature side
e, 63.5 atom% Si- with good performance in the low temperature side in the middle temperature range
As Ge, the unit (8) shown in FIG. 3 is produced, and then two of them are combined and hot pressed to produce the unit (8 ′) of FIG.

【0020】このようなユニット(8’)を半導体のp
型とn型について、予め多数製造し、このp型、n型一
対のユニットのUDCCの片面を銅板などの低温側電極
板(2’)に銅ロウ等の高温ハンダで接着し、p型とn
型のユニットの間隙を石英粉等の断熱絶縁材料で埋め、
その後、高温側電極(2)を適当な金属のプラズマ溶射
で形成するか、あるいは高温側電極も低温側電極と同様
に金属板を銅ロウ等の高温ハンダでUDCC面に接着す
ることによって、図2の構造の熱電素子が製造される。
Such a unit (8 ') is a semiconductor p
Type and n-type are manufactured in advance, and one side of the UDCC of the pair of p-type and n-type units is bonded to the low-temperature side electrode plate (2 ′) such as a copper plate with high-temperature solder such as copper solder to form the p-type. n
Fill the gap between the mold units with a heat insulating insulating material such as quartz powder,
After that, the high temperature side electrode (2) is formed by plasma spraying of an appropriate metal, or the high temperature side electrode is adhered to the UDCC surface by a high temperature solder such as copper solder in the same manner as the low temperature side electrode. A thermoelectric device having a structure of 2 is manufactured.

【0021】[0021]

【作用】図1(a)、(b)及び図2に示されるよう
な、すなわち熱電能を有する半導体層が、熱電素子とし
ての使用時の熱流束の方向と実質上平行に炭素繊維が配
列しているUDCCからなる電極層に、それぞれの熱流
束の方向と実質上直角な面において接合されてなる構造
を有する本発明の熱電素子は、UDCC面と金属との接
合が、金属ロウ剤などのハンダ接着性が良いために接合
形成が容易であり、またUDCCのY方向の熱膨張係数
が金属と半導体のそれの中間ぐらいであると同時に、こ
れのY方向の弾性率が10GPaと小さいために、熱歪
み緩和作用が発現されるので、UDCCを介して銅など
の熱膨張係数の大きい(17〜20×10-6/k)金属
板と半導体層を接合することが、高温側においても可能
となる。また、UDCCの構成元素はほとんどが炭素で
あり、炭素と半導体構成元素との拡散化学反応は起りに
くいために、半導体の化学反応による劣化が極めて少な
い。
As shown in FIGS. 1 (a), 1 (b) and 2, that is, the semiconductor layer having thermoelectric power has carbon fibers arranged substantially parallel to the direction of heat flux when used as a thermoelectric element. The thermoelectric element of the present invention has a structure in which it is bonded to the electrode layer made of UDCC on the surface substantially perpendicular to the direction of each heat flux. Since it has good solder adhesion, it is easy to form a joint, and the coefficient of thermal expansion in the Y direction of UDCC is about halfway between that of metals and semiconductors, and at the same time, the elastic modulus in the Y direction is as small as 10 GPa. In addition, since a thermal strain relaxation effect is exhibited, it is possible to bond a metal plate having a large coefficient of thermal expansion (17 to 20 × 10 −6 / k) such as copper through a UDCC to a semiconductor layer even at a high temperature side. It will be possible. Most of the constituent elements of UDCC are carbon, and the diffusion chemical reaction between carbon and the semiconductor constituent elements is unlikely to occur, so that the deterioration due to the chemical reaction of the semiconductor is extremely small.

【0022】また、UDCCのX方向の熱伝導率は非常
に大きく、低温では銅や銀よりも大きく、500K以上
の高温でも銅や銀とほぼ同じであるので、熱電素子の電
極として熱損失を少くする作用を発揮し、高効率の熱電
素子を提供することができる。また、UDCCのX方向
の電気抵抗率は2×10-4Ω・cm程度であり、厚さを
3mmとしても、X方向の単位面積当たりの抵抗は6×
10-5Ω程度と同じ厚さの半導体層の抵抗に対して1/
10程度と十分に小さく、その内部抵抗損失は小さいの
で、高効率の熱電素子を提供することができる。
Further, the thermal conductivity of UDCC in the X direction is very large, larger than that of copper or silver at a low temperature, and almost the same as that of copper or silver even at a high temperature of 500 K or more. It is possible to provide a highly efficient thermoelectric element that exerts a reducing effect. Further, the electrical resistivity of the UDCC in the X direction is about 2 × 10 −4 Ω · cm, and even if the thickness is 3 mm, the resistance per unit area in the X direction is 6 ×.
1 / for the resistance of a semiconductor layer with the same thickness as 10 -5 Ω
Since it is sufficiently small as about 10 and its internal resistance loss is small, a highly efficient thermoelectric element can be provided.

【0023】また、更に、UDCCの耐熱性は極めて高
く、熱歪み緩和の作用があるので、UDCCの板を基板
として、この上に半導体をプラズマ溶射は、あるいはU
DCCの板で半導体を挟んで熱間プレス処理することに
よって、熱電素子の基本ユニトを生産性良く製造するこ
とができ、この方法によれば、従来は見られなかったよ
うな面積に比べて厚さが薄い半導体層を持った薄層型熱
電素子を製造することができる。
Further, since the heat resistance of UDCC is extremely high and it has the effect of relaxing the thermal strain, the UDCC plate is used as a substrate and the semiconductor is plasma sprayed or U
The basic unit of the thermoelectric element can be manufactured with high productivity by hot pressing with the semiconductor sandwiched between the DCC plates. According to this method, the thickness of the basic unit of the thermoelectric element can be increased as compared with the area which has not been seen in the past. It is possible to manufacture a thin layer type thermoelectric element having a semiconductor layer having a small thickness.

【0024】熱電素子の価値は、単に変換効率で決まる
ものではなく、同じ変換効率ならば、単位面積当たりの
製造コストが重要な価値を持つ。熱電素子用の半導体層
の成形コストは、非常に高価であり、薄層型熱電素子は
面積当りの半導体層コストを減らすことができるので、
基板コストを加えてもより低コストにできる。UDCC
は、X方向の熱伝導率は300〜700W/(m・k)
と非常に大きいが、Y方向のそれは10〜30W/(m
・k)と非常に小さいという特徴があるので、Y方向へ
の熱流による熱損失が少なく、本発明の構造の素子は半
導体層を十分薄くしても、半導体層をバイパスする熱流
による熱損失を少なく保つことができ、その結果、素子
の変換効率を高く保ことができる。
The value of the thermoelectric element is not simply determined by the conversion efficiency, but if the conversion efficiency is the same, the manufacturing cost per unit area has an important value. The molding cost of the semiconductor layer for the thermoelectric element is very high, and the thin layer thermoelectric element can reduce the semiconductor layer cost per area.
Even if the board cost is added, the cost can be reduced. UDCC
Has a thermal conductivity in the X direction of 300 to 700 W / (m · k)
Is very large, but that in the Y direction is 10 to 30 W / (m
Since it is characterized by being very small as (k), the heat loss due to the heat flow in the Y direction is small, and even if the semiconductor layer is sufficiently thin in the element of the structure of the present invention, the heat loss due to the heat flow bypassing the semiconductor layer The conversion efficiency of the device can be kept high as a result.

【0025】[0025]

【発明の効果】本発明の熱電素子は、熱電能を有する半
導体層が、熱電素子としての使用時の熱流束の方向と実
質上平行に炭素繊維が配列している一方向性炭素炭素複
合材料(UDCC)からなる電極層に、それぞれの熱流
束の方向と実質上直角な面において接合されてなる構造
を有するものとしたことから、次のような卓越した効果
を奏する。 イ)UDCC面と金属とのハンダ接着性が良いため接合
形成が容易である上に、UDCCの炭素繊維の配列方向
と直角の方向(Y方向)の熱膨張係数が比較的小さく、
且つ弾性率が小さいので、熱歪み緩和作用が発現され、
UDCCを介しての金属板と半導体層の接合が高温側に
おいても可能となる、 ロ)UDCCの主要構成元素である炭素と半導体構成元
素との拡散、化学反応が起りにくいため、半導体の化学
反応による劣化が極めて少ない、 ハ)UDCCの炭素繊維の配列方向(X方向)の熱伝導
率が非常に大きいので、熱電素子の電極として熱損失を
少なくする作用を発揮する、 ニ)UDCCのX方向の電気抵抗率は小さく、X方向の
単位体積当たりの抵抗が半導体層の抵抗に対して十分小
さいので、内部抵抗損失が小さい、 ホ)UDCCは耐熱性が極めて高く、熱歪み緩和作用を
有するので、UDCC板を基板として半導体をプラズマ
溶射、あるいはUDCC板で半導体を挟んで熱間プレス
処理することによって、熱電素子の基本ユニットを生産
性良く製造することができ、この方法によれば、これま
で見られなかったような面積に比べて厚さが薄い半導体
層を有する薄層型熱電素子を製造することができる。
The thermoelectric element of the present invention is a unidirectional carbon-carbon composite material in which a semiconductor layer having thermoelectric power has carbon fibers arranged substantially parallel to the direction of heat flux when used as a thermoelectric element. The electrode layer made of (UDCC) has a structure in which the electrode layers are bonded to each other in a plane substantially perpendicular to the direction of each heat flux, so that the following excellent effects are exhibited. B) The solder adhesion between the UDCC surface and the metal is good, so that it is easy to form a joint, and the coefficient of thermal expansion in the direction (Y direction) perpendicular to the arrangement direction of the carbon fibers of the UDCC is relatively small.
And since the elastic modulus is small, a thermal strain relaxation effect is expressed,
Bonding of metal plate and semiconductor layer via UDCC is possible even at high temperature. (2) Chemical reaction of semiconductor is difficult because diffusion and chemical reaction between carbon, which is the main constituent element of UDCC, and semiconductor constituent element do not occur easily. Very little deterioration due to C.)) The thermal conductivity of the UDCC carbon fiber array direction (X direction) is very large, so it exerts the effect of reducing heat loss as an electrode of the thermoelectric element. (2) UDCC X direction Has a small electric resistivity and the resistance per unit volume in the X direction is sufficiently smaller than the resistance of the semiconductor layer, so that the internal resistance loss is small. (E) UDCC has extremely high heat resistance and has a thermal strain relaxation effect. , The basic unit of the thermoelectric element can be manufactured with high productivity by plasma spraying the semiconductor using the UDCC plate as the substrate, or by hot pressing the semiconductor with the UDCC plate sandwiching the semiconductor. It is possible to manufacture, and according to this method, it is possible to manufacture a thin-layer thermoelectric element having a semiconductor layer having a thickness smaller than that which has not been seen until now.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体層片面にUDCCを使用した場合の本発
明の熱電素子の構造例を示す模式断面図であり、(a)
は半導体層の低温金属電極側に、また(b)は半導体層
の高温金属電極側に、UDCCを使用した例である。
FIG. 1 is a schematic cross-sectional view showing a structural example of a thermoelectric element of the present invention when UDCC is used on one surface of a semiconductor layer, (a)
Is an example of using UDCC on the low temperature metal electrode side of the semiconductor layer, and (b) is an example of using the UDCC on the high temperature metal electrode side of the semiconductor layer.

【図2】半導体層両面にUDCCを使用した場合の本発
明の熱電素子の構造例を示す模式断面図である。
FIG. 2 is a schematic cross-sectional view showing a structural example of a thermoelectric element of the present invention when UDCC is used on both sides of a semiconductor layer.

【図3】UDCC基板上に半導体層を形成したユニット
の構造例を示す模式断面図である。
FIG. 3 is a schematic cross-sectional view showing a structural example of a unit in which a semiconductor layer is formed on a UDCC substrate.

【図4】UDCC板で半導体層を挟み形成したユニット
の構造例を示す模式断面図である。
FIG. 4 is a schematic cross-sectional view showing a structural example of a unit in which a semiconductor layer is sandwiched between UDCC plates.

【図5】従来の熱電素子の基本形状を示す模式断面図で
あり、(a)はπ型素子を、また(b)はU型素子を示
す。
FIG. 5 is a schematic cross-sectional view showing a basic shape of a conventional thermoelectric element, (a) showing a π-type element and (b) showing a U-type element.

【図6】従来の高温型熱電素子発電装置の構造例を示す
模式断面図である。
FIG. 6 is a schematic cross-sectional view showing a structural example of a conventional high temperature type thermoelectric element power generator.

【符号の説明】 1 半導体層(第I型) 1’ 半導体層(第II型) 2 高温側金属電極 2’ 低温側金属電極 3 UDCC電極 4 半導体/金属接合面 5 UDCC/金属接合面 6 断熱絶縁材 7 半導体/UDCC接合面 8 半導体層/UDCC基板ユニット 8’ UDCC板/半導体層/UDCC板ユニット 10 半導体層(第I型) 10’ 半導体層(第II型) 20 金属電極 30 半導体/金属接合面 50 Niキャップ 60 スプリング 70 絶縁材 80 放熱ベッド 90 高温壁 100 放熱フィン[Explanation of reference numerals] 1 semiconductor layer (type I) 1'semiconductor layer (type II) 2 high temperature side metal electrode 2'low temperature side metal electrode 3 UDCC electrode 4 semiconductor / metal joint surface 5 UDCC / metal joint surface 6 heat insulation Insulating material 7 Semiconductor / UDCC bonding surface 8 Semiconductor layer / UDCC substrate unit 8'UDCC plate / semiconductor layer / UDCC plate unit 10 Semiconductor layer (Type I) 10 'Semiconductor layer (Type II) 20 Metal electrode 30 Semiconductor / Metal Joining surface 50 Ni cap 60 Spring 70 Insulating material 80 Radiating bed 90 High temperature wall 100 Radiating fin

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱電能を有する半導体層が、熱電素子と
しての使用時の熱流束の方向と実質上平行に炭素繊維が
配列している一方向性炭素炭素複合材料からなる電極層
に、それぞれの熱流束の方向と実質上直角な面において
接合されてなる構造を有することを特徴とする熱電素
子。
1. A semiconductor layer having thermoelectric power is provided on an electrode layer made of a unidirectional carbon-carbon composite material in which carbon fibers are arranged substantially parallel to a direction of heat flux when used as a thermoelectric element. A thermoelectric element having a structure in which it is joined on a surface substantially perpendicular to the direction of the heat flux.
JP7346400A 1995-12-12 1995-12-12 Thermoelectric element Pending JPH09162448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7346400A JPH09162448A (en) 1995-12-12 1995-12-12 Thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7346400A JPH09162448A (en) 1995-12-12 1995-12-12 Thermoelectric element

Publications (1)

Publication Number Publication Date
JPH09162448A true JPH09162448A (en) 1997-06-20

Family

ID=18383174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7346400A Pending JPH09162448A (en) 1995-12-12 1995-12-12 Thermoelectric element

Country Status (1)

Country Link
JP (1) JPH09162448A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233837A (en) * 1998-02-18 1999-08-27 Matsushita Electric Works Ltd Thermoelectric conversion module
JP2005268240A (en) * 2004-03-16 2005-09-29 Toyota Central Res & Dev Lab Inc Thermoelectric module
JP2006278997A (en) * 2005-03-30 2006-10-12 Toyota Central Res & Dev Lab Inc Compound thermoelectric module
JP2007243010A (en) * 2006-03-10 2007-09-20 Nhk Spring Co Ltd Thermoelectric semiconductor element, its manufacturing method, and thermoelectric conversion module
JP2013042108A (en) * 2011-07-20 2013-02-28 Sharp Corp Thermoelectric conversion element, thermoelectric conversion device, and power generating method
AU2012284833B2 (en) * 2011-07-20 2014-08-28 Hiroaki Nakaya Thermoelectric conversion element and thermoelectric conversion power generation system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233837A (en) * 1998-02-18 1999-08-27 Matsushita Electric Works Ltd Thermoelectric conversion module
JP2005268240A (en) * 2004-03-16 2005-09-29 Toyota Central Res & Dev Lab Inc Thermoelectric module
JP2006278997A (en) * 2005-03-30 2006-10-12 Toyota Central Res & Dev Lab Inc Compound thermoelectric module
JP2007243010A (en) * 2006-03-10 2007-09-20 Nhk Spring Co Ltd Thermoelectric semiconductor element, its manufacturing method, and thermoelectric conversion module
JP2013042108A (en) * 2011-07-20 2013-02-28 Sharp Corp Thermoelectric conversion element, thermoelectric conversion device, and power generating method
AU2012284833B2 (en) * 2011-07-20 2014-08-28 Hiroaki Nakaya Thermoelectric conversion element and thermoelectric conversion power generation system
AU2012284833C1 (en) * 2011-07-20 2015-02-05 Hiroaki Nakaya Thermoelectric conversion element and thermoelectric conversion power generation system
US10790430B2 (en) 2011-07-20 2020-09-29 Hiroaki Nakaya Thermoelectric conversion element and thermoelectric conversion power generation device

Similar Documents

Publication Publication Date Title
US6563039B2 (en) Thermoelectric unicouple used for power generation
CN106716655A (en) Thermo-compression bonding of thermoelectric materials
US20020189661A1 (en) Thermoelectric unicouple used for power generation
JPH1074986A (en) Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
JP2001267642A (en) Method of manufacturing thermoelectric conversion module
US20130139866A1 (en) Ceramic Plate
JPH06342940A (en) Thermoelectric generator and manufacture thereof
JPH09293906A (en) Thermoelectric converter
JPH09162448A (en) Thermoelectric element
JP2000091649A (en) Thermoelectric element, thermoelectric conversion module core, and thermoelectric conversion module and its manufacture
KR101508793B1 (en) Manufacturing method of heat exchanger using thermoelectric module
JPH11261118A (en) Thermoelectric conversion module, semiconductor unit, and manufacture of them
JP2006190916A (en) Method for forming junction electrode in thermionic element and porous thermionic element
JPH11330568A (en) Thermoelectric power generation device and its manufacture
JP2003282970A (en) Thermoelectric converter and thermoelectric conversion element and their manufacturing method
JPH02106079A (en) Electricity heat conversion element
JP3482094B2 (en) Thermal stress relaxation pad for thermoelectric conversion element and thermoelectric conversion element
JPH10209509A (en) Thermoelectric transducer and its manufacture
JPH07221352A (en) Layered thermoelectric conversion device, subunit for thermoelectric power generation, and power generating unit
JP3469811B2 (en) Line type thermoelectric conversion module
JPH1084140A (en) Thermo-electric converter and manufacture thereof
JPH1168172A (en) Junction of group silicon and germanium-based material, thermoelectric converter module and manufacture thereof
JPH02198179A (en) Thermoelectric element and manufacture thereof
JP3573448B2 (en) Thermoelectric conversion element