JPH09293906A - Thermoelectric converter - Google Patents

Thermoelectric converter

Info

Publication number
JPH09293906A
JPH09293906A JP8105447A JP10544796A JPH09293906A JP H09293906 A JPH09293906 A JP H09293906A JP 8105447 A JP8105447 A JP 8105447A JP 10544796 A JP10544796 A JP 10544796A JP H09293906 A JPH09293906 A JP H09293906A
Authority
JP
Japan
Prior art keywords
layer
solder
electrode
thermoelectric conversion
intervening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8105447A
Other languages
Japanese (ja)
Inventor
Koji Moriya
浩二 守家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8105447A priority Critical patent/JPH09293906A/en
Publication of JPH09293906A publication Critical patent/JPH09293906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve power generation efficiency by increasing a temperature difference by increasing a temperature on a high-temperature side and to prevent elapsed deterioration. SOLUTION: Intermediate layers 6 and 7 made of one of the group consisting of Al, Mg and Ti or an alloy of the group are provided between one end of a P-type or N-type semiconductor of Bi-Te or Pb-Te group and a Cu electrode connected to them. Jointing layers made of high temperature solder to brazing filler metal can be further provided between the intermediate layers and the electrode 5. In-between layers made of one of the group consisting of Cu, Ag, Au and Mg which exhibit high wettability or an alloy of the group can also be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、熱電変換素子に関
し、特にゼーベック効果によって熱起電力を発生するた
めの熱電変換素子に関する。
TECHNICAL FIELD The present invention relates to a thermoelectric conversion element, and more particularly to a thermoelectric conversion element for generating a thermoelectromotive force by the Seebeck effect.

【0002】[0002]

【従来の技術】熱電変換素子は基本的には、P形および
N形の各導電形式の金属間化合物である半導体の各一端
部を電極に接合してその一端部を高温度とし、半導体の
他端部を低温度として温度差をつくることによって熱起
電力を、各半導体の前記他端部間に発生してその電力を
取り出す。
2. Description of the Related Art Basically, a thermoelectric conversion element is formed by joining one end of a semiconductor, which is an intermetallic compound of P-type and N-type conductive types, to an electrode and making the one end a high temperature. A thermoelectromotive force is generated between the other end portions of the respective semiconductors by taking a temperature difference between the other end portions and setting a low temperature, and the electric power is taken out.

【0003】典型的な先行技術は、半導体の前記一端部
と銅製電極とを軟ロウである半田で接合して構成され
る。熱電変換素子から取り出すことのできる電力を大き
くするには、前記一端部である高温側温度を上昇して半
導体の他端部である低温側との温度差を大きくする必要
があるけれども、半田の耐熱性は約150℃程度であ
り、したがって先行技術は発電効率が悪く、価格性能比
の向上を図ることが望まれている。
A typical prior art is constructed by joining the one end of the semiconductor and a copper electrode with a solder which is a soft solder. In order to increase the power that can be extracted from the thermoelectric conversion element, it is necessary to increase the temperature on the high temperature side, which is the one end, to increase the temperature difference from the low temperature side, which is the other end of the semiconductor. The heat resistance is about 150 ° C. Therefore, the prior art has poor power generation efficiency, and it is desired to improve the price performance ratio.

【0004】上述の半田の代わりに、耐熱性の高い高温
半田を使用する先行技術では、高温側温度を上昇させて
使用することができるけれども、この先行技術における
新たな問題点は、高温半田の成分が半導体内へ拡散し、
しかも高温半田の成分Sn,Pbと、電極のCuとの親
和性が強いので、その電極のCuが高温半田を経て半導
体内へ拡散し、これによって半導体自体の熱電変換効率
が経時的に低下することである。
In the prior art which uses high temperature solder having high heat resistance instead of the above-mentioned solder, the temperature on the high temperature side can be raised and used. However, a new problem in this prior art is that high temperature solder is used. The components diffuse into the semiconductor,
Moreover, since the components Sn and Pb of the high temperature solder and the Cu of the electrode have a strong affinity, the Cu of the electrode diffuses into the semiconductor through the high temperature solder, thereby decreasing the thermoelectric conversion efficiency of the semiconductor itself over time. That is.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、発電
効率の向上を図るとともに、経時的に劣化することなく
寿命が長い熱電変換素子を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the power generation efficiency and provide a thermoelectric conversion element which does not deteriorate with time and has a long life.

【0006】[0006]

【課題を解決するための手段】本発明は、P形導電形式
またはN形導電形式を有するBi−Te系半導体に接す
る介在層が電極に接続され、この介在層は、Al、Ti
およびMgから成るグループのうちの1またはそれらの
合金であることを特徴とする熱電変換素子である。また
本発明は、P形導電形式またはN形導電形式を有するP
b−Te系半導体に接する介在層が電極に接続され、こ
の介在層は、Al、TiおよびMgから成るグループの
うちの1またはそれらの合金であることを特徴とする熱
電変換素子である。また本発明は、介在層は、硬ロウで
あり、この介在層が電極に接して接続されることを特徴
とする。また本発明は、介在層は、薄膜技術または厚膜
技術によって形成され、この介在層が電極に接して接続
されることを特徴とする。また本発明は、介在層は、薄
膜技術または厚膜技術によって形成され、介在層と電極
とを接続する高温半田または硬ロウから成る接合層を有
することを特徴とする。また本発明は、介在層は、薄膜
技術または厚膜技術によって形成され、電極には、高温
半田または硬ロウから成る接合層が接続され、介在層と
接合層との間に、介在層と接合層との両者に濡れ性のよ
い中間層を設けることを特徴とする。また本発明は、中
間層は、Cu,Ag,AuおよびMgから成るグループ
のうちの1またはそれらの合金であることを特徴とす
る。また本発明は、接合層を構成する硬ロウは、アルミ
ニウムロウ、マグネシウムロウ、銀ロウおよび金ロウか
ら成るグループのうちの1または複数であることを特徴
とする。また本発明は、電極は、Cu,Al,Ni,A
g,AuおよびPtから成るグループのうちの1または
それらの合金であることを特徴とする。
According to the present invention, an intervening layer that is in contact with a Bi-Te based semiconductor having a P-type conductivity type or an N-type conductivity type is connected to an electrode.
A thermoelectric conversion element, which is one of the group consisting of Mg and Mg or an alloy thereof. Also, the present invention provides a P type having a P type conductivity type or an N type conductivity type.
An intervening layer in contact with the b-Te based semiconductor is connected to the electrode, and the intervening layer is one of the group consisting of Al, Ti and Mg or an alloy thereof, which is a thermoelectric conversion element. Further, the invention is characterized in that the intervening layer is a hard solder, and the intervening layer is in contact with and connected to the electrode. Further, the present invention is characterized in that the intervening layer is formed by a thin film technique or a thick film technique, and the intervening layer is in contact with and connected to the electrode. Further, the present invention is characterized in that the intervening layer is formed by a thin film technique or a thick film technique and has a joining layer made of high-temperature solder or hard solder for connecting the intervening layer and the electrode. Further, according to the present invention, the intervening layer is formed by a thin film technique or a thick film technique, the electrode is connected to a joining layer made of high-temperature solder or hard solder, and the intervening layer and the joining layer are joined together. It is characterized in that an intermediate layer having good wettability is provided on both of the layers. The invention is also characterized in that the intermediate layer is one of the group consisting of Cu, Ag, Au and Mg or an alloy thereof. Further, the present invention is characterized in that the hard solder constituting the bonding layer is one or more of a group consisting of an aluminum solder, a magnesium solder, a silver solder and a gold solder. In the present invention, the electrodes are Cu, Al, Ni, A
It is characterized by being one of the group consisting of g, Au and Pt or an alloy thereof.

【0007】本発明に従えば、P形またはN形の導電形
式を有する半導体の一端部を電極と接続するにあたり、
半導体に接する介在層が設けられ、介在層は、Al,T
iおよびMgから成るグループから選ばれる1またはそ
れらの合金である。半導体は、Bi−Te系またはPb
−Te系である。これらの介在層を構成する金属は、半
導体への拡散係数が極めて小さい。したがって半導体が
接合される介在層および電極側である半導体の一端部
を、それらの半導体の熱電変換性能が劣化しない高温度
に加熱しても、介在層の成分が半導体内に拡散すること
が全く、またはほとんど、ない。しかもこのような成分
を有する介在層によれば、電極、接合層および中間層の
成分が半導体へ拡散しやすい物質であったとしても、そ
の拡散を介在層によって防ぐことができる。これによっ
て半導体の他端部との間の温度差を大きくして、発電効
率の向上を図ることができ、価格性能比を向上すること
ができるようになるとともに、経時的な熱電変換効率の
低下が抑制される。たとえば後述の図1における介在層
6,7は、Al、TiまたはMgを主成分とする硬ロウ
であってもよい。介在層6,7はまた、薄膜技術または
厚膜技術によって形成され、この薄膜技術は、陽射すな
わちイオンプレーティング、スパッタリング、蒸着また
はICB(イオンクラスタビーム)が挙げられ、厚膜技
術としてはスクリーン印刷などが挙げられ、この介在層
6,7は、融着またはレーザ溶接などによって電極5に
固定してもよい。また本発明に従えば、後述の図3に示
されるように、介在層14,15は、薄膜技術または厚
膜技術によって形成され、介在層を電極5に接続する接
合層は、高温半田または硬ロウから成る。接合層は、電
極との接着強度は大きくても、この接合層と介在層との
接着強度が不充分であるときには、後述の図4に示され
るように、介在層と接合層との間に濡れ性のよい中間層
を設ける。本発明に従えば、実施の一形態では、介在層
はAlまたはTiであり、接合層はアルミニウムロウで
ある。また介在層はAlまたはTiであり、結合層は高
温半田であり、中間層はAuである。電極は、たとえば
Cu,Al,Ni,Ag,Au,Ptおよびそれらの合
金などであってもよい。電気絶縁性基板は、たとえばベ
リリア(BeO)またはアルミナ(Al23)などのセ
ラミック基板であってもよく、電極は、その基板上にパ
ターニングされて構成されてもよい。
According to the present invention, in connecting one end of a semiconductor having a P type or N type conductivity type to an electrode,
An intervening layer in contact with the semiconductor is provided, and the intervening layer is made of Al, T
1 or an alloy thereof selected from the group consisting of i and Mg. The semiconductor is Bi-Te system or Pb.
-Te system. The metal forming these intervening layers has a very small diffusion coefficient into the semiconductor. Therefore, even if one end of the semiconductor, which is the side of the intervening layer to which the semiconductor is joined and the electrode side, is heated to a high temperature at which the thermoelectric conversion performance of these semiconductors does not deteriorate, the components of the intervening layer do not diffuse into the semiconductor. , Or almost, not. Moreover, with the intervening layer having such a component, even if the components of the electrode, the bonding layer, and the intermediate layer are substances that easily diffuse into the semiconductor, the diffusion can be prevented by the intervening layer. This makes it possible to increase the temperature difference between the other end of the semiconductor, improve power generation efficiency, improve the price-performance ratio, and decrease thermoelectric conversion efficiency over time. Is suppressed. For example, intervening layers 6 and 7 in FIG. 1 to be described later may be hard solders containing Al, Ti or Mg as a main component. The intervening layers 6, 7 are also formed by a thin film technique or a thick film technique, which may include irradiation, ie ion plating, sputtering, vapor deposition or ICB (ion cluster beam), the thick film technique being a screen. Examples of the method include printing, and the intervening layers 6 and 7 may be fixed to the electrode 5 by fusion or laser welding. Further, according to the present invention, as shown in FIG. 3 described later, the intervening layers 14 and 15 are formed by a thin film technique or a thick film technique, and the joining layer connecting the intervening layer to the electrode 5 is formed by high temperature solder or hard solder. Composed of wax. Even if the bonding layer has a high adhesive strength with the electrode but the adhesive strength between the bonding layer and the intervening layer is insufficient, as shown in FIG. An intermediate layer having good wettability is provided. According to the invention, in one embodiment the intervening layer is Al or Ti and the bonding layer is aluminum braze. The intervening layer is Al or Ti, the bonding layer is high temperature solder, and the intermediate layer is Au. The electrodes may be, for example, Cu, Al, Ni, Ag, Au, Pt and alloys thereof. The electrically insulating substrate may be a ceramic substrate such as beryllia (BeO) or alumina (Al 2 O 3 ), and the electrodes may be patterned on the substrate.

【0008】[0008]

【発明の実施の形態】図1は本発明の実施の一形態の熱
電変換素子1を示す断面図であり、図2は図1に示され
る熱電変換素子1を数個直列接続して構成されたユニッ
ト2の簡略化した側面図である。これらの図面を参照し
て、熱電変換素子1は、P形導電形式を有する半導体4
とN形導電形式を有するもう1つの半導体3との各一端
部3a,4aと電極5との間に、Al、TiおよびMg
のうちの1またはそれらの合金から成る介在層6,7が
介在される。この介在層6,7は、半導体3,4への拡
散が零またはほとんど無く、しかも介在層6,7に接す
る電極5の成分との親和性が弱く、したがってその介在
層6,7に接するCuなどの電極5の成分が介在層6,
7を経て半導体3,4に拡散することを防ぐ。
1 is a sectional view showing a thermoelectric conversion element 1 according to an embodiment of the present invention, and FIG. 2 is constructed by connecting several thermoelectric conversion elements 1 shown in FIG. 1 in series. FIG. 3 is a simplified side view of the unit 2. Referring to these drawings, a thermoelectric conversion element 1 includes a semiconductor 4 having a P-type conductivity type.
Between one end 3a, 4a of another semiconductor 3 having N type conductivity type and the electrode 5 and Al, Ti and Mg.
The intervening layers 6 and 7 made of one of them or an alloy thereof are interposed. The intervening layers 6 and 7 have no or almost no diffusion into the semiconductors 3 and 4, and have a weak affinity with the components of the electrode 5 in contact with the intervening layers 6 and 7. The components of the electrode 5 such as
It is prevented from diffusing into the semiconductors 3 and 4 via 7.

【0009】本発明の実施の他の形態では、半導体3,
4の一端部3a,4aの端面に、まず、アルミニウムか
ら成る介在層6,7を薄膜技術または厚膜技術によって
形成する。薄膜技術としては、陽射すなわちイオンプレ
ーティング、スパッタリング、蒸着およびICBなどが
挙げられ、厚膜技術としてはスクリーン印刷などが挙げ
られる。こうして半導体3,4に形成された介在層6,
7を電極に融着またはレーザ溶接などによって接続す
る。アルミニウムに代えて、TiまたはMgであっても
よく、またはそれらの合金であってもよい。たとえば介
在層14,15は、AlまたはTiのスパッタ膜であ
り、電極5はCuである。
In another embodiment of the present invention, the semiconductor 3,
First, the intervening layers 6 and 7 made of aluminum are formed on the end faces of the one ends 3a and 4a of the thin film 4 by thin film technology or thick film technology. Thin film technologies include solar radiation or ion plating, sputtering, vapor deposition and ICB, and thick film technologies include screen printing. The intervening layers 6 thus formed on the semiconductors 3 and 4
7 is connected to the electrode by fusion or laser welding. Instead of aluminum, it may be Ti or Mg, or an alloy thereof. For example, the intervening layers 14 and 15 are sputtered films of Al or Ti, and the electrode 5 is Cu.

【0010】電極5は、電気絶縁性基板8上にパターニ
ングされて構成される。基板8は、たとえばベリリア系
またはアルミナ系セラミックである。電極5は、たとえ
ばCu,Al,Ni,Ag,Au,Ptなどおよびそれ
らの合金から成ってもよい。半導体3,4は両者ともB
i−Te系またはPb−Te系であってもよく、または
半導体3,4のいずれか一方がBi−Te系であり、い
ずれか他方がPb−Te系であってもよい。P形不純物
はたとえばInであり、N形不純物はたとえばアンチモ
ンであってもよい。
The electrode 5 is formed by patterning on the electrically insulating substrate 8. The substrate 8 is, for example, beryllia-based or alumina-based ceramic. The electrode 5 may be made of, for example, Cu, Al, Ni, Ag, Au, Pt, or the like and alloys thereof. Both semiconductors 3 and 4 are B
It may be i-Te based or Pb-Te based, or one of the semiconductors 3 and 4 may be Bi-Te based and the other may be Pb-Te based. The P-type impurity may be In, for example, and the N-type impurity may be antimony, for example.

【0011】本発明の実施の一形態では、図1に示され
るように半導体3,4の一端部3a,4aを、電極5
に、介在層6,7である硬ロウによって接合する。この
硬ロウは、たとえばアルミニウムロウ、マグネシウムロ
ウまたはチタンロウである。たとえば電極5はCuであ
り、介在層6,7はアルミニウムロウである。
In one embodiment of the present invention, as shown in FIG. 1, one end portions 3a and 4a of semiconductors 3 and 4 are connected to electrode 5
Are joined to each other by hard solder which is the intervening layers 6 and 7. This hard solder is, for example, an aluminum solder, a magnesium solder or a titanium solder. For example, the electrode 5 is Cu and the intervening layers 6 and 7 are aluminum solder.

【0012】半導体3,4の他端部3b,4bは、介在
層11,12を介して電極9,10に接続され、これら
の電極9,10は低温側基板13に構成される。電極
9,10は前述の電極5と同様であり、介在層11,1
2は前述の介在層6,7と同様であり、基板13は前述
の基板8と同様に構成されてもよい。介在層11,12
は、半田であってもよく、または後述の実施の各態様と
同様な構成であってもよい。
The other ends 3b and 4b of the semiconductors 3 and 4 are connected to electrodes 9 and 10 via intervening layers 11 and 12, and these electrodes 9 and 10 are formed on the low temperature side substrate 13. The electrodes 9 and 10 are the same as the electrodes 5 described above, and the intervening layers 11 and 1 are
2 is the same as the intervening layers 6 and 7 described above, and the substrate 13 may be configured similarly to the substrate 8 described above. Intervening layers 11, 12
May be solder, or may have a configuration similar to that of each embodiment described later.

【0013】本発明の実施の他の形態は、図3に示され
ている。この図3に示される実施の形態は、前述の構成
に類似し、対応する部分には同一の参照符を付す。この
実施の形態では、半導体3,4の一端部3a,4aの端
面に、まず、アルミニウムから成る介在層14,15を
接合する。このアルミニウムから成る介在層14,15
は、薄膜技術である陽射すなわちイオンプレーティン
グ、スパッタリング、蒸着またはICBによって作成し
てもよく、または厚膜技術であるたとえばスクリーン印
刷などによって作成することができる。次に、介在層1
4,15と銅から成る電極5とは、接合層16,17に
よって接続する。介在層16,17は、高温半田および
硬ロウであってもよい。高温半田は、SnとPbとを主
成分として含み、Snはたとえば約60重量%以上が含
まれ、さらにAgが含まれてもよい。硬ロウは、たとえ
ばアルミニウムロウ、マグネシウムロウ、銀ロウ、金ロ
ウであってもよい。本発明の実施のさらに他の形態で
は、介在層14,15は、アルミニウムに代えて、Ti
またはMgであってもよく、さらにそれらの合金であっ
てもよい。
Another embodiment of the present invention is shown in FIG. The embodiment shown in FIG. 3 is similar to the configuration described above, and corresponding parts are designated by the same reference numerals. In this embodiment, the intervening layers 14 and 15 made of aluminum are first bonded to the end faces of the one ends 3a and 4a of the semiconductors 3 and 4, respectively. The intervening layers 14 and 15 made of aluminum
May be made by the thin film technique of sunlight or ion plating, sputtering, vapor deposition or ICB, or by the thick film technique of eg screen printing. Next, the intervening layer 1
4, 15 and the electrode 5 made of copper are connected by the bonding layers 16, 17. The intervening layers 16 and 17 may be high temperature solder and hard solder. The high-temperature solder contains Sn and Pb as main components, and Sn contains, for example, about 60% by weight or more, and may further contain Ag. The hard wax may be, for example, an aluminum wax, a magnesium wax, a silver wax, a gold wax. In yet another embodiment of the present invention, the intervening layers 14, 15 are made of Ti instead of aluminum.
Alternatively, it may be Mg or an alloy thereof.

【0014】図4は、本発明の実施のさらに他の形態の
一部の断面図である。この実施の形態は、前述の図3の
構成に類似し、対応する部分には同一の参照符を付す。
注目すべきはこの実施の形態では、介在層14,15と
接合層16,17との濡れ性を向上するために、中間層
18,19を薄膜技術によってまたは厚膜技術によって
設ける。この濡れ性のよい中間層18,19は、たとえ
ばCu,Ag,AuおよびMgのうちの1つまたはそれ
らの合金であってもよい。こうして半導体3,4の一端
部3a,4aの端面に薄膜技術または厚膜技術によって
形成された介在層14,15上に、濡れ性のよい中間層
18,19が形成された後、高温半田または硬ロウから
成る接合層16,17を用いて電極5に接合する。これ
によって強度を向上することができる。たとえば半導体
3,4には、AlまたはTiから成る介在層14,15
が形成され、その上にAuから成る中間層18,19が
形成され、高温半田から成る接合層16,17によって
Cu製電極5に接合される。介在層14,15は、たと
えばAlであってもよいけれども、TiまたはMgから
成ってもよく、またはそれらの合金であってもよい。そ
の他の構成は、前述の図3の構成ならびに図1および図
2の構成に類似する。
FIG. 4 is a partial cross-sectional view of still another embodiment of the present invention. This embodiment is similar to the configuration of FIG. 3 described above, and corresponding parts are designated by the same reference numerals.
It should be noted that in this embodiment, the intermediate layers 18 and 19 are provided by a thin film technique or a thick film technique in order to improve the wettability between the intervening layers 14 and 15 and the bonding layers 16 and 17. The wettable intermediate layers 18, 19 may be, for example, one of Cu, Ag, Au and Mg or an alloy thereof. In this way, after the intermediate layers 18 and 19 having good wettability are formed on the intervening layers 14 and 15 formed on the end faces of the one ends 3a and 4a of the semiconductors 3 and 4 by the thin film technique or the thick film technique, high temperature solder or The electrodes 5 are bonded using the bonding layers 16 and 17 made of hard solder. This can improve the strength. For example, the semiconductors 3 and 4 have intervening layers 14 and 15 made of Al or Ti.
Are formed, and the intermediate layers 18 and 19 made of Au are formed thereon, and are joined to the Cu electrode 5 by the joining layers 16 and 17 made of high temperature solder. The intervening layers 14, 15 may be, for example, Al, but may also be made of Ti or Mg, or alloys thereof. Other configurations are similar to the configuration of FIG. 3 and the configurations of FIGS. 1 and 2 described above.

【0015】図1〜図3に示される実施の各形態におい
て、図1の介在層6,7としてアルミニウムロウおよび
マグネシウムロウを用いるとき、ならびに図3および図
4の介在層14,15としてチタンを用いたときにおけ
る半導体3,4への拡散係数は、本件発明者の実験によ
れば、表1のとおりである。これに対して比較例として
示す先行技術では、半導体3,4にCu製電極が直接
に、または半田を介して接合され、その拡散係数は、本
件発明の実施の形態に比べて、極めて悪い。これによっ
て本発明は、先行技術に比べて格段に優れた発電効率の
向上を図ることができるとともに、経時的劣化を抑制す
ることができることが理解される。
In each of the embodiments shown in FIGS. 1 to 3, when aluminum braze and magnesium braze are used as intervening layers 6 and 7 in FIG. 1, and titanium is used as intervening layers 14 and 15 in FIGS. 3 and 4. The diffusion coefficient to the semiconductors 3 and 4 when used is as shown in Table 1 according to the experiment of the present inventor. On the other hand, in the prior art shown as a comparative example, Cu electrodes are bonded to the semiconductors 3 and 4 directly or via solder, and the diffusion coefficient thereof is extremely poor as compared with the embodiment of the present invention. As a result, it is understood that the present invention can significantly improve power generation efficiency as compared with the prior art and can suppress deterioration with time.

【0016】[0016]

【表1】 [Table 1]

【0017】図5は、本件発明者の実験結果を示すグラ
フである。出力比は、実験当初の出力に対する割合を示
す。各実施例の条件は、表2に示される。
FIG. 5 is a graph showing the experimental results of the present inventor. The output ratio shows the ratio to the output at the beginning of the experiment. The conditions of each example are shown in Table 2.

【0018】[0018]

【表2】 [Table 2]

【0019】図5(1)では、図1の構成において、介
在層6,7はアルミニウムロウである。図5(2)は図
1の介在層6,7としてマグネシウムロウを用いた。図
5(3)では、図3の構成において、介在層14,15
は、アルミニウムのスパッタ膜であり、介在層16,1
7としてアルミニウムロウを用いた。図5(4)では、
図4の構成において、介在層14,15はチタンのスパ
ッタ膜であり、濡れ性のよい中間層18,19として金
の蒸着膜を用い、接合層16,17として高温半田を用
いた。電極5はいずれもCuである。
In FIG. 5A, in the structure of FIG. 1, the intervening layers 6 and 7 are aluminum solder. In FIG. 5B, magnesium wax is used as the intervening layers 6 and 7 in FIG. 5 (3), in the configuration of FIG.
Is an aluminum sputtered film, and the intervening layers 16 and 1
Aluminum wax was used as 7. In FIG. 5 (4),
In the structure of FIG. 4, the intervening layers 14 and 15 are titanium sputtered films, gold vapor deposition films are used as the intermediate layers 18 and 19 having good wettability, and high-temperature solder is used as the bonding layers 16 and 17. The electrodes 5 are all made of Cu.

【0020】本発明の図5の実験結果によれば、熱電変
換効率の経時的な劣化が極めて少なくなることが判っ
た。特に図3の実施の形態に対応する図5(3)の実験
結果および図4の実施の形態による図5(4)の実験結
果が優れていることが理解される。
According to the experimental results of FIG. 5 of the present invention, it was found that the deterioration of the thermoelectric conversion efficiency with time was extremely small. In particular, it is understood that the experimental result of FIG. 5 (3) corresponding to the embodiment of FIG. 3 and the experimental result of FIG. 5 (4) according to the embodiment of FIG. 4 are excellent.

【0021】図6は本件発明者の実験結果を示すグラフ
である。図1〜図4に示される本発明の実施の各形態に
おいて、熱電変換素子の出力Pは、式1によって表され
る。
FIG. 6 is a graph showing the experimental results of the present inventor. In each of the embodiments of the present invention shown in FIGS. 1 to 4, the output P of the thermoelectric conversion element is represented by Expression 1.

【0022】 P = nAKZ(ΔT)2/4 …(1) ここで、nは対を成すP形またはN形の導電形式を有す
る半導体3,4の組の数を示し、Aは定数であり、Kは
熱コンダクタンスであって一定の値であり、Zは熱変換
素子の性能指数を表し、ΔTは、高温側と低温側との平
均温度を表す。
[0022] P = nAKZ (ΔT) 2/ 4 ... (1) where, n represents indicates the number set of the semiconductor 3 and 4 having a conductivity type of the P-type or N-type pairs, A is located at a constant , K is a thermal conductance and is a constant value, Z is a performance index of the heat conversion element, and ΔT is an average temperature between the high temperature side and the low temperature side.

【0023】式1から、高温側温度を上昇して、平均温
度ΔTを大きくすることによって、出力Pが平均温度Δ
Tの2乗に正比例して急増することが可能であることが
理解される。この平均温度ΔTを増加することによっ
て、図6に示されるように、価格性能比(単位:円/
W)を低下させ、本発明が広範囲に容易に実施され得る
ことが理解される。
From the equation (1), by increasing the temperature on the high temperature side and increasing the average temperature ΔT, the output P becomes the average temperature ΔT.
It is understood that it is possible to have a spike that is directly proportional to the square of T. By increasing this average temperature ΔT, as shown in FIG. 6, the price performance ratio (unit: yen /
It is understood that W) can be reduced and the present invention can be easily implemented in a wide range.

【0024】薄膜技術によって形成する介在層6,7;
14,15の厚みは、1000Å〜1mmが好ましく、
厚みは1mm以上でもよいが素子が厚くなり、使いにく
い。
Intervening layers 6, 7 formed by thin film technology;
The thickness of 14 and 15 is preferably 1000Å to 1 mm,
The thickness may be 1 mm or more, but the element becomes thick and it is difficult to use.

【0025】[0025]

【発明の効果】本発明によれば、P形またはN形の導電
形式を有する半導体と電極との間に、介在層を設け、こ
の介在層はAl,TiおよびMgから成るグループのう
ちの1またはそれらの合金であり、これによってそれら
の介在層の金属が半導体に拡散することが抑制されて、
高温側の温度を高くして温度差を大きくし、発電効率の
向上を図ることができ、また価格性能比を向上すること
ができるようになる。
According to the present invention, an intervening layer is provided between a semiconductor having a P-type or N-type conductivity type and an electrode, and the intervening layer is one of a group consisting of Al, Ti and Mg. Or an alloy thereof, which suppresses the diffusion of the metal of the intervening layer into the semiconductor,
By increasing the temperature on the high temperature side to increase the temperature difference, the power generation efficiency can be improved, and the price / performance ratio can be improved.

【0026】また本発明によれば、熱電変換効率の経時
的な低下を防ぐことができる。
Further, according to the present invention, it is possible to prevent the thermoelectric conversion efficiency from decreasing with time.

【0027】本発明によれば、介在層を、薄膜技術また
は厚膜技術によって形成し、この介在層と電極との間
に、高温半田または硬ロウから成る接合層を設け、この
ような構成によってもまた、半導体への金属の拡散を抑
制し、上述と同様な効果が達成される。
According to the present invention, the intervening layer is formed by a thin film technique or a thick film technique, and a joining layer made of high-temperature solder or hard solder is provided between the intervening layer and the electrode. Also, the diffusion of metal into the semiconductor is suppressed, and the same effect as described above is achieved.

【0028】さらに本発明によれば、介在層と接合層と
の間に、濡れ性のよい層、すなわちCu,Ag,Auお
よびMgから成るグループのうちの1またはそれらの合
金を介在し、これによって介在層と電極との接合強度を
向上して、長期間にわたる使用を可能にすることができ
る。
Further, according to the present invention, a layer having good wettability, that is, one of the group consisting of Cu, Ag, Au and Mg or an alloy thereof is interposed between the intervening layer and the joining layer, By this, the bonding strength between the intervening layer and the electrode can be improved, and long-term use can be enabled.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態の熱電変換素子1を示す
断面図である。
FIG. 1 is a sectional view showing a thermoelectric conversion element 1 according to an embodiment of the present invention.

【図2】図1に示される熱電変換素子1を数個直列接続
して構成されたユニット2の簡略化した側面図である。
FIG. 2 is a simplified side view of a unit 2 configured by connecting several thermoelectric conversion elements 1 shown in FIG. 1 in series.

【図3】本発明の実施の他の形態を示す断面図である。FIG. 3 is a sectional view showing another embodiment of the present invention.

【図4】本発明の実施のさらに他の形態の一部の断面図
である。
FIG. 4 is a partial cross-sectional view of still another embodiment of the present invention.

【図5】本件発明者の実験結果を示すグラフである。FIG. 5 is a graph showing an experimental result of the present inventor.

【図6】本件発明者の実験結果を示すグラフである。FIG. 6 is a graph showing an experimental result of the present inventor.

【符号の説明】[Explanation of symbols]

1 熱電変換素子 2 ユニット 3 N形導電形式を有する半導体 4 P形導電形式を有する半導体 5,9,10 電極 6,7,11,12 介在層 14,15 接合層 8,13 基板 18,19 中間層 DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion element 2 Unit 3 Semiconductor having N-type conductivity type 4 Semiconductor having P-type conductivity type 5, 9, 10 Electrode 6, 7, 11, 12 Intervening layer 14, 15 Bonding layer 8, 13 Substrate 18, 19 Intermediate layer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 P形導電形式またはN形導電形式を有す
るBi−Te系半導体に接する介在層が電極に接続さ
れ、この介在層は、 Al、TiおよびMgから成るグループのうちの1また
はそれらの合金であることを特徴とする熱電変換素子。
1. An intervening layer in contact with a Bi-Te based semiconductor having a P-type conductivity type or an N-type conductivity type is connected to an electrode, and the intervening layer is one or a group selected from the group consisting of Al, Ti and Mg. A thermoelectric conversion element, which is an alloy of.
【請求項2】 P形導電形式またはN形導電形式を有す
るPb−Te系半導体に接する介在層が電極に接続さ
れ、この介在層は、 Al、TiおよびMgから成るグループのうちの1また
はそれらの合金であることを特徴とする熱電変換素子。
2. An intervening layer in contact with a Pb-Te based semiconductor having a P-type conductivity type or an N-type conductivity type is connected to an electrode, and the intervening layer is one or a group selected from the group consisting of Al, Ti and Mg. A thermoelectric conversion element, which is an alloy of.
【請求項3】 介在層は、硬ロウであり、 この介在層が電極に接して接続されることを特徴とする
請求項1または2記載の熱電変換素子。
3. The thermoelectric conversion element according to claim 1, wherein the intervening layer is hard solder, and the intervening layer is in contact with and connected to the electrode.
【請求項4】 介在層は、薄膜技術または厚膜技術によ
って形成され、 この介在層が電極に接して接続されることを特徴とする
請求項1または2記載の熱電変換素子。
4. The thermoelectric conversion element according to claim 1, wherein the intervening layer is formed by a thin film technique or a thick film technique, and the intervening layer is in contact with and connected to the electrode.
【請求項5】 介在層は、薄膜技術または厚膜技術によ
って形成され、 介在層と電極とを接続する高温半田または硬ロウから成
る接合層を有することを特徴とする請求項1または2記
載の熱電変換素子。
5. The intervening layer is formed by a thin film technique or a thick film technique, and has a joining layer made of high-temperature solder or hard solder for connecting the intervening layer and the electrode. Thermoelectric conversion element.
【請求項6】 介在層は、薄膜技術または厚膜技術によ
って形成され、 電極には、高温半田または硬ロウから成る接合層が接続
され、 介在層と接合層との間に、介在層と接合層との両者に濡
れ性のよい中間層を設けることを特徴とする請求項1ま
たは2記載の熱電変換素子。
6. The intervening layer is formed by a thin film technique or a thick film technique, a bonding layer made of high temperature solder or hard solder is connected to the electrode, and the interposing layer and the interposing layer are bonded to each other. The thermoelectric conversion element according to claim 1 or 2, wherein an intermediate layer having good wettability is provided on both of the layers.
【請求項7】 中間層は、Cu,Ag,AuおよびMg
から成るグループのうちの1またはそれらの合金である
ことを特徴とする請求項6記載の熱電変換素子。
7. The intermediate layer is made of Cu, Ag, Au and Mg.
The thermoelectric conversion element according to claim 6, which is one of the group consisting of or alloys thereof.
【請求項8】 接合層を構成する硬ロウは、アルミニウ
ムロウ、マグネシウムロウ、銀ロウおよび金ロウから成
るグループのうちの1または複数であることを特徴とす
る請求項5または6記載の熱電変換素子。
8. The thermoelectric conversion according to claim 5, wherein the hard solder forming the bonding layer is one or more of a group consisting of an aluminum solder, a magnesium solder, a silver solder and a gold solder. element.
【請求項9】 電極は、Cu,Al,Ni,Ag,Au
およびPtから成るグループのうちの1またはそれらの
合金であることを特徴とする請求項1〜8のうちの1つ
に記載の熱電変換素子。
9. The electrode is Cu, Al, Ni, Ag, Au.
The thermoelectric conversion element according to claim 1, wherein the thermoelectric conversion element is one of the group consisting of and Pt or an alloy thereof.
JP8105447A 1996-04-25 1996-04-25 Thermoelectric converter Pending JPH09293906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8105447A JPH09293906A (en) 1996-04-25 1996-04-25 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8105447A JPH09293906A (en) 1996-04-25 1996-04-25 Thermoelectric converter

Publications (1)

Publication Number Publication Date
JPH09293906A true JPH09293906A (en) 1997-11-11

Family

ID=14407852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8105447A Pending JPH09293906A (en) 1996-04-25 1996-04-25 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JPH09293906A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043637A (en) * 2000-07-24 2002-02-08 Aisin Seiki Co Ltd Thermoelectric device
KR100445317B1 (en) * 1999-02-24 2004-08-18 조창제 Thermal motion electron rectfier and method for converting thermal energy into electric energy by using the same
JP2006339283A (en) * 2005-05-31 2006-12-14 Toyota Motor Corp Thermoelectric module
KR100795194B1 (en) * 2006-06-08 2008-01-16 한국기계연구원 Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
JP2008010612A (en) * 2006-06-29 2008-01-17 Komatsu Ltd Thermoelectric element, its manufacturing method, and thermoelectric module
JP2011249442A (en) * 2010-05-25 2011-12-08 Showa Denko Kk Thermoelectric element, manufacturing method thereof, and thermoelectric module
JP2012064913A (en) * 2010-09-15 2012-03-29 Samsung Electro-Mechanics Co Ltd Asymmetric thermoelectric module and manufacturing method of the same
DE102011122029A1 (en) 2010-12-24 2012-06-28 Hitachi Powdered Metals Co., Ltd. Thermoelectric conversion module and method for its production
DE102012017556A1 (en) 2011-09-08 2013-03-14 Hitachi Chemical Co., Ltd. THERMOELECTRIC CONVERTER MODULE AND MANUFACTURING METHOD THEREFOR
DE102013016920A1 (en) 2012-10-12 2014-04-17 Hitachi Chemical Co., Ltd. Thermoelectric device assembly, thermoelectric module and manufacturing method therefor
DE102014206883A1 (en) 2013-04-10 2014-10-16 Hitachi Chemical Co., Ltd. Thermoelectric module and method of manufacturing the same
US10147859B2 (en) 2013-08-30 2018-12-04 Kelk Ltd. Thermoelectric power module
WO2019082932A1 (en) 2017-10-24 2019-05-02 日立化成株式会社 Method for manufacturing thermoelectric conversion module, thermoelectric conversion module, and binder for thermoelectric conversion module
CN113272979A (en) * 2018-11-16 2021-08-17 伯克恩能源有限责任公司 Thermal lens electrode for performance enhancement in thermoelectric generators
WO2021205803A1 (en) * 2020-04-10 2021-10-14 パナソニックIpマネジメント株式会社 Thermoelectric transducer, thermoelectric module, binder and method for manufacturing thermoelectric transducer

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445317B1 (en) * 1999-02-24 2004-08-18 조창제 Thermal motion electron rectfier and method for converting thermal energy into electric energy by using the same
JP2002043637A (en) * 2000-07-24 2002-02-08 Aisin Seiki Co Ltd Thermoelectric device
JP2006339283A (en) * 2005-05-31 2006-12-14 Toyota Motor Corp Thermoelectric module
KR100795194B1 (en) * 2006-06-08 2008-01-16 한국기계연구원 Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
JP2008010612A (en) * 2006-06-29 2008-01-17 Komatsu Ltd Thermoelectric element, its manufacturing method, and thermoelectric module
JP2011249442A (en) * 2010-05-25 2011-12-08 Showa Denko Kk Thermoelectric element, manufacturing method thereof, and thermoelectric module
JP2012064913A (en) * 2010-09-15 2012-03-29 Samsung Electro-Mechanics Co Ltd Asymmetric thermoelectric module and manufacturing method of the same
DE102011122029A1 (en) 2010-12-24 2012-06-28 Hitachi Powdered Metals Co., Ltd. Thermoelectric conversion module and method for its production
US9246076B2 (en) 2010-12-24 2016-01-26 Hitachi Powdered Metals Co., Ltd. Thermoelectric conversion module and production method therefor
DE102012017556A1 (en) 2011-09-08 2013-03-14 Hitachi Chemical Co., Ltd. THERMOELECTRIC CONVERTER MODULE AND MANUFACTURING METHOD THEREFOR
DE102013016920A1 (en) 2012-10-12 2014-04-17 Hitachi Chemical Co., Ltd. Thermoelectric device assembly, thermoelectric module and manufacturing method therefor
US20140102500A1 (en) * 2012-10-12 2014-04-17 Hitachi Chemical Company, Ltd. Thermoelectric Device Assembly, Thermoelectric Module and its Manufacturing Method
JP2014204093A (en) * 2013-04-10 2014-10-27 日立化成株式会社 Thermoelectric conversion module and manufacturing method therefor
DE102014206883A1 (en) 2013-04-10 2014-10-16 Hitachi Chemical Co., Ltd. Thermoelectric module and method of manufacturing the same
US9601679B2 (en) 2013-04-10 2017-03-21 Hitachi Chemical Co., Ltd. Thermoelectric module and method of manufacturing the same
US10147859B2 (en) 2013-08-30 2018-12-04 Kelk Ltd. Thermoelectric power module
WO2019082932A1 (en) 2017-10-24 2019-05-02 日立化成株式会社 Method for manufacturing thermoelectric conversion module, thermoelectric conversion module, and binder for thermoelectric conversion module
KR20200070222A (en) 2017-10-24 2020-06-17 히타치가세이가부시끼가이샤 Manufacturing method of thermoelectric conversion module, thermoelectric conversion module and bonding material for thermoelectric conversion module
US11575076B2 (en) 2017-10-24 2023-02-07 Showa Denko Materials Co., Ltd. Method for manufacturing thermoelectric conversion module, thermoelectric conversion module, and binder for thermoelectric conversion module
CN113272979A (en) * 2018-11-16 2021-08-17 伯克恩能源有限责任公司 Thermal lens electrode for performance enhancement in thermoelectric generators
JP2022513060A (en) * 2018-11-16 2022-02-07 バーケン エナジー, エルエルシー Thermal lens electrodes in thermoelectric generators to improve performance
WO2021205803A1 (en) * 2020-04-10 2021-10-14 パナソニックIpマネジメント株式会社 Thermoelectric transducer, thermoelectric module, binder and method for manufacturing thermoelectric transducer
EP4135057A4 (en) * 2020-04-10 2023-09-20 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric transducer, thermoelectric module, binder and method for manufacturing thermoelectric transducer
US11957055B2 (en) 2020-04-10 2024-04-09 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric transducer, thermoelectric module, binder and method for manufacturing thermoelectric transducer

Similar Documents

Publication Publication Date Title
US4855810A (en) Thermoelectric heat pump
JP3862179B2 (en) Manufacture and production of thermoelectric modules
JPH09293906A (en) Thermoelectric converter
JP6122736B2 (en) Thermoelectric generator module
JP6404983B2 (en) Thermoelectric module
JPH11261118A (en) Thermoelectric conversion module, semiconductor unit, and manufacture of them
JP3443793B2 (en) Manufacturing method of thermoelectric device
JP6850988B2 (en) Thermoelectric conversion module
WO2021019891A1 (en) Thermoelectric module, and method for manufacturing thermoelectric module
JP2003282974A (en) Thermoelectric conversion module
JP2004342879A (en) Method of assembling thermoelectric transducing module and blazing material used for assembling the module
JP2020061541A (en) Thermoelectric module
JP2006147600A (en) Thermoelectric conversion module
JP2000164941A (en) Thermoelectric conversion module
JPH11195817A (en) Thermoelectric conversion element
JPS63132495A (en) Sub-mount for photo-semiconductor device
JPH09162448A (en) Thermoelectric element
JPS61119051A (en) Semiconductor device
JP7274749B2 (en) Thermoelectric conversion module and thermoelectric conversion module manufacturing method
JP2002246659A (en) Thermoelectric module
WO2020071529A1 (en) Thermoelectric module
JP3007904U (en) Thermal battery
JP2023105561A (en) Electrode and thermoelectric conversion module
JP2519402B2 (en) Method for manufacturing power semiconductor module substrate
JP2003324218A (en) Thermoelectric conversion module