JP3245793B2 - Manufacturing method of thermoelectric conversion element - Google Patents

Manufacturing method of thermoelectric conversion element

Info

Publication number
JP3245793B2
JP3245793B2 JP00321892A JP321892A JP3245793B2 JP 3245793 B2 JP3245793 B2 JP 3245793B2 JP 00321892 A JP00321892 A JP 00321892A JP 321892 A JP321892 A JP 321892A JP 3245793 B2 JP3245793 B2 JP 3245793B2
Authority
JP
Japan
Prior art keywords
sintering
powder
thermoelectric conversion
conversion element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00321892A
Other languages
Japanese (ja)
Other versions
JPH0555640A (en
Inventor
克博 都能
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP00321892A priority Critical patent/JP3245793B2/en
Publication of JPH0555640A publication Critical patent/JPH0555640A/en
Application granted granted Critical
Publication of JP3245793B2 publication Critical patent/JP3245793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、熱電変換素子の製造方
に関する。
The present invention relates, regarding the method for manufacturing a thermoelectric conversion element.

【0002】[0002]

【従来の技術】熱電変換素子は、温度差を利用して直接
熱を電気にして取り出す熱電発電素子と、逆に、電気を
流すことにより素子の両面に温度差を付けて冷却を行う
電子冷却素子の2通りがある。一般には、半導体の素子
の両端に温度差を付けたとき電気が発生する効果をゼー
ベック効果といい、半導体に電気を流したとき素子の両
端に温度差が生起する効果をペルチェ効果という。
2. Description of the Related Art A thermoelectric conversion element is a thermoelectric power generation element that directly converts heat into electricity using a temperature difference, and conversely, an electronic cooling that cools the element by applying a temperature difference to both sides of the element by flowing electricity. There are two types of elements. Generally, the effect of generating electricity when a temperature difference is applied to both ends of a semiconductor device is called the Seebeck effect, and the effect of generating a temperature difference at both ends of the device when electricity flows through the semiconductor is called the Peltier effect.

【0003】現在、熱電発電素子は、世界的な環境問題
やエネルギ資源問題を背景とする、工場、自動車等の廃
熱の回収、発熱体を利用した小型発電機等の省エネルギ
技術又は代替エネルギの1つとして注目されている。
又、電子冷却素子は、フロン等の冷媒を使用しない冷却
技術として注目されており、電子部品の冷却及び温度調
整、除湿器、小型冷蔵庫等に利用されている。
[0003] At present, thermoelectric generators are used for energy saving technologies such as recovery of waste heat from factories and automobiles, and small generators using heating elements, or alternative energy sources, against the background of global environmental problems and energy resource problems. Is attracting attention.
In addition, the electronic cooling element has attracted attention as a cooling technology that does not use a refrigerant such as Freon, and is used for cooling and temperature adjustment of electronic components, a dehumidifier, a small refrigerator, and the like.

【0004】例えば、電子冷却の場合の熱電変換は、P
型とN型の半導体を電極で接合して形成した回路に直流
の電気を流すことにより行われ、これにより、接合部の
片側で吸熱が起こると共にもう片側で発熱が起こる。
又、回路に流す電気の方向を変えるとこの現象は逆転す
る。
For example, thermoelectric conversion in the case of electronic cooling is represented by P
This is performed by passing DC electricity through a circuit formed by joining a mold and an N-type semiconductor with electrodes, whereby heat is absorbed on one side of the joint and heat is generated on the other side.
This phenomenon is reversed when the direction of electricity flowing through the circuit is changed.

【0005】熱電変換素子は、これらP型とN型の半導
体の対を複数個、電気的には直列に、熱的には並列に配
列して使用する。
A thermoelectric conversion element uses a plurality of pairs of P-type and N-type semiconductors, which are electrically arranged in series and thermally arranged in parallel.

【0006】[0006]

【発明が解決しようとする課題】熱電変換素子を製造す
る従来の方法には、各種の結晶成長法、冷間プレスによ
る常圧粉末焼結法及びホットプレス法等の熱間加圧焼結
法がある。その他に厚膜法や薄膜法等があるが、これら
は技術的な面において未完成であり、現在使用されてい
る例はほとんど無い。
Conventional methods for manufacturing a thermoelectric conversion element include various crystal growth methods, hot-press sintering methods such as a normal pressure powder sintering method using a cold press, and a hot press method. There is. In addition, there are a thick film method, a thin film method, and the like. However, these methods are incomplete in terms of technology, and there are few examples currently used.

【0007】一般的には、結晶成長法の方が冷間プレス
による粉末焼結法又はホットプレス法に比べて良い特性
が得られる。しかし、結晶成長法は、製造に長い時間を
要し、劈開性を有するため機械的強度が低く素子の歩留
りが悪いため製造コストが高いのが欠点である。
[0007] Generally, the crystal growth method provides better characteristics than the powder sintering method using a cold press or the hot pressing method. However, the crystal growth method has disadvantages in that it requires a long time for production, has high cleavage costs due to low mechanical strength due to cleavage, and has a low yield of devices.

【0008】これに対して、冷間プレスによる粉末焼結
法は、原料粉末を型に入れてプレス成型した後に熱処理
を行う方法であり、素子の機械的強度が高くなり歩留り
も良くなるが、素子の特性としては結晶成長法に比べて
劣っている。しかも、プレスを行うには、粉体にした原
料を再度適当なサイズに造粒するか、又は微粉末を除去
しなければならず、原料歩留りが悪く生産性に優れてい
るとは言えないのが現状である。更に、原料に混入して
いる酸化物及び吸着ガス等は熱電変換素子の特性を低下
させるため、これらを除去する必要があり、原料の管理
が重要となる。
On the other hand, the powder sintering method by cold pressing is a method in which the raw material powder is put into a mold and press-molded, and then heat-treated. The mechanical strength of the element is increased and the yield is improved. The characteristics of the device are inferior to those of the crystal growth method. Moreover, in order to perform the pressing, the powdered raw material must be re-granulated to an appropriate size or the fine powder must be removed, and the raw material yield is poor and productivity cannot be said to be excellent. Is the current situation. Furthermore, oxides, adsorbed gas, and the like mixed in the raw materials degrade the properties of the thermoelectric conversion element, so that it is necessary to remove them, and the management of the raw materials is important.

【0009】ホットプレス法は、プラズマ活性焼結法に
最も近い製造方法であるが、原料粉末を直接加圧すると
同時に加熱することにより焼結するため、焼結密度を高
くするには非常に高圧・高温の条件が必要となり、しか
も、長い焼結時間を要する。又、原料粉末の適切な純度
管理が必要である。
The hot press method is the production method closest to the plasma activated sintering method. However, since the raw material powder is directly pressed and simultaneously heated to be sintered, a very high pressure is required to increase the sintering density. -High temperature conditions are required, and a long sintering time is required. In addition, it is necessary to appropriately control the purity of the raw material powder.

【0010】熱電変換素子は環境問題や省エネルギの点
から注目されているが、熱電変換素子を普及させるに
は、現在の生産性の低い製法に起因するコストの問題を
解決する必要がある。
[0010] Thermoelectric conversion elements have attracted attention from the viewpoint of environmental problems and energy saving. However, in order to spread thermoelectric conversion elements, it is necessary to solve the cost problem caused by the current low-productivity manufacturing method.

【0011】又、従来、熱電発電に利用する熱電変換素
子の場合、ビスマステルル系化合物やアンチモンテルル
系化合物の様に 300℃以下の比較的低温で使用する素材
や、PbTe系やGeTe系の様に 600℃近辺までの温
度で使用する素材、SiGe系や鉄シリサイド系の様に
1000℃近辺でも使用できる素材等、大きく分けて3つに
分類される。しかしながら、これらの素材を熱電発電に
実用化する場合、発電効率とコストの点から考えると対
象となる素材は限られてくる。
Conventionally, in the case of a thermoelectric conversion element used for thermoelectric power generation, a material used at a relatively low temperature of 300 ° C. or lower, such as a bismuth telluride compound or an anti-montelul compound, or a PbTe or GeTe type compound. Materials used at temperatures up to around 600 ° C, such as SiGe and iron silicide
Materials that can be used even around 1000 ° C are roughly classified into three categories. However, when these materials are put to practical use in thermoelectric power generation, the target materials are limited in view of power generation efficiency and cost.

【0012】熱電発電の効率ηは次の式で表わされる。The efficiency η of thermoelectric power generation is expressed by the following equation.

【0013】 η=ηo /[2+ηo ・{4/(Z・ΔT)−0.5 }] ここで、ηo はカルノー効率であり、使用する温度条件
で定まる。
Η = η o / [2 + η o · {4 / (Z · ΔT) -0.5}] Here, η o is the Carnot efficiency and is determined by the temperature condition used.

【0014】この式において、発電効率ηを大きくする
にはZとΔTを大きくするしかない。Zは性能指数とい
い熱電変換材料の能力を示し、素材で決まる係数であ
る。又、ΔTは、加熱側と放熱側の温度差であり、耐熱
性の高い材料程ΔTは大きく取れる。
In this equation, the only way to increase the power generation efficiency η is to increase Z and ΔT. Z is a figure of merit and indicates the capability of the thermoelectric conversion material, and is a coefficient determined by the material. ΔT is the temperature difference between the heating side and the heat radiation side, and the greater the heat resistance of the material, the greater the ΔT.

【0015】BiTe系やSbTe系、並びにそれらの
化合物系は、常温近辺での性能指数Zは他の素材と比べ
て非常に高く、Z= 2.0〜2.6 ×10-3 /K程度である。
しかしながら、素材の融点が 600℃近辺であり、特性も
高温域では急激に低下するため、ΔTがあまり大きく取
れず(ΔT=〜300 ℃)、発電効率ηは5〜6%程度で
ある。
BiTe, SbTe, and their compound systems have a very high figure of merit Z near normal temperature as compared with other materials, and Z = about 2.0 to 2.6 × 10 −3 / K.
However, since the melting point of the material is around 600 ° C. and the characteristics are sharply lowered in a high temperature range, ΔT cannot be so large (ΔT == 300 ° C.), and the power generation efficiency η is about 5-6%.

【0016】鉄シリサイド系は、耐熱性は1200℃近辺の
融点を有するため非常にΔTが大きく取れる(ΔT=〜
1000℃)が、性能指数ZがBiTe系の1/5 以下と小さ
く、変換効率ηは数%と非常に小さい。
The iron silicide-based material has a heat resistance having a melting point around 1200 ° C., so that a very large ΔT can be obtained (ΔT = 〜
1000 ° C.), but the figure of merit Z is as small as 1/5 or less of that of the BiTe system, and the conversion efficiency η is as very small as several%.

【0017】一方、鉛テルル系の材料は、融点が 920℃
で作動温度域が〜 600℃近辺で使用できるため、温度差
も 500℃以上とれる。又、性能指数Zも 1.5××10-3 /
K以上で、発電効率は10%を越える性能を出せる。
On the other hand, a lead tellurium-based material has a melting point of 920 ° C.
The operating temperature range is around ~ 600 ° C, so the temperature difference can be 500 ° C or more. Also, the figure of merit Z is 1.5 ×× 10 −3 /
Above K, the power generation efficiency can exceed 10%.

【0018】これらから見ても、鉛テルル系の材料は最
も実用性の高い熱電発電素材であるが、実用化のために
は実装上の問題を何点か解決しなければならない。1つ
は耐熱性( 600℃以上での使用に耐える)を有する電極
との接合であり、もう1つは加熱冷却の温度サイクルが
温度差 500℃近くで繰返えされる条件下で十分な強度・
耐熱ストレス性を有する素子又はユニット構造の開発で
ある。
From these viewpoints, lead tellurium-based materials are the most practical thermoelectric power generation materials, but some practical problems must be solved for practical use. One is bonding with an electrode that has heat resistance (withstands use at 600 ° C or more), and the other is sufficient strength under conditions where the temperature cycle of heating and cooling is repeated at a temperature difference of about 500 ° C.・
This is the development of an element or unit structure having heat resistance.

【0019】ビスマステルル系材料では、比較的低温域
での利用のため、接合方法も通常の半田や耐熱半田、例
えば鉛系(融点 327℃)、亜鉛系(融点 419℃)等の金
属を用いて比較的簡単に実装ができたし、接合材の素子
への拡散(又は逆方向への拡散)による素子性能低下に
対しても、メッキや蒸着、スパッタリング等の方法で数
μmの厚味をもつニッケル等の金属バリア層を形成する
ことで拡散を止めることができた。
Since the bismuth telluride-based material is used in a relatively low temperature range, the joining method is to use a normal solder or a heat-resistant solder, for example, a lead-based (melting point of 327 ° C.) or zinc-based (melting point of 419 ° C.) metal. It can be mounted relatively easily by using a method such as plating, vapor deposition, sputtering, etc. to reduce the device performance due to diffusion of the bonding material into the device (or diffusion in the opposite direction). Diffusion could be stopped by forming a metal barrier layer of nickel or the like.

【0020】又、FeSi2 系(鉄シリサイド系)で
は、融点が高いため、高温での接合は銀ロウ等(MP= 6
50〜850 ℃)の高温ロウ材を用いたり、あるいは、数多
くの文献で見られる様に、P型及びN型を直接接合して
電極を使用しない方法をとったりしている。
In the case of FeSi 2 (iron silicide), the melting point is high.
A high-temperature brazing material (50 to 850 ° C.) is used, or a method in which a P-type and an N-type are directly bonded and no electrode is used, as seen in many documents.

【0021】しかしながら、PbTe系においては、使
用温度域が〜 600℃近辺であること及び素材の融点が 9
00℃程度であることより通常の高温半田は使用できず、
又、高温用のロウ材は、作業温度が鉛テルルの融点に近
いこともあって、ロウ材が鉛テルルに拡散し易く、通常
のメッキや、スパッタリングによる膜では作業温度下で
の拡散を防ぐことは難しい。又、大きい温度差及び温度
サイクルからくる熱ストレスに対してリジットに固めた
場合、素子破壊を発生させ易い。
However, in the PbTe system, the operating temperature range is around 600 ° C. and the melting point of the material is 9%.
Because it is about 00 ° C, normal high-temperature solder cannot be used,
In addition, since the working temperature of the brazing material for high temperature is close to the melting point of lead tellurium, the brazing material is easily diffused into lead tellurium, and the film formed by ordinary plating or sputtering prevents diffusion at the working temperature. It is difficult. In addition, when rigidly hardened against a large temperature difference and a thermal stress caused by a temperature cycle, element destruction is likely to occur.

【0022】この原因としては、基板、電極及び素子間
の膨脹係数の差からくるストレスと温度差の変化による
ストレスとが考えられる。これは温度差を大きくとって
発電しようとする場合は全て同じ問題が発生すると考え
てよく、FeSi2 系でも同様の問題がある。そのため
に、熱電発電素子を電極にスプリング等のバネで機械的
に押し付けて利用する方法も考え出されているが、装置
が大型化して実用化にはあまり向かない。
The cause is considered to be a stress caused by a difference in expansion coefficient between the substrate, the electrode and the element and a stress caused by a change in temperature difference. It can be considered that the same problem occurs when power generation is attempted with a large temperature difference, and the same problem occurs in the case of FeSi 2 . For this purpose, a method of mechanically pressing a thermoelectric power generation element against an electrode with a spring such as a spring has been considered, but the apparatus is large and is not suitable for practical use.

【0023】本発明の第1の目的は、熱電変換素子の生
産性を高め、歩留りを向上し、生産コストを低減すると
共に、素子の特性を結晶成長法並みに改善し得る、熱電
変換素子の製造方法及び該製造方法により製造された熱
電変換素子を提供することにある。
A first object of the present invention is to provide a thermoelectric conversion element which can increase the productivity of a thermoelectric conversion element, improve the yield, reduce the production cost, and improve the characteristics of the element as much as the crystal growth method. An object of the present invention is to provide a manufacturing method and a thermoelectric conversion element manufactured by the manufacturing method.

【0024】本発明の第2の目的は、熱電変換素子の機
械的強度及び熱的強度を向上して素子破壊を回避し得
る、熱電変換素子の製造方法及び該製造方法により製造
された熱電変換素子を提供することにある。
A second object of the present invention is to provide a method for manufacturing a thermoelectric conversion element, which can improve the mechanical strength and the thermal strength of the thermoelectric conversion element to prevent the element from being destroyed, and a thermoelectric conversion element manufactured by the manufacturing method. It is to provide an element.

【0025】[0025]

【課題を解決するための手段】本発明によれば、前記第
1の目的は、チャンバ内に設けた焼結用治具内に熱電変
換素子用の半導体粉末を装填し、その粉末を所定の圧力
で加圧し、前記粉末にパルス電流を流すことにより、前
記半導体粉末に吸着されている吸着ガスを離脱させなが
ら半導体粉末どうしを焼結して半導体層を形成すること
によって達成される。
According to the present invention, there is provided a means for solving], the first object, the semiconductor powder for thermoelectric conversion element was loaded into sintering jig in which is provided in the chamber, predetermined its powder powder pressed with a pressure pressurized by passing a pulsed current to said powder is accomplished by forming a semiconductor layer by sintering a semiconductor powder to each other while leaving the adsorbed gas adsorbed to the semiconductor powder.

【0026】本発明によれば、前記第2の目的は、半導
体粉末と、電極用の金属材料、例えば金属粉末や金属板
を層状に配置して一体に焼結することにより達成され
According to the present invention, the second object is to provide a semiconductor device.
Body powder and metal material for electrodes, such as metal powder and metal plate
Is achieved by sintering together by arranging them in layers.
You .

【0027】プラズマ活性焼結法は、一般にプラズマア
クティベーティッドシンタリング(PAS)又はスパー
クプラズマシンタリング(SPS)と呼ばれる粉末焼結
法の一種である。
The plasma activated sintering method is a type of powder sintering method generally called plasma activated sintering (PAS) or spark plasma sintering (SPS).

【0028】[0028]

【作用】本発明の第1の製造方法及び該製造方法により
製造された熱電変換素子によれば、加熱の手法としてプ
ラズマ放電を利用するプラズマ活性焼結法を用いて熱電
変換素子用の半導体を製造するが故に、原料粉末を低圧
・低温にて短時間に焼結し得、成型時の圧力及び温度を
制御することにより、従来の原料粉末又はもっと低純度
の原料を用いて結晶成長法と同等の特性を得ることがで
き、又、プラズマにより原料粉末表面の酸化物が除去さ
れると共に吸着ガスが脱離されるため原料の管理を簡易
化し得、その結果、熱電変換素子の生産性を高めると共
に歩留りを向上し得、生産コストを低減し得、しかも、
素子の特性を結晶成長法並みに改善し得る。
According to the first manufacturing method of the present invention and the thermoelectric conversion element manufactured by the manufacturing method, a semiconductor for the thermoelectric conversion element is formed by using a plasma activated sintering method using plasma discharge as a heating method. Because it is manufactured, the raw material powder can be sintered in a short time at low pressure and low temperature, and by controlling the pressure and temperature at the time of molding, the crystal growth method can be performed using the conventional raw material powder or a lower-purity raw material. The same characteristics can be obtained, and the oxides on the surface of the raw material powder are removed by the plasma and the adsorbed gas is desorbed, so that the management of the raw material can be simplified, thereby increasing the productivity of the thermoelectric conversion element. Together with improving yield, reducing production costs, and
The characteristics of the device can be improved to the level of the crystal growth method.

【0029】本発明の第2の製造方法及び該製造方法に
より製造された鉛テルル系の熱電変換素子によれば、半
導体の粉末と電極用の金属粉末とを層状に配置し、プラ
ズマ活性焼結法を用いて一体成型するが故に、焼結条件
の温度域( 650℃以上)で半導体に電極が接合できるた
め耐熱性を有する電極接合ができ、又、金属粉を用いる
場合、半導体と電極との間に多孔質部分を形成し得、基
板、電極及び素子間の各膨脹係数の差に起因するストレ
ス及び温度差によるストレスをこの多孔質部分にて吸収
し得、又、金属の粉末の空障に半導体の粉末が微細に入
り込むため、半導体と電極との接合強度を高め得、その
結果、熱電変換素子の機械的強度及び熱的強度を向上し
て素子破壊を回避し得る。
According to the second manufacturing method of the present invention and the lead tellurium-based thermoelectric conversion element manufactured by the manufacturing method, the semiconductor powder and the metal powder for the electrode are arranged in layers, and the plasma activated sintering is performed. The electrodes can be bonded to the semiconductor in the temperature range of sintering conditions (650 ° C or higher) because they are integrally molded using the method. Therefore, electrode bonding with heat resistance can be performed. A porous portion can be formed between the substrate, the electrode, and the element, so that the stress caused by the difference in expansion coefficient between the substrate, the electrode, and the element and the stress caused by the temperature difference can be absorbed by the porous portion. Since the semiconductor powder enters the obstacle finely, the bonding strength between the semiconductor and the electrode can be increased, and as a result, the mechanical strength and the thermal strength of the thermoelectric conversion element can be improved and the element can be prevented from being broken.

【0030】プラズマ活性焼結法は、成形したい原料粉
末に直接電圧を負荷して粉体粒子間に放電プラズマを起
こし、粒子表面を活性化することにより表面に付着した
酸化物層や吸着ガスを除去し、短時間に低圧力で焼結を
進行させる方法である。
In the plasma activated sintering method, a voltage is directly applied to the raw material powder to be molded to generate a discharge plasma between the powder particles, thereby activating the particle surface to remove an oxide layer or an adsorbed gas adhering to the surface. It is a method of removing and promoting sintering at a low pressure in a short time.

【0031】このプラズマ活性焼結法は、従来、金属の
焼結や異種金属間の接合又は磁性体やセラミックスの接
合に用いられていたが、極微量の不純物の制御が必要で
ある通常の半導体の製造にプラズマ焼結のような焼結方
法が適用できるとは考えられてはいなかった等により、
半導体の製造に用いられた例はなかった。
This plasma activated sintering method has been conventionally used for sintering metals, joining between different metals, or joining magnetic materials or ceramics. However, ordinary semiconductors requiring control of a trace amount of impurities are required. Sintering methods such as plasma sintering were not considered to be applicable to the production of
No examples have been used in the manufacture of semiconductors.

【0032】しかし、熱電変換素子は、半導体の中で不
純物濃度の非常に高い半導体であり、一般の半導体と比
べて不純物に対する感度が低く管理が容易であるため、
プラズマ活性焼結法の適用が可能であると考えられた。
However, the thermoelectric conversion element is a semiconductor having a very high impurity concentration among semiconductors, and has a low sensitivity to impurities as compared with a general semiconductor and is easy to manage.
It was considered that the plasma activated sintering method could be applied.

【0033】[0033]

【実施例】プラズマ活性焼結法の利点である低圧・低温
による短時間焼結に着目して、熱電半導体の原料粉末を
用いて種々の成型を行ったところ、成型時の圧力及び温
度を制御すれば従来の原料粉末を用いて結晶成長法と同
等の特性が得られることが判明した。
Focusing on short-time sintering at low pressure and low temperature, which is an advantage of the plasma activated sintering method, various moldings were performed using raw material powders of thermoelectric semiconductors, and the pressure and temperature during molding were controlled. It has been found that the same properties as those obtained by the crystal growth method can be obtained using the conventional raw material powder.

【0034】生産性に関しては、一般的なプラズマ焼結
装置1台で、同価格の結晶又は粉末プレス装置の約5倍
から10倍の生産性が得られた。
With respect to productivity, one general plasma sintering apparatus was able to obtain about 5 to 10 times the productivity of a crystal or powder pressing apparatus of the same price.

【0035】又、プラズマによる原料中の酸化物の除去
や吸着ガスの脱離等の効果により原料の管理が厳密なも
のでなくても良くなった点も特徴である。
Another feature is that the raw material need not be strictly controlled due to effects such as removal of oxides from the raw material by plasma and desorption of adsorbed gas.

【0036】プラズマ焼結装置の概略構成を図1に示
す。
FIG. 1 shows a schematic configuration of the plasma sintering apparatus.

【0037】チャンバ1の中において、焼結用治具2に
原料である焼結用粉体3を入れ、粉体3を上部パンチ4
と下部パンチ5とで挟み込み、両方から加圧機構6によ
り所定の圧力を加えながら、上部パンチ4に接続された
上部パンチ電極7及び下部パンチ5に接続された下部パ
ンチ電極8に焼結電源9によりパルス電流を流し、粉体
3の粒子間にプラズマ放電を起こして焼結を行う。
In the chamber 1, a sintering powder 3 as a raw material is put into a sintering jig 2, and the
And a lower punch 5, and a sintering power supply 9 is applied to the upper punch electrode 7 connected to the upper punch 4 and the lower punch electrode 8 connected to the lower punch 5 while applying a predetermined pressure from both of them. , A plasma current is generated between the particles of the powder 3 to perform sintering.

【0038】なお、仮プレスした焼結用粉体3に金属電
極、例えば金属板や金属粉末を重ねて焼結用治具2に入
れ、半導体の焼結と同時に電極を一体成型することも可
能である。
It is also possible to place a metal electrode, for example, a metal plate or a metal powder, on the sintering powder 3 that has been temporarily pressed and put it into the sintering jig 2 to integrally mold the electrode simultaneously with sintering of the semiconductor. It is.

【0039】加圧機構6及び焼結電源9は、粉体3に加
える圧力及びパルス電流を制御する制御装置10に接続さ
れており、制御装置10は、位置計測機構11、雰囲気制御
機構12、水冷却機構13、温度計測装置14等に接続されて
いる。このプラズマ活性焼結法は、半導体の焼結及び半
導体と電極の一体成型のほかに、半導体と導体の接合及
び半導体と絶縁体の接合にも用いることができる。
The pressurizing mechanism 6 and the sintering power supply 9 are connected to a control device 10 for controlling the pressure and pulse current applied to the powder 3, and the control device 10 includes a position measuring mechanism 11, an atmosphere control mechanism 12, It is connected to a water cooling mechanism 13, a temperature measuring device 14, and the like. This plasma activated sintering method can be used not only for sintering a semiconductor and integrally molding a semiconductor and an electrode, but also for bonding a semiconductor to a conductor and bonding a semiconductor to an insulator.

【0040】熱電変換素子における熱電変換の一例とし
て、電子冷却の場合の熱電変換の原理を図2にて説明す
る。
As an example of thermoelectric conversion in a thermoelectric conversion element, the principle of thermoelectric conversion in the case of electronic cooling will be described with reference to FIG.

【0041】P型半導体15の一端及びN型半導体16の一
端を電極17で接合し、P型半導体15の他端を電極18を介
して電源19のマイナス側に、N型半導体16の他端を電極
20を介して電源19のプラス側に接続して回路21を形成
し、回路21に電源19から直流電流を流すと電極17との接
合部で吸熱が生じ、電極18及び電極20との接合部で発熱
が生じる。
One end of the P-type semiconductor 15 and one end of the N-type semiconductor 16 are joined by an electrode 17, and the other end of the P-type semiconductor 15 is connected to the minus side of the power supply 19 via the electrode 18, and the other end of the N-type semiconductor 16 is The electrode
A circuit 21 is formed by connecting to the positive side of the power supply 19 via 20 and when a direct current is supplied from the power supply 19 to the circuit 21, heat is absorbed at the junction with the electrode 17 and the junction with the electrode 18 and the electrode 20 is formed. Generates heat.

【0042】回路21に直流電流を流した場合に吸収でき
る熱量Qabは、下式に示すように、ペルチェ効果による
吸熱量Qp から、回路21に直流電流を流すことにより発
生するジュール熱のうち吸熱側に戻る熱量1/2I2
Rと熱電変換素子の両端に温度差が生ずることにより高
温側から低温側へ熱伝導により戻る熱量Qc とを差し引
いた量である。
The amount of heat Qab that can be absorbed when a direct current is supplied to the circuit 21 is calculated from the heat absorption Qp due to the Peltier effect as shown in the following equation. Heat returning to the side 1 / 2I 2
R is the amount obtained by subtracting the amount of heat Qc that returns from the high-temperature side to the low-temperature side due to heat conduction due to the temperature difference between both ends of the thermoelectric conversion element.

【0043】Qab=Qp −1/2I2 ・R−Qc なお、回路21に流す直流電流の方向を反対にすると、上
述の吸発熱現象は逆転する。
[0043] Qab = Qp -1 / 2I 2 · R-Qc Incidentally, when the direction of the DC current flowing through the circuit 21 to the opposite, heat absorption and release phenomenon described above is reversed.

【0044】図3に示すように、熱電変換素子は、P型
半導体15とN型半導体16の対を複数個、電気的には直列
に、熱的には並列に配列して使用する。
As shown in FIG. 3, the thermoelectric conversion element uses a plurality of pairs of a P-type semiconductor 15 and an N-type semiconductor 16 arranged electrically in series and thermally in parallel.

【0045】以下に、プラズマ活性焼結法を使用した熱
電変換素子の製造例を示す。ここで、熱電変換素子の特
性を示す数値として次に示す性能指数Z(figure
of merit)を使用する。
The following is an example of the production of a thermoelectric conversion element using the plasma activated sintering method. Here, as a numerical value indicating the characteristic of the thermoelectric conversion element, the following figure of merit Z (figure) is used.
of merit).

【0046】 熱電変換素子の材料としてはビスマステルル系の材
料、(Bi・Sb)2(Te・Se)3 、を用い、この
原料粉末をプラズマ焼結装置(住友石炭工業 Dr.シ
ンター)の焼結治具の中に定量投入し、仮プレスして固
定した後、プラズマ焼結を行った。焼結時の圧力及び温
度条件を変えて製造したインゴットを切断し、その特性
を測定した。
[0046] As a material of the thermoelectric conversion element, a bismuth tellurium-based material (Bi · Sb) 2 (Te · Se) 3 was used, and this raw material powder was sintered by a sintering jig of a plasma sintering apparatus (Sumitomo Coal Industry Dr. Sinter). And fixed by temporary pressing, followed by plasma sintering. The ingot produced under different pressure and temperature conditions during sintering was cut and its properties were measured.

【0047】焼結時の圧力及び温度条件と熱電変換素子
の特性値を表1に示す。
Table 1 shows the pressure and temperature conditions during sintering and the characteristic values of the thermoelectric conversion element.

【0048】 表1 (Bi・Sb)2 (Te・Se)3 焼結圧力 焼結温度 性能指数 (kg/cm2 ) (℃) Z(10-3) プラズマ焼結法 1 250 300 0.7 2 300 300 1.3 3 350 300 2.1 4 400 300 2.0 5 500 300 1.8 6 300 250 0.6 7 300 350 2.2 8 300 400 1.9 9 500 400 0.8 結晶成長法(従来法) 2.2 粉末プレス法(従来法) 1.6 。Table 1 (Bi · Sb) 2 (Te · Se) 3 Sintering pressure Sintering temperature Figure of merit (kg / cm 2 ) (° C) Z (10 -3 ) Plasma sintering method 1 250 300 0.7 2 300 300 1.3 3 350 300 2.14 400 300 300 2.05 500 300 1.8 1.8 300 300 250 0.67 300 350 2.2 8 300 400 1.9 9 500 400 400 0.8 Crystal growth Method (conventional method) 2.2 Powder pressing method (conventional method) 1.6.

【0049】これにより、所定の特性値を得る焼結条件
には、適正圧力と適正温度があることが判る。又、これ
らは原料組成、原料形状等によっても影響を受ける。温
度及び圧力が不十分であるとインゴットの機械的強度も
低下し、層剥離等の不具合が発生する。ちなみにサンプ
ル7で得られたインゴットからの熱電変換素子の歩留り
は、約95%を越えている。
Thus, it is understood that the sintering conditions for obtaining the predetermined characteristic values include an appropriate pressure and an appropriate temperature. These are also affected by the raw material composition, raw material shape, and the like. If the temperature and pressure are insufficient, the mechanical strength of the ingot also decreases, and problems such as delamination occur. Incidentally, the yield of the thermoelectric conversion elements from the ingot obtained in Sample 7 exceeds about 95%.

【0050】現在のプラズマ焼結装置で製造できるイン
ゴットのサイズは直径35mm×厚み30mm以上であり、
このインゴットが、10分で1個製造できる。結晶成長法
の場合は直径35mm×厚み 200mmで約40〜50時間を要
するため、プラズマ活性焼結法は、結晶成長法に比較し
て40倍ちかい生産性があることになる。
The size of the ingot that can be manufactured by the current plasma sintering apparatus is 35 mm in diameter × 30 mm in thickness or more.
One ingot can be manufactured in 10 minutes. In the case of the crystal growth method, a diameter of 35 mm × thickness of 200 mm requires about 40 to 50 hours. Therefore, the plasma activated sintering method has a productivity 40 times smaller than that of the crystal growth method.

【0051】しかも、この製法は、ビスマステルル系の
材料に限らず全ての熱電変換素子材料の焼結に適用でき
ると考えられる。
Moreover, it is considered that this manufacturing method can be applied to sintering of all thermoelectric conversion element materials, not limited to bismuth tellurium-based materials.

【0052】又、本発明者は、プラズマ焼結法による様
々な熱電材料の焼結実験を試みた結果、熱電材料のP型
あるいはN型の粉末、又はP型とN型の粉末とそれを隔
てる電気絶縁性の酸化物粉末、例えばガラス粉末等を同
時に充填して焼結する時に、熱電変換素子の電極となる
金属材料、例えば金属粉末を同時に焼結すると、耐熱性
に優れ非常に高強度かつ熱ストレスに強い熱電変換素子
が得られるという知見を得た。
Further, the present inventor tried sintering experiments of various thermoelectric materials by the plasma sintering method, and as a result, obtained a P-type or N-type powder of thermoelectric material, or a mixture of P-type and N-type powder. When simultaneously filling and sintering an electrically insulating oxide powder, such as glass powder, which separates, simultaneously sintering a metal material, such as metal powder, which becomes an electrode of a thermoelectric conversion element, has excellent heat resistance and very high strength In addition, the present inventors have found that a thermoelectric conversion element resistant to thermal stress can be obtained.

【0053】これは、プラズマ焼結用の治具にまず電極
となる金属粉末を所定の量置き、その上に熱電材料のP
型あるいはN型の粉末、又はP型とN型の粉末を同時に
間をガラス粉末等の電気絶縁性の粉末をはさんだ状態で
所定量充填し、そのまま、又は更に対抗電極となる金属
粉末を層状に置いて、プラズマ焼結を行なうものであ
る。
In this method, a predetermined amount of metal powder to be an electrode is first placed on a jig for plasma sintering, and P
Type or N-type powder, or P-type and N-type powders are simultaneously filled with a predetermined amount with glass or other electrically insulating powder sandwiched between them. And perform plasma sintering.

【0054】ここで、電極として使用する金属材料とし
ては、耐熱性があり、熱電変換素子と熱膨脹係数が近似
しており、高温下で熱電変換素子と反応をおこしにく
く、反応物が出来ても熱電発電の使用条件下で安定して
いる様な材料でなければならない。又、熱電材料と接合
した状態で熱電変換素子の電気的特性を阻害しない材料
でなければならない。
Here, the metal material used as the electrode has heat resistance, has a coefficient of thermal expansion similar to that of the thermoelectric conversion element, does not easily react with the thermoelectric conversion element at a high temperature, and may have a reaction product. The material must be stable under the conditions of use of thermoelectric generation. In addition, it must be a material that does not hinder the electrical characteristics of the thermoelectric conversion element when it is joined to the thermoelectric material.

【0055】一般的に、常温下で使用する熱電変換素子
の場合、電極として使用される金属としては、銅、ニッ
ケル、アルミ等があるが、 500℃以上で使用する場合に
は次の様な金属が対象となる。例えば、鉄、ニッケル、
チタン、ステンレス、モリブデン、タングステン、又は
これらの金属に成分として鉛やテルルを微量含んだ合金
等である。
In general, in the case of a thermoelectric conversion element used at room temperature, metals used as electrodes include copper, nickel, aluminum and the like. Metals are targeted. For example, iron, nickel,
Titanium, stainless steel, molybdenum, tungsten, or alloys of these metals containing trace amounts of lead and tellurium as components.

【0056】検討の結果、鉛テルル系熱電材料の場合、
電極となる金属粉を同時に焼結しようとすると、鉛テル
ル粉末の焼結温度の上限(〜 750℃)内で焼結できる材
料としては、鉄、ニッケル、チタン等の融点が1400〜17
00℃近辺にある材料が適当である。
As a result of the examination, in the case of a lead tellurium-based thermoelectric material,
When simultaneously sintering metal powder to be an electrode, materials that can be sintered within the upper limit of sintering temperature (up to 750 ° C) of lead tellurium powder have melting points of iron, nickel, titanium, etc. of 1400 to 17
Materials near 00 ° C are suitable.

【0057】又、ニッケルに関しては、鉛テルルとの同
時焼結の場合、ニッケル/テルル金属間化合物が形成さ
れ、非常に良好な接合が得られるが、 650℃以上での焼
結では急速な反応が進み接合部が溶融してしまい、又、
600℃程度での接合体も 500℃程度で長期保持した場
合、接合部に膨れが出てくるため、 500℃以上での利用
には不適である。
In the case of nickel, simultaneous sintering with lead tellurium forms a nickel / tellurium intermetallic compound, resulting in very good bonding. However, rapid sintering at 650 ° C. or higher results in a rapid reaction. Progresses and the joint melts,
If the joined body at about 600 ° C is kept at about 500 ° C for a long time, the joints will swell, making it unsuitable for use at 500 ° C or higher.

【0058】チタンは、チタン/テルル化合物が形成さ
れるが、この化合物は非常に安定であり、 750℃− 500
時間でも接合部に変化は認められなかった。
Titanium forms a titanium / tellurium compound, which is very stable;
No change was observed in the joint even with time.

【0059】又、鉄は鉛テルルとはほとんど反応せず、
板状の鉄では接合力は極めて弱い。しかし、鉄粉を焼結
密度70〜98%の範囲で焼結した場合、多孔質の鉄電極が
形成され、鉄の空障に鉛テルルが微細に入り込み、素子
と電極との接合強度を高め、又、この多孔質状態の部分
が膨脹係数の差からくる熱ストレスを吸収するのに有効
に作用している。
Iron hardly reacts with lead tellurium,
The bonding strength is extremely weak with sheet iron. However, when iron powder is sintered at a sintering density of 70 to 98%, a porous iron electrode is formed, and lead tellurium penetrates finely into the iron barrier, increasing the bonding strength between the element and the electrode. Also, this porous portion effectively acts to absorb thermal stress caused by a difference in expansion coefficient.

【0060】この様な融点の異なる異種材料を同時に焼
結接合する場合、プラズマ焼結では、パンチ材質や焼結
材料の粒度等を異なったものにすることで容易に温度勾
配をつけた焼結ができ、なおかつ、簡単に焼結密度を再
現よくコントロールできるという特異的な特徴を有す
る。このため、熱電材料の焼結と同時に融点の異なる金
属材料を焼結する場合、プラズマ焼結を使用することが
どうしても必要となる。
When such different materials having different melting points are simultaneously sintered and joined, in plasma sintering, the sintering is easily performed with a temperature gradient by changing the material of the punch or the sintering material to different sizes. And the unique feature that the sintering density can be easily controlled with good reproducibility. Therefore, when sintering metal materials having different melting points simultaneously with sintering of thermoelectric materials, it is absolutely necessary to use plasma sintering.

【0061】プラズマ焼結を用いた電極一体の熱電変換
素子の製造例について説明する。
An example of manufacturing a thermoelectric conversion element integrated with electrodes using plasma sintering will be described.

【0062】図4に示すように、焼結用治具2に下部パ
ンチ5を設置した状態で、電極となる金属材料、例えば
この場合、鉄の粉末22( 325メッシュ電解鉄)を定量載
置し、その上に所定の量の鉛テルルの粉末23を充填し平
らにする。
As shown in FIG. 4, with the lower punch 5 installed on the sintering jig 2, a metal material to be an electrode, for example, iron powder 22 (325 mesh electrolytic iron) in this case is fixedly placed. Then, a predetermined amount of lead tellurium powder 23 is filled thereon and flattened.

【0063】更にその上に再度鉄の粉末22をのせる。そ
して、図1のプラズマ焼結装置に装着し、真空中におい
て焼結温度 500〜800 ℃で焼結することにより、両側に
金属電極の接合された熱電変換素子のインゴットが作成
できる。
Further, iron powder 22 is put on it again. Then, it is mounted on the plasma sintering apparatus of FIG. 1 and sintered in a vacuum at a sintering temperature of 500 to 800 ° C., whereby an ingot of a thermoelectric conversion element having metal electrodes joined on both sides can be produced.

【0064】モジュールとして利用するには、この素子
を切断して、高温ロウ材例えば銀ロウで基板にロウ付け
等を施して使用すればよい。
For use as a module, this element may be cut, and the substrate may be brazed with a high-temperature brazing material, for example, silver brazing, and used.

【0065】プラズマ焼結を用いた電極一体の熱電変換
素子の他の製造例について説明する。
Another example of manufacturing a thermoelectric conversion element with an electrode using plasma sintering will be described.

【0066】図5に示すように、プラズマ焼結用治具2
に、先程と同様に金属粉25を充填する。その上に、P型
及びN型の鉛テルルの粉末 26,27を、粉末26及び27の間
に絶縁物で低熱伝導性の酸化物の粉末28をはさんだ状態
で充填し、更にその上に金属粉25を載置し、プラズマ焼
結を行なう。
As shown in FIG. 5, the jig 2 for plasma sintering is used.
Then, the metal powder 25 is filled in the same manner as above. Further, P-type and N-type lead tellurium powders 26 and 27 are filled with an insulating and low thermal conductive oxide powder 28 interposed between the powders 26 and 27, and further filled thereon. The metal powder 25 is placed and plasma sintering is performed.

【0067】絶縁物の粉末28は、融点が 700℃以上であ
るのが望ましく、例えばガラス系の粉末、アルミナ・シ
リカ系、アルミナ・シリカ・マグネシア系等の混合粉末
がよい。
The melting point of the insulating powder 28 is desirably 700 ° C. or more, and for example, a glass-based powder, or a mixed powder of alumina-silica-based, alumina-silica-magnesia-based powder, or the like is preferable.

【0068】絶縁物の粉末28の焼結により形成される絶
縁層は、熱の貫流を考慮すると 0.5mm厚以下が望ましい
が、融点が高くかつPbTeの焼結条件において多孔質
な状態を保てる組成物であれば、1mm厚以上であっても
問題はない。
The thickness of the insulating layer formed by sintering the insulating powder 28 is desirably 0.5 mm or less in consideration of the flow of heat. However, the insulating layer has a high melting point and can maintain a porous state under PbTe sintering conditions. There is no problem if the thickness is 1 mm or more.

【0069】この絶縁物の粉末28を一体にした焼結によ
り、図6に示すように、同一電極にP型及びN型の鉛テ
ルルが焼結接合されたインゴット29が出来上がる。
By sintering the insulating powder 28 integrally, as shown in FIG. 6, an ingot 29 in which P-type and N-type lead tellurium are sintered and bonded to the same electrode is completed.

【0070】このインゴット29をスライスすることによ
りP/N一対の熱電発電素子30とし、図7に示すように
熱電発電素子30の低温度側のみを実装すれば、片側が電
極として金属板25がむき出しのモジュール31が作成でき
る。
By slicing the ingot 29 to form a pair of P / N thermoelectric generators 30 and mounting only the low-temperature side of the thermoelectric generator 30 as shown in FIG. 7, the metal plate 25 becomes an electrode on one side. A bare module 31 can be created.

【0071】又、同様に、P型及びN型の粉末と絶縁物
の粉末とからなる基本構造を複数連ねた形で焼結して、
一度に多くの素子対を得るようにすることも可能であ
る。
Similarly, by sintering a plurality of basic structures consisting of P-type and N-type powders and insulating powders,
It is also possible to obtain many element pairs at a time.

【0072】実装の時には、例えば、高温側の熱交換部
に熱伝導性の高い無機質接着剤を塗布し、電極面を接着
して使用するか、電気絶縁基板に同様な手法で接合して
モジュールとして使用する。
At the time of mounting, for example, an inorganic adhesive having high thermal conductivity is applied to the heat exchange portion on the high temperature side, and the electrode surfaces are bonded and used, or the module is bonded to an electrically insulating substrate by a similar method. Use as

【0073】[0073]

【発明の効果】本発明の第1の製造方法及び該製造方法
により製造された熱電変換素子によれば、プラズマ活性
焼結法を用いて熱電変換素子用の半導体を製造するが故
に、原料粉末を低圧・低温にて短時間に焼結し得、成型
時の圧力及び温度を制御することにより、従来の原料粉
末を用いて結晶成長法と同等の特性を得ることができ、
又、プラズマにより原料中の酸化物が除去、及び吸着ガ
スが脱離されるため原料の管理を簡易化し得、その結
果、熱電変換素子の生産性を高め、歩留りを向上し、生
産コストを低減すると共に、素子の特性を結晶成長法並
みに改善し得、従って、今まで高い生産コストのために
普及が妨げられてきた熱電変換素子の市場を拡大し得、
環境問題解決の一端を担い得る。
According to the first manufacturing method of the present invention and the thermoelectric conversion element manufactured by the manufacturing method, since the semiconductor for the thermoelectric conversion element is manufactured using the plasma activated sintering method, the raw material powder is used. Can be sintered in a short time at low pressure and low temperature, and by controlling the pressure and temperature during molding, it is possible to obtain the same characteristics as the crystal growth method using the conventional raw material powder,
In addition, the oxides in the raw material are removed by the plasma and the adsorbed gas is desorbed, so that the management of the raw material can be simplified, and as a result, the productivity of the thermoelectric conversion element is increased, the yield is improved, and the production cost is reduced. At the same time, the characteristics of the device can be improved to the same level as the crystal growth method, and therefore, the market for thermoelectric conversion devices that have been prevented from spreading because of high production costs can be expanded,
Can play a part in solving environmental problems.

【0074】本発明の第2の製造方法及び該製造方法に
より製造された熱電変換素子によれば、半導体の粉末
と、融点の異なる電極用の金属材料とをプラズマ活性焼
結法を用いて一体成型するが故に、半導体と電極との間
に多孔質部分を形成し得、基板、電極及び素子間の各膨
脹係数の差に起因するストレス及び温度差によるストレ
スをこの多孔質部分にて吸収し得、又、金属の粉末の空
障に半導体の粉末が微細に入り込むため、半導体と電極
との接合強度を高め得、その結果、熱電変換素子の機械
的強度及び熱的強度を向上して素子破壊を回避し得る。
According to the second manufacturing method of the present invention and the thermoelectric conversion element manufactured by the manufacturing method, the semiconductor powder and the metal material for electrodes having different melting points are integrated by using the plasma activated sintering method. Because of the molding, a porous portion can be formed between the semiconductor and the electrode, and the stress caused by the difference in expansion coefficient between the substrate, the electrode, and the element and the stress due to the temperature difference are absorbed by the porous portion. In addition, since the semiconductor powder finely penetrates into the obstacles of the metal powder, the bonding strength between the semiconductor and the electrode can be increased, and as a result, the mechanical strength and the thermal strength of the thermoelectric conversion element are improved. Can avoid destruction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱電変換素子の製造に使用するプラズ
マ焼結装置の概略構成図である。
FIG. 1 is a schematic configuration diagram of a plasma sintering apparatus used for manufacturing a thermoelectric conversion element of the present invention.

【図2】電子冷却の場合の熱電変換の原理説明図であ
る。
FIG. 2 is a diagram illustrating the principle of thermoelectric conversion in the case of electronic cooling.

【図3】熱電変換素子の斜視図である。FIG. 3 is a perspective view of a thermoelectric conversion element.

【図4】プラズマ焼結を用いた電極一体の熱電変換素子
の製造例の説明図である。
FIG. 4 is an explanatory diagram of a production example of a thermoelectric conversion element integrated with electrodes using plasma sintering.

【図5】プラズマ焼結を用いた電極一体の熱電変換素子
の他の製造例の説明図である。
FIG. 5 is an explanatory view of another production example of a thermoelectric conversion element integrated with electrodes using plasma sintering.

【図6】絶縁物の粉末を一体に焼結したインゴットの斜
視図である。
FIG. 6 is a perspective view of an ingot obtained by integrally sintering an insulating powder.

【図7】絶縁物の粉末を一体に焼結したインゴットを実
装したモジュールの斜視図である。
FIG. 7 is a perspective view of a module mounted with an ingot obtained by integrally sintering an insulating powder.

【符号の説明】[Explanation of symbols]

1 チャンバ 2 焼結用治具 3 焼結用粉体 4 上部パンチ 5 下部パンチ 6 加圧機構 7 上部パンチ電極 8 下部パンチ電極 9 焼結電源 10 制御装置 15 P型半導体 16 N型半導体 17 電極 18 電極 19 電源 20 電極 21 回路 22 鉄の粉末 23 鉛テルルの粉末 25 金属粉 26 P型−鉛テルルの粉末 27 N型−鉛テルルの粉末 28 絶縁物の粉末 29 インゴット 30 熱電発電素子 31 モジュール DESCRIPTION OF SYMBOLS 1 Chamber 2 Sintering jig 3 Sintering powder 4 Upper punch 5 Lower punch 6 Pressing mechanism 7 Upper punch electrode 8 Lower punch electrode 9 Sintering power supply 10 Controller 15 P-type semiconductor 16 N-type semiconductor 17 Electrode 18 Electrode 19 Power supply 20 Electrode 21 Circuit 22 Iron powder 23 Lead tellurium powder 25 Metal powder 26 P-type lead-tellurium powder 27 N-type lead-tellurium powder 28 Insulator powder 29 Ingot 30 Thermoelectric generator 31 Module

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チャンバ内に設けた焼結用治具内に熱電変
換素子用の半導体粉末を装填し、その粉末を所定の圧力
で加圧し、前記粉末にパルス電流を流すことにより、前
記半導体粉末に吸着されている吸着ガスを離脱させなが
ら半導体粉末どうしを焼結して半導体層を形成したこと
を特徴とする熱電変換素子の製造方法。
1. A loaded semiconductor powders for thermoelectric conversion elements sintering jig in which is provided in the chamber, pressurizing the powder powder at a predetermined pressure, by passing a pulsed current to said powder, said A method for manufacturing a thermoelectric conversion element, comprising sintering semiconductor powders to form a semiconductor layer while desorbing an adsorbed gas adsorbed on the semiconductor powders.
【請求項2】 請求項1記載の熱電変換素子の製造方法
において、前記半導体層の通電方向の端部に電極を一体
に焼結したことを特徴とする熱電変換素子の製造方法。
2. The method for manufacturing a thermoelectric conversion element according to claim 1, wherein an electrode is integrally sintered at an end of the semiconductor layer in the direction of current flow.
JP00321892A 1991-01-11 1992-01-10 Manufacturing method of thermoelectric conversion element Expired - Fee Related JP3245793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00321892A JP3245793B2 (en) 1991-01-11 1992-01-10 Manufacturing method of thermoelectric conversion element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP222991 1991-01-11
JP3-2229 1991-01-11
JP00321892A JP3245793B2 (en) 1991-01-11 1992-01-10 Manufacturing method of thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH0555640A JPH0555640A (en) 1993-03-05
JP3245793B2 true JP3245793B2 (en) 2002-01-15

Family

ID=26335575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00321892A Expired - Fee Related JP3245793B2 (en) 1991-01-11 1992-01-10 Manufacturing method of thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP3245793B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3510384B2 (en) * 1995-06-26 2004-03-29 日本政策投資銀行 Manufacturing method of thermoelectric conversion element
JP3528471B2 (en) * 1996-02-26 2004-05-17 松下電工株式会社 Manufacturing method of thermoelectric module
JPH1074986A (en) * 1996-06-27 1998-03-17 Natl Aerospace Lab Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
JP3572814B2 (en) * 1996-07-19 2004-10-06 ヤマハ株式会社 Manufacturing method of thermoelectric cooling material
JP2884068B2 (en) * 1996-08-14 1999-04-19 科学技術庁航空宇宙技術研究所長 Manufacturing method of thermoelectric conversion element
EP0874406A3 (en) * 1997-04-23 2000-12-13 Matsushita Electric Industrial Co., Ltd. A co-sb based thermoelectric material and a method of producing the same
JPH11177156A (en) * 1997-12-16 1999-07-02 Natl Aerospace Lab Machining method for thermoelectric conversion material and production of thermoelectric conversion element
KR20000028741A (en) * 1998-10-12 2000-05-25 안자키 사토루 Manufacturing method for thermoelectric material for semiconductor or semiconductor device and manufacturing method for thermoelectric module
JP2000269559A (en) * 1999-03-12 2000-09-29 Yazaki Corp Thermoelectric device and its manufacture
JP2005072391A (en) 2003-08-26 2005-03-17 Kyocera Corp N-type thermoelectric material, its manufacturing method and n-type thermoelectric element
JP5061706B2 (en) * 2007-04-27 2012-10-31 Tdk株式会社 Thermoelectric element, manufacturing method thereof, and thermoelectric conversion module
JP4882855B2 (en) * 2007-05-01 2012-02-22 Tdk株式会社 Thermoelectric conversion module and manufacturing method thereof
CN101447548B (en) * 2008-12-26 2011-03-30 中国科学院上海硅酸盐研究所 Manufacturing method of thermo-electric device
JP2010212579A (en) * 2009-03-12 2010-09-24 Atsumi Tec:Kk Method for producing thermoelectric conversion element
JP5759902B2 (en) * 2009-11-27 2015-08-05 昭和電工株式会社 Laminate and method for producing the same
JP2017163034A (en) * 2016-03-10 2017-09-14 株式会社アツミテック Thermoelectric conversion module and thermoelectric conversion element
JP6830587B2 (en) * 2016-04-11 2021-02-17 学校法人東京理科大学 A columnar ingot substrate with a conductive film and its manufacturing method, a silicide-based thermoelectric conversion element and its manufacturing method, a thermoelectric conversion module, and a composition for forming an electrode layer of the silicide-based thermoelectric conversion element.

Also Published As

Publication number Publication date
JPH0555640A (en) 1993-03-05

Similar Documents

Publication Publication Date Title
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
Zhang et al. Thermoelectric devices for power generation: recent progress and future challenges
EP3352233B1 (en) Thermoelectric conversion module and thermoelectric conversion device
TWI505522B (en) Method for manufacturing thermoelectric conversion module
JP2006156993A (en) Thermoelectric conversion module, apparatus and method for thermoelectric generation using it, exhaust heat recovery system, solar heat using system, peltier cooling/heating system, nuclear thermoelectric generation system, and biomass system
US20020189661A1 (en) Thermoelectric unicouple used for power generation
WO2002023643A1 (en) Thermoelectric conversion element
JP2004031696A (en) Thermoelectric module and method for manufacturing the same
JP4524382B2 (en) Thermoelectric power generation elements that are subject to temperature differences
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
WO2017020833A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
US3037065A (en) Method and materials for thermoelectric bodies
JPH11261118A (en) Thermoelectric conversion module, semiconductor unit, and manufacture of them
JP2007013000A (en) Thermoelectric conversion material
JP2007165463A (en) Thermoelectric converting element and power generating module
JP7315377B2 (en) thermoelectric module
JP2004221375A (en) Method of manufacturing thermoelectric semiconductor, thermoelectric converter, and thermoelectric conversion device
JP2010016132A (en) Thermoelectric conversion module and method of producing the same
JP3510384B2 (en) Manufacturing method of thermoelectric conversion element
JP3469811B2 (en) Line type thermoelectric conversion module
JPH09172204A (en) Thermoelectric conversion apparatus and thermoelectric its manufacture
JPH07221352A (en) Layered thermoelectric conversion device, subunit for thermoelectric power generation, and power generating unit
JP2009038323A (en) Manufacturing method of thermoelectric conversion element
JPH1084140A (en) Thermo-electric converter and manufacture thereof
JPH1168172A (en) Junction of group silicon and germanium-based material, thermoelectric converter module and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees