JP2007013000A - Thermoelectric conversion material - Google Patents

Thermoelectric conversion material Download PDF

Info

Publication number
JP2007013000A
JP2007013000A JP2005194040A JP2005194040A JP2007013000A JP 2007013000 A JP2007013000 A JP 2007013000A JP 2005194040 A JP2005194040 A JP 2005194040A JP 2005194040 A JP2005194040 A JP 2005194040A JP 2007013000 A JP2007013000 A JP 2007013000A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
length
metal
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005194040A
Other languages
Japanese (ja)
Inventor
Osamu Yamashita
治 山下
Hirotaka Odawara
大貴 小田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005194040A priority Critical patent/JP2007013000A/en
Publication of JP2007013000A publication Critical patent/JP2007013000A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion material and a thermoelectric conversion element which has increased mechanical strength while keeping the figure of merit of a Bi-Te-based thermoelectric material. <P>SOLUTION: When a Bi-Te-based thermoelectric conversion material having a uniaxial temperature gradient applied thereto is cooled upon melting and solidifying the thermoelectric conversion material, the material exhibits a specific value of X-ray diffraction intensity ratio of reflection on a specific surface perpendicular to the temperature gradient direction when measured, and thus the figure of merit can be increased. When a ratio between the full length of an element having metallic materials positioned at both end faces of the thermoelectric conversion material and the length of the thermoelectric conversion material is set at a specific value, electric resistivity ρ is reduced in the entire element, a Seebeck coefficient is remarkably increased by the interface effect between the metal material and the thermoelectric conversion material and by the metal heatsink effect to thereby increase power generation efficiency. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、ペルチェ冷却素子および熱電変換素子に使用するBi-Te系熱電変換材料及び熱電変換素子に関する。   The present invention relates to a Bi-Te thermoelectric conversion material and a thermoelectric conversion element used for a Peltier cooling element and a thermoelectric conversion element.

熱電変換素子は電子冷却機、光通信機器や計測機器、培養器の温度制御等に既に使用されており、今後さらに高性能化されればフロンガスを使用しない冷蔵庫や車載用のエアコンの製品化も可能になる。   Thermoelectric conversion elements are already used for temperature control of electronic coolers, optical communication equipment, measuring equipment, incubators, etc. If further improvements are made in the future, refrigerators that do not use CFCs and automotive air conditioners will be commercialized. It becomes possible.

また熱電変換素子は、最近の産業界において要求の高い熱エネルギーの有効活用の観点から実用化が期待されているデバイスであり、例えば、排熱を利用し電気エネルギーに変換するシステムや、屋外で簡単に電気を得るための小型携帯用発電装置、ガス機器の炎センサー等にも使用が可能である。さらに高性能化すれば、車載用の燃料電池の燃料改質装置の温度制御用としての用途も生まれる。   Thermoelectric conversion elements are devices that are expected to be put into practical use from the viewpoint of effective use of thermal energy, which is highly demanded in recent industries.For example, systems that convert waste heat into electrical energy, or outdoors. It can also be used for small portable power generators for easily obtaining electricity, flame sensors for gas appliances, and the like. If the performance is further improved, it will also be used for temperature control of a fuel reformer for an on-vehicle fuel cell.

熱電変換素子は、P型とN型の熱電変換材料の両端に温度勾配を設けて熱を電気に変換したり、逆に上記材料に電圧を印加して電気を熱に変換したりすることができる素子であり、後者はペルチェ素子としてよく知られている。   A thermoelectric conversion element can convert heat into electricity by providing a temperature gradient at both ends of P-type and N-type thermoelectric conversion materials, or conversely, voltage can be applied to the material to convert electricity into heat. The latter is well known as a Peltier element.

熱電変換素子は、例えば、P型とN型半導体をめっきや半田、あるいは銀ろう等によりPN接合して素子となした構成である。これらの素子を形成するための熱電変換材料として、高性能を有するZn4Sb3、IrSb3、Bi2Te3、PbTe等のカルコゲン系化合物のほか、熱電特性は低いが資源的に豊富なFeSi2、SiGe等のケイ化物が知られている。 The thermoelectric conversion element has a configuration in which, for example, a P-type and an N-type semiconductor are PN-bonded by plating, soldering, silver brazing, or the like to form an element. In addition to high-performance chalcogen compounds such as Zn 4 Sb 3 , IrSb 3 , Bi 2 Te 3 , and P b Te as thermoelectric conversion materials for forming these elements, they have low thermoelectric properties but are abundant in resources Silicides such as FeSi 2 and SiGe are known.

従来の熱電変換素子(ペルチェ素子)は、材料に与えた温度勾配(電位差)を利用して熱起電力(温度差)を発生させており、その変換効率は熱電(電熱)変換素子の性能指数(ZT=TS2/ρκ、ここでTは絶対温度、Sはゼーベック係数、ρは電気抵抗率、κは熱伝導率)の関数で表され、現状ではZTがほぼ1程度であり、その変換効率は数%と低く十分とは言えないものであった。この変換効率はZTが高い程向上するために、出来る限り高い性能指数を有する材料が求められている。 Conventional thermoelectric conversion elements (Peltier elements) generate thermoelectromotive force (temperature difference) using the temperature gradient (potential difference) applied to the material, and the conversion efficiency is a figure of merit for thermoelectric (electrothermal) conversion elements. (ZT = TS 2 / ρκ, where T is the absolute temperature, S is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the thermal conductivity). The efficiency was as low as several percent and was not sufficient. Since this conversion efficiency increases as ZT increases, a material having a performance index as high as possible is required.

現在、ほとんどのBi-Te系の熱電変換材料はブリッジマン法、チョクラルスキー法、ゾーンメルト法による単結晶技術を使ってほぼ単結晶に近い結晶状態で作製するか、あるいはホットプレスによる粉末冶金法を使って多結晶体として作製されている。   Currently, most Bi-Te-based thermoelectric materials are produced in a crystal state close to a single crystal using the Bridgeman method, the Czochralski method, and the zone melt method, or powder metallurgy by hot pressing. It is produced as a polycrystal using the method.

熱電変換素子の製造方法等に関する技術としては、例えば特許文献1には粉末を焼結させて熱電変換素子を作製することが記載されており、またBi2Te3を主材としSe、Sbを添加することが記載されているが、それぞれBi2Se3、Sb2Te3等の形で含有されるものであり、Bi2Te3の基本構造を崩すものではない。
特開2002-33525
As a technique related to a method for manufacturing a thermoelectric conversion element, for example, Patent Document 1 describes that a powder is sintered to produce a thermoelectric conversion element, and Bi 2 Te 3 is used as a main material and Se and Sb are used. Although it is described that they are added, they are contained in the form of Bi 2 Se 3 , Sb 2 Te 3 or the like, respectively, and do not destroy the basic structure of Bi 2 Te 3 .
JP2002-33525

電熱あるいは熱電の変換素子の変換効率は、太陽電池の約20%等に比べて非常に低く、現状ではわずか数%にすぎず、これが熱電変換素子あるいはペルチェ素子の用途を狭めている原因であり、また熱電変換素子が普及しない理由でもある。   The conversion efficiency of electrothermal or thermoelectric conversion elements is very low compared to about 20% of solar cells, etc., and it is only a few% at present, which is the reason for narrowing the applications of thermoelectric conversion elements or Peltier elements. This is also the reason why thermoelectric conversion elements are not widespread.

Bi-Te系熱電変換材料の単結晶は、溶湯に温度勾配をかけて冷却し結晶のc面を温度勾配の方向に沿って成長させることによって通常作製されている。単結晶体は(001)の碧開面(c面)に沿ってクラックが入りやすいという性質がある。   A single crystal of a Bi-Te thermoelectric conversion material is usually produced by cooling a molten metal with a temperature gradient and growing the c-plane of the crystal along the direction of the temperature gradient. The single crystal has the property of easily cracking along the (001) cleavage plane (c-plane).

一方、多結晶体ではキャリアーの粒界散乱により電気抵抗率が高くなり性能指数が低下するという問題がある。このために高い性能指数(ZT)を有するモジュールを作製する場合には単結晶体を使用し、機械的強度を優先させる場合には多結晶体を使用している。   On the other hand, the polycrystalline body has a problem that the electrical resistivity increases due to the grain boundary scattering of the carrier and the figure of merit decreases. For this reason, when producing a module having a high figure of merit (ZT), a single crystal is used, and when giving priority to mechanical strength, a polycrystal is used.

一般にBi-Te系熱電変換材料を単結晶に近い状態でペルチェモジュールとして使用するときには、発生する温度勾配の方向と電流を流す方向が共に結晶のc軸に垂直になるように組み立てられており、このため今まで結晶のc軸に垂直な成分の熱電特性のみが利用され、c軸成分の熱電特性はほとんど利用されていなかった。   In general, when using Bi-Te thermoelectric conversion materials as a Peltier module in a state close to a single crystal, both the direction of the generated temperature gradient and the direction of current flow are assembled so as to be perpendicular to the c-axis of the crystal. For this reason, only the thermoelectric properties of the component perpendicular to the c-axis of the crystal have been used so far, and the thermoelectric properties of the c-axis component have hardly been used.

性能指数と機械的強度の両者を満足させるために、Bi-Teの組成や添加物の種類、添加量等も種々検討されたが、室温での性能指数が1を大きく超えることはなかった。またゼーベック係数は結晶の異方性には敏感ではないが、熱伝導率はc軸に平行な方向では低く、逆に電気抵抗率はc軸に平行な方向で高くなるので、結晶方位の選択によって性能指数は大きく変化する。   In order to satisfy both the figure of merit and the mechanical strength, the composition of Bi-Te, the kind of additive, the amount added, etc. were studied, but the figure of merit at room temperature did not greatly exceed 1. The Seebeck coefficient is not sensitive to the crystal anisotropy, but the thermal conductivity is low in the direction parallel to the c-axis, and conversely the electrical resistivity is high in the direction parallel to the c-axis. The figure of merit changes greatly.

この発明は、Bi-Te系熱電変換材料において、性能指数を向上させた熱電変換材料と発電効率の高い構成からなる熱電変換素子を提供することを目的としている。   An object of the present invention is to provide a thermoelectric conversion element comprising a thermoelectric conversion material with an improved figure of merit and a high power generation efficiency in a Bi-Te based thermoelectric conversion material.

発明者らは、Bi-Te系熱電変換材料において、性能指数を向上させ得る構成について、鋭意検討した結果、Bi-Te系化合物の極性を決める添加元素を単独又は複合添加したBi-Te系熱電変換材料の溶融固化あるいはホットプレスの際に、一軸性の温度勾配をかけて冷却することで、温度勾配の方向に垂直な面で測定した(006)と(105)反射のX線回折強度比I(006)/I(105)が特定値を示すようになり、性能指数を大きく向上させることが可能であることを知見した。   As a result of diligent research on the configuration that can improve the figure of merit in the Bi-Te thermoelectric conversion material, the inventors have found that the Bi-Te thermoelectric compound contains an additive element that determines the polarity of the Bi-Te compound alone or in combination. X-ray diffraction intensity ratio of (006) and (105) reflections measured on a plane perpendicular to the direction of the temperature gradient by cooling by applying a uniaxial temperature gradient during melt solidification or hot pressing of the conversion material It has been found that I (006) / I (105) shows a specific value and the figure of merit can be greatly improved.

また、発明者らは、発電効率の高い熱電変換素子の構成について、鋭意検討した結果、インゴットを切断研磨加工した熱電変換材料素材の両端面にめっきした後、金属材とはんだ付けして組み立てる構成において、熱電変換材料の長さを素子全長の特定比率とすることにより、素子全体の電気抵抗率ρが低下すると同時に、ゼーベック係数Sが金属材と熱電変換材料との間の界面効果と金属のヒートシンク効果により飛躍的に増大し、発電効率を向上させることが可能であることを知見した。   In addition, as a result of intensive studies on the structure of the thermoelectric conversion element with high power generation efficiency, the inventors have plated the both ends of the thermoelectric conversion material material that has been cut and polished into an ingot, and then assembled by soldering with a metal material. In the above, by making the length of the thermoelectric conversion material a specific ratio of the total length of the element, the electrical resistivity ρ of the entire element is lowered, and at the same time, the Seebeck coefficient S is the interfacial effect between the metal material and the thermoelectric conversion material and the metal It was found that the power generation efficiency can be improved dramatically by the heat sink effect.

さらに、熱電変換材料素材の両端に金属材を配置した熱電変換素子において、熱電変換材料の長さと金属材に設けたリード線間距離の比率が特定比率となるようにし、さらにリード線取り付け位置から放熱板もしくは吸熱板に接触している金属材の端面までの距離が熱電変換材料の両端面からリード線までの距離と同等もしくはそれ以上とするように組み立てることにより、発電効率を向上させることが可能であることを知見し、この発明を完成した。   Furthermore, in the thermoelectric conversion element in which the metal material is arranged at both ends of the thermoelectric conversion material material, the ratio of the length of the thermoelectric conversion material and the distance between the lead wires provided in the metal material is a specific ratio, and further from the lead wire attachment position. It is possible to improve the power generation efficiency by assembling so that the distance to the end face of the metal material that is in contact with the heat sink or heat sink is equal to or greater than the distance from both end faces of the thermoelectric conversion material to the lead wire. It was found that this was possible and the present invention was completed.

すなわち、この発明は、Bi2Te3を主材とした熱電変換材料であって、該材料の温度勾配の方向に垂直な面で測定した(006)と(105)反射のX線回折強度比I(006)/I(105)が2〜15%であることを特徴とする熱電変換材料である。 That is, the present invention is a thermoelectric conversion material mainly composed of Bi 2 Te 3 , and the X-ray diffraction intensity ratio of (006) and (105) reflections measured on a plane perpendicular to the temperature gradient direction of the material. A thermoelectric conversion material characterized in that I (006) / I (105) is 2 to 15%.

また、この発明は、熱電変換材料(長さlB)の両端に金属材(長さlM)を配置した複合型熱電変換素子であり、前記熱電変換材料長さと熱電変換素子全長(lB+2lM)の比率(lB/(lB+2lM))が0.03〜0.10であり、P型とN型の該熱電変換素子の各金属端面が同一平面を形成するよう配列されて一体固化され、前記各平面内でリード結合されて絶縁被覆を有することを特徴とする発電用複合型熱電変換素子である。 Further, the present invention is a composite thermoelectric conversion element in which a metal material (length l M ) is disposed at both ends of a thermoelectric conversion material (length l B ), and the thermoelectric conversion material length and the total length of the thermoelectric conversion element (l B + 2l M ) ratio (l B / (l B + 2l M )) is 0.03 to 0.10, and the metal end faces of the P-type and N-type thermoelectric conversion elements are arranged so as to form the same plane. It is a composite thermoelectric conversion element for power generation characterized by being solidified and lead-bonded in each plane and having an insulating coating.

また、この発明は、熱電変換材料(長さlB)の両端に金属材(長さlM)を配置した複合型熱電変換素子であり、前記熱電変換材料長さと熱電変換素子全長(lB+2lM)の比率(lB/(lB+2lM))が0.60〜0.98であり、P型とN型の該熱電変換素子の各金属端面が同一平面を形成するよう配列されて一体固化され、前記各平面内でリード結合されて絶縁被覆を有することを特徴とする発電用複合型熱電変換素子である。 Further, the present invention is a composite thermoelectric conversion element in which a metal material (length l M ) is disposed at both ends of a thermoelectric conversion material (length l B ), and the thermoelectric conversion material length and the total length of the thermoelectric conversion element (l B + 2l M ) ratio (l B / (l B + 2l M )) is 0.60 to 0.98, and the metal end faces of the P-type and N-type thermoelectric conversion elements are arranged so as to form the same plane. It is a composite thermoelectric conversion element for power generation characterized by being solidified and lead-bonded in each plane and having an insulating coating.

また、この発明は、熱電変換材料(長さlB)の両端に配置した金属材(長さlM)にリード線間距離(t)で設けたリードを有し、かつ全長lの複合型熱電変換素子の両端面から(t-lB)/2の位置の金属材にリードを有し、P型とN型の該熱電変換素子の各金属端面が同一平面を形成するよう配列されて放熱板又は吸熱板に接触している構成であり、金属の端面までの距離(=(l-t)/2)が(t-lB)/2と同等もしくはそれ以上とすると同時に、lB/tが0.60〜0.98であることを特徴とする発電用複合型熱電変換素子である。 Further, the present invention has a lead provided at a distance (t) between lead wires on a metal material (length l M ) disposed at both ends of a thermoelectric conversion material (length l B ), and has a total length l. A heat sink with leads on the metal material at a position of (tl B ) / 2 from both end faces of the thermoelectric conversion element, and the metal end faces of the P-type and N-type thermoelectric conversion elements being arranged to form the same plane Alternatively, the structure is in contact with the endothermic plate, and the distance to the metal end face (= (lt) / 2) is equal to or more than (tl B ) / 2, and at the same time, l B / t is 0.60 to 0.98. This is a composite thermoelectric conversion element for power generation.

この発明によると、多結晶体のBi-Te系熱電変換材料は、十分な強度を得ると同時に、性能指数の高い材料が得られ、金属と熱電変換材料の長さを所定の比率にして熱電変換素子を組み立てることにより、素子全体の電気抵抗率ρを低下させると同時に、金属電極と熱電変換材料との間の界面効果と金属のヒートシンク効果によりゼーベック係数Sが飛躍的に増大し、性能指数が大幅に改善できる。   According to the present invention, a polycrystalline Bi-Te thermoelectric conversion material has sufficient strength and at the same time a material with a high figure of merit. The length of the metal and the thermoelectric conversion material is set to a predetermined ratio. By assembling the conversion element, the electrical resistivity ρ of the entire element is reduced, and at the same time, the Seebeck coefficient S is dramatically increased by the interface effect between the metal electrode and the thermoelectric conversion material and the heat sink effect of the metal, and the figure of merit Can be greatly improved.

この発明によると、熱電変換素子において、熱電変換材料の長さと金属材に設けたリード線間距離の比率や、リードの取り付け位置から金属材の端面までの距離を特定することにより、熱電変換材料の性能を効果的に活用でき、大きく発電効率を向上させることが可能となる。   According to this invention, in the thermoelectric conversion element, by specifying the ratio of the length of the thermoelectric conversion material to the distance between the lead wires provided in the metal material and the distance from the lead attachment position to the end surface of the metal material, the thermoelectric conversion material The power generation efficiency can be effectively utilized and the power generation efficiency can be greatly improved.

この発明において、Bi-Te系熱電変換材料は、rhombohedral型結晶構造を有するBi2Te3化合物中のBi原子の一部を5族元素で置換した化合物に、あるいはTe原子の一部を6族元素で置換した化合物に、添加元素として4族元素、6族元素や7族元素を単独もしくは複合添加した材料である。 In this invention, the Bi-Te thermoelectric conversion material is a compound in which a part of Bi atom in a Bi 2 Te 3 compound having a rhombohedral crystal structure is substituted with a group 5 element, or a part of Te atom is group 6 This is a material obtained by adding a group 4 element, a group 6 element, or a group 7 element alone or in combination to an element-substituted compound.

発明者らは、Bi-Te系化合物の極性を決める添加元素を単独又は複合添加して溶かした溶湯を、溶湯内およびインゴット内の温度勾配を1℃/cm〜15℃/cmとし、且つ0.1℃/分〜5℃/分の冷却速度で冷却し、一部の結晶粒のc軸を温度勾配の方向に揃えることにより、材料の機械的強度を保ちながら熱伝導率が大幅に低下し、性能指数の高い材料が得られることを見出した。   The inventors have made a molten metal obtained by adding an additive element that determines the polarity of a Bi-Te compound alone or in combination, a temperature gradient in the molten metal and in the ingot to be 1 ° C / cm to 15 ° C / cm, and 0.1% Cooling at a cooling rate of ℃ / min ~ 5 ℃ / min, aligning the c axis of some crystal grains in the direction of the temperature gradient, greatly reducing the thermal conductivity while maintaining the mechanical strength of the material, It has been found that a material with a high figure of merit can be obtained.

Bi2Te3系熱電変換材料は、本来はP型の熱電特性を示すが、Bi2Te3は正孔のキャリアー濃度が高すぎるので、正孔のキャリアー濃度を減らすように結晶中に入った時に電子を放出する6族のカルコゲン元素を添加して性能指数を高めている。 Bi 2 Te 3 thermoelectric conversion materials originally show P-type thermoelectric properties, but Bi 2 Te 3 has a hole carrier concentration that is too high, so it entered the crystal to reduce the hole carrier concentration. The index of performance is enhanced by adding chalcogen elements of group 6 that sometimes emit electrons.

また、Bi2Te3系熱電変換材料において、N型半導体として適用する実施の形態においては、6族のカルコゲン元素、7族のハロゲン元素あるいは金属元素のハロゲン化物を添加して極性を正から負にかえると同時に、その添加量でキャリアー濃度を調整して性能指数を向上させている。 In an embodiment where the Bi 2 Te 3 thermoelectric conversion material is applied as an N-type semiconductor, the polarity is changed from positive to negative by adding a halide of a group 6 chalcogen element, a group 7 halogen element or a metal element. At the same time, the carrier index is adjusted by the added amount to improve the figure of merit.

Bi2Te3系熱電変換材料への添加元素や添加物の添加量は、目的とする極性とキャリアー濃度(〜1019cm-3)を有する半導体となすためには、P型では少なくとも1種を3wt%以上添加することが望ましく、また15wt%を越えて添加すると、逆に不純物効果によって電気抵抗率が増加する場合もあるため、15wt%以下であることが好ましく、特に好ましくは3〜12wt%である。複合して添加する場合には、総添加量で4〜13wt%にすることが望ましい。 The additive amount of additive elements and additives to the Bi 2 Te 3 system thermoelectric conversion material is at least one in the P type in order to make a semiconductor having the desired polarity and carrier concentration (˜10 19 cm −3 ). Is preferably added in an amount of 3 wt% or more, and if added in excess of 15 wt%, the electrical resistivity may increase due to the impurity effect, so it is preferably 15 wt% or less, particularly preferably 3 to 12 wt%. %. When adding in combination, the total addition amount is desirably 4 to 13 wt%.

また、N型では少なくとも1種を0.01wt%以上の添加が必要であり、また0.10wt%を越えて添加すると逆に不純物効果によって電気抵抗率が増加する場合もあるため0.10wt%以下であることが好ましい。複合して添加する場合には、総添加量で0.09〜0.25wt%にすることが望ましい。   In addition, in N type, it is necessary to add at least one kind of 0.01 wt% or more, and if it exceeds 0.10 wt%, the electrical resistivity may increase due to the impurity effect. It is preferable. When adding in combination, the total addition amount is preferably 0.09 to 0.25 wt%.

添加元素は、4族元素としては、Si、Ge、Sn、Pb、6族元素としては、S、Se、Te、7族元素としては、Br、Iが好ましく、複合添加するときにはこれら各種元素の化合物やまた主成分元素との化合物を用いても良い。 Additive elements, the Group 4 element, Si, Ge, Sn, As P b, 6 group elements, S, Se, As Te, 7 group elements, Br, these various elements when I is preferably added in combination Or a compound with a main component element may be used.

一般に、ペルチェ素子や熱電変換素子の使用温度域は用途によって異なるために、当然要求される温度域で高い性能指数(ZT)を示す材料が求められる。従って、Bi-Te系熱電変換材料の主成分は用途に応じて適宜選択される。例えば、低温で使用する場合には、P型であればBiをSbより多く含有させ、室温付近で使用する場合は、逆にBiをSbより少なくする、というように選択する。   In general, since the operating temperature range of the Peltier element or thermoelectric conversion element varies depending on the application, a material exhibiting a high figure of merit (ZT) in the required temperature range is required. Therefore, the main component of the Bi—Te thermoelectric conversion material is appropriately selected according to the application. For example, when using at a low temperature, the P type contains more Bi than Sb, and when used near room temperature, the Bi is selected to be less than Sb.

熱電変換材料を溶融凝固にて製造する際に、冷却速度が5℃/分を超えると、ゼーベック係数が低下して性能指数は低下するが、冷却速度が0.1℃/分未満の場合でも同様にゼーベック係数が低下して性能指数は低下する。したがって冷却速度は0.1℃/分〜5℃/分が好ましい。   When manufacturing a thermoelectric conversion material by melt solidification, if the cooling rate exceeds 5 ° C / min, the Seebeck coefficient will decrease and the figure of merit will decrease, but even if the cooling rate is less than 0.1 ° C / min, The Seebeck coefficient decreases and the figure of merit decreases. Therefore, the cooling rate is preferably 0.1 ° C / min to 5 ° C / min.

また、溶融凝固時の温度勾配は、溶湯内およびインゴット内の温度勾配が15℃/cmを超えると、温度勾配の方向に沿ってc面がほぼ揃うために熱伝導率が増加すると同時に、結晶が成長し過ぎて結晶粒径が3mmを超え、多結晶体の機械的強度が低下する。逆に、溶湯内およびインゴット内の温度勾配を1℃/cm未満にすると、ほぼ等方的な多結晶体になって結晶粒径が0.2mm未満になり、インゴットの電気抵抗率が増大し性能指数が低下する。したがって、温度勾配は、1℃/cm〜15℃/cm、インゴットの平均結晶粒径は0.2〜3mmが好ましい。   In addition, when the temperature gradient in the molten metal and ingot exceeds 15 ° C / cm, the thermal conductivity increases at the same time as the c-plane is almost aligned along the temperature gradient direction. Grows too much, the crystal grain size exceeds 3 mm, and the mechanical strength of the polycrystal decreases. Conversely, when the temperature gradient in the molten metal and ingot is less than 1 ° C / cm, it becomes an almost isotropic polycrystal and the crystal grain size is less than 0.2 mm, increasing the electrical resistivity of the ingot and improving the performance. The index drops. Therefore, the temperature gradient is preferably 1 ° C./cm to 15 ° C./cm, and the average crystal grain size of the ingot is preferably 0.2 to 3 mm.

この熱電変換材料は多結晶体であり、その温度勾配の方向に垂直な面で測定した(006)と(105)反射のX線回折強度比I(006)/I(105)は、2〜15%が好ましい。すなわち、この熱電変換材料は、熱伝導率の非常に低いc軸方向の成分を利用するために、材料全体の熱伝導率の大幅な低下が期待できるので、性能指数を大幅に改善できる。   This thermoelectric conversion material is a polycrystal, and the X-ray diffraction intensity ratio I (006) / I (105) of (006) and (105) reflection measured on a plane perpendicular to the direction of the temperature gradient is 2 to 15% is preferred. That is, since this thermoelectric conversion material uses a component in the c-axis direction having a very low thermal conductivity, a significant decrease in the thermal conductivity of the entire material can be expected, so that the figure of merit can be greatly improved.

溶湯から多結晶体を作製する方法としては、ブリッジマン法、ゾーンメルト法のいずれの方法で作製してもよいが、多結晶体にするために溶湯内の温度勾配を1℃/cm〜15℃/cmにし、インゴットの結晶粒径が上述のように3mm以下になるようにする必要がある。   As a method for producing a polycrystal from a molten metal, it may be produced by either the Bridgeman method or the zone melt method, but in order to obtain a polycrystal, the temperature gradient in the molten metal is 1 ° C./cm to 15 ° C. The ingot crystal grain size must be 3 mm or less as described above.

速い速度で冷却したインゴットの結晶粒界には、添加元素や添加物が多く偏析あるいは析出しており、それらは結晶粒内にはあまり分散していないが、遅い速度で冷却したインゴットの結晶組織は結晶粒径が大きくしかも添加元素や添加物が結晶粒内にもかなり分散する。   A large amount of additive elements and additives are segregated or precipitated in the crystal grain boundaries of the ingot cooled at a high speed, and they are not very dispersed in the crystal grains, but the crystal structure of the ingot cooled at a low speed. Has a large crystal grain size, and the additive elements and additives are considerably dispersed in the crystal grains.

添加元素が結晶粒内に適度に分散するとフォノンによる熱伝導率が低下し、また添加元素がイオン化してキャリアーを放出するので、電気抵抗率も低下する傾向を示す。また添加元素が偏析しているとこの逆の傾向を示す。従って、添加元素が適度な分散状態になるように制御すれば、一部の結晶粒がc軸方向に配向しても電気抵抗率の増加を抑えることができるので、性能指数を高めることが可能になる。   When the additive element is appropriately dispersed in the crystal grains, the thermal conductivity due to the phonon is lowered, and the additive element is ionized to release carriers, so that the electrical resistivity tends to be lowered. Further, when the additive element is segregated, the opposite tendency is exhibited. Therefore, if the additive element is controlled so as to be in an appropriate dispersed state, an increase in electrical resistivity can be suppressed even if some crystal grains are oriented in the c-axis direction, so that the figure of merit can be increased. become.

この熱電変換材料は、適度な冷却速度で作製すると、添加元素を結晶粒内に適度に分散させることができる。しかし、最適な冷却速度はインゴットの大きさ、インゴットの結晶粒径、材料の組成、添加元素によっても大きく変化するので、インゴットの作製条件に応じて適した冷却条件を選べばよい。インゴットの冷却開始は、Bi2Te3系化合物が溶けた状態であれば、いずれの温度であってもよいが、溶融、冷却雰囲気は真空もしくは不活性ガス雰囲気が好ましい。 When this thermoelectric conversion material is produced at an appropriate cooling rate, the additive element can be appropriately dispersed in the crystal grains. However, the optimum cooling rate varies greatly depending on the size of the ingot, the crystal grain size of the ingot, the composition of the material, and the additive elements. Therefore, a suitable cooling condition may be selected according to the ingot production conditions. The cooling of the ingot may be any temperature as long as the Bi 2 Te 3 compound is dissolved, but the melting and cooling atmosphere is preferably a vacuum or an inert gas atmosphere.

また、この熱電変換材料は、上述した溶融凝固のみならず、公知の粉末冶金法による製造でもその製造思想は全く同様であり、所要粒度の粉末をホットプレスにて製造する際、一軸性の温度勾配をかけて焼結し、一部の結晶粒のc軸を温度勾配の方向に揃えることにより、上述の機構によって熱伝導率が大幅に低下し、性能指数の高い材料が得られる。   This thermoelectric conversion material has the same manufacturing concept not only in the above-described melt solidification but also in the production by a known powder metallurgy method. When a powder having a required particle size is produced by a hot press, a uniaxial temperature is produced. By sintering with a gradient and aligning the c-axis of some crystal grains in the direction of the temperature gradient, the above-described mechanism greatly reduces the thermal conductivity, and a material with a high figure of merit can be obtained.

以下に熱電変換素子の構成を説明する。図1に示すごとく、所要長さlBの熱電変換材料2の両端に所要長さlMの金属材3,3を配置したM/B/Mの複合型熱電変換素子1を組み立てたとき、lBの全長lに対する比率xを、x=lB/lの関数として当該素子のバワーファクターP(=S2/ρ)を求めることができる。 The configuration of the thermoelectric conversion element will be described below. As shown in FIG. 1, when assembled composite thermoelectric conversion element 1 of the required length l thermoelectric conversion material required length at both ends of the 2 l M M / B / M disposing the metal material 3, 3 of the B, The power factor P (= S 2 / ρ) of the element can be obtained by using the ratio x of the length B to the total length l as a function of x = l B / l.

この熱電変換素子を電気回路や熱回路として取り扱うと、素子の電気抵抗率ρは下記(1)式となる。
ρ=1/l・(2ρMlMBlB) (1)式
When this thermoelectric conversion element is handled as an electric circuit or a thermal circuit, the electric resistivity ρ of the element is expressed by the following equation (1).
ρ = 1 / l ・ (2ρ M l M + ρ B l B ) (1)

ここで、ρMとρBは金属と熱電変換材料の電気抵抗率である。さらにb=ρMBとすると、下記(2)式となる。
ρ=ρB{x+b(1-x)} (2)式
Here, ρ M and ρ B are electrical resistivity of the metal and the thermoelectric conversion material. Further, if b = ρ M / ρ B , the following equation (2) is obtained.
ρ = ρ B {x + b (1-x)} (2)

ここで金属と熱電変換材料の熱伝導率をκMとκBとし、ある温度差をこの素子に掛けたときに各材料に発生する温度差をΔTMとΔTBとすると、下記(3)式となる。 Here, if the thermal conductivity of the metal and the thermoelectric conversion material is κ M and κ B , and the temperature difference generated in each material when a certain temperature difference is applied to this element is ΔT M and ΔT B , the following (3) It becomes an expression.

Figure 2007013000
Figure 2007013000

ここでc=κMBである。したがって素子全体の温度差は(4)式となる。
ΔT=2ΔTM+ΔTB (4)式
Here, c = κ M / κ B. Therefore, the temperature difference of the entire element is expressed by equation (4).
ΔT = 2ΔT M + ΔT B (4)

そのとき発生する電圧は、金属と熱電変換材料のゼーベック係数をSMとSBとすると、(5)式となる。
ΔV=2ΔTMSM+ΔTBSB (5)式
Voltage generated at that time, when the Seebeck coefficients of the metal and the thermoelectric conversion material and S M and S B, the equation (5).
ΔV = 2ΔT M S M + ΔT B S B (5)

従って、熱電変換素子全体のゼーベック係数Sは、下記(6)式となる。   Therefore, the Seebeck coefficient S of the entire thermoelectric conversion element is expressed by the following equation (6).

Figure 2007013000
Figure 2007013000

ここでa=SM/SBである。熱電変換素子のパワーファクターPは(7)式と得られる。ここでPB=SB 2Bである。熱電変換素子のパワーファクターP/PBは、PB>PM のときには、ある最適なxで必ず1より大きくなり、増大する。 Here, a = S M / S B. The power factor P of the thermoelectric conversion element is obtained from the equation (7). Here, P B = S B 2 / ρ B. The power factor P / P B of the thermoelectric conversion element is always greater than 1 and increases at a certain optimum x when P B > P M.

Figure 2007013000
Figure 2007013000

素子を構成している金属Mの電気抵抗率が低く、且つ熱伝導率が高くて、熱電変換材料Bのゼーベック係数が高く、且つ熱伝導率が低いときに、所定のxでパワーファクターはもっとも大きくなる。熱電変換材料としては、特に規定しないが、性能指数の高い材料を使用した方が素子のパワーファクターは大きくなる。   When the electrical resistivity of the metal M constituting the element is low, the thermal conductivity is high, the Seebeck coefficient of the thermoelectric conversion material B is high, and the thermal conductivity is low, the power factor is the most at a given x. growing. Although it does not prescribe | regulate especially as a thermoelectric conversion material, the power factor of an element becomes larger when the material with a high figure of merit is used.

この発明のBi2Te3系熱電変換材料と金属にCuとの組み合わせの場合には、x=lB/l (ここでlは素子の全長)が0.03〜0.10の範囲で最大になる。そのときの最大パワーファクターPmaxは約100(mW/K2m)を超え、Bi2Te3系熱電変換材料のそれの約十数倍にも達する。 In the case of a combination of the Bi 2 Te 3 thermoelectric conversion material of the present invention and a metal with Cu, x = l B / l (where l is the total length of the element) is maximized in the range of 0.03 to 0.10. The maximum power factor P max at that time exceeds about 100 (mW / K 2 m), and reaches about ten times as much as that of the Bi 2 Te 3 series thermoelectric conversion material.

このようにパワーファクターを向上させたx=0.03〜0.10の複合型熱電変換素子は、熱伝導率を犠牲にした構造のために、絶えず温度差のかかる場所、つまり原発の冷却水と海水との温度差を利用した発電機のようなものに使用できる。それは熱が素子を通って伝達されても熱源の熱容量が大きいために、サンドイッチされた熱電変換材料にかかる温度差はほとんど変化しないからである。しかもパワーファクターが大きいために、小さな温度差で大電流、大出力が得られる利点がある。また、熱電変換材料の使用量を少なくできるので、コスト削減にも効果がある。   The composite thermoelectric conversion element with x = 0.03 to 0.10 with improved power factor in this way has a structure that sacrifices the thermal conductivity, so it is a place where temperature difference is constantly applied, that is, between the primary cooling water and seawater. It can be used for generators that use temperature differences. This is because even if heat is transferred through the element, the heat source has a large heat capacity, so that the temperature difference applied to the sandwiched thermoelectric conversion material hardly changes. Moreover, since the power factor is large, there is an advantage that a large current and a large output can be obtained with a small temperature difference. Moreover, since the usage-amount of thermoelectric conversion material can be decreased, it is effective also in cost reduction.

このような熱電変換素子を組み立てる方法として、従来のような単にP型とN型熱電変換素子の組み立て方法ではなくて、熱電変換材料と金属の長さの比が所定の比率になるように組み立てたP型熱電変換素子1PとN型熱電変換素子1Nを絶縁性の高い液状樹脂の中に交互に埋め込んだ後、樹脂6を乾燥固化させ一体化する方法を提案するものである。 As a method of assembling such a thermoelectric conversion element, it is not simply a conventional method of assembling P-type and N-type thermoelectric conversion elements, but assembling so that the ratio of the length of the thermoelectric conversion material and the metal is a predetermined ratio. The present invention proposes a method in which the P-type thermoelectric conversion element 1 P and the N-type thermoelectric conversion element 1 N are alternately embedded in a highly insulating liquid resin, and then the resin 6 is dried and solidified to be integrated.

樹脂6が固まった後で、図2Aに示すようにリード線5でP型熱電変換素子1PとN型熱電変換素子1Nを直列に連結させた後、熱伝導性の良好な薄い絶縁皮膜を施すことにより、モジュールの密閉性が向上するので、発電用に使用するときに温度の異なる液体がモジュールを通って混ざり合うことがなくなると同時に、モジュールの防水性と耐食性の向上にもなる。また、樹脂で固めることにより、組み立てた熱電変換素子の機械的強度も著しく向上する利点がある。 After resin 6 has hardened, P-type thermoelectric conversion element 1 P and N-type thermoelectric conversion element 1 N are connected in series with lead wire 5 as shown in FIG. 2A, and then a thin insulating film with good thermal conductivity Since the sealing property of the module is improved, liquids with different temperatures do not mix through the module when used for power generation, and at the same time, the waterproofness and corrosion resistance of the module are improved. Moreover, by hardening with resin, there exists an advantage which the mechanical strength of the assembled thermoelectric conversion element also improves remarkably.

例えば、使用する樹脂としては、エポキシ樹脂と硬化剤を混合したものが適している。さらに個々の熱電変換素子を図2Bに示すように、千鳥構造にして全ての熱電変換素子1P,1Nがモジュール全体に占める割合を増加させて単位面積当りのエネルギー吸収効率を向上させることも可能である。 For example, as the resin to be used, a mixture of an epoxy resin and a curing agent is suitable. As further illustrated the individual thermoelectric conversion elements in Figure 2B, all the thermoelectric conversion elements 1 P in the staggered structure, 1 N to improve the energy absorbing efficiency per unit area by increasing the percentage of the total modules Is possible.

一方、lBの全長lに対する比率xが、0.60〜0.98の複合型熱電変換素子では、金属電極と熱電変換材料との間の界面効果によりゼーベック係数Sが上記(6)式の計算値よりも飛躍的に増大する現象があり、結果的に性能指数が大幅に増加する。このゼーベック係数の増加率は熱電変換材料と金属の接合方法によって変化すると考えられるが、金属としては電気抵抗率が低く、熱伝導率が高いときに、界面効果は特に大きくなる。 On the other hand, the ratio x of the total length l of l B is the composite thermoelectric conversion element from 0.60 to 0.98, than the calculated value by the interfacial effect Seebeck coefficient S is the (6) between the metal electrodes and the thermoelectric conversion material There is a phenomenon that dramatically increases, and as a result, the figure of merit significantly increases. The increase rate of the Seebeck coefficient is considered to change depending on the joining method of the thermoelectric conversion material and the metal, but the interface effect is particularly large when the metal has low electrical resistivity and high thermal conductivity.

Bi-Te系熱電変換材料とCuを組み合わせたときには、P型、N型共にゼーベック係数はx=0.98で30%程度向上し、絶対値で約260μV/Kにも達する。これは性能指数ZTでは1.7倍の増加に相当する。使用する金属は耐食性に優れた材料である必要があるために、Cu、Ag、Au等の貴金属の単体もしくは合金が好ましい。熱電変換材料としては、特に規定しないが、性能指数の高い上述の熱電変換材料を使った方が素子の性能指数は向上する。   When a Bi-Te thermoelectric conversion material and Cu are combined, the Seebeck coefficient is improved by about 30% at x = 0.98 for both P-type and N-type, reaching an absolute value of about 260 μV / K. This corresponds to a 1.7-fold increase in the figure of merit ZT. Since the metal to be used needs to be a material excellent in corrosion resistance, a simple metal or an alloy of noble metals such as Cu, Ag and Au is preferable. Although it does not prescribe | regulate especially as a thermoelectric conversion material, the performance index of an element improves when the above-mentioned thermoelectric conversion material with a high performance index is used.

界面効果を利用する熱電変換素子では、このx=lB/l
が0.60未満のときには、素子全体の熱伝導率が高くなるので性能指数は低くなる。しかし、xが0.98を超えると、素子全体の電気抵抗率が大きくなり、性能指数は熱電変換材料そのものの性能指数とほとんど変わらなくなるので、xは0.60〜0.98が最も好ましい。
In a thermoelectric conversion element using the interface effect, this x = l B / l
When is less than 0.60, the thermal conductivity of the entire device is high, and the figure of merit is low. However, if x exceeds 0.98, the electrical resistivity of the entire device increases, and the figure of merit is almost the same as the figure of merit of the thermoelectric conversion material itself, so x is most preferably 0.60 to 0.98.

このような熱電変換素子を組み立てる方法として、従来のようなP型とN型熱電変換素子の連結方法ではなくて、リード線4,4間距離(t)と熱電変換材料の長さ(lB)の比(lB/t)が、上述したような所定の比率(x)になるように、P型とN型の熱電変換素子1の金属材3,3の特定の位置(図3A参照)にリード線4を半田付けし、P型とN型の熱電変換素子1を直列に連結した後、従来と同様な方法で放熱板7と吸熱板8を取り付ける方法を提案する。 As a method for assembling such a thermoelectric conversion element, the distance between the lead wires 4 and 4 (t) and the length of the thermoelectric conversion material (l B ) Ratio (l B / t) to a predetermined ratio (x) as described above, specific positions of the metal materials 3 and 3 of the P-type and N-type thermoelectric conversion elements 1 (see FIG. 3A) ), The lead wire 4 is soldered, the P-type and N-type thermoelectric conversion elements 1 are connected in series, and then a method of attaching the heat radiating plate 7 and the heat absorbing plate 8 by the same method as before is proposed.

リード線の取り付け位置から放熱板、吸熱板に接触している金属の端面までの金属は、熱電変換素子のヒートシンクの役割を果たし、界面効果によるゼーベック係数を増大させる効果がある。   The metal from the mounting position of the lead wire to the heat sink and the end face of the metal in contact with the heat sink plays the role of a heat sink of the thermoelectric conversion element, and has an effect of increasing the Seebeck coefficient due to the interface effect.

リード線の取り付け位置から放熱・吸熱板に接触している金属の端面までの長さ((l-t)/2)はリード線取り付け位置から熱電変換材料の端面までの距離((t-lB)/2)と同等もしくはそれ以上あることが好ましい。 The length ((lt) / 2) from the lead wire attachment position to the metal end face in contact with the heat dissipation / heat absorption plate is the distance from the lead wire attachment position to the end face of the thermoelectric conversion material ((tl B ) / 2 ) Or more.

従来型のモジュールでゼーベック係数の増大効果が見られなかったのは、
((t-lB)/2)と((l-t)/2)の距離が非常に短すぎたためである。また機械的強度を向上させるために、図3Bに示すような熱電変換素子間の空隙に液状樹脂を流し込んで、熱電変換素子と放熱板や吸熱板と一体化させても良い。
The increase in Seebeck coefficient was not seen with conventional modules.
This is because the distance between ((tl B ) / 2) and ((lt) / 2) is too short. Further, in order to improve the mechanical strength, a liquid resin may be poured into the gap between the thermoelectric conversion elements as shown in FIG. 3B so as to be integrated with the thermoelectric conversion element and the heat radiating plate or the heat absorbing plate.

熱電変換材料と金属材の接合は、接合金属が熱電変換材料や金属と固溶したり、反応したりしなければ、Niなどをめっきした後にはんだ接合するか、もしくはBiやBi-Sb合金を溶融させて接合材として利用してもよい。めっき膜厚や接合金属の厚みを薄くすれば、いずれの方法でも特性に大きな影響はない。   When joining the thermoelectric material and the metal material, if the joining metal does not dissolve or react with the thermoelectric material or metal, either Ni or the like is plated and soldered, or Bi or Bi-Sb alloy is used. It may be melted and used as a bonding material. If the plating film thickness or the thickness of the bonding metal is reduced, there is no significant effect on the characteristics by either method.

実施例1
熱電変換材料およびその製造方法の実施例について説明する。N型とP型のBi-Te系熱電変換材料を作製するために、使用した主成分および添加元素の各種配合を表1に示す。
Example 1
Examples of the thermoelectric conversion material and the manufacturing method thereof will be described. Table 1 shows various combinations of main components and additive elements used to produce N-type and P-type Bi-Te thermoelectric conversion materials.

このように元素や化合物を所定の割合で配合した後、12mm径の石英管の中に真空封入して高周波溶解して(使用原料の純度99.99%以上)、材料を溶解後、冷却速度と試料部の温度勾配を変えて作製した円柱状のインゴットの中央部から測定用試料を切断加工して25℃で熱電変換特性を測定した。これら試料の作製条件を表2に、また、熱電変換特性の測定結果を表3に示す。   After mixing elements and compounds in a predetermined ratio in this way, vacuum sealing in a 12 mm diameter quartz tube and melting at high frequency (purity of raw material used is 99.99% or more), melting the material, cooling rate and sample The sample for measurement was cut from the center of a cylindrical ingot produced by changing the temperature gradient of the part, and the thermoelectric conversion characteristics were measured at 25 ° C. The preparation conditions of these samples are shown in Table 2, and the measurement results of thermoelectric conversion characteristics are shown in Table 3.

なお、同じ原料の溶解前の粉末を用いて混合混練した後、ホットプレス容器に真空封入してホットプレス法にて冷却速度と試料部の温度勾配を変えて作製した円柱状の焼結によるインゴットの場合も上記の溶融凝固による材料と同様特性であった。   After mixing and kneading using the same raw material powder before melting, it is vacuum sealed in a hot press container and ingot by cylindrical sintering produced by changing the cooling rate and the temperature gradient of the sample part by the hot press method In this case, the same characteristics as those obtained by the above-mentioned melt-solidification were obtained.

なお、性能指数の合否基準は1.30とし、これ以上を合格とした。また、試料No.2、No.5とNo.9については、機械的強度を調べるために、5×5×25mmの形状に加工してスパン15mmで抗折強度を測定した。その結果を表4に示す。   In addition, the pass / fail criterion of the figure of merit was 1.30, and more than this was accepted. Samples No. 2, No. 5 and No. 9 were processed into a shape of 5 × 5 × 25 mm and the bending strength was measured with a span of 15 mm in order to examine the mechanical strength. The results are shown in Table 4.

実施例2
熱電変換素子の組み立ては、P型は表3中のNo.3の材料を使用して、N型はNo.7のそれを使用して、2×2mm2の形状に切断加工した後、表5に示す長さ寸法に切断した。また、電極材として使用するCuとAgも表に示す長さ寸法に加工した。熱電変換材料の両端にNiメッキした後、CuあるいはAgと共晶はんだで接合してP型とN型の熱電変換素子を作製した。作製した熱電変換素子の熱電特性を25℃で測定した結果を表5に示す。ゼーベック係数の測定は、該素子の両端に温度差を与えて測定した。
Example 2
For the assembly of thermoelectric conversion elements, the P type uses the No. 3 material in Table 3, the N type uses the No. 7 material, and is cut into a 2 x 2 mm 2 shape. Cut to length shown in 5. Moreover, Cu and Ag used as electrode materials were also processed into the length dimensions shown in the table. After plating Ni on both ends of the thermoelectric conversion material, Cu and Ag were joined with eutectic solder to produce P-type and N-type thermoelectric conversion elements. Table 5 shows the results of measuring the thermoelectric characteristics of the produced thermoelectric conversion elements at 25 ° C. The Seebeck coefficient was measured by giving a temperature difference to both ends of the element.

次に、作製したP型とN型の熱電変換素子各18個を図2Aに示すように交互に配列してモジュールを作製した。二つの水槽の仕切板の代わりに、このモジュールを取り付けて水温30℃と80℃の水を各槽に入れて50℃の温度差をモジュールにつけて発生した電圧と電流を測定し、取り出し可能な出力電力を算出した。その結果を表6に示す。合否判定として出力電力が0.9(W)以上を合格とした。   Next, a module was fabricated by alternately arranging 18 P-type and N-type thermoelectric conversion elements as shown in FIG. 2A. Instead of the two water tank partition plates, this module can be installed, water at a temperature of 30 ° C and 80 ° C can be placed in each tank, the temperature difference of 50 ° C applied to the module, and the generated voltage and current can be measured and taken out. The output power was calculated. The results are shown in Table 6. As a pass / fail judgment, an output power of 0.9 (W) or more was regarded as acceptable.

ここではめっきとはんだの厚みは無視して相対的な長さx=lB/l
を算出した。なお、出力電力WはW=V2/R(W)ではなくて、取り出し可能な出力電力の式W=V2/4R(W)を用いて計算した。
Here, the relative length x = l B / l ignoring the plating and solder thickness
Was calculated. The output power W is not a W = V 2 / R (W ), were calculated using the formula W = V 2 / 4R retrieval possible output power (W).

実施例3
複合化によるゼーベック係数の増大効果を調べるために、熱電変換素子の組み立てを行った。P型は表3のNo.3の材料を用いて、N型は表3のNo.7のそれを用いて、2×2mm2の形状に切断加工した後、表7に示す長さ寸法に切断した。また、電極として使用するCuとAgも同様に加工した。
Example 3
In order to investigate the effect of increasing the Seebeck coefficient by the combination, a thermoelectric conversion element was assembled. For type P, use the material of No. 3 in Table 3, and for type N, use the material of No. 7 in Table 3, cut into a 2 x 2 mm 2 shape, and then the length dimensions shown in Table 7 Disconnected. Also, Cu and Ag used as electrodes were processed similarly.

熱電変換材料にNiメッキした後、CuあるいはAgと共晶半田で接合して熱電変換素子を作製した。作製した熱電変換素子の熱電特性を25℃で測定した結果を表7に示す。ゼーベック係数の測定は素子の両端に温度差を与えて測定した。合否判定として性能指数ZT1.5以上を合格とした。   The thermoelectric conversion material was plated with Ni and then joined with Cu or Ag by eutectic solder to produce a thermoelectric conversion element. Table 7 shows the results of measuring the thermoelectric characteristics of the produced thermoelectric conversion elements at 25 ° C. The Seebeck coefficient was measured by giving a temperature difference to both ends of the element. As a pass / fail judgment, a performance index of ZT1.5 or higher was accepted.

実施例4
熱電変換素子の金属電極のヒートシンク効果を調べるために、x=lB/l=0.38のP型とN型複合型熱電変換素子を表8に示す長さ寸法で作製し、図3に示すようにリード線の接続位置を変えて、接続位置と性能指数の関係を調べた。
Example 4
In order to investigate the heat sink effect of the metal electrode of the thermoelectric conversion element, a P-type and N-type combined thermoelectric conversion element of x = l B /l=0.38 was produced with the length dimensions shown in Table 8, and as shown in FIG. The relationship between the connection position and the figure of merit was investigated by changing the connection position of the lead wires.

金属端面からリード線接続位置までの距離(l-t)/2と熱電変換材料の端面からリード線接続位置までの距離(t-lB)/2の比率(l-t)/(t-lB)を変えて25℃で測定した熱電特性の結果を表8に示す。ゼーベック係数の測定は素子の両端に温度差を与えて測定した。 25 ° C by changing the ratio (lt) / (tl B ) between the distance (lt) / 2 from the metal end face to the lead wire connection position and the distance (tl B ) / 2 from the end face of the thermoelectric conversion material to the lead wire connection position Table 8 shows the results of the thermoelectric properties measured at 1. The Seebeck coefficient was measured by giving a temperature difference to both ends of the element.

表3、表4に示すように温度勾配を小さくして作製した試料では機械的強度が向上していることがわかる。   As shown in Tables 3 and 4, it can be seen that the samples prepared with a small temperature gradient have improved mechanical strength.

Figure 2007013000
Figure 2007013000

Figure 2007013000
Figure 2007013000

Figure 2007013000
Figure 2007013000

Figure 2007013000
Figure 2007013000

Figure 2007013000
Figure 2007013000

Figure 2007013000
Figure 2007013000

Figure 2007013000
Figure 2007013000

Figure 2007013000
Figure 2007013000

この発明による、Bi2Te3系熱電変換材料とCuとの組み合わせの場合には、パワーファクターは増大し、熱伝導率を犠牲した構造のために、絶えず温度差のかかる場所、例えば原子力発電の冷却水と海水との温度差を利用した発電機のようなものに使用できる。また、熱電変換材料の両端の金属の途中にリード線を取り付けて金属のヒートシンク効果を利用することにより、性能指数を飛躍的に増加させることができる。 In the case of the combination of Bi 2 Te 3 based thermoelectric conversion material and Cu according to the present invention, the power factor is increased, and because of the structure at the expense of thermal conductivity, the location where temperature difference is constantly applied, for example, nuclear power generation It can be used for a generator that uses the temperature difference between cooling water and seawater. Moreover, a figure of merit can be dramatically increased by attaching a lead wire in the middle of the metal at both ends of the thermoelectric conversion material and utilizing the metal heat sink effect.

図1は複合型熱電変換素子の斜視説明図である。FIG. 1 is an explanatory perspective view of a composite thermoelectric conversion element. 図2はP型とN型熱電変換素子の配置例を示す平面図と側面説明図であり、図2Aは素子を並列した場合、図2Bは素子を千鳥配置した構成を示す。2A and 2B are a plan view and a side view illustrating an arrangement example of P-type and N-type thermoelectric conversion elements. FIG. 2A shows a configuration in which elements are arranged in parallel, and FIG. 2B shows a configuration in which elements are arranged in a staggered manner. 図3Aは複合型熱電変換素子の斜視説明図であり、図3BはP型とN型熱電変換素子の組み立て構成例を示す説明図である。FIG. 3A is a perspective explanatory view of a composite thermoelectric conversion element, and FIG. 3B is an explanatory view showing an assembly configuration example of P-type and N-type thermoelectric conversion elements.

符号の説明Explanation of symbols

1 複合型熱電変換素子
1P P型熱電変換素子
1N N型熱電変換素子
2 熱電変換材料
3 金属材
4,5 リード線
6 樹脂
7 放熱板
8 吸熱板
1 Composite thermoelectric transducer
1 P P type thermoelectric transducer
1 N N-type thermoelectric transducer
2 Thermoelectric conversion materials
3 Metal material
4,5 Lead wire
6 Resin
7 Heat sink
8 Endothermic plate

Claims (7)

Bi2Te3を主材とした熱電変換材料であって、前記材料の温度勾配の方向に垂直な面で測定した(006)と(105)反射のX線回折強度比I(006)/I(105)が2〜15%である熱電変換材料。 A thermoelectric conversion material mainly composed of Bi 2 Te 3 and measured in a plane perpendicular to the temperature gradient direction of the material (006) and (105) reflection X-ray diffraction intensity ratio I (006) / I A thermoelectric conversion material having (105) of 2 to 15%. 溶融後に一軸性の温度勾配をかけて冷却した熱電変換材料であり、平均結晶粒径が0.1〜3mmの多結晶体である請求項1に記載の熱電変換材料。 2. The thermoelectric conversion material according to claim 1, which is a thermoelectric conversion material cooled by applying a uniaxial temperature gradient after melting, and is a polycrystal having an average crystal grain size of 0.1 to 3 mm. 材料粉末を一軸性の温度勾配をかけて焼結した熱電変換材料であり、平均結晶粒径が0.1〜3mmの多結晶体である請求項1に記載の熱電変換材料。 2. The thermoelectric conversion material according to claim 1, which is a thermoelectric conversion material obtained by sintering material powder with a uniaxial temperature gradient, and is a polycrystal having an average crystal grain size of 0.1 to 3 mm. 熱電変換材料(長さlB)の両端に金属材(長さlM)を配置した複合型熱電変換素子であり、前記熱電変換材料長さと熱電変換素子全長(lB+2lM)の比率(lB/(lB+2lM))が0.03〜0.10であり、P型とN型の前記熱電変換素子の各金属端面が同一平面を形成するよう配列されて一体固化され、前記各平面内でリード結合されて絶縁被覆を有する発電用複合型熱電変換素子。 It is a composite thermoelectric conversion element in which metal materials (length l M ) are arranged at both ends of the thermoelectric conversion material (length l B ), and the ratio of the thermoelectric conversion material length to the total length of the thermoelectric conversion element (l B + 2l M ) (l B / (l B + 2l M )) is 0.03 to 0.10, and the metal end faces of the P-type and N-type thermoelectric conversion elements are arranged so as to form the same plane, and are integrally solidified. A combined thermoelectric conversion element for power generation, which is lead-bonded within and has an insulating coating. 熱電変換材料(長さlB)の両端に金属材(長さlM)を配置した複合型熱電変換素子であり、前記熱電変換材料長さと熱電変換素子全長(lB+2lM)の比率(lB/(lB+2lM))が0.60〜0.98であり、P型とN型の前記熱電変換素子の各金属端面が同一平面を形成するよう配列されて一体固化され、前記各平面内でリード結合されて絶縁被覆を有する発電用複合型熱電変換素子。 It is a composite thermoelectric conversion element in which metal materials (length l M ) are arranged at both ends of the thermoelectric conversion material (length l B ), and the ratio of the thermoelectric conversion material length to the total length of the thermoelectric conversion element (l B + 2l M ) (l B / (l B + 2l M )) is 0.60 to 0.98, and the metal end faces of the P-type and N-type thermoelectric conversion elements are arranged so as to form the same plane, and are integrally solidified. A combined thermoelectric conversion element for power generation, which is lead-bonded within and has an insulating coating. 熱電変換材料(長さlB)の両端に配置した金属材(長さlM)にリード間距離(t)で設けたリードを有し、かつ全長lの複合型熱電変換素子の両端面から(t-lB)/2の位置の金属材にリードを有し、P型とN型の前記熱電変換素子の各金属端面が同一平面を形成するよう配列されて放熱板又は吸熱板に接触している構成であり、金属の端面までの距離(=(l-t)/2)が(t-lB)/2と同等もしくはそれ以上とすると同時に、lB/tが0.60〜0.98である発電用複合型熱電変換素子。 From the both end faces of the composite thermoelectric conversion element with the total length l, having leads provided at the distance (t) between the leads in the metal material (length l M ) arranged at both ends of the thermoelectric conversion material (length l B ) (tl B ) / 2 lead is placed on the metal material, and the metal end faces of the P-type and N-type thermoelectric conversion elements are arranged so as to form the same plane, and are in contact with the heat sink or the heat sink. The composite thermoelectric power generation with a distance (= (lt) / 2) equal to or greater than (tl B ) / 2 and at the same time l B / t is 0.60 to 0.98. Conversion element. 熱電変換材料は、Bi2Te3を主材とした材料の温度勾配の方向に垂直な面で測定した(006)と(105)反射のX線回折強度比I(006)/I(105)が2〜15%である請求項4から請求項6のいずれかに記載の発電用複合型熱電変換素子。 The thermoelectric conversion material was measured on a plane perpendicular to the direction of the temperature gradient of the material mainly composed of Bi 2 Te 3 (006) and (105) X-ray diffraction intensity ratio I (006) / I (105) of reflection. 7. The composite thermoelectric conversion element for power generation according to claim 4, wherein is 2 to 15%.
JP2005194040A 2005-07-01 2005-07-01 Thermoelectric conversion material Pending JP2007013000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005194040A JP2007013000A (en) 2005-07-01 2005-07-01 Thermoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194040A JP2007013000A (en) 2005-07-01 2005-07-01 Thermoelectric conversion material

Publications (1)

Publication Number Publication Date
JP2007013000A true JP2007013000A (en) 2007-01-18

Family

ID=37751078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194040A Pending JP2007013000A (en) 2005-07-01 2005-07-01 Thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JP2007013000A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542579A (en) * 2011-04-06 2013-11-21 パナソニック株式会社 Method for manufacturing thermoelectric conversion element module
JP2014013919A (en) * 2010-11-18 2014-01-23 Panasonic Corp Thermoelectric transducer module
WO2016171766A1 (en) * 2015-04-21 2016-10-27 University Of Houston System Contacts for bi-te- based materials and methods of manufacture
KR20170055833A (en) * 2015-11-12 2017-05-22 한국전기연구원 Selenium content increased thermal element
JP2018516457A (en) * 2015-04-14 2018-06-21 エルジー エレクトロニクス インコーポレイティド Thermoelectric material, thermoelectric element and thermoelectric module including the same
CN114005875A (en) * 2021-11-01 2022-02-01 南京大学 Method for regulating and controlling metal/insulator interface thermal conductance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013919A (en) * 2010-11-18 2014-01-23 Panasonic Corp Thermoelectric transducer module
US9219216B2 (en) 2010-11-18 2015-12-22 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing the same
JP2013542579A (en) * 2011-04-06 2013-11-21 パナソニック株式会社 Method for manufacturing thermoelectric conversion element module
US9024173B2 (en) 2011-04-06 2015-05-05 Panasonic Intellectual Property Management Co., Ltd. Thermoelectric conversion element module and method of manufacturing the same
JP2018516457A (en) * 2015-04-14 2018-06-21 エルジー エレクトロニクス インコーポレイティド Thermoelectric material, thermoelectric element and thermoelectric module including the same
US10600947B2 (en) 2015-04-14 2020-03-24 Lg Electronics Inc. Thermoelectric materials, and thermoelectric element and thermoelectric module comprising the same
WO2016171766A1 (en) * 2015-04-21 2016-10-27 University Of Houston System Contacts for bi-te- based materials and methods of manufacture
KR20170055833A (en) * 2015-11-12 2017-05-22 한국전기연구원 Selenium content increased thermal element
KR102269404B1 (en) 2015-11-12 2021-06-24 한국전기연구원 Selenium content increased thermal element
CN114005875A (en) * 2021-11-01 2022-02-01 南京大学 Method for regulating and controlling metal/insulator interface thermal conductance
CN114005875B (en) * 2021-11-01 2024-05-28 南京大学 Method for regulating and controlling thermal conductivity of metal/insulator interface

Similar Documents

Publication Publication Date Title
EP1794818B1 (en) Silver-containing p-type semiconductor
US7592535B2 (en) Silver-containing thermoelectric compounds
US6458319B1 (en) High performance P-type thermoelectric materials and methods of preparation
EP1324400A1 (en) Thermoelectric conversion element
EP1594173A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP2005072391A (en) N-type thermoelectric material, its manufacturing method and n-type thermoelectric element
JP2007013000A (en) Thermoelectric conversion material
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
JP4285665B2 (en) Thermoelectric conversion element
EP3940799A1 (en) Thermoelectric conversion module
JP2007165463A (en) Thermoelectric converting element and power generating module
JP7366393B2 (en) Thermoelectric conversion materials, thermoelectric conversion elements using the same, thermoelectric power generation modules, and Peltier coolers
WO2008020480A1 (en) High-performance thermoelectric conversion material and thermoelectric conversion module for power generation
Ye et al. Strong anisotropic effects of p-type Bi 2 Te 3 element on the Bi 2 Te 3/Sn interfacial reactions
WO2018225388A1 (en) Thermoelectric conversion material, thermoelectric conversion element and production method of thermoelectric conversion material
KR102269404B1 (en) Selenium content increased thermal element
JP2013012571A (en) Thermoelectric conversion module and manufacturing method thereof
Ang et al. Development of Cu2Se/Ag2 (S, Se)-Based Monolithic Thermoelectric Generators for Low-Grade Waste Heat Energy Harvesting
JP3588355B2 (en) Thermoelectric conversion module substrate and thermoelectric conversion module
JP2003332637A (en) Thermoelectric material and thermoelectric module using the same
CN114747028A (en) Thermoelectric element
JP2004235367A (en) Thermoelectric module
JP6809852B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2510158B2 (en) Thermoelectric element and manufacturing method thereof
JP2006278472A (en) Thermoelectric conversion material and its manufacturing method, and thermoelectric conversion element