JP2884068B2 - Manufacturing method of thermoelectric conversion element - Google Patents

Manufacturing method of thermoelectric conversion element

Info

Publication number
JP2884068B2
JP2884068B2 JP8232583A JP23258396A JP2884068B2 JP 2884068 B2 JP2884068 B2 JP 2884068B2 JP 8232583 A JP8232583 A JP 8232583A JP 23258396 A JP23258396 A JP 23258396A JP 2884068 B2 JP2884068 B2 JP 2884068B2
Authority
JP
Japan
Prior art keywords
conversion element
thermoelectric conversion
thermoelectric
type
carrier concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8232583A
Other languages
Japanese (ja)
Other versions
JPH1065222A (en
Inventor
泰稔 野田
燕生 康
雍典 丹治
達夫 熊谷
正之 新野
保夫 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO KOKU UCHU GIJUTSU KENKYUSHOCHO
Priority to JP8232583A priority Critical patent/JP2884068B2/en
Publication of JPH1065222A publication Critical patent/JPH1065222A/en
Application granted granted Critical
Publication of JP2884068B2 publication Critical patent/JP2884068B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱エネルギーを電
力に変換する熱電変換モジュールに適用して好適な熱電
変換素子の製造方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric conversion element suitable for being applied to a thermoelectric conversion module for converting thermal energy into electric power.

【0002】[0002]

【従来の技術】従来の熱電変換素子は、通常、熱電材料
より成る熱電変換素子本体を作製し、その後これに接合
材によって電極を接合している。例えば低温域熱電材料
であるBi−Te系熱電材料では、蝋付けによって電極
を接合する構成が採られている。この電極を接合は、熱
電変換素子本体や、電極の特性を劣化させることのない
化学的に安定で、しかも機械的に強固で、かつ電気的に
低抵抗をもって接合されることが要求される。
2. Description of the Related Art In a conventional thermoelectric conversion element, usually, a thermoelectric conversion element main body made of a thermoelectric material is produced, and then electrodes are joined to the thermoelectric conversion element body with a joining material. For example, a Bi-Te-based thermoelectric material that is a low-temperature region thermoelectric material employs a configuration in which electrodes are joined by brazing. The bonding of the electrodes is required to be chemically stable without mechanically deteriorating the characteristics of the thermoelectric conversion element body and the electrodes, and to be mechanically strong and electrically low in resistance.

【0003】[0003]

【発明が解決しようとする課題】ところが、中温ないし
は高温を扱う熱電変換素子においては、その熱電変換素
子と電極との接合に問題がある。
However, in a thermoelectric conversion element which handles medium or high temperature, there is a problem in joining the thermoelectric conversion element and the electrode.

【0004】また、焼結体や溶製体を用いて熱電変換素
子を製造する場合や、熱電変換素子において、その熱の
ながれ方向に沿って、すなわち高温側から低温側に向か
って、熱電変換素子本体のキャリア濃度に傾斜を付与さ
せるいわゆるキャリア濃度傾斜機能熱電変換素子(キャ
リア濃度FGM(Functionally Grad
ed Material)熱電変換素子を製造する場
合や、p−n接合の製作等において、熱電半導体材料間
あるいは熱電半導体材料と金属との間の接合において、
上述したような接合条件を満足するような接合を行うこ
とが困難で、現状においては、長寿命、高信頼性の、こ
の種熱電変換素子を確実に製造することができていな
い。
[0004] Further, when a thermoelectric conversion element is manufactured using a sintered body or an ingot, or in a thermoelectric conversion element, the thermoelectric conversion element moves along a heat flow direction, that is, from a high temperature side to a low temperature side. A so-called carrier concentration gradient function thermoelectric conversion element (carrier concentration FGM (Functionally Grad) for imparting a gradient to the carrier concentration of the element body.
In the case of manufacturing a ed material (thermoelectric conversion element ) , in the production of a pn junction, or the like, in joining between thermoelectric semiconductor materials or between a thermoelectric semiconductor material and a metal,
It is difficult to perform bonding that satisfies the bonding conditions described above, and at present, this type of thermoelectric conversion element with long life and high reliability cannot be reliably manufactured.

【0005】本発明は、このような問題点の解決をはか
り、低温域熱電変換素子はもとより、中温ないしは高温
を扱う熱電変換素子について、上述したFGM熱電変換
素子をも、確実に得ることができるようにした熱電変換
素子の製造方法を提供する。
[0005] The present invention aims to solve such problems, a low temperature range thermoelectric conversion element, as well as the thermoelectric conversion element to deal with mesophilic or high temperature, the FGM thermoelectric conversion element above mentioned also surely be obtained A method for manufacturing a thermoelectric conversion element is provided.

【0006】[0006]

【課題を解決するための手段】本発明による熱電変換素
子の製造方法においては、それぞれ熱電半導体によって
構成された焼結体、もしくは溶製体のいづれか一方もし
くはその双方による複数の材料体を層状に積層するか、
あるいは上記材料体の少なくとも1つと、熱電半導体に
よって構成された粉末材料とを層状に積層し、この積層
体の上記材料体および粉末材料のうちの少なくとも一部
の材料体および粉末材料は、互いに異なる不純物濃度ま
たは組成に選定し、この積層体の上記材料体および粉末
材料を互いに圧接させた状態で、大電流通電によるプラ
ズマ接合もしくは焼結による接合、あるいは一体焼結を
行って、キャリア濃度が上記積層方向に段階的変化する
分布を有するキャリア濃度傾斜機能熱電変換素子本体を
作製する工程を経て目的とする熱電変換素子を得る。
In the method of manufacturing a thermoelectric conversion element according to the present invention, a plurality of material bodies made of a sintered body and / or a melt made of a thermoelectric semiconductor are formed in layers. Laminate or
Alternatively, at least one of the above-mentioned material bodies and a powder material made of a thermoelectric semiconductor are laminated in layers, and at least a part of the above-mentioned material body and the powder material of the laminate are different from each other. An impurity concentration or a composition is selected, and in a state where the material body and the powder material of the laminate are pressed against each other, plasma bonding or sintering by applying a large current, or integral sintering is performed. A target thermoelectric conversion element is obtained through a step of manufacturing a carrier concentration gradient function thermoelectric conversion element main body having a distribution that changes stepwise in the stacking direction.

【0007】[0007]

【0008】[0008]

【0009】また、本発明による熱電変換素子の製造方
法においては、それぞれ熱電半導体によって構成された
焼結体、もしくは溶製体のいづれか一方もしくはその双
方による複数の材料体を層状に積層するか、あるいは上
記材料体の少なくとも1つと、熱電半導体によって構成
された粉末材料とを層状に積層し、この積層体の上記材
料体および粉末材料のうちの少なくとも一部の材料体お
よび粉末材料は、互いに異なる不純物濃度または組成に
選定し、この積層体の上記材料体および粉末材料を互い
に圧接させるとともに、この積層体の端部に電極材を圧
接配置して大電流通電によるプラズマ接合もしくは焼結
による接合、あるいは一体焼結を行って、キャリア濃度
が上記積層方向に段階的変化する分布をもつキャリア濃
度傾斜機能熱電変換素子本体と電極とが一体化された熱
電変換素子を得る。
Further, in the method for manufacturing a thermoelectric conversion element according to the present invention, a plurality of material bodies made of one or both of a sintered body and an ingot body each formed of a thermoelectric semiconductor may be laminated in layers. Alternatively, at least one of the above-mentioned material bodies and a powder material made of a thermoelectric semiconductor are laminated in layers, and at least a part of the above-mentioned material body and the powder material of the laminate are different from each other. An impurity concentration or a composition is selected, and the material body and the powder material of the laminate are pressed against each other, and an electrode material is disposed at an end of the laminate by pressure contact, and plasma bonding or sintering by applying a large current, Alternatively, by performing integral sintering, a carrier concentration gradient function Obtaining a thermoelectric conversion element and the element body and the electrode are integrated.

【0010】更に、本発明による熱電変換素子の製造方
法においては、最終的にp型およびn型を呈する熱電半
導体によって構成された焼結体もしくは溶製体による材
料体を用意し、少なくとも対のp型およびn型の材料体
を層状に積層し、大電流通電によるプラズマ接合によっ
てp型およびn型材料との間の接合を行って、熱電変換
素子本体を得る工程を経て目的とするp−nによる熱電
変換素子を得る。
Further, in the method for manufacturing a thermoelectric conversion element according to the present invention, a sintered body or a melted body composed of a thermoelectric semiconductor exhibiting p-type and n-type is finally prepared, and at least a pair of materials is prepared. The p-type and n-type material bodies are laminated in layers, and the p-type and n-type materials are joined by plasma joining by applying a large current to obtain a thermoelectric conversion element main body. n is obtained.

【0011】上述したように、本発明方法においては、
熱電半導体材料によって構成される焼結体や溶製体によ
る材料体の積層もしくは材料体と粉末材料との組み合わ
せ積層した積層体に、更にこの材料体もしくは積層体に
電極材を圧接させた状態で大電流通電を行ってプラズマ
接合または焼結による接合または一体焼結を行うので、
目的とする熱電変換素子本体あるいはこの熱電変換素子
本体と電極とが一体化された積層熱電変換素子を、容易
かつ確実に製造することができる。
As described above, in the method of the present invention,
A laminate formed by combining laminated with laminate or material body and the powder material of the material body according to comprised sintered and melted material by the thermoelectric semiconductor material, further a state where the electrode material was pressed to the material body or a laminate Since a large current is applied to perform plasma bonding or sintering or integral sintering,
The intended thermoelectric conversion element main body or the laminated thermoelectric conversion element in which the thermoelectric conversion element main body and the electrode are integrated can be easily and reliably manufactured.

【0012】[0012]

【発明の実施の形態】本発明による熱電変換素子の製造
方法の実施の形態を説明する。図1は本発明製造方法を
実施するプラズマ接合装置の一例の構成図を示す。この
プラズマ接合装置は、最終的に形成する熱電変換素子本
体の外周形状に対応する例えば、円柱状、角柱状等の中
空1を有するダイ2と、このダイ2の中空1の断面形状
に対応する断面形状を有し中空1のたとえば上端からこ
の中空1内に挿入押圧される上パンチ3Uと、同様に中
空1の断面形状に対応する断面形状を有し中空1の例え
ば下端から中空1内に挿入押圧される下パンチ3Dとを
有してなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a thermoelectric conversion element according to the present invention will be described. FIG. 1 shows a configuration diagram of an example of a plasma bonding apparatus for performing the manufacturing method of the present invention. This plasma bonding apparatus corresponds to, for example, a die 2 having a hollow 1 having a cylindrical shape, a prismatic shape, or the like corresponding to the outer peripheral shape of a thermoelectric conversion element body to be finally formed, and a sectional shape of the hollow 1 of the die 2. An upper punch 3U having a cross-sectional shape and pressed into the hollow 1 from, for example, the upper end of the hollow 1, and a hollow 1 also having a cross-sectional shape corresponding to the cross-sectional shape of the hollow 1, for example, from the lower end of the hollow 1 into the hollow 1. And a lower punch 3D that is inserted and pressed.

【0013】上、下パンチ3Uおよび3Dは、導電性を
有する材料によって構成される。これらパンチ3Uおよ
びパンチ3D、さらにダイ2は例えば黒鉛によって構成
される。本発明方法によって、例えば図2に断面図を示
す、熱電変換素子本体11の両端に電極12が形成され
た熱電変換素子10を作製する場合について説明する。
本発明においては、熱電半導体材料によって構成された
材料体4を用意する。この材料体4は、最終的に得る熱
電変換素子の外形状にほぼ対応する形状、すなわち上記
ダイ2の中空1の内形状に対応する形状を有し、かつこ
の中空1内に挿入することのできる形状、寸法に成形さ
れた焼結体、あるいは一旦構成材料を溶融して成形した
溶製体によって構成される。
The upper and lower punches 3U and 3D are made of a conductive material. The punch 3U, the punch 3D, and the die 2 are made of, for example, graphite. A case where the thermoelectric conversion element 10 in which the electrodes 12 are formed at both ends of the thermoelectric conversion element main body 11 shown in a sectional view in FIG. 2 by the method of the present invention will be described.
In the present invention, a material body 4 made of a thermoelectric semiconductor material is prepared. The material 4 has a shape substantially corresponding to the outer shape of the thermoelectric conversion element to be finally obtained, that is, a shape corresponding to the inner shape of the hollow 1 of the die 2, and is inserted into the hollow 1. It is composed of a sintered body formed into a shape and size that can be formed, or an ingot formed by melting and forming a constituent material once.

【0014】そして、この材料体4を、その両端に電極
を構成する対の板状の電極材料5を配置して図1に示す
ように、ダイ2の中空1内に挿入配置し、電極材料5の
両外側からダイ2の中空1内に上下パンチ3Uおよび3
Dを圧入する。このようにして、材料体4および両端の
電極材料5とを互いに圧接させた状態で、両パンチ3U
および3D間に大電流通電を行って材料体4と電極材料
との間のプラズマ接合を行う。すなわち大電流通電によ
る接合部の発熱とプラズマアークを発生させることによ
って材料体4と電極材料5との接合を行う。このプラズ
マ接合処理の後、材料体4と電極材料5との接合体をダ
イ2の中空1から取り出すと、図2で示すように、材料
体4によって構成された熱電変換素子本体11と、電極
材料5によって構成される高温側および低温側電極12
とが一体化された熱電変換素子10が得られる。
Then, the material body 4 is inserted and arranged in the hollow 1 of the die 2 as shown in FIG. 1 with a pair of plate-like electrode materials 5 constituting electrodes at both ends thereof. 5 into the hollow 1 of the die 2 from both outer sides.
Press in D. In this manner, with the material body 4 and the electrode materials 5 at both ends pressed against each other, the two punches 3U
Then, a large current is applied between 3D and 3D to perform plasma bonding between the material body 4 and the electrode material. That is, the material body 4 and the electrode material 5 are joined by generating heat and plasma arc at the joint due to a large current flow. After the plasma bonding process, when the joined body of the material body 4 and the electrode material 5 is taken out from the hollow 1 of the die 2, as shown in FIG. 2, the thermoelectric conversion element main body 11 constituted by the material body 4 and the electrode High-temperature side electrode and low-temperature side electrode 12 composed of material 5
Is obtained.

【0015】このようにして得る熱電変換素子10は
純物濃度ないしは組成に所要の分布を有する材料体4
を用いることによって、所要の分布例えば高温側から低
温側にむかって不純物濃度ないしは組成が変化する構成
とすることができる。あるいは、少なくとも一部の材料
体4に関して不純物濃度ないしは組成がそれぞれ異なる
複数の材料体4を、ダイ2の中空1内にその軸方向に沿
って層状に積み上げ、この積層体の両端に前述したと同
様の電極材料5を配置してこれらを上下パンチ3Uおよ
び3Dによって押圧圧接させ、この状態で両パンチ3U
および3D間に大電流を通電してプラズマ接合を行う。
このようにすれば、各層状の材料体4間の接合と、この
互いに積層された積層体の両端に電極材料5が接合され
た、軸方向にすなわち、熱電変換素子における熱の流れ
の方向に階段的にキャリア濃度が変化するキャリア濃度
傾斜機能熱電変換素子を構成することができる。図3は
このような方法によって形成した高キャリア濃度熱電半
導体材料7と、高キャリア濃度熱電半導体材料8との2
層構造によって構成されたキャリア濃度傾斜機能型の熱
電変換素子10の概略断面図を示すものである。
The thermoelectric conversion element 10 obtained in this way is,
Material body 4 having the required distribution not pure concentration or composition
Is used, it is possible to adopt a configuration in which the impurity concentration or the composition changes from a required distribution, for example, from a high temperature side to a low temperature side. Or at least some of the materials
A plurality of material bodies 4 having different impurity concentrations or compositions with respect to the body 4 are stacked in layers along the axial direction in the hollow 1 of the die 2, and the same as described above at both ends of the laminate. The electrode material 5 is arranged, and these are pressed and pressed by the upper and lower punches 3U and 3D.
And a large current is passed between 3D to perform plasma bonding.
In this way, the bonding between the layered material bodies 4 and the electrode material 5 bonded to both ends of the stacked body in the axial direction, that is, in the direction of heat flow in the thermoelectric conversion element. A carrier concentration gradient function thermoelectric conversion element in which the carrier concentration changes stepwise can be configured. FIG. 3 shows the high carrier concentration thermoelectric semiconductor material 7 and the high carrier concentration thermoelectric semiconductor material 8 formed by such a method.
FIG. 1 is a schematic cross-sectional view of a carrier concentration gradient function type thermoelectric conversion element 10 having a layer structure.

【0016】さらに、この階段的キャリア濃度傾斜機能
熱電変換素子に対し、所要の熱処理、アニーリングを行
うことによって不純物元素の拡散を行って、連続的にキ
ャリア濃度が変化するキャリア濃度傾斜機能熱電変換素
子を構成することもできる。
Further, the stepwise carrier concentration gradient function thermoelectric conversion element is subjected to necessary heat treatment and annealing to diffuse the impurity element, thereby continuously changing the carrier concentration. Can also be configured.

【0017】上述したキャリア濃度傾斜機能熱電変換素
子を得るに当たっては、互いに異なる不純物濃度または
組成を有する複数の材料体4、例えば焼結体同士、ある
いは溶製体同士を積層した構成とすることもできるし、
これら焼結体と溶製体との組み合せによって、またある
場合は、これら焼結体あるいは(および)溶製体と、所
要の不純物濃度、組成を有する1種もしくは複数種の粉
末材料とを組み合わせて用いて層状に積層する構成とす
ることもできる。この場合においても、大電流通電によ
るプラズマ接合と焼結とを行うことができる。
In order to obtain the above-described thermoelectric conversion element having a carrier concentration gradient function, a plurality of material bodies 4 having different impurity concentrations or compositions, for example, sintered bodies or melted bodies may be laminated. I can do it
Depending on the combination of these sinters and ingots, and in some cases, the combination of these sinters or (and) ingots with one or more powdered materials having the required impurity concentration and composition , And may be laminated in a layered form. Also in this case, plasma bonding and sintering by applying a large current can be performed.

【0018】上述の本発明方法によって、n型もしくは
p型の単一導電型の熱電変換素子を構成することもでき
るが、例えば図4に示すように、p−n接合構造を有す
る熱電変換素子10を構成することができる。また、あ
るいはこのp−n接合構造を有する熱電変換素子10に
おいて、p型、n型の各部もしくは一方においてキャリ
ア濃度傾斜機能熱電変換素子構成とすることもできる。
そして、これらp−n接合構造を有する熱電変換素子を
得る場合、導電型を異にする熱電半導体材料による焼結
体、溶製体による材料体の組み合わせ、あるいはこれら
焼結体、溶製体の少なくとも一方と粉体材料の組み合わ
せによる上述した層状積層によって構成することができ
る。
According to the method of the present invention described above, an n-type or p-type single conductivity type thermoelectric conversion element can be formed. For example, as shown in FIG. 4, a thermoelectric conversion element having a pn junction structure is provided. 10 can be configured. Alternatively, in the thermoelectric conversion element 10 having the pn junction structure, a p-type or n-type part or one of them may have a carrier concentration gradient function thermoelectric conversion element configuration.
When obtaining a thermoelectric conversion element having these pn junction structures, a sintered body made of a thermoelectric semiconductor material having a different conductivity type, a combination of material bodies made of an ingot, or a combination of these sintered bodies and an ingot is used. It can be constituted by the above-mentioned layered lamination using a combination of at least one and a powder material.

【0019】上述の本発明よる熱電変換素子の製造方法
において、例えば、中温域において高い熱電変換効率を
示す熱電変換素子として知られているPbTe系の熱電
変換素子を作製する場合、n型のPbTeによる熱電変
換素子を得る場合においては、n型ドーパントのIを含
むPbI2 を添加したPbTe熱電半導体材料による、
焼結材もしくは溶製材による材料体、あるいは粉体材料
を用い、p型のPbTeによる熱電変換素子を得る場合
においては、p型ドーパントのK(カリウム)を添加し
たPbTeによる焼結材もしくは溶製材による材料体、
あるいは粉体材料を用いる。
In the above-described method of manufacturing a thermoelectric conversion element according to the present invention, for example, when manufacturing a PbTe-based thermoelectric conversion element known as a thermoelectric conversion element exhibiting high thermoelectric conversion efficiency in a medium temperature range, n-type PbTe is used. In the case where a thermoelectric conversion element is obtained by using a PbTe thermoelectric semiconductor material to which PbI 2 containing an n-type dopant I is added,
In the case of obtaining a p-type PbTe thermoelectric conversion element using a material body made of a sintered material or ingot material or a powder material, a sintered material or ingot material made of PbTe to which p-type dopant K (potassium) is added is used. By material body,
Alternatively, a powder material is used.

【0020】例えば、PbTe系のキャリア濃度傾斜熱
電変換素子を作製する場合、n型のPbTeによるキャ
リア濃度傾斜熱電変換素子を得る場合においては、n型
ドーパントのI(よう素)を含むPbI2 を高温側に
6,000〔molppm〕添加したPbTeによる板
状材料体を、低温側に1,000〔molppm〕添加
したPbTeによる板状材料体を配置した2段の積層体
の両端にFeよりなる電極材料5を配置して、図1で説
明した装置によってプラズマ接合、もしくはプラズマ接
合および焼結を行う。このようにして、キャリア濃度
が、約1×1024-3から約5×1025-3の2段のキ
ャリア濃度傾斜熱電変換素子を得ることができる。
For example, when manufacturing a PbTe-based carrier concentration gradient thermoelectric conversion element, or when obtaining an n-type PbTe carrier concentration gradient thermoelectric conversion element, PbI 2 containing I (iodine) as an n-type dopant is used. A plate-like material body made of PbTe with 6,000 [molppm] added on the high temperature side, and a plate-like material body made of PbTe with 1,000 [molppm] added on the low temperature side is made of Fe at both ends of a two-stage laminate. The electrode material 5 is arranged, and plasma bonding or plasma bonding and sintering are performed by the apparatus described with reference to FIG. Thus, a two-stage carrier concentration gradient thermoelectric conversion element having a carrier concentration of about 1 × 10 24 m −3 to about 5 × 10 25 m −3 can be obtained.

【0021】また、例えばp型のPbTeによるキャリ
ア濃度傾斜機能熱電変換素子を得る場合においては、p
型ドーパントのK(カリウム)を高温側に6000〔m
olppm〕添加したPbTeによる板状材料体を、低
温側に無添加PbTeによる板状材料体を配置した2段
の積層体の両端にFeよりなる電極材料5を配置し、図
1で説明した装置によってプラズマ接合、もしくはプラ
ズマ接合および焼結を行う。このようにして、キャリア
濃度が、約1×1024-3から約5×1025-3の2段
のキャリア濃度傾斜熱電変換素子を得ることができる。
For example, in the case of obtaining a carrier concentration gradient function thermoelectric conversion element made of p-type PbTe,
6000 [m
olppm], an electrode material 5 made of Fe is arranged at both ends of a two-layered laminate in which a plate-like material body made of added PbTe is arranged on the low-temperature side, and a plate-shaped material body made of non-added PbTe is arranged on the low-temperature side. To perform plasma bonding or plasma bonding and sintering. Thus, a two-stage carrier concentration gradient thermoelectric conversion element having a carrier concentration of about 1 × 10 24 m −3 to about 5 × 10 25 m −3 can be obtained.

【0022】電極材料5の金属板の厚さは、任意に選定
し得るが、例えば最終的に得る熱電変換素子10の電変
換素子本体11の厚さを4mmとするとき、その厚さは
3mm程度に選定し得る。また、上述した例えば2段の
キャリア濃度傾斜機能熱電変換素子の作製における、焼
結材または溶製材による板状材料体の厚さは、素子の使
用される条件に合わせて設計されるが、例えば高温側お
よび低温側に関し、それぞれ2mmの厚さとした。この
ときのプラズマ接合の条件は、次のように選定した。 雰囲気 真空 パルス 80回/秒 パルス印加時間 90時間 パルス電流 750A パルス電圧 電圧25V 圧力 30MPa とし、その後接合促進のため、圧力30MPa、800
℃、9分間加熱を行った。
The thickness of the metal plate of the electrode material 5 can be arbitrarily selected. For example, when the thickness of the electro-electric conversion element body 11 of the thermoelectric conversion element 10 finally obtained is 4 mm, the thickness is 3 mm. It can be selected to the extent. In addition, in the production of the above-described two-stage carrier concentration gradient function thermoelectric conversion element, for example, the thickness of the plate-shaped material body made of a sintered material or an ingot material is designed according to the conditions in which the element is used. Each of the high temperature side and the low temperature side had a thickness of 2 mm. The plasma bonding conditions at this time were selected as follows. Atmosphere Vacuum Pulse 80 times / sec Pulse application time 90 hours Pulse current 750A Pulse voltage Voltage 25V Pressure 30MPa, then 30MPa, 800 to promote bonding
Heating was performed at 9 ° C. for 9 minutes.

【0023】上述したように本発明においては、熱電半
導体材料体と電極材料とを圧接させ、プラズマ接合を行
うので、このようにして作製された熱電変換素子本体1
1と電極12との接合を強固に行うことができる。
As described above, in the present invention, the thermoelectric semiconductor material body and the electrode material are brought into pressure contact with each other to perform plasma bonding.
1 and the electrode 12 can be firmly joined.

【0024】そしてまた、上述したようにその熱電変換
材料において、不純物添加量または組成の異なる板状の
焼結材や溶製材による材料体、さらに或る場合はこの材
料体と粉末材料(図示せず)を用いてキャリア濃度傾斜
機能熱電変換素子本体を構成することできるとともに、
同時にこれに対する電極形成とその接合を強固に行うこ
とができる。
In addition, as described above, in the thermoelectric conversion material, a plate-shaped sintered body or an ingot material having a different impurity addition amount or composition, and in some cases, this material body and a powder material (shown in FIG. ) Can be used to configure the carrier concentration gradient function thermoelectric conversion element body,
At the same time, the formation of the electrodes and the joining thereof can be performed firmly.

【0025】上述したように、本発明方法によれば、プ
ラズマ接合による電極接合を行うことから、冒頭にのべ
たよう蝋付けすなわち蝋材の使用が回避され、中温ない
し高温を扱う熱電変換素子においても、確実、安定に電
極の形成がなされた。したがって長寿命、高信頼性を有
する熱電変換素子を得ることができる。
As described above, according to the method of the present invention, since the electrode bonding by plasma bonding is performed, the brazing, that is, the use of the brazing material as described above is avoided, and the thermoelectric conversion element that handles medium to high temperatures can be used. Also, electrodes were formed reliably and stably. Therefore, a long life and high reliability thermoelectric conversion element can be obtained.

【0026】また、本発明方法による熱電変換素子は、
ダイ2の中空1の形状を選定することによって、円柱
状、角柱状等種々の形状に成形することができる。
Further, the thermoelectric conversion element according to the method of the present invention comprises:
By selecting the shape of the hollow 1 of the die 2, it can be formed into various shapes such as a columnar shape and a prismatic shape.

【0027】さらに、ダイ2、上パンチ4U等の選定に
よって例えば後述する熱電素子を他部と連結するための
固定ねじを貫通させるための透孔が穿設された焼結材ま
たは溶製材と透孔が穿設された電極材料との接合した熱
電素子を得るようにすることもできる。
Further, by selecting the die 2, the upper punch 4U, and the like, for example, a sintered material or a molten material having a through hole for penetrating a fixing screw for connecting a thermoelectric element described later to another portion can be formed. It is also possible to obtain a thermoelectric element joined to an electrode material having holes.

【0028】また、電極12についても、熱電変換素子
の使用態様に応じて種々の形状をとることができる。例
えば図5に示すように固定ねじをねじ込むための母螺1
3すなわちねじ穴や凹部等が形成された電極構成とする
場合には、図1で説明したプラズマ接合工程で用いる電
極材料5の金属板として、予め上述した母螺13や、凹
部等が形成された金属板を用いることによって、熱電変
換素子本体11と接合された電極12に対して母螺、凹
部、透孔等の形成することもできる。
The electrode 12 can also take various shapes according to the mode of use of the thermoelectric conversion element. For example, as shown in FIG. 5, a set screw 1 for screwing a fixing screw
In the case of an electrode configuration in which a screw hole, a concave portion, or the like is formed, the above-described screw 13 or concave portion is formed in advance as a metal plate of the electrode material 5 used in the plasma bonding process described with reference to FIG. By using the metal plate, a screw, a concave portion, a through hole, or the like can be formed in the electrode 12 joined to the thermoelectric conversion element main body 11.

【0029】また、上述のプラズマ接合工程において、
必要に応じて熱電素子本体11と電極12とを構成する
各材料体4および電極材料5との間に、例えばこれら材
料体4および電極材料5間に拡散が生じて熱電素子本体
11の熱電特性に影響を及ぼすおそれがある場合におい
てその拡散を阻止するとか、熱電変換素子本体11と電
極12との接合強度を向上させるとか、熱電変換素子本
体11と電極12との熱膨張の相違に基づく両者間の熱
応力または残留応力の緩和とかの目的をもって、これら
の目的を達成できる効果を有する接合材14を、図5に
示すように介在させることができる。
In the above-described plasma bonding step,
If necessary, diffusion occurs between each material body 4 and electrode material 5 constituting the thermoelectric element body 11 and the electrode 12, for example, between the material body 4 and the electrode material 5, resulting in thermoelectric characteristics of the thermoelectric element body 11. In the case where there is a risk of affecting the temperature, the diffusion is prevented, the bonding strength between the thermoelectric conversion element main body 11 and the electrode 12 is improved, or the two based on the difference in thermal expansion between the thermoelectric conversion element main body 11 and the electrode 12. For the purpose of reducing thermal stress or residual stress between them, the bonding material 14 having the effect of achieving these objects can be interposed as shown in FIG.

【0030】例えば上述のn型のPbTeによる熱電変
換素子においては、その材料体4および電極材料5との
間にFeTeによる接合材14を介在させ、p型のPb
Teによる熱電素子においては、SnTeによる接合材
14を介在させることができる。
For example, in the above-described thermoelectric conversion element made of n-type PbTe, a bonding material 14 made of FeTe is interposed between the material body 4 and the electrode material 5 to form a p-type PbTe.
In the thermoelectric element made of Te, the bonding material 14 made of SnTe can be interposed.

【0031】またキャリア濃度傾斜機能熱電変換素子お
よびその本体の製造においては、種々のキャリア濃度を
もつ板状焼結材料または溶製材の接合が重要となるが、
その目的のために接合する熱電半導体材料の一方の材料
の粉末または両材料の混合粉末または粉末を、粉末の形
または懸濁液に懸濁させた状態で塗布して接合材として
用いることによって、接合強度の向上をはかるとか、接
合界面における低抵抗化をはかるとかの目的をもって、
これらの目的を達成できる効果を有する接合材を介在さ
せることができる。
In the production of a carrier concentration gradient function thermoelectric conversion element and its main body, it is important to join a plate-shaped sintered material or a molten material having various carrier concentrations.
By applying a powder of one of the thermoelectric semiconductor materials to be bonded for that purpose or a mixed powder or powder of both materials in a state of being suspended in the form or suspension of the powder and using it as a bonding material, With the aim of improving the bonding strength and reducing the resistance at the bonding interface,
A bonding material having the effect of achieving these objects can be interposed.

【0032】このようにして作製された段階的キャリア
濃度傾斜熱電変換素子およびその本体について、例えば
PbTeによる熱電素子においては、500℃、12時
間の真空中焼鈍により、キャリア濃度を異にする板状の
熱電半導体材料間に不純物または成分元素の拡散が生じ
て、不純物濃度または組成の分布が連続的に変化するよ
うになり、連続的キャリア濃度傾斜熱電変換素子の製造
が可能となる。
With respect to the thermoelectric conversion element having a graded carrier concentration gradient and its main body manufactured as described above, for example, in the case of a thermoelectric element made of PbTe, a plate-like element having a different carrier concentration is obtained by annealing in vacuum at 500 ° C. for 12 hours. Diffusion of impurities or component elements occurs between the thermoelectric semiconductor materials described above, and the distribution of the impurity concentration or composition changes continuously, so that a continuous carrier concentration gradient thermoelectric conversion element can be manufactured.

【0033】本発明方法は、PbTe系熱電変換素子を
作製する場合に限らず、他の各種半導体熱電変換素子の
作製に適用できる。例えば、高温用の熱電変換素子とし
てのSi−Ge系熱電変換素子を作製する場合において
は、図1で説明したプラズマ接合を行う熱電半導体材料
5としては、このSi−Ge熱電半導体材料とし、電極
材料としてMoやWによる電極材料を用いることができ
る。
The method of the present invention can be applied not only to the production of PbTe-based thermoelectric conversion elements, but also to the production of various other semiconductor thermoelectric conversion elements. For example, when fabricating a Si-Ge-based thermoelectric conversion element as a high-temperature thermoelectric conversion element, the thermoelectric semiconductor material 5 for performing the plasma bonding described with reference to FIG. An electrode material such as Mo or W can be used as the material.

【0034】さらに中温用に限られるものではなく例え
ばBi−Te系もしくは、Bi−Sb−Te系熱電変換
素子を構成する場合に適用することができ、この場合に
おいては、図1で説明したプラズマ接合を行う熱電半導
体材料としては、このBi−Te系もしくは、Bi−S
b−Te系熱電半導体材料とし、電極材料5としてCu
による電極材料を用いることができる。
Further, the present invention is not limited to the medium temperature type, and can be applied to, for example, a case of forming a Bi-Te type or Bi-Sb-Te type thermoelectric conversion element. In this case, the plasma described with reference to FIG. As a thermoelectric semiconductor material to be joined, this Bi-Te type or Bi-S
b-Te-based thermoelectric semiconductor material;
Can be used.

【0035】上述の本発明方法によって得た熱電変換素
子10は、図6に示すように、対のn型およびp型の各
熱電変換素子10を、互いにその一方の電極12を、金
属セグメント15A、電気的に接続し、各他方の電極1
2を互いに他の金属セグメント15Bに接続するいわゆ
るπ型熱電変換素子対を構成し、これら金属セグメント
15Bを発電出力端子とすることができる。各電極12
の各金属セグメント15Aおよび15Bに対する固定
は、固定ねじ18を各金属セグメント15Aおよび15
Bを貫通し、電極に形成した母螺すなわちねじ穴13に
ねじ込むことによって行うことができる。この場合、一
方のセグメント15Aは、熱エネルギーを与える高温側
の熱伝達部(図示せず)に熱的に連結し、他方のセグメ
ント15Bを冷却側の熱伝達部(図示せず)に熱的に連
結する。
As shown in FIG. 6, the thermoelectric conversion element 10 obtained by the above-described method of the present invention comprises a pair of n-type and p-type thermoelectric conversion elements 10, a pair of electrodes 12 and a metal segment 15A. Electrically connected to each other electrode 1
2 are connected to another metal segment 15B to form a so-called π-type thermoelectric conversion element pair, and these metal segments 15B can be used as power generation output terminals. Each electrode 12
Is fixed to each metal segment 15A and 15B by fixing the fixing screw 18 to each metal segment 15A and 15B.
B, and can be screwed into a screw hole 13 formed in the electrode, that is, a screw hole 13. In this case, one segment 15A is thermally connected to a high-temperature-side heat transfer unit (not shown) that applies heat energy, and the other segment 15B is thermally connected to a cooling-side heat transfer unit (not shown). Connect to

【0036】上述の本発明方法によって得た熱電変換素
子10は、図7にその概略側面図を示すように、例えば
図6に示したπ型熱電変換素子対を、図7の紙面と直交
するに2次元的にそれぞれ複数個配列し、各π型熱電
変換素子対の例えばセグメント15A側において、共通
の熱エネルギーを与える高温側の熱伝達部16Hにアル
ミナやマイカ等の絶縁性薄膜17を介して電気的に絶縁
して熱的に結合させるように、また、他方のセグメント
15Bを冷却部の熱伝達部16Lに同様に例えばアルミ
ナやマイカ等の絶縁性薄膜17を介して電気的に絶縁し
て熱的に焼結させて、それぞれ絶縁性のセラミック、テ
フロン等の固定ねじ18によって固定して熱電変換モジ
ュールを構成することができる。
As shown in a schematic side view of FIG. 7, the thermoelectric conversion element 10 obtained by the above-described method of the present invention is formed by, for example, connecting the π-type thermoelectric conversion element pair shown in FIG. A plurality of insulating thin films 17 such as alumina and mica are arranged on the high-temperature side heat transfer section 16H that applies common thermal energy, for example, on the segment 15A side of each π-type thermoelectric conversion element pair on the surface. The other segment 15B is also electrically insulated to the heat transfer portion 16L of the cooling portion via an insulating thin film 17 of, for example, alumina or mica so as to be electrically insulated and thermally coupled to each other. Then, they are thermally sintered and fixed by fixing screws 18 made of insulating ceramic, Teflon, or the like, respectively, to form a thermoelectric conversion module.

【0037】図7においては、両熱伝達部16Hおよび
16L側からそれぞれ固定ねじ18によって固定する構
成としたが、或る場合は、熱伝導性の低い絶縁性の固定
ねじを、例えば予め熱電変換素子本体11に形成した透
孔を貫通させて固定する構成とすることができる。図7
において、図6に対応する部分には同一符号を付して重
複説明を省略する。
In FIG. 7, the heat transfer portions 16H and 16L are fixed by the fixing screws 18 from the sides. In some cases, however, insulating fixing screws having low thermal conductivity are used in advance, for example, by thermoelectric conversion. A configuration in which the through hole formed in the element body 11 is penetrated and fixed can be adopted. FIG.
In FIG. 6, portions corresponding to those in FIG. 6 are denoted by the same reference numerals, and redundant description will be omitted.

【0038】[0038]

【発明の効果】本発明によれば、粉末材料と、焼結体、
もしくは溶製体による材料体との接合が可能であり、接
合材料の形態に依存しないで熱電変換素子本体の形成と
同時にこれと一体に電極の形成、すなわち熱電変換素子
本体と電極と接合がなされる。したがって、本発明によ
れば中温域ないし高温域熱電変換素子において、確実、
安定に電極の形成がなされた。したがって長寿命、高信
頼性を有する熱電変換素子を得ることができる。
According to the present invention, a powder material, a sintered body,
Alternatively, it is possible to join the material body by a melt, and the electrode is formed integrally with the thermoelectric conversion element body simultaneously with the formation of the thermoelectric conversion element body without depending on the form of the joining material, that is, the thermoelectric conversion element body and the electrode are joined. You. Therefore, according to the present invention, the thermoelectric conversion element in the middle temperature range or high temperature range,
Electrodes were formed stably. Therefore, a long life and high reliability thermoelectric conversion element can be obtained.

【0039】また、本発明によれば、予め作製された熱
電半導体焼結体もしくは溶製体と、電極材料とを圧接さ
せた状態で、プラズマ接合を行うので、熱電半導体の作
製条件と接合条件を異にすることができ、そのため、各
種熱電半導体材料に特有の作製法を選択することが可能
となり、各材料の特徴ある製作方法を生かして製作され
た高性能熱電半導体材料を使用し、プラズマ接合による
熱電半導体素子および本体の作製が可能となる。
Further, according to the present invention, plasma bonding is performed in a state in which the thermoelectric semiconductor sintered body or ingot prepared in advance and the electrode material are pressed against each other. Can be different, so that it is possible to select a manufacturing method specific to various thermoelectric semiconductor materials, and use a high-performance thermoelectric semiconductor material manufactured utilizing the characteristic manufacturing method of each material, and use a plasma. The thermoelectric semiconductor element and the main body can be manufactured by bonding.

【0040】また、熱電変換素子本体および電極の形状
も、多種に選定することができることから、使用形態、
目的に応じて種々の構造のものを容易に得ることができ
るなど、本発明は実用に供してその工業的利益が大であ
る。
The shape of the thermoelectric conversion element body and the electrodes can be selected from a variety of shapes.
The present invention is put to practical use and its industrial advantage is great, for example, various structures can be easily obtained according to the purpose.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法を実施するプラズマ接合装置の一例
の構成図である。
FIG. 1 is a configuration diagram of an example of a plasma bonding apparatus that performs a method of the present invention.

【図2】本発明方法によって得た熱電変換素子の一例の
断面図である。
FIG. 2 is a sectional view of an example of a thermoelectric conversion element obtained by the method of the present invention.

【図3】本発明方法によって得たキャリア濃度傾斜熱電
変換素子の一例の断面図である。
FIG. 3 is a cross-sectional view of an example of a carrier concentration gradient thermoelectric conversion element obtained by the method of the present invention.

【図4】本発明方法によって得た熱電変換素子の他の一
例の断面図である。
FIG. 4 is a cross-sectional view of another example of the thermoelectric conversion element obtained by the method of the present invention.

【図5】本発明方法によって得た熱電変換素子の他の一
例の断面図である。
FIG. 5 is a sectional view of another example of the thermoelectric conversion element obtained by the method of the present invention.

【図6】本発明方法によって得た熱電変換素子によって
構成したπ型熱電変換素子対の一例の構成図である。
FIG. 6 is a configuration diagram of an example of a π-type thermoelectric conversion element pair formed by the thermoelectric conversion elements obtained by the method of the present invention.

【図7】本発明方法によって得た熱電変換素子によって
構成した熱電変換モジュールの一例の構成図である。
FIG. 7 is a configuration diagram of an example of a thermoelectric conversion module constituted by thermoelectric conversion elements obtained by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 中空 2 ダイ 3U 上パンチ 3D 下パンチ 4 材料体 5 電極材料 7 高キャリア濃度熱電半導体材料 8 低キャリア濃度熱電半導体材料 10 熱電変換素子 11 熱電変換素子本体 12 電極 13 母螺(ねじ穴) 14 接合材 15H 高温側熱伝達部 15L 低温側熱伝達部 17 絶縁薄膜 18 固定ねじ DESCRIPTION OF SYMBOLS 1 Hollow 2 Die 3U Upper punch 3D Lower punch 4 Material 5 Electrode material 7 High carrier concentration thermoelectric semiconductor material 8 Low carrier concentration thermoelectric semiconductor material 10 Thermoelectric conversion element 11 Thermoelectric conversion element main body 12 Electrode 13 Screw (screw hole) 14 Joining Material 15H High-temperature side heat transfer section 15L Low-temperature side heat transfer section 17 Insulating thin film 18 Fixing screw

───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹治 雍典 宮城県角田市君萱字小金沢1 科学技術 庁 航空宇宙研究所 角田宇宙推進技術 研究センター内 (72)発明者 熊谷 達夫 宮城県角田市君萱字小金沢1 科学技術 庁 航空宇宙研究所 角田宇宙推進技術 研究センター内 (72)発明者 新野 正之 宮城県角田市君萱字小金沢1 科学技術 庁 航空宇宙研究所 角田宇宙推進技術 研究センター内 (72)発明者 多田 保夫 宮城県角田市君萱字小金沢1 科学技術 庁 航空宇宙研究所 角田宇宙推進技術 研究センター内 (56)参考文献 特開 平8−181358(JP,A) 特開 平5−55640(JP,A) 特開 平7−326804(JP,A) 特開 昭64−37456(JP,A) 特開 平3−108781(JP,A) 特開 平7−7186(JP,A) 特開 平3−138541(JP,A) 特公 昭39−9784(JP,B1) 特公 昭41−19108(JP,B1) 特公 昭45−38659(JP,B1) 実公 昭37−32883(JP,Y1) (58)調査した分野(Int.Cl.6,DB名) H01L 35/26 H01L 35/08 H01L 35/14 H01L 35/16 H01L 35/34 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yonori Tanji 1 Koganezawa, Kunaya, Kakuta-shi, Miyagi Prefecture Science and Technology Agency Aerospace Laboratory Kakuda Space Propulsion Research Center (72) Inventor Tatsuo Kumagai Mr. Kakuta-shi, Miyagi Kagaya-Koji Kanazawa 1 Science and Technology Agency Aerospace Research Institute Kakuda Space Propulsion Research Center (72) Inventor Masayuki Niino Kimiyoshi Kakuda-shi, Miyagi Prefecture Koganeji 1 Kogane Space Research and Development Center Kakuda Space Propulsion Research Center (72 ) Inventor Yasuo Tada 1 Koganezawa, Kuniki, Kakuda, Miyagi Pref. Japan Science and Technology Agency Aerospace Laboratory Kakuda Space Propulsion Research Center (56) References JP-A-8-181358 (JP, A) JP-A-5-55640 (JP, A) JP-A-7-326804 (JP, A) JP-A-64-37456 (JP, A) JP-A-3-108781 JP, A) JP-A-7-7186 (JP, A) JP-A-3-138541 (JP, A) JP-B-39-9784 (JP, B1) JP-B-41-19108 (JP, B1) JP-B 1945-38659 (JP, B1) Jiko 37-32883 (JP, Y1) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 35/26 H01L 35/08 H01L 35/14 H01L 35 / 16 H01L 35/34

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 それぞれ熱電半導体材料によって構成さ
れた焼結体、もしくは溶製体のいづれか一方もしくはそ
の双方による複数の材料体を層状に積層するか、あるい
は上記材料体の少なくとも1つと、熱電半導体によって
構成された粉末材料とを層状に積層し、 該積層体の上記材料体および粉末材料のうちの少なくと
も一部の材料体および粉末材料は、互いに異なる不純物
濃度または組成に選定し、 該積層体の上記材料体および粉末材料を互いに圧接させ
た状態で、大電流通電によるプラズマ接合もしくは焼結
による接合、あるいは一体焼結を行って、キャリア濃度
が上記積層方向に段階的変化する分布を有するキャリア
濃度傾斜機能熱電変換素子本体を作製する工程を有する
ことを特徴とする熱電変換素子の製造方法。
1. A method of laminating a plurality of material bodies made of one or both of a sintered body and / or an ingot body each made of a thermoelectric semiconductor material, or at least one of the above-mentioned material bodies and a thermoelectric semiconductor And a powder material constituted by the above is laminated in layers, and at least a part of the material body and the powder material of the laminate and the powder material of the laminate are selected to have different impurity concentrations or compositions from each other. Carrier having a distribution in which the carrier concentration is changed stepwise in the lamination direction by performing plasma bonding or sintering by applying a large current, or performing integral sintering in a state in which the material body and the powder material are pressed against each other. A method for producing a thermoelectric conversion element, comprising a step of producing a concentration gradient function thermoelectric conversion element body.
【請求項2】 それぞれ熱電半導体によって構成された
焼結体、もしくは溶製体のいづれか一方もしくはその双
方による複数の材料体を層状に積層するか、あるいは上
記材料体の少なくとも1つと、熱電半導体によって構成
された粉末材料とを層状に積層し、 該積層体の上記材料体および粉末材料のうちの少なくと
も一部の材料体および粉末材料は、互いに異なる不純物
濃度または組成に選定し、 該積層体の上記材料体および粉末材料を互いに圧接させ
るとともに、該積層体の端部に電極材を圧接配置して大
電流通電によるプラズマ接合もしくは焼結による接合、
あるいは一体焼結を行って、キャリア濃度が上記積層方
向に段階的変化する分布をもつキャリア濃度傾斜機能熱
電変換素子本体と電極とが一体化された熱電変換素子を
得ることを特徴とする熱電変換素子の製造方法。
2. A method according to claim 1, further comprising stacking a plurality of material bodies made of a sintered body and / or an ingot body each made of a thermoelectric semiconductor in a layered manner, or at least one of said material bodies and said thermoelectric semiconductor. The formed powder material is laminated in a layered manner, and at least a part of the material body and the powder material of the laminated body and the powder material are selected to have different impurity concentrations or compositions from each other. The material body and the powder material are pressed against each other, and an electrode material is pressed against the end of the laminated body and bonded by plasma bonding or sintering by applying a large current,
Alternatively, by performing integral sintering, a thermoelectric conversion element in which a carrier concentration gradient function thermoelectric conversion element main body and an electrode having a distribution in which the carrier concentration changes stepwise in the lamination direction is obtained. Device manufacturing method.
【請求項3】 最終的にp型およびn型を呈する熱電半
導体によって構成された焼結体もしくは溶製体による材
料体を用意し、 少なくとも対のp型およびn型の上記材料体を層状に積
層し、大電流通電によるプラズマ接合によって上記p型
およびn型材料との間の接合を行って、熱電変換素子本
体を得ることを特徴とする熱電変換素子の製造方法。
3. A sintered body or an ingot body composed of a p-type and n-type thermoelectric semiconductor is finally prepared, and at least a pair of the p-type and n-type material bodies is formed into a layer. A method for manufacturing a thermoelectric conversion element, comprising: laminating and bonding the above-mentioned p-type and n-type materials by plasma bonding by applying a large current to obtain a thermoelectric conversion element body.
【請求項4】 請求項1および2に記載の製造方法によ
り製造された熱電変換素子を焼鈍して上記熱電変換素子
本体の不純物または成分元素の拡散を行って上記キャリ
ア濃度が高濃度から低濃度までに連続的に変化する分布
を有するキャリア濃度傾斜機能熱電変換素子本体を得る
ことを特徴とする熱電変換素子の製造方法。
4. The method according to claim 1, wherein the thermoelectric conversion element is annealed to diffuse impurities or component elements in the thermoelectric conversion element body, so that the carrier concentration is high to low. A method for producing a thermoelectric conversion element, characterized in that a carrier concentration gradient functional thermoelectric conversion element main body having a distribution that changes continuously up to this point is obtained.
JP8232583A 1996-08-14 1996-08-14 Manufacturing method of thermoelectric conversion element Expired - Lifetime JP2884068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8232583A JP2884068B2 (en) 1996-08-14 1996-08-14 Manufacturing method of thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8232583A JP2884068B2 (en) 1996-08-14 1996-08-14 Manufacturing method of thermoelectric conversion element

Publications (2)

Publication Number Publication Date
JPH1065222A JPH1065222A (en) 1998-03-06
JP2884068B2 true JP2884068B2 (en) 1999-04-19

Family

ID=16941637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8232583A Expired - Lifetime JP2884068B2 (en) 1996-08-14 1996-08-14 Manufacturing method of thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2884068B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924607B2 (en) * 2002-03-26 2007-06-06 独立行政法人産業技術総合研究所 Thermoelectric conversion material evaluation method
JP2006278997A (en) * 2005-03-30 2006-10-12 Toyota Central Res & Dev Lab Inc Compound thermoelectric module
JP2009105101A (en) * 2007-10-19 2009-05-14 Furukawa Electric Co Ltd:The Thermoelement and manufacturing method therefor
JP2010212579A (en) * 2009-03-12 2010-09-24 Atsumi Tec:Kk Method for producing thermoelectric conversion element
JP5759902B2 (en) * 2009-11-27 2015-08-05 昭和電工株式会社 Laminate and method for producing the same
JP6054606B2 (en) * 2012-01-26 2016-12-27 トヨタ自動車株式会社 Thermoelectric semiconductor
JP5856600B2 (en) * 2013-10-30 2016-02-10 アイシン高丘株式会社 Thermoelectric element, thermoelectric module, and method of manufacturing thermoelectric element
CN107078202B (en) * 2014-10-09 2019-07-19 德尔塔蒂研究财团 A kind of integrated thermal electric generator
JP7215049B2 (en) * 2018-09-28 2023-01-31 日立金属株式会社 Thermoelectric conversion module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832588B2 (en) * 1987-07-31 1996-03-29 株式会社小松製作所 Thermoelectric semiconductor material and manufacturing method thereof
JPH03108781A (en) * 1989-09-22 1991-05-08 Idemitsu Petrochem Co Ltd Manufacture of thermoelectric transducer
JP3245793B2 (en) * 1991-01-11 2002-01-15 アイシン精機株式会社 Manufacturing method of thermoelectric conversion element
JP3382717B2 (en) * 1994-05-31 2003-03-04 三菱重工業株式会社 Method of manufacturing thermoelectric generator
JPH08181358A (en) * 1994-12-27 1996-07-12 Aisin Seiki Co Ltd Thermoelectric transducer, its manufacture, and manufacturing equipment

Also Published As

Publication number Publication date
JPH1065222A (en) 1998-03-06

Similar Documents

Publication Publication Date Title
JPH1074986A (en) Production of thermoelectric conversion element, pi-type thermoelectric conversion element pair and thermoelectric conversion module
US6563039B2 (en) Thermoelectric unicouple used for power generation
JP5427462B2 (en) Thermoelectric conversion module
JP2017069555A (en) Thermoelectric conversion module and thermoelectric conversion device
US20020189661A1 (en) Thermoelectric unicouple used for power generation
JP2884068B2 (en) Manufacturing method of thermoelectric conversion element
JP2006319210A (en) Manufacturing method of thermoelectric conversion element
KR101743437B1 (en) Method for manufacturing thermoelectric converter
KR20110139210A (en) Method of producing thermoelectric conversion device
US3296034A (en) Thermoelectric assembly and method of fabrication
US7449628B2 (en) Electric power generation method using thermoelectric power generation element, thermoelectric power generation element and method of producing the same, and thermoelectric power generation device
JP2013191838A (en) Thermoelectric conversion module and manufacturing method of the same
WO2010007729A1 (en) Method of manufacturing a thermoelectric device
JPH043475A (en) Electronic component
JP6708339B2 (en) Thermoelectric conversion element, thermoelectric conversion module
JP2884070B2 (en) Thermoelectric conversion module
JPH11298052A (en) Thermoelectric element, thermoelectric material and manufacture thereof
JPH07221352A (en) Layered thermoelectric conversion device, subunit for thermoelectric power generation, and power generating unit
JP4925964B2 (en) Multilayer thermoelectric conversion element and method for manufacturing the same
JP3451456B2 (en) Thermoelectric generator, method of manufacturing the same, and thermoelectric generator
JPH11177156A (en) Machining method for thermoelectric conversion material and production of thermoelectric conversion element
JP3175038B2 (en) Thermoelectric conversion module for power generation
JPH09172204A (en) Thermoelectric conversion apparatus and thermoelectric its manufacture
WO2010058526A1 (en) Thermal power generation device and power generating method using same
JP3175039B2 (en) Thermoelectric conversion module, laminated thermoelectric conversion device, thermoelectric power generation subunit, and power generation system

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term