JP2006190916A - Method for forming junction electrode in thermionic element and porous thermionic element - Google Patents

Method for forming junction electrode in thermionic element and porous thermionic element Download PDF

Info

Publication number
JP2006190916A
JP2006190916A JP2005003232A JP2005003232A JP2006190916A JP 2006190916 A JP2006190916 A JP 2006190916A JP 2005003232 A JP2005003232 A JP 2005003232A JP 2005003232 A JP2005003232 A JP 2005003232A JP 2006190916 A JP2006190916 A JP 2006190916A
Authority
JP
Japan
Prior art keywords
film
thermoelectric
porous
electrode
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005003232A
Other languages
Japanese (ja)
Inventor
Hiroyuki Morita
寛之 森田
Akio Kurokochi
昭夫 黒河内
Kentaro Wada
健太朗 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAITAMA PREFECTURE
Original Assignee
SAITAMA PREFECTURE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAITAMA PREFECTURE filed Critical SAITAMA PREFECTURE
Priority to JP2005003232A priority Critical patent/JP2006190916A/en
Publication of JP2006190916A publication Critical patent/JP2006190916A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for forming a junction electrode capable of forming the electrode having a small contact resistance and a high bond strength to a thermoelectric material. <P>SOLUTION: In the method for forming the junction electrode in a porous thermionic element, a plurality of holes 11 are bored to an inorganic material body (a glass body) 10, and a Ti film 21 as a buffer layer is formed on the end face of the inorganic material body (the glass body) 10 closing arrays 13 by an ion plating method to the porous thermionic element 10 with the arrays 13 in which the thermoelectric materials (bismuth) 12 are arranged to the holes 11. In the method, a solder film 22 is formed by a PVD method without an opening to an atmospheric air, and an electrode film is formed as the junction electrode 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、異種接合導電体を接合し2つの接合部に温度差を与えると起電力が発生するゼーべック効果を利用した熱電発電技術、又は、異種接合導電体に電流を流しその接合部間に温度差を発生させるペルチェ効果を利用した熱電冷却技術の各技術に使用される熱電素子に関し、特に熱電素子における接合電極の形成方法、ガラス等の無機材料体に形成された多孔内に熱電材料を配置して成る熱電素子(多孔体熱電素子)における接合電極の構造、及び、その接合電極の形成方法に関する。   The present invention relates to a thermoelectric power generation technology using the Seebeck effect in which an electromotive force is generated when a heterogeneous junction conductor is joined and a temperature difference is given between two junctions, or a current is passed through the heterojunction conductor and the junction The present invention relates to thermoelectric elements used in thermoelectric cooling techniques utilizing the Peltier effect that generates a temperature difference between the parts, particularly in the formation method of bonding electrodes in thermoelectric elements, in the pores formed in inorganic material bodies such as glass The present invention relates to a structure of a bonding electrode in a thermoelectric element (porous thermoelectric element) formed by arranging a thermoelectric material, and a method for forming the bonding electrode.

熱電発電技術は、エネルギーの有用性から省エネルギー技術の一つとして注目されているが、熱エネルギーを電気に変換する(ゼ−べック効果を利用した)熱電素子は、素子自体の熱伝導によって変換効率が5〜10%と効率が有効でないため、効率向上に関する研究が活発に行われている。
熱電素子は、熱電材料を一対の接合電極で挟んで構成されるが、熱電材料部分はバルクや薄膜で形成される構造が一般的である。
また近年、熱電素子の構造として、無機材料に多孔アレイを形成し多孔アレイに熱電材料を配置するアレイ構造の熱電素子(多孔体熱電素子)が提案されている。
Thermoelectric power generation technology is attracting attention as one of energy-saving technologies because of the usefulness of energy, but thermoelectric elements that convert thermal energy into electricity (using the Seebeck effect) are based on the heat conduction of the elements themselves. Since the conversion efficiency is 5 to 10% and the efficiency is not effective, research on improving the efficiency is actively conducted.
A thermoelectric element is configured by sandwiching a thermoelectric material between a pair of junction electrodes, and the thermoelectric material portion generally has a structure formed of a bulk or a thin film.
In recent years, a thermoelectric element (porous thermoelectric element) having an array structure in which a porous array is formed in an inorganic material and a thermoelectric material is arranged in the porous array has been proposed as a structure of the thermoelectric element.

上述した熱電素子の電極形成においては、低抵抗化及び密着性を確保することが求められるが、特に多孔体熱電素子の場合、熱電素子に接合する接合電極を形成するに際して多孔アレイの形状が非常に小さいため電極接合が困難であり、接合時の抵抗が想定値の数100倍以上と大きくなってしまい効率阻害の原因となっていた。   In the above-described thermoelectric element electrode formation, it is required to ensure low resistance and adhesion. Particularly in the case of a porous thermoelectric element, the shape of the porous array is very large when forming a bonding electrode to be bonded to the thermoelectric element. Therefore, it is difficult to join the electrodes, and the resistance at the time of joining becomes as large as several hundred times or more than the assumed value, which is a cause of the efficiency hindrance.

多孔体熱電素子において、例えば銀ペーストを使用して接合電極を形成する場合、図3(a)に示すように、ガラス体30に形成される多孔アレイ31に熱電材料(ビスマス)32を配置し、端面全体を研磨した後、接合電極としての銀ペースト33を塗布して行われる。この場合、端面における断面構造は、熱電材料32の強度がガラス体30に比較して低いため、研磨時にくぼみが発生しているので、銀ペースト33に含まれている銀粒子が熱電材料32に接するように入り込むことができず、導通不良が発生して電極接合が困難となる。   In the case of forming a bonding electrode using, for example, silver paste in a porous thermoelectric element, a thermoelectric material (bismuth) 32 is arranged on a porous array 31 formed on a glass body 30 as shown in FIG. After polishing the entire end face, a silver paste 33 as a bonding electrode is applied. In this case, since the strength of the thermoelectric material 32 is lower than that of the glass body 30 in the cross-sectional structure at the end face, a dent is generated at the time of polishing. Therefore, the silver particles contained in the silver paste 33 are transferred to the thermoelectric material 32. It cannot enter so as to be in contact with each other, and a conduction failure occurs, which makes it difficult to join the electrodes.

この場合、低抵抗の銀ペーストを使用しても、粒径が数10μmと多孔アレイ31の径に比較して非常に大きく多孔アレイの両端に良好に接触しないため、ビスマスを充填して形成した熱電材料部分の抵抗率は100μΩm以上となり、ビスマス単結晶の抵抗率1.3μΩmに比べて非常に大きな値となってしまう。   In this case, even when a low-resistance silver paste is used, the particle size is very large compared to the diameter of the porous array 31 of several tens of μm and does not come into good contact with both ends of the porous array. The resistivity of the thermoelectric material portion is 100 μΩm or more, which is a very large value compared to the resistivity of 1.3 μΩm of the bismuth single crystal.

研磨時のくぼみを排除するため、フッ化水素(HF)を用いてガラスを溶融して多孔アレイにおける熱電材料を暴露し、低抵抗銀ペーストで電極付けすることも試みたが、抵抗率は100μΩm以上と非常に大きな値となった。これは、ガラスが多孔アレイ表面に再析出し、絶縁膜を形成していたことが原因であった。   In order to eliminate dimples during polishing, glass fluoride was melted with hydrogen fluoride (HF) to expose the thermoelectric material in the porous array, and an electrode was attached with a low resistance silver paste, but the resistivity was 100 μΩm. That was a very large value. This was because glass re-deposited on the surface of the porous array to form an insulating film.

また、図3(b)に示すように、銀又は金の蒸着により接合電極35を形成した場合、熱電素子の抵抗率は4.3μΩm(単結晶に比べて3.3倍)となったが、熱電材料32の周囲がガラス体30であるため金属蒸着膜とガラスとの密着性が悪く膜の付着が不十分なことによる剥離が生じていた。   As shown in FIG. 3B, when the bonding electrode 35 is formed by vapor deposition of silver or gold, the resistivity of the thermoelectric element is 4.3 μΩm (3.3 times that of the single crystal). Further, since the periphery of the thermoelectric material 32 is the glass body 30, the adhesion between the metal vapor deposition film and the glass is poor, and peeling due to insufficient adhesion of the film occurs.

熱電材料が充填された多孔アレイに対して直接はんだ(錫・鉛等)を電極付けする場合においては、熱電材料との間に金属間化合物を形成しやすく、キャリアの移動を阻害するという問題点がある。   When solder (tin, lead, etc.) is directly attached to a porous array filled with a thermoelectric material, it is easy to form an intermetallic compound with the thermoelectric material and hinders the movement of carriers. There is.

上述した多孔体熱電素子において接合電極を形成する各方法は、いずれの方法であっても接触抵抗が小さく且つ付着強度が高い電極を形成することができないため、実用化レベルで熱電発電技術に使用可能なエネルギー変換効率を有する熱電素子が得られなかった。   Each method for forming a bonding electrode in the porous thermoelectric element described above cannot be used to form an electrode with low contact resistance and high adhesion strength, so that it can be used for thermoelectric generation technology at a practical level. A thermoelectric element having a possible energy conversion efficiency could not be obtained.

一方、熱電冷却技術で使用されるペルチェ効果を利用した熱電素子モジュール40は、図4に示すように、電極41,42の間にN型半導体43とP型半導体44とから成るPN素子対を複数個配置し、各PN素子対に対して蛇行するように電流を流すことにより一方側の各電極41に密着するプレート45を発熱させ、他方側の各電極42に密着するプレート46を冷却させるものである。P型半導体素子は正孔が電荷及び熱の輸送に支配的であり、N型半導体素子は電子が電荷及び熱の輸送に支配的であるので、図4で示したような矢印方向に電流が流れると、図の上から下方向へ熱が伝搬して一方側のプレート45が発熱し他方側のプレート46が冷却されることになる。   On the other hand, the thermoelectric element module 40 using the Peltier effect used in the thermoelectric cooling technology has a pair of PN elements composed of an N-type semiconductor 43 and a P-type semiconductor 44 between electrodes 41 and 42 as shown in FIG. A plurality of the plates 45 are arranged so that current flows in a meandering manner with respect to each pair of PN elements, so that the plate 45 in close contact with each electrode 41 on one side generates heat, and the plate 46 in close contact with each electrode 42 on the other side is cooled. Is. In the P-type semiconductor element, holes are dominant in charge and heat transport, and in the N-type semiconductor element, electrons are dominant in charge and heat transport. Therefore, current flows in the arrow direction as shown in FIG. When it flows, heat propagates from the top to the bottom of the figure, the one side plate 45 generates heat, and the other side plate 46 is cooled.

熱電冷却技術に使用される熱電素子についても上述した構造の多孔体熱電素子は有用であり、この場合において抵抗率を低く抑えることができれば素子の性能指数(ゼーべック係数、抵抗率、熱伝導率を用いて算出される値)を高くすることができ、例えばコンピュータCPU冷却用等の小型デバイスにおける熱電冷却の分野で応用されることが期待できる。   A porous thermoelectric element having the above-described structure is also useful for thermoelectric elements used in thermoelectric cooling technology. In this case, if the resistivity can be kept low, the figure of merit (Seebeck coefficient, resistivity, thermal The value calculated using the conductivity) can be increased, and for example, it can be expected to be applied in the field of thermoelectric cooling in small devices such as those for computer CPU cooling.

本発明は上記実情に鑑みてなされたもので、熱電材料に対して接触抵抗が小さく且つ付着強度が高い電極を形成することができる接合電極の形成方法、及び、多孔体熱電素子において接触抵抗が小さく且つ付着強度が高い電極を有する多孔体熱電素子の構造を提供することを目的としている。   The present invention has been made in view of the above circumstances, and a bonding electrode forming method capable of forming an electrode having low contact resistance and high adhesion strength with respect to a thermoelectric material, and contact resistance in a porous thermoelectric element. An object of the present invention is to provide a structure of a porous thermoelectric element having an electrode having a small and high adhesion strength.

上記目的を達成するため本発明の熱電素子における接合電極の形成方法(請求項1)は、熱電素子材に対してイオンプレーティング法によりバッファ層としてのTi膜を形成し、大気開放することなく続けてPVD法ではんだ膜を成膜して接合電極となる電極膜を形成することを特徴としている。   In order to achieve the above object, a method for forming a bonding electrode in a thermoelectric element of the present invention (Claim 1) is to form a Ti film as a buffer layer on a thermoelectric element material by an ion plating method without opening to the atmosphere. Subsequently, a solder film is formed by a PVD method to form an electrode film to be a bonding electrode.

請求項2の熱電素子における接合電極の形成方法は、無機材料体(ガラス体)10に複数の孔部11を穿孔し、前記孔部11に熱電材料(ビスマス)12が配置されたアレイ部13を具備して成る多孔体熱電素子10に対して、次の手順を含む多孔体熱電素子における接合電極の形成方法であることを特徴としている。
前記アレイ部13を塞ぐ無機材料体(ガラス体)10の端面に、イオンプレーティング法によりバッファ層としてのTi膜21を形成し、大気開放することなく続けてPVD法ではんだ膜22を成膜して接合電極となる電極膜を形成する。
The method for forming a bonding electrode in a thermoelectric element according to claim 2 is a method in which a plurality of holes 11 are drilled in an inorganic material body (glass body) 10 and a thermoelectric material (bismuth) 12 is disposed in the hole 11. Is a method for forming a bonding electrode in a porous thermoelectric element including the following procedure.
A Ti film 21 as a buffer layer is formed by ion plating on the end face of the inorganic material body (glass body) 10 that closes the array portion 13, and a solder film 22 is continuously formed by PVD without opening to the atmosphere. Thus, an electrode film to be a bonding electrode is formed.

請求項3は、無機材料体(ガラス体)10に複数の孔部11を穿孔し、前記孔部11に熱電材料(ビスマス)12が配置されたアレイ部13を具備する多孔体熱電素子において、次の構成を含むことを特徴としている。
前記アレイ部13を塞ぐ無機材料体(ガラス体)10の端面に、アレイ部13に接触するバッファ層としてのTi膜21と、このTi膜21上に成膜されるはんだ膜22を有する電極膜から成る接合電極20を形成する。
Claim 3 is a porous thermoelectric element comprising an array portion 13 in which a plurality of holes 11 are drilled in an inorganic material body (glass body) 10 and a thermoelectric material (bismuth) 12 is arranged in the hole 11. It is characterized by including the following configuration.
An electrode film having a Ti film 21 as a buffer layer in contact with the array section 13 and a solder film 22 formed on the Ti film 21 on the end face of the inorganic material body (glass body) 10 that closes the array section 13. A joining electrode 20 is formed.

本発明によれば、熱電材料(若しくは熱電材料及びガラス体)に対して密着性が優れたTi膜を熱電材料上にイオンプレーティング法で形成し、その上にはんだが密着し易いように大気開放することなく続けてPVD法によりはんだ膜を成膜するので、接触不良を防止して接触抵抗が下げられ、電気伝導率の低下を抑制して、付着強度の高い接合電極を形成することができる。   According to the present invention, a Ti film having excellent adhesion to a thermoelectric material (or thermoelectric material and glass body) is formed on the thermoelectric material by an ion plating method, and the atmosphere is formed so that the solder can easily adhere to the Ti film. Since the solder film is continuously formed by the PVD method without opening, it is possible to prevent contact failure and lower the contact resistance, suppress the decrease in electrical conductivity, and form a bonding electrode with high adhesion strength. it can.

その結果、多孔体熱電素子における電気伝導率の低下を抑制することができるとともに性能指数が高い素子を得ることができるので、熱電発電技術及び熱電冷却技術で実用化可能な多孔体熱電素子を得ることが可能となる。   As a result, since it is possible to obtain an element having a high performance index while suppressing a decrease in electrical conductivity in the porous thermoelectric element, a porous thermoelectric element that can be put into practical use by a thermoelectric power generation technique and a thermoelectric cooling technique is obtained. It becomes possible.

本発明の実施の形態の一例としての多孔体熱電素子について、図1を参照しながら説明する。
多孔体熱電素子1は、複数の孔部11が穿孔された無機材料体10と、前記孔部11に熱電材料12が充填されて形成されるアレイ部13と、アレイ部13の両端面を覆う電極膜から成る接合電極20を具備して構成されている。
A porous thermoelectric element as an example of an embodiment of the present invention will be described with reference to FIG.
The porous thermoelectric element 1 covers an inorganic material body 10 in which a plurality of holes 11 are perforated, an array part 13 formed by filling the hole 11 with a thermoelectric material 12, and both end faces of the array part 13. A joining electrode 20 made of an electrode film is provided.

無機材料体10は、ガラス体(又はアルミナ体)で構成されている。この無機材料体(ガラス体)10には対向する二つの面を貫通する複数の孔部11がアレイ状に穿孔されている。
各孔部11には、熱電材料12としてN型半導体であるビスマス(抵抗率:1.3μΩm)が充填配置されることでアレイ部13を形成している。
ビスマスに代えて、熱電材料として、ビスマステルル(Bi−Te)系、鉛テルル系、Bi−Sb、MnSr、Mg2Si、CoSb系材料を使用してもよい。
The inorganic material body 10 is composed of a glass body (or an alumina body). The inorganic material body (glass body) 10 is formed with a plurality of holes 11 penetrating two opposing surfaces in an array.
Each hole 11 is filled with bismuth (resistivity: 1.3 μΩm), which is an N-type semiconductor, as a thermoelectric material 12 to form an array portion 13.
Instead of bismuth, a bismuth tellurium (Bi—Te), lead tellurium, Bi—Sb, MnSr, Mg 2 Si, or CoSb material may be used as a thermoelectric material.

無機材料体(ガラス体)10のアレイ部13を臨む両側端面には、それぞれ接合電極20が形成されている。接合電極20は、熱電材料12との密着を良好にするためのバッファ層としてのTi(チタン)膜21と、Ti膜21上に成膜されたはんだ膜22を有する電極膜で構成されている。熱電材料12とはんだ膜22との間に介在させたTi膜21は、熱電材料12及びガラス体との密着性を確保できる材料である必要からイオンプレーティング法で成膜するTi膜21とした。また、このTi膜21は、はんだ膜22との密着性も確保できる材料である。
はんだ膜22については、Ti膜21との密着性を良好にするために、大気開放しないで続けてPVD法により成膜する。
また、Ti膜21上にCu膜やNi膜を積層したTi膜との二層構造としてもよい。
Bonding electrodes 20 are respectively formed on both end faces of the inorganic material body (glass body) 10 facing the array portion 13. The bonding electrode 20 is composed of an electrode film having a Ti (titanium) film 21 as a buffer layer for improving adhesion to the thermoelectric material 12 and a solder film 22 formed on the Ti film 21. . The Ti film 21 interposed between the thermoelectric material 12 and the solder film 22 is a Ti film 21 formed by an ion plating method because it needs to be a material that can ensure adhesion between the thermoelectric material 12 and the glass body. . Further, the Ti film 21 is a material that can also ensure adhesion with the solder film 22.
The solder film 22 is continuously formed by the PVD method without opening to the atmosphere in order to improve the adhesion with the Ti film 21.
Alternatively, a two-layer structure with a Ti film in which a Cu film or a Ni film is laminated on the Ti film 21 may be used.

上述したTi膜21は、イオンプレーティング法により成膜されているので、真空蒸着により形成する場合に比較して付着強度を高くして密着性を確保することにより接触抵抗が低減できる。すなわち、真空蒸着が真空内で物質が蒸発することによってのみ膜が形成されるのに対して、イオンプレーティング法では蒸発粒子をRF(高周波)電力によってイオン化・ラジカル化(正電荷を帯びさせる)し、基板を負バイアスすることでクーロン力を利用し粒子を加速させて基板に付着するからである。
また、RFイオンプレーティングは基板温度を上昇させることなく比較的低温で成膜できるので、熱電材料12として使用したビスマス等の低融点物質に対して適している。
Since the Ti film 21 described above is formed by the ion plating method, the contact resistance can be reduced by increasing the adhesion strength and ensuring the adhesion as compared with the case of forming by the vacuum deposition. In other words, while vacuum deposition forms a film only when a substance evaporates in a vacuum, in the ion plating method, the evaporated particles are ionized and radicalized by RF (radio frequency) power (positively charged). This is because, by negatively biasing the substrate, the particles are accelerated using the Coulomb force to adhere to the substrate.
Further, since RF ion plating can form a film at a relatively low temperature without increasing the substrate temperature, it is suitable for a low melting point material such as bismuth used as the thermoelectric material 12.

上記構造によれば、熱電材料12及びガラス体10に対して密着性に優れたTi(チタン)膜21を介在させているので、密着性を良好にして電気伝導率の低下を抑制することができる。
また、金属間化合物の形成も防止できることからも、はんだの密着性を良好とすることを可能にしている。
According to the above structure, since the Ti (titanium) film 21 having excellent adhesion to the thermoelectric material 12 and the glass body 10 is interposed, it is possible to improve adhesion and suppress a decrease in electrical conductivity. it can.
Moreover, since the formation of intermetallic compounds can also be prevented, it is possible to improve the adhesiveness of the solder.

次に、上述した多孔体熱電素子における接合電極の形成方法について、図2を参照しながら説明する。
高真空中にて高温(270度以上)で溶解したビスマス内に、複数の貫通する孔部11が穿孔される無機材料体(ガラス体)10(図2(a))を入れ、アルゴンガスによりビスマスを圧入して固化させことで、孔部11に熱電材料12を配置させてアレイ部13を形成する。ガラス体10の長さLは0.1〜5mm、孔部11の直径φは10nm〜1000μmとしている。若しくは、無機材料体(ガラス体)10の各孔部11にビスマス粉体を入れ、ホットプレスによりビスマスを溶解し各孔部11内にビスマスを配置させる。
Next, a method for forming a bonding electrode in the above-described porous thermoelectric element will be described with reference to FIG.
An inorganic material body (glass body) 10 (FIG. 2A) in which a plurality of through-holes 11 are perforated is placed in bismuth melted at high temperature (270 ° C. or higher) in a high vacuum, and argon gas is used. The thermoelectric material 12 is arranged in the hole 11 by press-fitting bismuth and solidified to form the array part 13. The length L of the glass body 10 is 0.1 to 5 mm, and the diameter φ of the hole 11 is 10 nm to 1000 μm. Alternatively, bismuth powder is put into each hole 11 of the inorganic material body (glass body) 10, bismuth is melted by hot pressing, and bismuth is disposed in each hole 11.

次に、ビスマスが配置された無機材料体(ガラス体)10の両端面を表面処理の目的で研磨する。この時、ビスマス(熱電材料)の強度がガラスに比較して低いため、研磨時に各孔部11に対応する熱電材料12部分においてくぼみが発生する(図2(b))。   Next, both end surfaces of the inorganic material body (glass body) 10 on which bismuth is disposed are polished for the purpose of surface treatment. At this time, since the strength of bismuth (thermoelectric material) is lower than that of glass, a dent is generated in the thermoelectric material 12 corresponding to each hole 11 during polishing (FIG. 2B).

続いて、一方の端面において、アレイ部13を覆うように接合電極20を形成する。この接合電極20の形成に際して、(1)表面洗浄作業としてArボンバードを行い、(2)RFイオンプレーティング法によるバッファ層としてのTi(チタン)膜の形成、(3)PVD法によるはんだ膜の形成がそれぞれ行われる。
上記(3)におけるはんだ膜の代わりに、はんだ(配線接続する際のはんだ付けに使用するはんだ)と濡れ性がよいCu膜又はNi膜を積層してもよい。
Subsequently, the bonding electrode 20 is formed so as to cover the array portion 13 on one end face. In forming the bonding electrode 20, (1) Ar bombardment is performed as a surface cleaning operation, (2) Ti (titanium) film is formed as a buffer layer by RF ion plating, and (3) Solder film is formed by PVD. Each formation takes place.
Instead of the solder film in the above (3), a solder (a solder used for soldering at the time of wiring connection) and a Cu film or a Ni film having good wettability may be laminated.

以下、(1)〜(3)工程における具体的な条件等についての詳細を説明する。   Hereinafter, details of specific conditions and the like in the steps (1) to (3) will be described.

・Arボンバード工程
アルゴンガスを真空容器中に少量導入し、真空蒸着容器内に設置した電極から高周波(13.56MHz)を発生させ、放電(プラズマ)を発生させることによって基板の洗浄作業を行う。
Arボンバード工程は、以下の条件で行った。
最終真空度:3.5×10−4Pa以下
アルゴン導入後分圧:3.5×10−2Pa
基板温度:室温
RF(高周波)電力:100W
基板バイアス電圧:100V
処理時間:10分
Ar bombardment process A small amount of argon gas is introduced into a vacuum vessel, a high frequency (13.56 MHz) is generated from an electrode installed in the vacuum deposition vessel, and a substrate is cleaned by generating a discharge (plasma).
The Ar bombardment process was performed under the following conditions.
Final vacuum: 3.5 × 10 −4 Pa or less Partial pressure after introducing argon: 3.5 × 10 −2 Pa
Substrate temperature: room temperature
RF (high frequency) power: 100W
Substrate bias voltage: 100V
Processing time: 10 minutes

・Ti(チタン)のRFイオンプレーティング工程
真空蒸着容器内に設置した電極から高周波(13.56MHz)を発生させ、アシストガスとしてAr(アルゴン)ガスを導入し放電を起こしながらTi膜21を蒸着する(図2(c))。
Ti(チタン)のRFイオンプレーティング工程は、以下の条件で行った。
最終真空度及びアルゴン導入後分圧はArボンバード工程と同じ。
成膜速度:10オングストローム/秒
膜厚:1000オングストローム
基板距離:約500mm
基板温度:室温
-RF ion plating process of Ti (titanium) A high frequency (13.56 MHz) is generated from an electrode installed in a vacuum deposition vessel, and an Ar (argon) gas is introduced as an assist gas to deposit a Ti film 21 while causing discharge. (FIG. 2 (c)).
The RF ion plating process of Ti (titanium) was performed under the following conditions.
The final vacuum and the partial pressure after introducing argon are the same as in the Ar bombardment process.
Deposition rate: 10 Å / sec Film thickness: 1000 Å Substrate distance: about 500 mm
Substrate temperature: room temperature

・はんだ膜の形成工程
はんだ膜の形成は、錫(Sn)の真空蒸着、銀(Ag)の真空蒸着を順次行うことで成膜された膜により鉛フリーはんだとして形成される。
-Forming process of solder film The solder film is formed as lead-free solder by a film formed by sequentially performing vacuum deposition of tin (Sn) and vacuum deposition of silver (Ag).

・Sn(錫)の真空蒸着工程
Ar(アルゴン)ガスの導入を止め、ふたたび真空度を上げ、高周波電力・基板バイアス電圧を切った状態でSn膜の成膜を行う。
Sn(錫)の真空蒸着工程は、以下の条件で行った。
真空度:3.5×10−4Pa以下
成膜速度:200オングストローム/秒
膜厚:25000オングストローム(2.5μm)
基板温度:室温
-Sn (tin) vacuum deposition process The introduction of Ar (argon) gas is stopped, the degree of vacuum is raised again, and the Sn film is formed with the high frequency power and the substrate bias voltage turned off.
The vacuum deposition process of Sn (tin) was performed under the following conditions.
Degree of vacuum: 3.5 × 10 −4 Pa or less Deposition rate: 200 Å / sec Film thickness: 25000 Å (2.5 μm)
Substrate temperature: room temperature

・Ag(銀)の真空蒸着工程
Sn膜の成膜に続いてAg膜の成膜を行ってはんだ膜22を形成する(図2(d))。
Ag(銀)の真空蒸着工程は、以下の条件で行った。
真空度:3.5×10−4Pa以下
成膜速度:20オングストローム/秒
膜厚:650オングストローム
基板温度:室温
Ag (silver) vacuum deposition step After the Sn film is formed, the Ag film is formed to form the solder film 22 (FIG. 2D).
The vacuum deposition process of Ag (silver) was performed under the following conditions.
Degree of vacuum: 3.5 × 10 −4 Pa or less Deposition rate: 20 Å / sec Film thickness: 650 Å Substrate temperature: room temperature

上述したArボンバード工程、Ti(チタン)のRFイオンプレーティング工程、Sn(錫)の真空蒸着工程、Ag(銀)の真空蒸着工程の各工程間には10分間のインターバルを設け、基板を冷却することが行われる。   The above-described Ar bombardment process, Ti (titanium) RF ion plating process, Sn (tin) vacuum deposition process, and Ag (silver) vacuum deposition process are provided with an interval of 10 minutes to cool the substrate. To be done.

同様の工程で成膜した面の反対面に接合電極20を形成した後、両電極間においてはんだ又は低抵抗銀ペーストを用いて電極接合した多孔体熱電素子の抵抗率を測定したところ1.4μΩmとなり、ビスマス単結晶の抵抗率1.3μΩmに近い値を確保することができた。この値は、従来例で述べた各方法における抵抗率である100μΩm以上に比較して非常に小さい値であり、従来不可能であった多孔体熱電素子における電極作製が可能となり、実用化が可能な高効率な多孔体熱電素子を得ることができる。   After forming the bonding electrode 20 on the surface opposite to the surface formed in the same process, the resistivity of the porous thermoelectric element bonded with solder or low-resistance silver paste between the two electrodes was measured to find 1.4 μΩm. Thus, a value close to the resistivity of 1.3 μΩm of the bismuth single crystal could be secured. This value is very small compared to the resistivity of 100 μΩm or more in each method described in the conventional example, and it becomes possible to produce an electrode in a porous thermoelectric element, which has been impossible in the past, and can be put to practical use. A highly efficient porous thermoelectric element can be obtained.

上記例では、多孔体熱電素子における接合電極の形成方法について説明したが、熱電材料(熱電素子材)部分をバルクや薄膜で形成した場合の接合電極の形成方法としても低抵抗で密着性が良好な電極形成に有効である。   In the above example, the method of forming the bonding electrode in the porous thermoelectric element has been described. However, the method of forming the bonding electrode when the thermoelectric material (thermoelectric element material) part is formed of a bulk or a thin film has low resistance and good adhesion. It is effective for forming an electrode.

例えば、ビスマスで構成された立方体状のかたまりであるバルクで熱電材料が形成されている場合に、このバルク表面及び裏面等に上述した工程で接合電極を作製すれば、バルク(熱電材料)に対して接触抵抗が小さく且つ付着強度が高い接合電極を備えた熱電素子を得ることができる。   For example, when a thermoelectric material is formed in a bulk that is a cubic block made of bismuth, if a junction electrode is formed on the bulk surface and the back surface by the above-described process, the bulk (thermoelectric material) Thus, it is possible to obtain a thermoelectric element including a bonding electrode having a low contact resistance and a high adhesion strength.

また、基板上に薄膜プロセスで熱電材層を形成し、熱電材層表面の両端側に接合電極を形成することで、薄膜熱電材に対して接触抵抗が小さく且つ付着強度が高い接合電極を備えた熱電素子を得ることができる。   In addition, a thermoelectric material layer is formed on a substrate by a thin film process, and bonding electrodes are formed on both ends of the surface of the thermoelectric material layer, thereby providing a bonding electrode having low contact resistance and high adhesion strength to the thin film thermoelectric material. A thermoelectric element can be obtained.

本発明に係る実施の形態の一例としての多孔体熱電素子の断面説明図である。It is a section explanatory view of a porous thermoelectric device as an example of an embodiment concerning the present invention. (a)〜(d)は多孔体熱電素子における接合電極の形成方法を示す工程説明図である。(A)-(d) is process explanatory drawing which shows the formation method of the joining electrode in a porous body thermoelectric element. (a)及び(b)は多孔体熱電素子における接合電極の形成方法の従来例を説明するための熱電素子の断面説明図である。(A) And (b) is sectional explanatory drawing of the thermoelectric element for demonstrating the prior art example of the formation method of the joining electrode in a porous body thermoelectric element. 熱電素子を使用したモジュールの構成説明図である。It is structure explanatory drawing of the module which uses a thermoelectric element.

符号の説明Explanation of symbols

1 多孔体熱電素子
10 ガラス体(無機材料体)
11 孔部
12 熱電材料
13 アレイ部
20 接合電極
21 Ti膜(バッファ層)
22 はんだ膜
1 Porous Thermoelectric Element 10 Glass Body (Inorganic Material Body)
11 Hole 12 Thermoelectric Material 13 Array 20 Bonding Electrode 21 Ti Film (Buffer Layer)
22 Solder film

Claims (3)

熱電素子材に対してイオンプレーティング法によりバッファ層としてのTi膜を形成し、大気開放することなく続けてPVD法ではんだ膜を成膜して接合電極となる電極膜を形成することを特徴とする熱電素子における接合電極の形成方法。 A Ti film as a buffer layer is formed on the thermoelectric element material by an ion plating method, and a solder film is continuously formed by the PVD method without opening to the atmosphere to form an electrode film to be a bonding electrode A method for forming a bonding electrode in a thermoelectric element. 無機材料体に複数の孔部を穿孔し、前記孔部に熱電材料が配置されたアレイ部を具備して成る多孔体熱電素子に対して、
前記アレイ部を塞ぐ無機材料体の端面に、イオンプレーティング法によりバッファ層としてのTi膜を形成し、大気開放することなく続けてPVD法ではんだ膜を成膜して接合電極となる電極膜を形成することを特徴とする熱電素子における接合電極の形成方法。
For a porous thermoelectric element comprising a plurality of holes in an inorganic material body and an array part in which a thermoelectric material is arranged in the hole,
An electrode film that forms a Ti film as a buffer layer by an ion plating method on the end face of the inorganic material body that closes the array portion, and subsequently forms a solder film by the PVD method without opening to the atmosphere. Forming a bonding electrode in a thermoelectric element.
無機材料体に複数の孔部を穿孔し、前記孔部に熱電材料が配置されたアレイ部を具備する多孔体熱電素子において、
前記アレイ部を塞ぐ無機材料体の端面に、アレイ部に接触するバッファ層としてのTi膜とこのTi膜上に成膜されるはんだ膜を有する電極膜を形成して成ることを特徴とする多孔体熱電素子。
In a porous thermoelectric element comprising an array part in which a plurality of holes are formed in an inorganic material body, and a thermoelectric material is disposed in the hole,
A porous film characterized in that an electrode film having a Ti film as a buffer layer in contact with the array section and a solder film formed on the Ti film is formed on the end face of the inorganic material body that closes the array section. Body thermoelectric element.
JP2005003232A 2005-01-07 2005-01-07 Method for forming junction electrode in thermionic element and porous thermionic element Pending JP2006190916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005003232A JP2006190916A (en) 2005-01-07 2005-01-07 Method for forming junction electrode in thermionic element and porous thermionic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005003232A JP2006190916A (en) 2005-01-07 2005-01-07 Method for forming junction electrode in thermionic element and porous thermionic element

Publications (1)

Publication Number Publication Date
JP2006190916A true JP2006190916A (en) 2006-07-20

Family

ID=36797827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005003232A Pending JP2006190916A (en) 2005-01-07 2005-01-07 Method for forming junction electrode in thermionic element and porous thermionic element

Country Status (1)

Country Link
JP (1) JP2006190916A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281070A (en) * 2006-04-04 2007-10-25 Denso Corp Thermoelectric transducer, and its manufacturing method
JP2009016495A (en) * 2007-07-03 2009-01-22 Daikin Ind Ltd Thermoelectric element, and its manufacturing method
JP2009043783A (en) * 2007-08-06 2009-02-26 Denso Corp Multilayer thermoelectric conversion element, and manufacturing method thereof
KR101266449B1 (en) 2006-12-21 2013-05-23 재단법인 포항산업과학연구원 Fabrication method of thermoelectric module
US8623173B2 (en) 2007-09-14 2014-01-07 Advanced Display Process Engineering Co., Ltd. Substrate processing apparatus having electrode member
RU2543697C2 (en) * 2009-02-19 2015-03-10 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Thermoelectric device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281070A (en) * 2006-04-04 2007-10-25 Denso Corp Thermoelectric transducer, and its manufacturing method
KR101266449B1 (en) 2006-12-21 2013-05-23 재단법인 포항산업과학연구원 Fabrication method of thermoelectric module
JP2009016495A (en) * 2007-07-03 2009-01-22 Daikin Ind Ltd Thermoelectric element, and its manufacturing method
JP2009043783A (en) * 2007-08-06 2009-02-26 Denso Corp Multilayer thermoelectric conversion element, and manufacturing method thereof
US8623173B2 (en) 2007-09-14 2014-01-07 Advanced Display Process Engineering Co., Ltd. Substrate processing apparatus having electrode member
RU2543697C2 (en) * 2009-02-19 2015-03-10 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Thermoelectric device
US9184365B2 (en) 2009-02-19 2015-11-10 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Thermoelectric device

Similar Documents

Publication Publication Date Title
US7915144B2 (en) Methods for forming thermotunnel generators having closely-spaced electrodes
US7557487B2 (en) Methods and apparatus for thermal isolation for thermoelectric devices
US10141492B2 (en) Energy harvesting for wearable technology through a thin flexible thermoelectric device
KR100310478B1 (en) Thermoelectric piece and process of making the same
JP6067586B2 (en) Thermoelectric element using nanostructured bulk material and thermoelectric module including the same
KR101782440B1 (en) Thermoelectric power generation module
JP3927784B2 (en) Method for manufacturing thermoelectric conversion member
JP2006190916A (en) Method for forming junction electrode in thermionic element and porous thermionic element
JP6122736B2 (en) Thermoelectric generator module
WO2010083706A1 (en) Thermoelectric cell and the manufacturing method thereof
JP5468088B2 (en) Thin film thermoelectric generator and manufacturing method thereof
JP2001267642A (en) Method of manufacturing thermoelectric conversion module
JP6404983B2 (en) Thermoelectric module
US20130139866A1 (en) Ceramic Plate
TWI443882B (en) Thermoelectric apparatus and method of fabricating the same
KR101508793B1 (en) Manufacturing method of heat exchanger using thermoelectric module
JP4309623B2 (en) Electrode material for thermoelectric element and thermoelectric element using the same
JP2003282972A (en) Thermoelectric element
WO2021019891A1 (en) Thermoelectric module, and method for manufacturing thermoelectric module
WO2021065670A1 (en) Thermoelectric conversion module
JPH09162448A (en) Thermoelectric element
WO2021200265A1 (en) Thermoelectric conversion module
JP3007904U (en) Thermal battery
JPH09298316A (en) Junction of thermoelectric conversion element
JP2017076744A (en) Thermoelectric conversion module and thermal power generation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091028